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Abstract

Instrumental variable (IV) methods are widely used to obtain consistent effect es-

timates in the presence of unmeasured treatment-outcome confounding, but rely on

assumptions that are hard to make and often criticized. Among these is the as-

sumption that the instrument is randomly assigned, which implies that there is no

instrument-outcome confounding. This is easy to justify for instruments based on a

random process. However, such instruments are rarely available in observational stud-

ies and it is more common to find an instrument that meets this assumption only after

controlling for various measured confounders.

In this work we develop a weighted estimator based on the IV propensity score to

adjust for measured instrument-outcome confounders. The proposed weights reflect

the probability that an individual would be selected into a one-to-one match on the IV

propensity score. Compared with matching methods, the proposed estimator is more

efficient, allows for straightforward variance estimation, and is faster computation-

ally. We study the performance of the estimator through simulation and illustrate its

use in a study comparing dialysis session length and mortality in patients undergoing

hemodialysis as treatment for end stage renal disease.
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1 Introduction

Instrumental variable (IV) methods are widely used to deal with the selection bias or un-

measured confounding often present in observational studies. While IV models can obtain

consistent estimates in the presence of unmeasured confounding, they rely on assumptions

that are often criticized. A key component of an IV analysis is the instrument, a variable

that is believed to encourage individuals toward the treatment or control. The instrument is

assumed to be correlated with the treatment, have no direct effect on the outcome outside of

its effect on the treatment, and be randomly assigned (Angrist et al., 1996; Baiocchi et al.,

2014). The assumption that the instrument is randomly assigned implies that there are no

instrument-outcome confounders. This is easily justified when an instrument is based on

actual randomization, for example using the treatment a subject is randomly assigned in

a randomized trial as an instrument for the treatment a subject ultimately receives. Such

instruments are rarely available in observational studies, however, and it is more common to

find an instrument that meets this requirement only after controlling for a set of measured

instrument-outcome confounders. In other words, the instrument is conditionally distributed

“as good as random.” For example, regional treatment preference may be a reasonable in-

strument after controlling for patient characteristics such as race, age, education, income,

insurance status and comorbidities, geographic characteristics such as rural/urban status,

socioeconomic indicators, and provider characteristics such as procedure volume, supply,

and profit or teaching status. violate the assumption that the instrument is randomly as-

signed. Garabedian et al. (2014) discuss the most commonly used instruments and potential

instrument-outcome confounders associated with each, and emphasize that failing to adjust

for these can bias estimation.

There are several approaches to controlling for instrument-outcome confounders. They

can be included as covariates in two stage regression models. While two stage least squares is
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the most common among these, it may be inappropriate for binary outcomes (Bhattacharya

et al., 2006). Two stage residual inclusion was proposed in Terza et al. (2008) for use

with binary outcomes. Matching on confounders is a common nonparametric alternative

to these regression methods, but becomes difficult when there are many confounders or

confounders with many discrete levels. Though less common in practice, methods have

proposed using the IV propensity score rather than the full set of confounders. Methods

using the IV propensity score include the inverse probability weighting estimator of Tan

(2006), the matching estimator of Frölich (2007), and the weighting and subclassification

methods of Cheng and Lin (2013).

The IV propensity score is the probability that an individual is encouraged, as indicated

by their instrument value, toward the treatment. This differs from the usual propensity

score, which represents the probability that an individual actually receives the treatment.

Like the usual propensity score, the IV propensity score balances the distribution of con-

founders across instrument groups while reducing the dimension of the adjustment problem

(Rosenbaum and Rubin, 1983; Lunceford and Davidian, 2004). Unlike the treatment propen-

sity score, which is only used to address measured treatment-outcome confounding, methods

based on the IV propensity score can provide consistent effect estimates in the presence of

both measured and unmeasured treatment-outcome confounding.

In this work we propose an IV estimator based on the IV propensity score. It is a

weighted estimator that uses weights designed to reflect the probability of being selected into

a one-to-one IV propensity score match. One-to-one IV propensity score matching involves

pairing encouraged subjects to unencouraged subjects with similar scores, usually within a

specified range. Often there is no match within this range. Pairing the encouraged subject

to an unencouraged subject with a score outside of this range can bias estimation, whereas

dropping the encouraged subject reduces sample size and leads to a decrease in efficiency. The

proposed estimator avoids this pitfall associated with matching. Weighted estimators also
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allow for straightforward variance estimation, whereas the correlation structures introduced

by matching algorithms are difficult to account for when estimating the variance of matching

estimators (Austin, 2008, 2009, 2011a). Finally, weighting is computationally more efficient

than matching.

We further discuss two extensions to the proposed estimator that could prove useful

in practice. The first is a modification to the weight function to approximate k:1 matching

designs rather than being restricted to a 1:1 design. The second is an alternative formulation

of the estimator that provides protection against misspecification of the IV propensity score

model. Though this requires the additional specification of an outcome model, this double

robust estimator will give consistent estimates if at least one of the IV propensity score or

outcome models is correctly specified.

The remainder of this article is organized as follows. In section 2 we define notation, dis-

cuss the IV propensity score, and introduce our proposed estimator and the two extensions.

Finite-sample performance is reported through simulations in section 3. We illustrate use of

the method with a data analysis in section 4, and conclude with a discussion in section 5.

2 Methods

2.1 Notation

We define causal effects using potential outcomes notation (Rubin, 1974; Neyman, 1923;

Angrist et al., 1996). For each of i = 1, ..., n subjects, let Zi = 1 if subject i is encouraged

toward treatment and Zi = 0 otherwise. Let Di(Zi) indicate treatment received for subject i

given their encouragement, and let Yi(Zi, Di) indicate the response for subject i given their

encouragement and treatment values. Di(Zi) and Yi(Zi, Di) are referred to as a subjects

potential outcomes. When subject i is encouraged toward treatment, we observe treatment

Di(1) and response Yi(1, Di) from subject i, otherwise we observe treatment Di(0) and
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response Yi(0, Di). Our interest is in estimating the parameter

λ =
E(Yi(1, Di)− Yi(0, Di))

E(Di(1)−Di(0))
. (1)

This is the ratio of the instruments effect on the response to its effect on the treatment, and

is often referred to as the local average treatment effect (LATE) (Imbens and Angrist, 1994;

Angrist et al., 1996). Rather than an average treatment effect over the entire population,

the LATE is interpreted as an average effect over a subgroup of the population known as

compliers. Depicted in Table 1, compliers are individuals that take the treatment they are

encouraged toward, and are one of four population subgroups defined by their response to

encouragement.

Table 1: Population subgroups defined by the effect of encouragement on treatment. D(1)
denotes the treatment a subject will receive if they are encouraged toward treatment, while
D(0) denotes the treatment they will receive if they are encouraged toward the control.

D(1)
1 0

D(0)
1 Always-takers Defiers
0 Compliers Never-takers

The difficulty in estimating λ comes from the fact that we never observe individuals under

encouragement and unencouragement, and thus never observe both of their potential out-

comes. The data provides, for example, E(Yi(1, Di)|Zi = 1), or the average response under

encouragement among encouraged subjects. However, this is not the same as E(Yi(1, Di)),

which is an average response over the entire population if the entire population were ob-

served under encouragement. To recover the expectations in equation (1), and to aid in the

interpretation of λ, we make the following five assumptions (Angrist et al., 1996):

A1 - Stable Unit Treatment Value Assumption. The potential outcomes for one subject

are unaffected by the potential outcomes, treatment assignment, or encouragement of other
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subjects.

A2 - Random assignment of the instrument. The instrument is assumed to be randomly

assigned, which implies that there are no unmeasured instrument-outcome confounders. This

assumption is often stated conditional on measured instrument-outcome confounders.

A3 - Exclusion restriction. The instrument only affects the outcome through its effect

on treatment. This implies that Yi(1, Di = d) = Yi(0, Di = d) for all i and d = 0, 1.

A4 - Nonzero association between instrument and treatment. Assuming a nonzero asso-

ciation between the instrument and treatment implies that E(Di(1)−Di(0)) 6= 0.

A5 - Monotonicity. This assumption states that there are no defiers, or subjects that

always do the opposite of what they are encouraged to do, and implies that Di(1) ≥ Di(0)

for all i.

Assumptions A1 and A2 allow for unbiased estimation of the instruments effect on the

outcome and treatment, or the numerator and denominator in equation (1). Assumption

A3-A5 are added to give a meaningful interpretation to λ. By exclusion restriction, always-

and never-takers (Table 1) do not contribute to estimation since their treatment values,

and thus response values, do not vary with encouragement. Monotonicity ensures that the

group of defiers is empty, while a nonzero association between the instrument and treatment

ensures that the group of compliers is not empty. Hence, with the addition of A3-A5, λ is

an average treatment effect among compliers. Unlike the average treatment effect, which

is applicable to the entire population, λ is a local effect that only applies to subjects that

can be encouraged to switched treatment states, often termed “marginal patients.” Further

discussion of these assumptions can be found in Imbens and Angrist (1994), Angrist et al.

(1996) or Baiocchi et al. (2014), among many others.
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2.2 Proposed Estimator

In this section we propose an IV estimator using weights that are based on the IV propensity

score. Defined as

e(x) = P (Z = 1|X = x), (2)

the IV propensity score is similar to the more common treatment propensity score, but

represents the probability of receiving encouragement toward treatment rather than actually

receiving treatment. From the theorems of Rosenbaum and Rubin (1983), we can say the

distribution of covariates X is balanced across instrument groups conditional on e(x), and

if the instrument is independent of unmeasured confounders conditional on X then it is

independent of unmeasured confounders conditional on e(x). Taken together, these imply

that conditioning on e(x) is sufficient for adjusting for X.

Define the observed treatment and response values for subject i as Di = ZiDi(1) + (1−

Zi)Di(0) and Yi = ZiYi(1, Di) + (1 − Zi)Yi(0, Di), respectively. Our proposed estimator,

which we refer to as the IV-matching weight (IV-MW) estimator, is given as

λIV-MW =

∑
iWiZiYi/

∑
iWiZi −

∑
iWi(1− Zi)Yi/

∑
iWi(1− Zi)∑

iWiZiDi/
∑

iWiZi −
∑

iWi(1− Zi)Di/
∑

iWi(1− Zi)
, (3)

where weights Wi are defined as

Wi =
min(ei(xi), 1− ei(xi))

Ziei(xi) + (1− Zi)(1− ei(xi))
. (4)

Wi is similar to the matching weight of Li and Greene (2013) but defined with the IV

propensity score, hence the term IV matching weight estimator. They are referred to as

matching weights because they approximate the probability that an individual would be

selected into a one-to-one match on the IV propensity score. We show that the asymptotic

limits of the IV-MW and one-to-one IV propensity score matching estimators are equal
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in the Appendix, but illustrate this idea here with a simple example. Consider a region

around the IV propensity score e = 0.1 with m = 100 individuals. From equation (2), we

expect approximately me = 10 encouraged and m(1 − e) = 90 unencouraged subjects in

this region. Therefore, all encouraged subjects are expected to find a match, and Wi =

min(0.1, 0.9)/(1 × 0.1 + 0 × 0.9) = 1. For unencouraged subjects, however, we expect only

10 of the 90 to find a match, and Wi = min(0.1, 0.9)/(0 × 0.1 + 1 × 0.9) = 1/9. Figure 1

shows the weight assigned to encouraged and unencouraged subjects across the range of IV

propensity scores.

Figure 1: Matching weights for encouraged and unencouraged subjects by IV propensity
score.

A benefit of the proposed estimator over one-to-one matching is that all subjects con-

tribute a fraction of themselves to estimation, avoiding the situation where individuals are

removed after not finding a suitable match. This avoids a decrease in sample size and ef-

ficiency. A benefit of the proposed estimator over inverse probability weighting using the

IV propensity score (Tan, 2006) is that the weights are bounded between 0 and 1, whereas

inverse probability weights can “blow up” near probabilities 0 or 1, causing an increase in

variance of the estimate (Li et al., 2014). We thus expect the proposed estimator to be

more efficient than both one-to-one matching and inverse probability weighting using the IV
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propensity score.

An additional benefit of weighting over matching based estimators is that they allow for

straightforward variance estimation. Matching algorithms introduce complicated correlation

structures that are difficult to account for when estimating the variance of matching esti-

mators, and often the matched nature of the data is ignored entirely (Austin, 2008, 2009,

2011a). Following Lunceford and Davidian (2004) and Li and Greene (2013), a sandwich

type variance estimator is obtained using estimating equations

0 =
n∑

i=1

φi(θ) =
n∑

i=1



WiZi(Yi − µy1)

Wi(1− Zi)(Yi − µy0)

WiZi(Di − µd1)

Wi(1− Zi)(Di − µd0)

Sη(η)


, (5)

where θ = (µy1, µy0, µd1, µd0,η
′), with µy1 = E(WiZiYi)/E(WiZi), µy0 = E(Wi(1−Zi)Yi)/E(Wi(1−

Zi)) and similar for µd1 and µd0. Sη(η) represent estimating equations for coefficients η

from the model used to estimate the IV propensity score, often a logistic regression. An

estimate of var(θ̂) is obtained as n−1Â−1n B̂n(ÂTn )−1, where Ân =
∑n

i=1 ∂φi(θ)/∂θ|θ=θ̂ and

B̂n =
∑n

i=1 φi(θ)φ
T
i (θ)|θ=θ̂. With an estimate of var(θ̂), the multivariate delta method can

be applied for an estimate of var(λ̂). This procedure allows for simultaneous estimation of

the IV propensity score and λ, and is used for variance estimation for all estimators compared

in Sections 3 and 4. For the IV propensity score matching procedure, this sandwich variance

estimate ignores the matched nature of the sample. This typically leads to overestimated

variance (Austin, 2009, 2011a), though in simulations reported in Section 3 estimated and

empirical standard deviations are similar.

Note that Wi is not differentiable everywhere with respect to β due to the minimum

function in the numerator. To apply the variance estimation procedure, rewrite the weight
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function as

Wi =
ei(xi)I[ei(xi) ≤ 0.5] + (1− ei(xi))I[ei(xi) > 0.5]

Ziei(xi) + (1− Zi)(1− ei(xi))
. (6)

The indicator functions are then replaced with cumulative distribution functions to create a

smooth, differentiable function for Wi (Horowitz, 1992).

In the following two sections we extend the IV-MW estimator in ways that could prove

useful in practice. We first modify the weight function in equation (4) to approximate a k : 1

match rather than a one-to-one match. We then modify equation (3) for a double robust IV-

MW estimator that protects against misspecification of the IV propensity score model. This

requires the additional specification of an outcome model but will give consistent estimates

if at least one of the IV propensity score or outcome models is correctly specified.

2.2.1 Extension to k:1 IV Matching

The weights in equation (4) are designed to approximate a one-to-one match on the IV

propensity score. While one-to-one matching is the most common in practice (Austin, 2008),

if the pool of unencouraged subjects is large enough we might consider matching multiple

unencouraged subjects to each encouraged subject. Increasing the number of unencouraged

subjects has the benefit of increasing the sample size and thereby decreasing the variability in

estimation. We can extend the IV matching weight estimator in equation (3) to approximate

k:1 matching designs with weights

Wi =
min(kei(xi), 1− ei(xi))

Zikei(xi) + (1− Zi)(1− ei(xi))
. (7)

As the number of unencouraged subjects to be matched increases, the probability that

they will be selected into a match for any given IV propensity score increases, while decreasing

the probability that encouraged subjects will be able to find k matches. Figure 2 graphs this

weight function for up to 4:1 matching.
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Figure 2: Weights for encouraged and unencouraged subjects across IV propensity scores for
1:1, 2:1, 3:1 and 4:1 matching designs. Weights for 1:1 matching are the same as Figure 1

2.2.2 Double Robust Estimation

The IV-MW estimator presented in equation (3) requires correct specification of the IV

propensity score model for consistent estimation. Here we present a double robust version

that protects against a misspecified IV propensity score model. While this requires the

additional specification of an outcome model, the double robust (IV-MWDR) estimator will

provide consistent estimates if at least one of the IV propensity score or outcome models is

correctly specified, but does not require both.

Let m0(Xi) = E {Yi(0, Di)|Xi, Zi = 0} be the outcome model among the unencouraged

group and m1(Xi) be the outcome model among the unencouraged group. Following from

Lunceford and Davidian (2004) and Li and Greene (2013), a double robust version of the

estimator presented in (3) is obtained as

λIV-MWDR
=

A+B − C∑
iWiZiDi/

∑
iWiZi −

∑
iWi(1− Zi)Di/

∑
iWi(1− Zi)

, (8)
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where

A =
∑
i

Wi{m1(Xi)−m0(Xi)}/
∑
i

Wi,

B =
∑
i

WiZi{Yi −m1(Xi)}/
∑
i

WiZi,

C =
∑
i

Wi(1− Zi){Yi −m0(Xi)}/
∑
i

Wi(1− Zi).

Variance is estimated using the procedure discussed in section 2.2, with estimating equations

0 =
n∑

i=1

φi(θ) =
n∑

i=1



Wi{m1(Xi)−m0(Xi)− µA}

WiZi{Yi −m1(Xi)− µB}

Wi(1− Zi){Yi −m0(Xi)− µC}

WiZi(Di − µd1)

Wi(1− Zi)(Di − µd0)

S1(α1)

S0(α0)

Sη(η)



, (9)

where θ = (µA, µB, µC , µd1, µd0,α
′
1,α

′
0,η

′). µA, µB, µC , µd1, and µd0 correspond to the

limits of A, B, C, and the averages in the denominator of equation (8). S1(α1) and S0(α0)

represent the estimating equations for the parameters in m1(Xi) and m0(Xi), and Sη(η) the

estimating equations for the parameters in the IV propensity score model.
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3 Simulation

3.1 Setup

We report simulation results to investigate the finite-sample performance of the proposed

estimator (IV-MW). We compare with two alternatives that make use of the IV propensity

score: the inverse probability weighting (IV-IPW) estimator of Tan (2006) and one-to-one

IV propensity score matching (IV-PSM). The IV-IPW estimator has the same form as the

IV-MW estimator in equation (3) but with the numerator of equation (4) replaced with

1. For the IV-PSM procedure, we match on the logit of the IV propensity score, using an

optimal one-to-one match with a caliper of width equal to one fourth the standard deviation

of logit of the IV propensity scores. For information about caliper selection, see Cochran

and Rubin (1973), Raynor (1983), Rosenbaum and Rubin (1985), or Austin (2011b).

We generate 1,000 datasets with binary outcome, treatment, and instrument for i =

1, ..., n individuals from

P (Yi = 1|Di, X1i, X2i) = logit−1(βDi + δ1X1i + δ2X2i + εyi ), (10)

P (Di = 1|Zi) = logit−1(γ0 + γ1Zi + εdi ), (11)

P (Zi = 1|X1i, X2i) = logit−1(ψ0 + ψ1X1i + ψ2X2i). (12)

(εd, εy) are drawn from a bivariate normal with correlation ρ = .8, creating the effect of

unmeasured confounding between the treatment and the outcome. X1 and X2 represent

instrument-outcome confounders and are randomly drawn from standard normal distribu-

tions. β is varied from 0 to 1 and sample size from 500 to 2,000. Results reported set

parameters ψ0 = γ0 = −1, ψ1 = δ1 = −0.25, γ1 = 1 and ψ2 = δ2 = 0.25.
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3.2 Results

Estimation and coverage results are reported in Table 2. Each of the three estimators are

found to be approximately unbiased. This is expected because we have adjusted for all

instrument-outcome confounders (X1 and X2) in this simulation. Coverage rates for each

method are converging to the nominal rate as sample size increases. While both weighted

estimators have lower mean squared errors (MSE) than IV-PSM, the proposed IV-MW es-

timator has the lowest MSE in each scenario. The 2:1 and 3:1 matching scenarios confirm

that the IV-MW estimator remains unbiased with the lowest MSE. A comparison of standard

deviations in Table 3 confirm that the sandwich variance estimates (ASD) approximate the

empirical standard deviations (ESD).

Table 2: Bias, MSE, and 95% coverage probabilities of IV-MW, IV-IPW, and IV-PSM for
estimation of λ. Reported results are multiplied by 100.

Weighting Matching
IV-MW IV-IPW IV-PSM

k N β λ Bias MSE CP Bias MSE CP Bias MSE CP
1:1 500 0.0 0.00 -0.39 6.11 97.4 -0.51 6.38 97.2 0.50 12.53 97.2

0.5 0.12 -0.09 5.88 97.4 -0.38 6.17 97.1 1.05 9.42 98.2
1.0 0.22 -0.65 5.18 97.9 -0.40 5.50 97.4 -0.13 8.61 98.3

1:1 1000 0.0 0.00 0.16 2.59 96.2 0.27 2.62 96.2 0.69 4.14 96.5
0.5 0.12 0.42 2.50 96.9 0.67 2.57 96.5 0.70 3.84 97.0
1.0 0.22 0.31 2.17 97.0 0.81 2.32 96.5 1.19 3.59 96.8

1:1 2000 0.0 0.00 -0.04 1.28 95.6 -0.03 1.32 95.3 0.38 1.85 95.4
0.5 0.12 0.22 1.15 96.1 0.35 1.19 95.9 0.39 1.61 96.8
1.0 0.22 -0.71 1.26 95.2 -0.27 1.32 94.6 -0.19 1.87 95.5

2:1 2000 0.00 -0.00 -0.10 1.25 96.1 -0.12 1.27 95.7 0.30 1.83 95.8
0.50 0.12 0.51 1.29 94.8 0.46 1.31 94.7 0.38 1.84 95.1
1.00 0.22 0.18 1.19 95.0 0.36 1.22 95.4 0.13 1.69 96.0

3:1 2000 0.00 0.00 -0.25 1.27 95.8 -0.31 1.27 96.3 -0.27 1.87 95.8
0.50 0.12 0.52 1.21 95.0 0.51 1.22 95.2 0.55 1.72 96.4
1.00 0.22 -0.05 1.16 95.7 -0.09 1.18 95.6 -0.16 1.65 97.5

We performed additional simulations to study the performance of the double robust IV-

MW estimator (IV-MWDR) proposed in Section 2.2.2. The generating equations for Y and
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Table 3: Comparison of standard deviations obtained empirically (ESD) and using the sand-
wich variance technique of Section 2.2 (ASD). Reported results are multiplied by 100.

Weighting Matching
IV-MW IV-IPW IV-PSM

k N β λ ASD ESD ASD ESD ASD ESD
1:1 500 0.0 0.00 24.58 24.71 25.03 25.25 33.01 35.40

0.5 0.12 23.97 24.26 24.68 24.84 31.22 30.67
1.0 0.22 23.03 22.74 23.84 23.45 29.56 29.33

1:1 1000 0.0 0.00 16.37 16.08 16.62 16.19 20.06 20.35
0.5 0.12 16.06 15.79 16.32 16.02 19.76 19.59
1.0 0.22 15.40 14.74 15.79 15.21 19.03 18.91

1:1 2000 0.0 0.00 11.35 11.30 11.48 11.50 13.66 13.59
0.5 0.12 11.14 10.73 11.34 10.90 13.45 12.69
1.0 0.22 10.84 11.20 11.12 11.50 13.20 13.68

2:1 2000 0.0 -0.00 11.27 11.20 11.52 11.29 13.74 13.52
0.5 0.12 11.00 11.35 11.31 11.43 13.42 13.54
1.0 0.22 10.67 10.90 11.03 11.02 13.07 12.99

3:1 2000 0.0 0.00 11.34 11.26 11.52 11.28 13.71 13.67
0.5 0.12 11.17 11.00 11.36 11.03 13.44 13.12
1.0 0.22 10.85 10.78 11.05 10.84 13.09 12.85

Z are modified to include the interaction term X1X2 with coefficient 1. This interaction

term is ignored for an incorrectly specified model.

Results in Table 4 confirm that IV-MWDR provides consistent estimates and maintains

nominal coverage rates if at least one of the outcome or IV propensity score models is

correctly specified. The original IV-MW estimator only provides unbiased estimates if the

IV propensity score model is correctly specified, and the performance suffers greatly when

it is misspecified. An interesting finding in Table 4 is that even though IV-MWDR requires

the additional specification of an outcome model, performance is not damaged compared to

IV-MW in situations in which the double robust property would not be needed, i.e. when

the IV propensity score model is correctly specified.

The simulations reported throughout this section demonstrate that the proposed IV-

MW estimator performs well compared with alternatives. It provided consistent estimates,
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Table 4: Comparison of estimation using IV-MW and IV-MWDR under correctly and incor-
rectly specified IV propensity score and outcome models. Results reported are for n = 1, 000
and β = 1 and are multiplied by 100.

P(Z) P(Y) Estimator % Bias MSE ASD ESD 95% CP
Correct Correct IV-MW -2.50 0.56 7.52 7.47 94.9

IV-MWDR -2.50 0.56 7.80 7.48 95.5
Correct Incorrect IV-MW -3.12 0.52 7.57 7.18 96.3

IV-MWDR -3.13 0.52 7.66 7.18 96.2
Incorrect Correct IV-MW 84.16 3.86 7.51 7.36 30.1

IV-MWDR -6.18 0.55 7.66 7.33 95.8
Incorrect Incorrect IV-MW 85.14 3.96 7.49 7.56 30.6

IV-MWDR 87.65 4.17 7.57 7.56 29.6

achieved the lowest MSE, and maintained approximately nominal coverage. Both weighting

estimators (IV-MW and IV-IPW) had lower MSE than the matching estimator (IV-PSM).

IV-MW had lower MSE than IV-IPW, possibly because IV-IPW weights can “blow up” near

probabilities of 0 or 1 (Li et al., 2014). In simulations, while IV-MW weights are bounded

between 0 and 1, IV-IPW weights ranged from 1.05 to 20.5. Additionally, the IV-MWDR

estimator proposed for protection against misspecification of the IV propensity score model

performed as expected, providing consistent estimates if at least one of the IV propensity

score or outcome models were correctly specified, but did not require both to be correct.

The weighting estimators additionally saw computational benefits over IV propensity score

matching. Using a MacBook Pro with a 2 GHz Intel Core i7 processor, we observed the

following times (in seconds) to complete 1,000 simulations for n = 500, 1,000, and 2,000,

respectively: IV-MW - 6.3, 9.9, and 23.6, IV-IPW - 6.0, 9.4, and 21.4, IV-PSM - 65.4, 166.1,

and 547.9. While computing time was not an important issue in these simulations, it quickly

becomes one for matching estimators as sample size increases.
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4 Data Example

We illustrate use of these methods with data from the United States Renal Data System

(USRDS) to study the association between dialysis session length and mortality among in-

cident hemodialysis patients in the United States. It is thought that longer dialysis sessions

decrease mortality risk by reducing the risk of intradialytic hypotension and and better con-

trolling volume excess and serum phosphorous (Daugirdas, 2013), but this relationship is

likely confounded. Shorter dialysis sessions are often prescribed to smaller patients, and

smaller patients tend to have higher mortality rates. Several observational studies have

found a significant increase in mortality in patients receiving shorter dialysis time (Flythe

et al., 2013; Brunelli et al., 2010; Saran et al., 2006). However, a 2002 randomized trial

found no significant relationship between dialysis time and mortality (Eknoyan et al., 2002),

and Brunelli et al. (2010) found longer dialysis times to be associated with higher or lower

mortality depending on whether the treatment was considered time dependent. These con-

flicting results suggest that unmeasured confounding may be present and an IV analysis may

be useful.

We obtained complete data on 319,168 adults initiating hemodialysis (HD) between Jan-

uary 1, 2010 and December 31, 2013 from the USRDS database. We restricted the analysis

to patients on a thrice-weekly dialysis schedule (98% of all incident HD patients). We con-

ducted an intention-to-treat analysis, defined treatment as being prescribed dialysis sessions

of four hours or longer, and defined the outcome as death in the first year. Mean treatment

usage in the hospital service area (HSA) from 2007 to 2009 is used as the IV (Figure 3).

An HSA is a geographic region representing a collection of zip codes whose residents receive

most of their healthcare within that region (Dartmouth, 2016). Preference-based instru-

ments such as this one are among the most common in health research (Garabedian et al.,

2014), and are thought to measure treatment preferences that are independent of patient

17

Hosted by The Berkeley Electronic Press



level confounders (Brookhart and Schneeweiss, 2007; Li et al., 2015).

Among the 3,336 HSAs in the data, mean treatment usage varied from 0 to 100% with a

mean of 74%. The correlation coefficient between the mean treatment usage from 2007-2009

and mean treatment usage from 2010-2013 in an HSA was almost 90%. This indicates that

preferences in an HSA are relatively stable through time, and that mean treatment usage

in an HSA from 2007-2009 is a strong instrument for treatment in the 2010-13 data. To fit

the methods of this chapter, we dichotomize the instrument, considering HSAs with above

average treatment usage to be encouraging subjects toward longer dialysis sessions and HSAs

with below average usage to be encouraging their subjects toward shorter sessions.

Figure 3: Distribution of longer dialysis session usage by hospital service area. Longer
dialysis sessions are defined as being prescribed sessions of four hours or more.

Table 5 reports the distribution of covariates by treatment and by instrument. Patients

receiving longer dialysis sessions tend to have higher BMI and are more likely to be male,

black, and younger compared with patients receiving shorter sessions. They are also more

likely to be treated at for profit facilities in poorer, less educated areas. The improved

covariate balance across instrument levels is evidence that HSA treatment usage may serve

as a valid IV, although some imbalances remain in facility and zip code level variables.
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Table 5: Distribution of covariates across treatment (long vs short dialysis sessions) and
instrument groups (high vs low treatment usage at HSA level). Reported in the table is the
mean and absolute standardized difference, d, between groups. An absolute standardized
difference of more than 10 is generally considered to indicate an imbalance (Love, 2002).

Hours on Dialysis Usage in HSA
< 4 ≥ 4 d Low High d

Treatment
4+ hour sessions - - - 60.3% 88.8% 69.1
Outcome
Death w/in 1st year 23% 21% 6.2 22% 21% 0.8
Patient Level Covariates
Age 65.9 63.0 19.6 64.3 63.3 6.8
Male 51% 59% 16.7 57% 56% 2.1
BMI 28.0 30.4 28.2 29.4 30.1 8.3
Serum Creatinine 6.4 6.7 1.6 6.7 6.6 0.3
Hemoglobin 10.0 9.9 0.7 9.9 9.9 0.1
Black 23% 31% 16.6 26% 32% 12.42
Hispanic 17% 14% 8.4 17% 11% 10.9
Pre-ESRD 6+ Months 41% 44% 5.6 41% 45% 8.3
Employed 8.3% 9.1% 3.0 9.1% 8.8% 0.9
No Insurance 5% 8% 10.9 6% 8% 10.3
# Comorbidities 2.5 2.6 5.4 2.5 2.6 5.7
Facility Level Covariates
# Nurses 7.3 7.3 0.3 7.7 7.0 12.2
# Patient techs 8.9 8.8 1.1 9.1 8.5 8.1
# HD stations 20.8 21.7 10.2 21.2 21.7 5.7
For profit 81% 86% 14.9 82% 88% 16.5
Zip Code Level Covariates
Median income $54,551 $49,286 25.3 $53,358 $47,960 26.9
Bachelors degree + 25.5% 22.9% 18.0 24.6% 22.6% 14.9

We first fit unadjusted and covariate adjusted logistic regression models. These indicate

a significant decrease in the odds of first year mortality among patients with longer dialysis

sessions, with estimated odds ratio and 95% confidence intervals of 0.86 (0.84, 0.87) and 0.95

(0.93, 0.97), respectively. Age, sex, race, ethnicity, BMI, number of comorbidities, access

type, profit status of the facility and median income in the zip code were included in the

covariate adjusted model. These logistic regressions will be biased if there are confounders

between the treatment and the outcome that are not included in the model.
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To implement the methods discussed in this article, we first model the IV propensity

score, or the probability of being in an “encouraging” HSA. We use a logistic regression

model including HSA level covariates mean age, BMI, number of comorbidities, percentage

of males, blacks, hispanics, and patients without insurance, and median income. Using the

estimated IV propensity score, a weight is assigned to each subject for the IV-MW and IV-

IPW procedures. For the IV-MW procedure, this weight is given in equation (4). For the

IV-IPW procedure the weight is defined similarly as equation (4), but with the numerator

replaced with 1. For the IV-PSM procedure, we specified a one-to-one optimal match on the

IV propensity score with a caliper of 0.05.

Table 6: Instrumental variable estimates and 95% confidence intervals for the effect of longer
dialysis sessions on first year mortality. Negative estimates suggest less first year mortality
among the patients receiving longer dialysis sessions.

λ̂ 95% CI

IV-MW -0.015 (-0.028, -0.002)
IV-IPW -0.006 (-0.018, 0.006)
IV-PSM -0.015 (-0.028, 0.001)

Results in Table 6 suggest a small protective effect of longer dialysis sessions. These re-

sults corroborate those found using logistic regression, although the estimated effects appear

smaller and are insignificant for the IV-IPW and IV-PSM procedures. These estimates can

be interpreted as follows; for λ̂ = −0.015, for example, we expect 1.5 less deaths in the first

year for every 100 patients that could be encouraged to take long dialysis sessions. Note that

IV-MW and IV-PSM gave similar results, with IV-MW obtaining a slightly shorter confi-

dence interval. This is in line with the idea that the IV-MW estimator is a more efficient

approximation to the IV-PSM process.
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5 Conclusion

A key assumption in instrumental variable analyses is that the instrument is randomly

assigned, which requires that there are no unmeasured confounders between the instrument

and the outcome. Unfortunately, unless the instrument is based on actual randomization, this

assumption is unlikely to hold without conditioning on a set of known, measured confounders.

The researcher must then argue that the instrument is distributed as good as random after

controlling for these instrument-outcome confounders. Garabedian et al. (2014) emphasize

that the most commonly used instruments have potential instrument-outcome confounders

associated with them and that failing to adjust for these confounders can bias estimation.

In this article we developed a weighted IV estimator based on the IV propensity score

to adjust for instrument-outcome confounders. The weights reflected the probability that

an individual would be selected into a one-to-one IV propensity score match, and modified

weights for approximating k:1 matching designs were provided as well. We further presented

a double robust version of the estimator that protects against misspecification of the IV

propensity score model. Though this required the additional specification of an outcome

model, the double robust estimator provided consistent estimates if only one of the outcome

or IV propensity score models was correctly specified, but did not require both to be correct.

One-to-one IV propensity score matching involves pairing each encouraged subject to an

unencouraged subject with a similar IV propensity scores, often within a specified range. If a

match cannot be found within this range, pairing the encouraged subject with an unencour-

aged subject with a substantially different IV propensity score can bias estimation, whereas

removing that subject from the analysis leads a loss of efficiency. The proposed estimator

avoids these pitfalls, leading to more efficient estimation as every individual contributes.

Additional benefits over matching include straightforward variance estimation and compu-

tational efficiency. Through simulation, the proposed estimator was found to outperform
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alternatives, being equally unbiased with uniformly smaller mean squared errors.

Methods were illustrated using USRDS data to study the association between dialysis

session length and first year mortality among hemodialysis patients in the United States.

While longer dialysis sessions are thought to decrease risk of mortality, it is a difficult research

question as the relationship between session length and mortality is likely confounded, as

smaller patients with higher mortality risk are more likely to be prescribed shorter dialysis

sessions. This might explain the lack of consensus among previous studies. Using the

IV methods of this article, a small protective effect of longer dialysis sessions was found,

suggesting 1.5 fewer first year deaths for every 100 dialysis patients encouraged to switch

from shorter to longer dialysis sessions.
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Appendix

In this section we show that the IV-MW and IV-PSM estimators have the same limit as

n → ∞. Following Li and Greene (2013), we will assume that the IV propensity score

takes finitely many values ck for k = 1, ..., K with ck ∈ (0, 1). This assumption is to allow

exact matching on the IV propensity score and avoid unnecessary complications of working

with other matching algorithms. For the IV-PSM estimator we assume one-to-one exact

matching without replacement on the IV propensity score. Additionally, we simplify the

notation of section 2, letting Y (1, Di) = Y 1
i , Yi(0, Di) = Y 0

i , Di(1) = D1
i , Di(0) = D0

i ,

Yi = ZiY
1
i + (1 − Zi)Y

0
i , Di = ZiD

1
i + (1 − Zi)D

0
i , and ei(xi) = ei. We further denote

P (ei = ck) = τk, with
∑

k τk = 1.

We begin with the IV-MW estimator, defined as

λIV-MW =

∑
iWiZiYi/

∑
iWiZi −

∑
iWi(1− Zi)Yi/

∑
iWi(1− Zi)∑

iWiZiDi/
∑

iWiZi −
∑

iWi(1− Zi)Di/
∑

iWi(1− Zi)

≡ A/F −B/G
C/F −D/G

.

The limit for A is

n−1
∑
i

WiZiYi →p E{WiZiY
1
i }

= E

{
E(
min(ei, 1− ei)

ei
I(Zi = 1)Y 1

i |xi)
}

= E{min(ei, 1− ei)E(Y 1
i |xi)}.
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Similarly, the limits for B, C, and D are given by

n−1
∑
i

Wi(1− Zi)Yi →p E{min(ei, 1− ei)E(Y 0
i |xi)},

n−1
∑
i

WiZiDi →p E{min(ei, 1− ei)E(D1
i |xi)},

n−1
∑
i

Wi(1− Zi)Di →p E{min(ei, 1− ei)E(D0
i |xi)}.

Taking the limit of F and G gives

n−1
∑
i

WiZi →p E{WiZi}

= E

{
min(ei, 1− ei)

ei
I(Zi = 1)

}
= E{min(ei, 1− ei)}

and

n−1
∑
i

Wi(1− Zi) →p E{min(ei, 1− ei)}

Combining these and reducing, the limit of the IV-MW as n→∞ is given as

λ̂IV-MW →p
E{min(ei, 1− ei)(E(Y 1

i |xi)− E(Y 0
i |xi))}

E{min(ei, 1− ei)(E(D1
i |xi)− E(D0

i |xi))}
.

Next we consider the IV-PSM estimator, which we write as

λ̂IV-PSM =

{∑
k

∑
i YiI(i∈S1k)∑

k

∑
i I(i∈S1k)

}
−
{∑

k

∑
i YiI(i∈S0k)∑

k

∑
i I(i∈S0k)

}
{∑

k

∑
iDiI(i∈S1k)∑

k

∑
i I(i∈S1k)

}
−
{∑

k

∑
iDiI(i∈S0k)∑

k

∑
i I(i∈S0k)

} ≡ A/F −B/G
C/F −D/G

,

where S1k and S0k represent the sets of encouraged and unencouraged subjects matched at
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ck, respectively. The limit of A is then

n−1
∑
k

∑
i

YiI(i ∈ S1k) = n−1
∑
k

∑
i

Y 1
i I(i ∈ S1k)

→p E

{∑
k

Y 1
i I(i ∈ S1k)

}

= E

{
E(Y 1

i |xi)E(
∑
k

I(i ∈ S1k)|xi)

}

= E

{
E(Y 1

i |xi)
∑
k

τkei
min(ei, 1− ei)

ei

}
= E{min(ei, 1− ei)E(Y 1

i |xi)}.

Similarly, the limits for B, C, and D are given as

n−1
∑
k

∑
i

YiI(i ∈ S0k)→p E{min(ei, 1− ei)E(Y 0
i |xi)},

n−1
∑
k

∑
i

DiI(i ∈ S1k)→p E{min(ei, 1− ei)E(D1
i |xi)},

n−1
∑
k

∑
i

DiI(i ∈ S0k)→p E{min(ei, 1− ei)E(D0
i |xi)}.

Finally, for F we have

n−1
∑
k

∑
i

I(i ∈ S1k) →p E

{∑
k

I(i ∈ S1k)

}

= E

{
min(ei, 1− ei)

∑
k

τk

}
= E{min(ei, 1− ei)},

and similarly for G

n−1
∑
k

∑
i

I(i ∈ S0k) →p E{min(ei, 1− ei)}.
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Combining everything and reducing, the limit of the IV-PSM estimator as n → ∞ is

found to be

λ̂IV-PSM →p=
E{min(ei, 1− ei)(E(Y 1

i |xi)− E(Y 0
i |xi))}

E{min(ei, 1− ei)(E(D1
i |xi)− E(D0

i |xi))}
,

which is the same as that of the IV-MW estimator.

26

http://biostats.bepress.com/umichbiostat/paper121



References

Angrist, J. D., Imbens, G. W., and Rubin, D. B. (1996). Identification of causal effects using

instrumental variables. Journal of the American Statistical Association 91, 444–455.

Austin, P. C. (2008). A critical appraisal of propensity-score matching in the medical liter-

ature between 1996 and 2003. Statistics in Medicine 27, 2037–2049.

Austin, P. C. (2009). Type i error rates, coverage of confidence intervals, and variance esti-

mation in propensity-score matched analyses. The International Journal of Biostatistics

5,.

Austin, P. C. (2011a). Comparing paired vs non-paired statistical methods of analyses when

making inferences about absolute risk reductions in propensity-score matched samples.

Statistics in Medicine 30, 1292–1301.

Austin, P. C. (2011b). Optimal caliper widths for propensity-score matching when estimating

differences in means and differences in proportions in observational studies. Pharmaceutical

Statistics 10, 150–161.

Baiocchi, M., Cheng, J., and Small, D. S. (2014). Instrumental variable methods for causal

inference. Statistics in medicine 33, 2297–2340.

Bhattacharya, J., Goldman, D., and McCaffrey, D. (2006). Estimating probit models with

self-selected treatments. Statistics in medicine 25, 389–413.

Brookhart, M. A. and Schneeweiss, S. (2007). Preference-based instrumental variable meth-

ods for the estimation of treatment effects: assessing validity and interpreting results. The

International Journal of Biostatistics 3,.

Brunelli, S. M., Chertow, G. M., Ankers, E. D., Lowrie, E. G., and Thadhani, R. (2010).

27

Hosted by The Berkeley Electronic Press



Shorter dialysis times are associated with higher mortality among incident hemodialysis

patients. Kidney international 77, 630–636.

Cheng, J. and Lin, W. (2013). Understanding causal effects in observational studies with

instrumental propensity scores. Joint Statistical Meeting .

Cochran, W. G. and Rubin, D. B. (1973). Controlling bias in observational studies: A
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Frölich, M. (2007). Nonparametric iv estimation of local average treatment effects with

covariates. Journal of Econometrics 139, 35–75.

Garabedian, L. F., Chu, P., Toh, S., Zaslavsky, A. M., and Soumerai, S. B. (2014). Potential

bias of instrumental variable analyses for observational comparative effectiveness research.

Annals of Internal Medicine 161, 131–138.

Horowitz, J. L. (1992). A smoothed maximum score estimator for the binary response model.

Econometrica 60, 505–531.

28

http://biostats.bepress.com/umichbiostat/paper121



Imbens, G. W. and Angrist, J. D. (1994). Identification and estimation of local average

treatment effects. Econometrica 62, 467–475.

Li, F., Morgan, K. L., and Zaslavsky, A. M. (2014). Balancing covariates via propensity

score weighting. arXiv:1404.1785 [stat.ME] .

Li, L. and Greene, T. (2013). A weighting analogue to pair matching in propensity score

analysis. The International Journal of Biostatistics 9, 215–234.

Li, Y., Lee, Y., Wolfe, R. A., Morgenstern, H., Zhang, J., Port, F. K., and Robinson, B. M.

(2015). On a preference-based instrumental variable approach in reducing unmeasured

confounding-by-indication. Statistics in Medicine 34, 1150–1168.

Love, T. (2002). Displaying covariate balance after adjustment for selection bias. In Joint

Statistical Meetings.

Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propensity

score in estimation of causal treatment effects: a comparative study. Statistics in medicine

23, 2937–2960.

Neyman, J. (1923). On the application of probability theory to agricultural experiments.

Statistical Science 5, 463–480.

Raynor, W. J. (1983). Caliper pair-matching on a continuous variable in case-control studies.

Communications in Statistics - Theory and Methods 12, 1499–1509.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in

observational studies for causal effects. Biometrika 70, 41–55.

Rosenbaum, P. R. and Rubin, D. B. (1985). Constructing a control group using multi-

variate matched sampling methods that incorporate the propensity score. The American

Statistician 39, 33–38.

29

Hosted by The Berkeley Electronic Press



Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandom-

ized studies. Journal of educational Psychology 66, 688.

Saran, R., Bragg-Gresham, J., Levin, N., Twardowski, Z., Wizemann, V., Saito, A., Kimata,

N., Gillespie, B., Combe, C., Bommer, J., et al. (2006). Longer treatment time and slower

ultrafiltration in hemodialysis: associations with reduced mortality in the dopps. Kidney

international 69, 1222–1228.

Tan, Z. (2006). Regression and weighting methods for causal inference using instrumental

variables. Journal of the American Statistical Association 101, 1607–1618.

Terza, J., Basu, A., and Rathouz, P. (2008). Two-stage residual inclusion estimation: ad-

dressing endogeneity in health econometric modeling. Journal of health economics 27,

531–543.

30

http://biostats.bepress.com/umichbiostat/paper121


	text.pdf.1460343115.titlepage.pdf.Tts7A
	tmp.1460343115.pdf.MsZll

