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Abstract

In the fields of neuroimaging and genetics a key goal is testing the association
of a single outcome with a very high-dimensional imaging or genetic variable.
Oftentimes summary measures of the high-dimensional variable are created to se-
quentially test and localize the association with the outcome. In some cases, the
results for summary measures are significant, but subsequent tests used to local-
ize differences are underpowered and do not identify regions associated with the
outcome. We propose a generalization of Rao’s score test based on maximizing
the score statistic in a linear subspace of the parameter space. If the test rejects
the null, then we provide methods to localize signal in the high-dimensional space
by projecting the scores to the subspace where the score test was performed. This
allows for inference in the high-dimensional space to be performed on the same
degrees of freedom as the score test, effectively reducing the number of compar-
isons. We illustrate the method by analyzing a subset of the Alzheimer’s Disease
Neuroimaging Initiative dataset. Results suggest cortical thinning of the frontal
and temporal lobes may be a useful biological marker of Alzheimer’s risk. Sim-
ulation results demonstrate the test has competitive power relative to others com-
monly used.
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Abstract

In the fields of neuroimaging and genetics a key goal is testing the association
of a single outcome with a very high-dimensional imaging or genetic variable.
Oftentimes summary measures of the high-dimensional variable are created to
sequentially test and localize the association with the outcome. In some cases,
the results for summary measures are significant, but subsequent tests used to
localize differences are underpowered and do not identify regions associated
with the outcome. We propose a generalization of Rao’s score test based on
maximizing the score statistic in a linear subspace of the parameter space.
If the test rejects the null, then we provide methods to localize signal in the
high-dimensional space by projecting the scores to the subspace where the
score test was performed. This allows for inference in the high-dimensional
space to be performed on the same degrees of freedom as the score test,
effectively reducing the number of comparisons. We illustrate the method
by analyzing a subset of the Alzheimer’s Disease Neuroimaging Initiative
dataset. Results suggest cortical thinning of the frontal and temporal lobes
may be a useful biological marker of Alzheimers risk. Simulation results
demonstrate the test has competitive power relative to others commonly
used.
Keywords: Score maximization, posthoc inference, association test, hy-
pothesis test, neuroimaging
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1 Introduction

Across scientific fields in which high-dimensional data are prominent, there
is interest in testing the association of a single continuous or categorical out-
come with a large number of independent variables. A common approach
used in neuroimaging is to perform sequential tests to reduce the number of
hypothesis tests. For example, in neuroimaging it is common to first perform
a test for the association of a phenotype with an imaging variable averaged
across the entire brain. If the test rejects the null hypothesis of no associa-
tion between brain and phenotype, then subsequent tests are conducted on
regional averages of the data, and then finally on every voxel in the image
using multiplicity correction to address the thousands of tests performed in
the image. Often, voxelwise results yield few or no significant findings due to
reduced signal and the necessary adjustment for the large number of tests,
even though the whole brain average data show a significant association.

In this paper we propose an approach to combine these series of tests into
a single testing procedure. The framework is a generalization of Rao’s score
test when there are more independent variables than observations. Though
the approach is designed to address hypothesis testing in neuroimaging, it is
applicable in a wide range of scientific domains.

Score tests are appealing in neuroimaging and genetics, where the number
of variables, p, is much larger than the sample size, n. When p > n the score
test has the advantage that it does not require an estimate of the model
under the alternative hypothesis, thus has significantly reduced computation
time relative to the Wald and likelihood ratio tests [Pan et al., 2014]. The
sum of scores (Sum) test originally discussed by Rao [1948] has been used in
genetics and neuroimaging [Pan, 2009, Kim et al., 2014].

To define the Sum test, assume Yi iid observations with density f . De-
fine the scores U = n−1

∑n
i=1

∂ log f(Yi|θ)
∂θ

(θ0) as the first derivative of the log
likelihood evaluated at the null scaled by n−1, and the Fisher information
Ω(θ0) = E

{
[(∂/∂θ) log f(Y1 | θ)]T [(∂/∂θ) log f(Y1 | θ)]

}
. The Sum test is

based on the statistic

n
(UT ζ)2

ζT Ω̂ζ
, (1)

where ζ ∈ Rp is a known vector of weights. The denominator is an estimate
of the variance of UT ζ, so that the statistic is asymptotically χ2

1 [Rao, 1948].
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In genetics, the Sum test was introduced in the context of the model

h(E{Yi}) = αTxi + βTgi, (2)

where xi ∈ Rm, is a vector of a small number (m < n) of observed covariates
that includes a term for the intercept, gi ∈ Rp is a vector of a large number
of predictor variables of interest, α and β are unknown coefficient vectors, h
is a known link function and Y is from an exponential family distribution.
We seek to test H0 : β = 0 versus the alternative H1 : β 6= 0. The Sum test,
in this framework, assumes that the components of β are equal, β1 = β2 =
. . . = βp = βc, and performs the test of H0 : βc = 0 [Pan, 2009]. In this case
ζ = [1, . . . , 1] in equation (1). More recent versions of the Sum test allow
general weighting schemes [Madsen and Browning, 2009].

The Sum test is most powerful when the alternative differs from the null
by small quantities [Rao, 1948]. However, the test has low power when there
is a large number of variables that are not associated with the outcome [Pan
et al., 2014]. This is due to the fact that the variance of the statistic in
the numerator of (1) increases by adding nonassociated variables without
increasing the expected value of the numerator. In addition, the test with
positive weights has low power when there are coefficients with different signs.
Another third limitation of the test is that it requires the a priori selection of
weights; if multiple weight configurations are used then conservative multiple
comparison corrections are necessary.

In the case of unknown weights when p < n, Rao [1948] proposed maxi-
mizing the sum test statistic with respect to the weights,

max
ζ
n

(UT ζ)2

ζT Ω̂ζ
= nUT Ω̂−1U. (3)

This statistic is χ2
p under the null. This statistic cannot be used for high

dimensional data due to the estimate Ω̂ being noninvertible when p > n. We
refer to statistics of the type 3 as a MaxSum statistic because they maximizes
the sum test with respect to the weight vector.

In this paper, we propose an extension of the MaxSum test for models
with p > n. Our extension of the MaxSum can be thought of as a generaliza-
tion of Rao’s test in the case where the information matrix is noninvertible.
The test has improved power over the Sum test, when p > n, by maximizing
the statistic with respect to the vector ζ over a subspace, L, of Rp. The test
works by rotating the scores for the original model to a lower dimensional
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space where the information matrix is invertible. One advantage of the Max-
Sum is that the scores can be projected onto L, and low rank multivariate
inference on the projected scores can be performed to aid in localization of
scores that contribute to the test statistic. We derive the asymptotic null
distribution for the MaxSum statistic for models with likelihoods that sat-
isfy some standard regularity conditions. For a normal linear model, we show
how the finite sample distribution of the statistic can be calculated exactly.

A key advantage of the test is that it allows the investigator to incorporate
known information about the structure of the signal, or to take advantage of
the correlation structure in the data. In addition, the MaxSum can be used
to combine score weights and naturally reduce the number of comparisons
caused by testing multiple weights separately.

To demonstrate how the test can be used in neuroimaging we analyze
data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.
We investigate the association of cortical thickness with mild cognitive im-
pairment (MCI). The outer surface of the brain (cortex) represents a highly
folded sheet in 3-dimensional space. The thickness of the cortex is known to
be affected in individuals with psychopathology and neurological illness. MCI
is a subtle pre-Alzheimer’s disease decline in cognitive functioning. There is
interest in finding biological markers of MCI in order to identify those at
risk for developing Alzheimer’s disease. In this data set we seek to localize
regions of the brain brain where cortical thinning provides additional infor-
mation with regard to the diagnosis of MCI over what can be ascertained by
neurocognitive scales alone.

In Section 2.1 we derive the test statistic and multivariate inference for
likelihoods that satisfy general regularity conditions. In Section 2.2 we
present a version of the test for normal data with a derivation of the fi-
nite sample distribution of the statistic. In Section 3 we discuss post hoc
inference by projecting the rotated scores onto L. Section 4 illustrates limi-
tations of current methodology and demonstrates the MaxSum procedure in
a neuroimaging data set from the Alzheimers Disease Neuroimaging Initia-
tive (ADNI) data set where p =18,715 and n = 628. This analysis motivates
the selection of the subspace L. In Section 5 we compare the power of the
MaxSum to several other tests used in genetics and neuroimaging.

For the remainder of the manuscript, we denote matrices by uppercase
italic letters (X), vectors by lowercase (x), and random vectors by uppercase
roman letters (X). Vector spaces are denoted with black-board letters (X)
and Greek letters are (usually unknown) model parameters. For the singular

5

Hosted by The Berkeley Electronic Press



value decomposition (SVD) of any matrix X = UDV T , we will assume that
the smallest dimensions of the matrices obtained are equal to the rank of the
matrix X unless otherwise noted.

2 Maximization of the Sum Test

In this section we define the MaxSum statistic and give its asymptotic dis-
tribution for an arbitrary likelihood, given some regularity conditions. We
discuss maximization of the sum test for normal linear models in Section 2.2,
and then in Section 2.3 we discuss choices for the basis L in generalized linear
models (GLMs).

2.1 Maximization of the Sum test for general distribu-
tions

We assume the observations Yi, are independent with density f(y | θ) and
we denote the log-likelihood `(θ) =

∑n
i=1 log f(yi | θ). Consider a model of

m + p unknown parameters, θ = (α, β), where β ∈ Rp are of interest and
α ∈ Rm are nuisance parameters. Under the null we assume H0 : β = β0.
α is unrestricted and we estimate it with its MLEs. Let the information,
ΩF = E

[
{(∂/∂θ) log f(Y1 | θ)}T{(∂/∂θ) log f(Y1 | θ)}

]
, for the full model

be

ΩF (θ) =

[
Ωα Ωαβ

Ωβα Ωβ

]
.

Then the efficient information for β is

Ω(θ) = Ωβ − ΩβαΩ−1
α Ωαβ. (4)

We will show that the asymptotic distribution of the MaxSum statistic can
be found for any likelihood based on independent observations provided the
same regularity conditions required for the convergence of the scores to a
multivariate normal [Boos and Stefanski, 2013, p. 288]. First, we define the
MaxSum statistic.

Definition 2.1. Let PL be the orthogonal projection matrix onto a linear
space L ⊂ Rp with r = dim(L) < n − m. Let U = n−1(∂/∂θ)`(θ | Y)|θ0
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denote the score vector for β and Ω̂ be an estimate of the efficient information
obtained from

Ω̂F = n−1

n∑
i=1

(
∂ log f(Yi | θ)

∂θT

)(
∂ log f(Yi | θ)

∂θ

)∣∣∣
θ0

(5)

using the formula (4), where θ̂0 = (α̂, β0) denotes the estimate of the parame-
ter vector under the null hypothesis H0 : β = β0. Then the MaxSum statistic
with respect to L is defined as

RL
MaxSum = max

ζ∈L
n

(ζTU)2

ζT Ω̂(θ0)ζ
= max

ζ∈Rp
n

(ζTPU)2

ζTP Ω̂(θ0)Pζ
.

Under this definition we have the following theorem.

Theorem 2.2. Assume all objects are as described in Definition 2.1. Let
PL = QQT where the columns of Q are any orthonormal basis for L. Define

V = V (θ0) = QTΩ(θ0)Q,

and assume the estimate V̂ = QT Ω̂(θ0)Q is invertible.
In addition, assume the asymptotic normality of the scores, which de-

pends on: (1) identifiability of the parameters, (2) the support of f(y | θ)
does not depend on θ, (3) The true parameter lies on the interior of the
parameter space, (4) |(∂3/∂θj∂θk∂θ`) log f(y | θ)| ≤ g(y), with Eg(y) < ∞,

and (5) EΩ̂F = ΩF (θ0), for Ω̂F in Definition 2.1 and ΩF is nonsingular
and continuous with respect to θ. Then, the rotated scores are asymptotically
normal

n1/2QTU
d−→ Ar(0, V ). (6)

and the MaxSum statistic is

RL
MaxSum = nUTQV̂−1QTU, (7)

with RL
MaxSum

D−→ χ2
r as n→∞.

Theorem 2.2 requires that V̂ is nonsingular, however, in most cases it is
possible to ensure that Q is in the column space of Ω̂(θ0), so that V̂−1 exists.
The proof of Theorem 2.2 is given in A.1. We also demonstrate in Section
A.1 that the result of Theorem 2.2 does not depend on the choice of Q. We
show how L can be chosen for GLMs in Section 2.3 and for imaging data in
the analysis of the ADNI dataset in Section 4.

7
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2.2 Maximization of the Sum Test for Normal Linear
Models

The finite-sample distribution for the MaxSum statistic can be found exactly
for a normal linear model. Following the notation in equation (2), we define
X = [x1, . . . , xn]T to be an n × m full rank matrix of covariates for each
observation, G̃ = [g1, . . . , gn]T to be an n× p full rank matrix of independent
variables of interest with p > n, and Ỹ = [Ỹ1, . . . , Ỹn]T to be n × 1 normal
random vector with independent elements conditional on X and G. The Sum
test with normal error, is based on the model

Ỹi = αTxi + βTgi + Ei,

where all variables are as previously defined and Ei ∼ N(0, σ2) are indepen-
dent. If we let AAT = (I −H) be the SVD of the projection (I −H), where
H = X(XTX)−1XT , and define G = AT G̃ and Y = AT Ỹ, then under the
null Y ∼ N(n−m)(0, σ

2I).
The Sum test statistic for H0 : β = 0 is [Rao, 1948, Lin and Tang, 2011]

RSum = n
(UT ζ)2

ζT Ω̂ζ
=

(YTGζ)2

σ̂2 × ζTGTGζ
, (8)

where ζ ∈ Rp is a known vector of weights, U = n−1GTY is the score vector
evaluated at the MLEs under the null (E(Ỹi) = xiα), and Ω̂ = n−1σ̂2GTG is
an estimate of the efficient information matrix using (5).

The MaxSum statistic for this model with respect to a linear subspace L
of Rp is defined from (8) as

RL
MaxSum = max

ζ∈L

(YTGζ)2

σ̂2 × ζTGTGζ
.

The following theorem gives a closed solution for RL
MaxSum as a function of

Y, and gives the null distribution of the statistic.

Theorem 2.3. Let PL be the orthogonal projection matrix onto the space L.
Let W be a projection matrix onto the column space of GP . Then

RL
MaxSum = (n−m)

YTWY

YTY
. (9)
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Also,

RL
MaxSum =d

r(n−m)

r + (n−m− r)F(n−m−r),r
,

where F(n−m−r),r is F-distributed with (n−m− r) and r degrees of freedom.

The proof can be found in appendix A.2. The form of equation (9) shows
that for a normal linear model, the test statistic is a ratio of quadratic forms.
Due to the rotation invariance of Y under the null, the finite-sample distri-
bution of RL

MaxSum depends only on the sample size and the dimension of the
basis. Thus, the choice of L does not affect the null distribution.

2.3 Specifying L in generalized linear models

Here we will discuss choices for the selection of L in the context of GLMs with
the canonical link function. Define Y = [Y1, . . . ,Yn]T , X = [x1, . . . , xn]T ,
and G = [g1, . . . , gn]T where objects are as defined in (2). For the GLM with
canonical link, the scores are

U = n−1GT (Y − Ŷ),

where Ŷ = [Ŷ1, . . . Ŷn]T and Ŷi = h−1(xTi α̂) is the ith fitted value under
the null. Let Γ be the diagonal matrix Γii = (Yi − Ŷi)

2. Then the efficient
information estimate (5) is

Ω̂ = n−1{GTΓG−GTΓX(XTΓX)−1XTΓG}

The score statistic is obtained from the scores and the estimated information
as in expression (3).

If we condition on the design matrix G in a GLM, then the basis for L
can be constructed from the principal components analysis (PCA) of G. We
write the PCA of G in terms of the SVD G = S∗DQ

T , where the principal
scores are S = S∗D = GQ.

With this basis the MaxSum test is equivalent to principal components
regression. To see this, first note that principal component regression is
defined by

h(E(Y)) = Xα + SβS.

The scores for βS are

UT
S = n−1QTGT (Y − Ŷ) = QTU,

9
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which are the same as the rotated scores in (6). The information estimate is

Ω̂S = n−1{STΓS − STΓX(XTΓX)−1XTΓS}
= n−1QT{GTΓG−GTΓX(XTΓX)−1XTΓG}Q
= QT Ω̂Q,

which is the variance of the rotated scores. Thus the score test statistic,
nUT

S Ω̂−1
S US, in principal component regression is equivalent the MaxSum

statistic (7).
Another useful basis for L may be constructed from basis vectors that

are indicators of variables that are expected to have a similar relationship
with the outcome. The anatomical basis used in Section 4 is an example.
For each basis vector qj, j = 1, . . . , r, we define a set Qj ⊂ {1, . . . , p} such
that Qj ∩ Qj′ = ∅ and qij = 1(i ∈ Qj). These define orthogonal basis
vectors since the sets Qj are disjoint. This basis is equivalent to averaging
r subsets of the p independent variables and performing a hypothesis test of
the regression onto the r averaged variables.

In general, for GLMs the rotation of the scores for the MaxSum test is
equivalent to rotating the design matrix for the high-dimensional data to a
lower dimensional space. An advantage of characterizing the test statistic in
terms of a rotation is that post hoc inference of the contribution of the scores
to the MaxSum statistic can be performed by considering the scores after
projecting into L.

3 Post hoc Inference to Localize Signal

If we reject the test of H0 : β = β0 using the MaxSum statistic it is of
primary interest to investigate the contribution of the scores to the statistic.
This can be done by projecting the rotated scores QTU back onto L. Because
the projected scores are distributed in a subspace of Rp, inference is much less
conservative compared to performing inference on the original score vector.
The improved power of performing inference in the subspace is illustrated in
Section 4.

Our aim is to construct a rejection region for the projected score vector
under the null,

PU ∼ N(0, PΩP T ),
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that has interpretable pointwise inference for each element (PU)j. We begin
by considering a box centered at the origin by finding c ∈ R+ such that

P(|PU|∞ < c) = 1− α.

This set defines the region where the probability any element of the projected
score vector is greater than c is α. We reject the null hypothesis at location
j if the observed projected score (Pu)j > c. One issue with this region is
that the diagonal elements of the covariance of PU are not identical, so a
symmetric box favors rejection for elements with larger variances.

To resolve this issue we scale by the inverse of the square root of the
diagonal of the covariance of the projected scores, so that the variances for
each element are identical. With this goal, we define the diagonal matrix
∆jj = 1/

√
Cov(PU)jj = 1/

√
(PΩP )jj, then a more appropriate rejection

region is defined by c that satisfies

P(|∆PU|∞ < c) = 1− α. (10)

By (6) we have

∆PU
d−→ ∆QV 1/2Z,

where Z ∼ Nr(0, I). Thus we can approximate the region in (10) by finding
c so that ∫

−c≤∆QV 1/2z≤c
φr(z)dz = 1− α,

In practice we approximate this interval by plugging in estimates for ∆ and
V 1/2.

This integral is difficult to calculate due to the large dimensions of Q, but
can be approximated quickly and easily using Monte Carlo simulations. B
simulations are used to obtain an estimate the CDF, F̂B(·), which we use to
obtain p-values for each observed projected score, (Pu)j, by evaluating

puj = 1− F̂B(uj), (11)

or a rejection threshold can be obtained by using

q1−α = F̂−1
B (1− α). (12)

The p-value for a given element of the observed projected score vector is the
probability of observing a projected score as large as uj under the global null
H0 : β = β0.
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It is important to note that the post hoc inference offers improved power
by interpreting the projected scores. When the alternative hypothesis is true,
the rejection regions for the projected scores do not necessarily control the
type 1 error for the unprojected scores. This is demonstrated in the imaging
simulations in Section 5.

4 ADNI Neuroimaging Data Analysis

We obtained data from the Alzheimers Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W. Weiner, MD.
The ADNI is a longitudinal observational study designed to investigate the
early biomarkers of Alzheimers disease. Mild cognitive impairment (MCI)
represents a subtle pre-Alzheimer’s Disease decline in cognitive performance.
The goal of our analysis is to identify whether a subset of the neuroimag-
ing data from the ADNI can provide more information regarding diagnosis
of MCI than the standardized memory tests obtained as part of the ADNI.
Moreover, we are interested in localizing areas of the cortex that differ be-
tween healthy controls (HC) and individuals with MCI. Three-dimensional
T1-weighted structural images for 229 healthy controls and 399 subjects with
MCI were obtained as part of the ADNI. This sample consists of subjects
who had images a composite memory score available at baseline.

We perform the analysis in two ways: First, we proceed with standard
software and analysis methods currently available for these type of neu-
roimaging data in open access software [Fischl, 2012]. Second, we use the
MaxSum statistic and the high-dimensional inference procedure described
above.

Cortical thickness was estimated using Freesurfer [Fischl and Dale, 2000,
Dale et al., 1999]. Subjects’ thickness data were registered to a standard tem-
plate for analysis and smoothed at 10mm to reduce noise related to prepro-
cessing and registration. The template contains 18,715 locations where cor-
tical thickness is measured for each subject. Our goal is to identify whether
the 18,715 cortical thickness measurements provide any additional informa-
tion regarding the diagnosis of the individuals. For all analyses we include
age, sex, and the composite memory score as covariates.

12
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4.1 Standard Neuroimaging Analysis Procedure: Av-
erage and Vertex-wise Testing

Because neuroimaging studies typically collect many types of images with
many covariates and possible outcomes, it is common to obtain a summary
measure of a high-dimensional variable, and then proceed with further anal-
ysis if the summary measure appears to be associated with an endpoint of
interest. In this analysis we first take the average of all the cortical thickness
measurements across the cortical surface for each subject and perform a re-
gression with diagnosis as the outcome using logistic regression. Specifically
let Ci denote the average cortical thickness measurement for subject i, and
Xi denote a vector with an intercept term, the age, an indicator for sex, and
the composite memory score for subject i. Then we fit the model

logit{P(Yi = 1 | Ci, Xi)} = XT
i α + CiβC .

If there is a significant relationship with the average cortical thickness mea-
surements, i.e. we reject H0 : βC = 0, then we will proceed by performing
mass-univariate vertexwise analyses by running a separate model at each
point on the cortical surface.

The analysis using the average cortical thickness variable suggests a highly
significant association of cortical thickness with diagnosis, indicating that
subjects with thinner cortices are more likely to have MCI (Table 1). Based
on these results we decided to investigate the relationship at each vertex to
localize where in the cortex the association occurs.

Estimate (SE) p-value
Age -0.08 (0.02) < 0.001

Sex (Male) -0.37 (0.26) 0.15
Memory score -3.22 (0.27) < 0.001

Average cortical thickness -4.23 (1.02) < 0.001

Table 1: Results for the logistic regression of diagnosis onto covariates and
whole-brain average cortical thickness. The memory score is a composite
score included in the ADNI and was created using a factor analysis of well
known memory assessments. Results for average cortical thickness indicate
a highly significant association between cortical thickness and diagnosis. SE
stands for standard error.

For the vertexwise analyses we use the software package Freesurfer to
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perform FDR correction separately across each hemisphere (Figure 1 A).
Due to the large number of tests (18,715 models) FDR-corrected results are
spatially conservative and are difficult to interpret with the strength of the
whole-brain average results. That is, given there is such a strong associa-
tion between the average cortical thickness and diagnosis we expect more
distributed associations than what can be seen in Figure 1 A. Uncorrected
exploratory analyses were conducted to further identify regions related to
the whole-brain results (Figure 1 B). The most significant results occur in
left and right frontal lobes. These analyses suggest that thinning in larger
portions of the frontal and temporal lobes is associated with increased risk
of mild cognitive impairment, however these results were not found using a
method that guarentees control of the familywise error rate.

4.2 MaxSum and High-Dimensional Inference Proce-
dures

To use the MaxSum procedure we perform the following steps:

1. Select a subspace for L;

2. Perform the MaxSum test for the association between the image and
diagnosis;

3. If the test in step 2 rejects, then perform multivariate inference based
on the projected scores in Rp.

We select a basis for L in the two ways described in Section 2.3. First,
we consider the basis constructed from the PCA of G after removing the
effects of the covariates from G. For this analysis we chose the first r = 20
PCs as a basis for L, however we also present results for the PCA truncated
at several other dimensions (r = 5, 10, 20, 50) to demonstrate how the basis
affects the results of the analysis. In addition we consider a basis, constructed
from all regions of the anatomical atlas of Destrieux et al. [2010]. There
are 74 regions in each hemisphere of the brain, so the rank of the basis is
r = 148. If we were unwilling to condition on the covariance structure of G
or the anatomical atlas, a basis could be constructed that approximates a
predetermined covariance structure (e.g. a spatial AR(1)), or a covariance
structure estimated from an independent sample.
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Figure 1: A comparison of inference procedures of the association between
the imaging data and diagnosis. Color bars indicate − log10(p). (A) FDR
corrected vertexwise results, (B) Uncorrected vertexwise results, and (C &
D) results based on MaxSum high-dimensional inference control the FWER
of the projected scores. (C) The basis for L was selected from the first 20
components of the PCA of G. (D) The 148 dimensional basis constructed
from the Destrieux anatomical atlas. Blue values have significant (α = 0.05)
negative association with diagnosis indicating that thinner cortex in these
regions is associated with a MCI diagnosis.
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Using the PCA basis, we reject the null hypothesis with the MaxSum
test (Table 2), indicating that there is an association between the image
and diagnosis conditioning on the effects of age, sex, and composite memory
score. The test rejects at the α = 0.05 threshold irrespective of which basis
was used. Given the results of the MaxSum test we are then interested in
investigating the regional variations in the scores.

Basis rMaxSum p-value 95% threshold 99% threshold
PCA 5 24 < 0.001 3.0 3.6
PCA 10 41 < 0.001 3.4 4.0
PCA 20 50 < 0.001 3.7 4.2
PCA 50 91 < 0.001 4.0 4.4
Anatomical 148 179 0.04 3.5 3.9

Table 2: The χ2 MaxSum statistic and associated p-values for the PCA basis
with various basis dimensions: 5, 10, 20, and 50, and the anatomical atlas
with 148 degrees of freedom, one for each label in the atlas. The degrees of
freedom for the test are proportional to the dimension of the basis. The last
two columns denote the 95% and 99% familywise error rejection thresholds
for the standardized projected scores defined by the quantile function (12).
The thresholds are obtained using 10,000 simulations. Note that increasing
the basis dimension gives larger thresholds due to the increasing degrees of
freedom. The projected scores are still highly correlated in the anatomical
basis, so the rejection thresholds are lower.

To investigate the contributions of the scores to the MaxSum statistic we
perform post hoc inference on the projected scores. As discussed in Section
3 we scale the projected scores by their variances in order to use constant
rejection regions for easier interpretation. We use 10,000 simulations to ob-
tain rejection regions for each of the basis dimensions. The simulations ran
for all bases in less than 2 minutes.

Results suggest that thinner cortex in bilateral temporal and frontal lobes
and right precuneus is associated with an increased risk of MCI (Figure
1 C & D). Results are given as − log10(p) where p is obtained using the
simulated distribution (11). These locations are known to be thinner in
AD versus HC as well as in AD versus MCI [Singh et al., 2006] and the
results here demonstrate that there are significant differences between MCI
and HC in the same region. The results indicate that the degree of frontal
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and temporal lobe thinning is correlated with diagnostic severity, and suggest
that measurements of cortical thickness may provide useful information over
neurospsychological scales in identifying people at risk for AD. Differences in
these regions between MCI and HC were previously shown by Wang et al.
[2009]; however the authors did not control for multiple comparisons or adjust
for covariates.

To reiterate, the blue areas in Figure 1 C & D are based on low rank
multivariate inference and control the FWER of the projected scores. The
procedure demonstrates improved power over standard correction methods
seen in Figure 1 A & B by performing inference in a lower dimensional
space. The p-values obtained in Figures 1 and 2 use (11) and indicate the
probability of observing a projected score statistic as extreme under the
global null H0 : β = 0. Though interpretation is restricted to the projected
scores, the results align strongly with previous reports [Singh et al., 2006,
Wang et al., 2009].

To demonstrate the implications of the choice of r on the inference of the
projected scores we performed post hoc inference on the scores for 4 different
PCA bases (Figure 2). It is clear from Figure 2 that increasing the dimension
of the basis increases the spatial specificity of the results. However, the larger
bases also come with the cost of a reduced power due to the larger degrees
of freedom of the basis. This is also illustrated in Table 2, where the larger
bases have a higher rejection threshold.

5 Neuroimaging Simulation Study

For this simulation study we perform analyses using data generated for
the right hemisphere of the cortical thickness data from the ADNI dataset
(p =9,361). The outcome of interest is categorical as in the ADNI analyses
presented above. We select two anatomical regions (superior temporal sulcus
and superior frontal sulcus) of 669 vertices total to have a negative associa-
tion with the outcome and one region (anterior part of the cingulate gyrus
and sulcus) of 191 vertices to have a positive association. To create a mean
and covariance structure similar to real data within the regions of associa-
tion, we create the mean vector and covariance matrices for the simulations
from the full sample of subjects used in the ADNI Freesurfer analysis above,
yielding two full rank covariance matrices, Σ− and Σ+ and mean vectors µ+

and µ−.
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Figure 2: MaxSum high-dimensional inference for bases of various rank; 5, 10,
20, 50. Increasing the dimensionality of the basis increases spatial specificity,
but comes with the cost of more conservative inference (see e.g. Table 2).
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For each simulation we select a random subset of size n without replace-
ment from the subset of control subjects used in the ADNI neuroimaging
analysis. Data within the negatively and positively associated regions are
generated as independent multivariate normal distributions for each subject,
with covariance structures Gi,− ∼ N(µ+,Σ−) and Gi,+ ∼ N(µ−,Σ+), respec-
tively. We centered the imaging data prior to analysis.

In each simulation the outcome is generated under a logistic model

logit(EYi) = α0 − β1TGi,− + 2β1TGi,+, (13)

where α0 is set to the log ratio of MCI to controls in the neuroimaging
analyses section. 1, is a vector of ones, and β is an unknown parameter that
we vary from 0 to 0.005. We multiply the values in the positive region by 2 to
increase signal because it is a spatially smaller cluster than the two negative
regions.

We construct the subspace L in two ways. The first basis is constructed in
each sample from the first r principal components from a PCA of G(I −H),
where H is the projection onto the intercept. The second basis is constructed
from regions of anatomical atlas of Destrieux et al. [2010], by randomly group-
ing the 74 regions into r groups and using normed indicator vectors for each
group as the basis.

Denote the expectation of the score vector under the alternative by µ. If
we denote the set of indices with a nonzero association with the outcome by
J , then the expectation of the score vector is only nonzero for scores µj with
j ∈ J . So, for indices with j /∈ J we report type 1 error and for indices with
j ∈ J we report power.

Similarly, the mean of the projected scores, Pµ, determines type 1 er-
ror and power for the projected scores PU. Because the basis is randomly
constructed in each sample the nonzero elements of PU are different in each
simulation. The FWER and FDR of the projected scores are reported for
the basis constructed from the anatomical atlas. In general, no element in
the projected scores based on PCA construction is exactly zero, so type 1
error is not reported for this basis.

We perform 1000 simulations for sample sizes of n = 100, 200 and com-
pare the MaxSum test for bases with dimensions of r = 5, 10, 20, 50. In
addition, we compare the MaxSum test to the sequence kernel association
test (SKAT) [Wu et al., 2011], the sum of powered scores (SPU) test using the
infinity norm, which corresponds to testing the max across the scores [Pan
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et al., 2014], and the adaptive sum of powered scores test (aSPU), which
has competitive power than many other score tests [Pan et al., 2014]. The
SKAT is known to be more powerful if there is a distributed signal, and the
SPU infinity norm will be most powerful for sparse signal. The aSPU test
combines multiple tests by choosing one with the smallest p-value amongst
a set of powered score tests. Permutation tests are used to assess the signifi-
cance for these statistics. We assess pointwise power and type 1 error of the
MaxSum multivariate inference with uncorrected, Bonferroni corrected, and
FDR corrected results. We also compare FWER and FDR between methods.
For these comparisons we assess the type 1 error for the unprojected scores
using inference designed for the projected scores.

The MaxSum test with both bases demonstrates superior power to the
other tests (Figure 3), due to its ability to remove the influence of unasso-
ciated scores from the test by maximizing over the basis. In addition, the
MaxSum test with the PCA takes advantage of the covariance structure of
the scores and the spatial information of the signal. aSPU is adaptive to the
sparsity of the signal, so performs better than the SKAT, but does not use
the information in the covariance of the scores to leverage power. Note that
the design matrix being random does not affect the Type 1 error even though
the bases are constructed conditionally on the design matrix. This justifies
the use of the test in a wide range of fields where the independent variables
are themselves random.

As expected, the MaxSum post hoc inference procedure controls the FWER
of the projected scores for all basis dimensions (Table 3). It is not possible
to assess type 1 error for the PCA basis as no projected score for this basis
is exactly zero after projection.

Anatomical 5 Anatomical 10 Anatomical 20 Anatomical 50
FWER 0.03 0.04 0.04 0.04
FDR 0.02 0.03 0.02 0.02

Table 3: Error rates for the projected scores for the anatomical bases of
dimension 5, 10, 20 and 50.

In general, the MaxSum multivariate inference procedure does not control
the FWER or FDR of the unprojected scores (Table 4) as the inference
is intended for the projected scores. However, for larger PCA bases our
procedure does control the FDR (bold rows in Table 4). This is likely because
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Figure 3: Power results for the MaxSum test with various bases compared
to aSPU and the SKAT. “PCA r” indicates the basis formed from the first
r components of the PCA of the design matrix G. “Atlas r” indicates the
bases formed from the anatomical atlas.

the projection captures most of the signal in the expected value of the score
vector, µ, so that the projection Pµ is close to µ. In practice, it is not possible
to tell if inference for the projected scores will control the type 1 error for
the unprojected score vector.

The vertexwise error rate for the MaxSum inference procedure for the
unprojected scores using the PCA 10 basis is low while maintaining better
vertexwise power than FDR (Figure 4; PCA 10). This is because in any
given sample there may be a high FWER, but the errors across samples do
not appear in the same locations. The Benjamini-Hochberg and Bonferroni
corrections both work well at controlling the vertexwise type 1 error rate
however have lower power compared to the PCA-based MaxSum procedure
(Figure 4). The bases constructed from the anatomical atlas tend to have
large regions of vertexwise type 1 error for the unprojected scores. At the
largest basis dimension (50) the atlas allows for enough specificity to reduce
the vertexwise error. All methods have lower power to detect the positive
cluster than the two negative clusters. This is possibly due to the character-
istics of the covariance structure in the positive cluster which overlaps gyral
and sulcal regions.
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simulated samples where each of the testing procedures rejects the null at a
given location. Results are shown for β = 0.002. “Truth” indicates locations
where signal was simulated according to the model (13).
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HR FDR FWE
PCA 5 0.72 0.12 0.72
PCA 10 0.58 0.04 0.48
PCA 20 0.37 0.01 0.22
PCA 50 0.13 0.01 0.08
Uncorrected 0.62 0.43 1.00
Holm 0.01 0.01 0.01
BH 0.12 0.05 0.25
Anatomical 5 0.16 0.79 0.25
Anatomical 10 0.35 0.64 0.58
Anatomical 20 0.53 0.44 0.84
Anatomical 50 0.64 0.17 0.71

Table 4: Hit (HR), false discovery (FDR), and family-wise error (FWER)
rates for the unprojected scores. Higher dimensions of the PCA basis control
the FDR while maintaining a higher hit rate for the unprojected scores. Note,
however, that in practice it is not possible to tell what dimension of the basis
is required to control the FDR of the unprojected scores. Bold rows control
the FDR at q = 0.05.

6 Discussion

We proposed the MaxSum test, which maximizes the weights for the Sum
statistic in a subspace of the parameter space. The procedure offers powerful
posthoc inference on the projected scores by performing inference in the
subspace of where the test statistic was estimated. Because the posthoc
inference is based on the same model and degrees of freedom as the MaxSum
statistic, the interpretation of high-dimensional results agree closely with the
results from the MaxSum test.

Instead of choosing a specific value for the weight vector, ζ, our method-
ology allows the investigator to select a space to consider for ζ. The ability
to choose a space makes the procedure very flexible. For example, in imag-
ing the basis for the space can be chosen based on anatomical or functional
labels, or from data acquired in another imaging modality. Particular hy-
potheses can be targeted by selecting a basis that contains vectors that are
indicators of certain regions or contain variable weights that capture specific
spatial patterns. If orthogonal indicator vectors are used as the basis, then
the approach can be seen as testing averages of subregions of the data as in
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Section 4. In this case, the MaxSum procedure can be seen as a multiplicity
correction procedure that accounts for the correlation structure of the tests.

The methodology inspires several theoretical questions. Further research
could investigate how this approach relates to regularization in parameter
estimation and whether regularization could be applied to the scores to pro-
duce similar results to maximizing the score test in a subspace of Rp. The
rotated scores correspond to a reparameterization of the original likelihood
with fewer parameters. It might be possible to develop theory that allows for
more general dimension-reducing transformations of the parameters where
inference in the higher dimensional parameter space can be performed by
mapping back up to a subspace of the original parameter space, although
this procedure may reduce interpretability. We showed in simulations that
larger basis dimensions of the PCA basis control the FDR of the unprojected
scores. It will be useful to study under what conditions inference based on
the projected scores will control the FDR of the unprojected scores. The
MaxSum procedure allows for inference of the projected scores. This re-
quires that the projection of the scores be something that is interpretable in
the scientific field.

A. APPENDIX

A.1. Proof of Theorem 2.2

The following Lemma is used to guarantee that Ω is invertible given our
assumption that ΩF is invertible. The theorem is given here without proof.
The proof can be found in Gallier [2001].

Lemma A.1. Let

M =

[
A B
BT C

]
be an m ×m invertible symmetric matrix and A and C be p × p, and q × q
principal submatrices of M , Then A and C are invertible and the Schur
complement of C, defined by S = A−BC−1BT , is invertible.
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Proof. of Theorem 2.2 Let φ = QT ζ. Then the MaxSum statistic is

RL
MaxSum = max

ζ∈Rp
n

(ζTPU)2

ζTP Ω̂Pζ

= max
φ∈Rr

n
(φTQTU)2

φT V̂φ
. (14)

Under the null, the numerator of (14) is asymptotically normal (6), which
follows by the result for the scores and the fact that linear combinations of
normal random variables are normal [Boos and Stefanski, 2013].

V̂ is positive definite by assumption, so there exists a symmetric invertible
matrix V̂ 1/2 that satisfies V̂1/2V̂1/2 = V̂. Let ψ = V̂1/2φ, then we see that

RL
MaxSum = max

ψ∈Rr
n

(ψT V̂−1/2QTU)2

ψTψ

= max
ψ∈Rr

n
(ψT V̂−1/2QTU)(UQV −1/2ψ)

ψTψ

= n× eigmax{V̂−1/2QTUUTQV̂−1/2}
= n× eigmax{UTQV̂−1/2V̂−1/2QTU}
= nUTQV̂−1QTU

The second line is a Rayleigh quotient and maximization with respect to
ψ corresponds to the largest eigenvalue of V̂−1/2QTUUTQV̂−1/2. eigmax{·}
denote the function that returns the largest eigenvalue of a matrix.

By (6), n1/2V −1/2QTU
d−→ Nr(0, I). V −1/2 exists given our assumptions

in Theorem 2.2: The assumption about the invertibility of ΩF guarantees Ω
is invertible by Lemma A.1, because Ω is the Schur complement of Ωα. This
implies Ω is full rank, so V = QTΩQ is invertible.

The variance estimate of QTU is

V̂(θ0) = QT Ω̂(θ0)Q

= (QT Ω̂βQ−QT Ω̂βαΩ̂−1
α Ω̂αβQ).

Convergence of V̂(θ0)
p−→ V (θ0) follows from the continuous mapping theorem

and the convergence of its components by the weak law of large numbers,
e.g. QT Ω̂βQ

p−→ QTΩβQ, and QT Ω̂βα
p−→ QTΩβα. Then, since the matrix in-

verse is continuous, V̂(θ0)−1/2 p−→ V −1/2 by the continuous mapping theorem.
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Importantly, for r < n < p, we necessarily have P({Ω̂(θ0) is invertible}) = 0,
however we are able to assume P({V̂(θ0) is invertible}) = 1.

Finally, Slutsky’s theorem gives the convergence in distribution of

n1/2(V̂−1/2V 1/2)V −1/2QTU
d−→ Z ∼ Nr(0, I).

So, RL
MaxSum

d−→ ZTZ ∼ χ2
r.

Remark. The conclusion of Theorem 2.2 implies that expression 7 does not
depend on the choice of Q. This fact can also be shown directly, as follows.
Consider another matrix Q∗ with orthonormal columns such that P = Q∗Q

T
∗ ,

and accordingly define V̂∗ = QT
∗ Ω̂(θ0)Q∗. Then Q∗ = QM where M = QTQ∗.

Since P = QMQT
∗ is of rank r, M is of rank r and hence invertible, so

Q∗V̂
−1
∗ QT

∗ = QM(MT V̂ M)−1MTQT = QV̂ −1QT ,

and thus formula (7) for the MaxSum statistic is unchanged by substituting
Q∗, V̂∗ for Q, V̂ .

A.2. Proof of Theorem 2.3

Proof. We will ignore the term 1
σ̂2 in the maximization as it is constant with

respect to ζ. Define M = GL to be the column space of W . From the
definition of RL

MaxSum

RL
MaxSum ∝max

ζ∈Rp

(YTGPζ)2

ζTPGTGPζ

= max
ζ∈Rp

(YTWGPζ)2

ζTPGTWGPζ

= max
γ∈M

(YTWγ)2

γTWγ
, (15)

where γ = GPζ. Because γ must be in the subspace M since it is the
column space of W and GP . The solution to the Rayleigh quotient (15) is
the solution to the largest generalized eigenvalue problem,

WYYTWγ = λmaxWγ,
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where λmax ∈ R, and ‖γ‖ = 1. By letting φ = Wγ the solution is equivalent
to the largest eigenvalue problem

WYYTWφ = λmaxφ

Then
eigmax(WYYTW ) = eigmax(YTWY) = YTWY.

Finally, we have

RL
MaxSum = (n−m)

YTWY

YTY
.

RL
MaxSum is a ratio of quadratic forms, but can be expressed in terms of a

variable with an F-distribution.
To see this, first note that

YTT

YTWY
= 1 +

YT (I −W )Y

YTWY
. (16)

The numerator and denominator of the random term on the left hand side are
independent since P (I−P ) = 0. So (16) is distributed as 1+n−m−r

r
F(n−m−r),r.

Thus

RL
MaxSum =d

(n−m)

1 + (n−m−r)
r

F(n−m−r),r

=
r(n−m)

r + (n−m− r)F(n−m−r),r
.
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