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Effect of nitrogen fertilization on net nitrogen
mineralization in a grassland soil, northern China
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*College of Agronomy, Henan Agricultural University, Zhengzhou, China, †State Key Laboratory of Vegetation

and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China, and

‡Department of Biological Sciences, Marshall University, Huntington, WV, USA

Abstract

Nitrogen (N) applications can have a significant effect

on soil N availability. The effect of 3 years of N

fertilization on soil net N mineralization during the

growing season (May–September) was studied in 2005

and 2006 in grassland of northern China. The exper-

imental design was a randomized complete block with

four replications of five rates of N addition as urea (0, 2,

4, 8 and 16 g N m)2 year)1). Results indicated that net

N mineralization rate varied seasonally and between

years, ranging from )0.04 to 0.52 lg g)1 d)1 in 2005

and from )0.09 to 0.39 lg g)1 d)1 in 2006. Mean N

mineralization and nitrification rates were highest in

July, in 2005 and 2006, whereas highest ammonifica-

tion rates occurred in September. Rainfall was signifi-

cantly correlated with net nitrification. In comparison

with the untreated control, N mineralization increased

sharply when N fertilization increased from 2 to

8 g N m)2 year)1. Mobile soil NO3
) accumulated late

in the growing season for the 16 g N m)2 year)1 treat-

ment, suggesting the potential for NO3 and associated

cation leaching. These results suggest that N fertilization

of 8 g N m)2 year)1 (80 kg N ha)1) is suitable for the

management of grassland ecosystems of Inner Mongo-

lia.

Keywords: managed grasslands, N fertilization, N min-

eralization, nitrification, Mongolia

Introduction

Soil nitrogen (N) availability is frequently the most

limiting factor for plant productivity in temperate

terrestrial ecosystems (Pastor et al., 1984; Turner et al.,

1997; Galloway et al., 2008). Along with light and water

availability (Knapp and Gilliam, 1985; Gilliam et al.,

1987), N commonly limits productivity in grasslands

(Gilliam, 1987; Blair, 1997; Knapp et al., 1998), with

mineralization of organic N to inorganic forms as the

primary process maintaining soil N availability. Thus,

an understanding of the dynamics of soil N minerali-

zation is essential for land managers to refine prescrip-

tions for N fertilizer application for grassland

ecosystems. Indeed, N fertilizers can play an important

role in regulating soil N transformations (Raun et al.,

1998; Vourlitis et al., 2007; van der Krift and Berendse,

2001).

A number of studies have been carried out to

investigate the effects of N fertilization on soil N

transformation and N availability. These have yielded

conflicting results, precluding broad generalizations and

necessitating site-specific examination of fertilizer ⁄ N
mineralization relationships. Some studies reported that

N fertilization enhanced soil net N mineralization

(Brenner et al., 2005; Dijkstra et al., 2005; Sirulnik

et al., 2007), whereas others have indicated that fertil-

ization either had no significant effects (Chappell et al.,

1999; Antil et al., 2001; Gilliam et al., 2001; Nohrstedt,

2002), or have demonstrated negative effects (Carpen-

ter-Boggs et al., 2000; Fisk and Fahey, 2001; Soon and

Malhi, 2005). Such wide-ranging responses may partly

reflect variability in soil nutrient status, types of

fertilizers used and periods over which they were

applied, or differential responses to varying levels of N

fertilization in contrasting ecosystem types (Aggangan

et al., 1998).

Temporal variations in soil N transformation may be

correlated with seasonal patterns of environmental

conditions (Vitousek and Matson, 1985; Amador et al.,

2005; Zhang et al., 2008). Some studies have shown

that net N mineralization rates are positively correlated

with seasonal temperature fluctuation, but less sensi-

tive to soil moisture content (Hatch et al., 1991; Sierra,

1997), whereas others indicate that temporal variations
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in soil N mineralization was poorly correlated with soil

moisture and soil temperature (Trindade et al., 2001).

Gilliam et al. (2001) found that both ambient temper-

ature and soil moisture significantly controlled net N

mineralization and nitrification in untreated hardwood-

forest soil, but not in the case of N-treated hardwood-

forest soil. The effects of the physical environment on

soil N mineralization must also be considered if the

relationship between N fertilizer and soil N availabil-

ity ⁄ mobility is to be fully understood.

Grassland in northern China is a major vegetation

type of Eurasia (Li et al., 1998). Beginning in the late

1970s, overgrazing has greatly altered many of these

grasslands (Liu et al., 2006), resulting in land degrada-

tion and soil N deficiency (Christensen et al., 2004;

Yuan et al., 2006; Huang et al., 2008). To restore these

ecosystems and improve their biomass productivity,

new management practices, including N fertilization,

have been carried out since 2000 (Zhang et al., 2010).

Excessive N fertilization in both grassland and agricul-

tural areas has resulted in serious environmental

problems, including NO3
) leaching and release of

N2O, a greenhouse gas (Ju et al., 2009; Guo et al.,

2010; Zhang et al., 2010). Often, increased N fertiliza-

tion fails to result in increased plant productivity (Wang

et al., 2001). Therefore, studies are required to deter-

mine suitable levels of N fertilization for grassland soils

in China, and to optimize biomass production while

minimizing potential negative effects of excess N, such

as acidification, N and associated cation leaching, and

emissions of gaseous N.

In this study, we investigated the suitability of N

fertilizer use in a grassland of Inner Mongolia for which

we used five levels of experimental N addition. The

objective of this research was to provide preliminary

results to help inform recommendations of suitable N

fertilizer application rates and management practices for

restoration of grasslands of Inner Mongolia. More

specifically, we examined the effects of adding varying

levels of N fertilizer on above-ground grass growth and

net N mineralization and nitrification of grassland soils.

Material and methods

Study site and experimental design

The experiment was carried out at the Duolun Resto-

ration Ecology Research Station of the Chinese Acad-

emy of Sciences (CAS), located in Duolun County

(41�49¢–42�27¢N; 115�56¢–116�51¢E; 1344 m a.s.l.), in

the centre of the Inner Mongolia Autonomous Region,

China. The dominant species in this typical grassland

are Stipa krylovii Roshev. and Artemisia frigida Willd. The

mean annual (1994–2003) soil temperature (0–5 cm

depth) is 5.3�C, ranging from minimum in January

()16.7�C) to maximum in July (24.3�C), with mean soil

temperature from 14.9 to 24.3�C during the growing

season (May–September). The mean annual (1994–

2003) precipitation is 401 mm of which 353 mm falls

between May and September. Weather data were

obtained from the Duolun meteorological station. Dur-

ing the period of field incubation in 2005 and 2006,

weather data were recorded by a complete micromete-

orological system installed on the eddy towers close to

the experimental plots. The soil type is classified by a

Chinese classification as ‘chestnut soil’ and belongs to

the Calcisorthic Aridisol in the United States Soil

Taxonomy classification (Yuan et al., 2005).

We employed a randomized complete block design,

with four replications of five rates of N addition: 0 (N0 :

control), 2 g N m)2 year )1 (N2), 4 g N m)2 year)1

(N4), 8 g N m)2 year)1 (N8) and 16 g N m)2 year)1

(N16). These amounts were equivalent to N fertilizer

rates of 0, 20, 40, 80 and 160 kg N ha)1, respectively.

Established in 2003, sample plots were 10 · 15 m, with

a minimum buffer zone of 4 m between plots. Nitrogen

was applied as urea annually on July 15. Neither

phosphorus nor potassium fertilizers were used in this

study.

Grass biomass and soil sampling and analysis

Peak green biomass (Table 1) was measured in mid-

August each year (2005 and 2006) by clipping in

1 · 1 m quadrats on each plot. Dry weight was deter-

mined by oven drying all plant samples at 70�C to

constant weight.

Net N mineralization was measured monthly during

the growing season (May–September) in 2005 and

2006 using intact soil core incubations (Raison et al.,

1987). A pair of PVC tubes (5.0 cm diameter · 15 cm

long) was driven 10 cm into the soil in each plot each

month. One tube was sampled immediately and

measured as initial soil inorganic N (NH4-N + NO3-

N) concentration. Another one was capped with

plastic film; eight 1-mm diameter holes were punc-

tured through the film on each tube, and all tubes

left in the field for 30 d. After collection, incubated

soil was extracted for the final concentration of

inorganic N.

Both initial and incubated soils were sieved (2 mm

mesh) to remove large organic materials. Approxi-

mately 10 g of sieved fresh soil was analysed and

extracted for inorganic N concentration with 50 mL of

2M KCl for 1 h on a variable speed reciprocal shaker

(Apparatus Co. Ltd. Changzhou, China). Soil extracts

were analysed for NH4-N and NO3-N by a Segment

Flow Analyser (Scalar SANplus, Breda, The Netherlands)

in the laboratory of Institute of Botany, Chinese

Academy of Sciences.
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Net N mineralization was calculated as the difference

between post- and pre-incubation inorganic N values,

net nitrification as the difference between post- and

pre-incubation NO3-N concentrations and net N ammo-

nification as the difference between post- and

pre-incubation NH4-N concentrations. Annual accumu-

lations (during the growing season) of net N mineral-

ization, nitrification and ammonification were

determined by summing mineralized, nitrified and

ammonified N for all of the incubation periods (Pastor

et al., 1984; Subler et al., 1998; Trindade et al., 2001).

Soil moisture content was determined after drying at

105�C for 24 h in each sampling time. Subsamples of

soil collected in June 2005 were air dried, passed

through 0.5 mm mesh and used to analyse soil prop-

erties (Table 1). Soil total nitrogen (TN) was measured

using Kjeldahl acid-digestion method with an Alpkem

autoanalyzer (Kjektec System 1026 Distilling Unit,

Sweden); soil organic carbon (SOC) was determined

using the H2SO4–K2Cr2O7 oxidation method, and soil

pH was determined by mixing soil with deionized water

(1:2 w ⁄ v).

Statistical analyses

Effects of sampling time and N fertilizer treatments on

soil inorganic N concentration and net N transformation

rates were tested using repeated measures ANOVAANOVA in a

general linear model, with sampling time and fertilizer

treatments used as main effects. One-way ANOVAANOVA was

used to test the difference in soil inorganic N concentra-

tion, net N mineralization and accumulation of mineral

N among fertilizer treatments; Duncan’s multiple range

test was used to compare differences at P = 0.05.

Differences in soil inorganic N, soil N transformation

and cumulative mineral N between 2005 and 2006 were

compared by paired t-test. Pearson product-moment

correlation was used to determine the relationship

between net N mineralization and meteorological vari-

ables in each year. Linear stepwise regression was used

to determine the relationship between soil temperature,

rainfall, soil water content and soil N transformation in

2005 and 2006. All statistical analyses were performed

using SPSS 10.0 (Chicago, IL, USA) procedures.

Results

Meteorological variables and soil inorganic N
concentrations

Over the growing season, daily soil temperature (0–

5 cm) ranged from 11.2 to 22.2�C in 2005, from 12.7 to

21.0�C in 2006 and was highest in July (Figure 1).

Rainfall in 2005 (655 mm) was 86% higher than the

10-year mean (353 mm, from 1994 to 2003), decreas-

ing in 2006 to 394 mm. Seasonal patterns for soil

moisture among the five fertilizer treatments were

similar in both 2005 and 2006 (Figure 2). Mean soil

moisture did not vary significantly among the five

fertilizer treatments, but did vary significantly with

sampling time (Table 2).

Soil NH4-N concentration varied from 0.88 to

5.98 lg N g)1 soil in 2005 and from 2.56 to 14.62

lg N g)1 soil in 2006 (Figure 3) and increased gradually

during the periods of incubation in 2005 and 2006. In

comparison with the control, soil NH4-N in the four

fertilizer treatments increased by 1.9, 4.3, 29.4 and

49.4% in 2005 and 1.9, 8.6, 12.2 and 77.5% in 2006,

respectively. Mean NH4-N concentration in 2006 was

169% higher than in 2005 (t = )16.57, P < 0.0001).

Soil NO3-N concentration ranged from 0.18 to 7.66 lg

g)1 in 2005 and from 0.52 to 22.71 lg g)1 in 2006

(Figure 3). There were significant differences in NO3-N

concentrations among fertilizer treatments in 2005

(F4,19 = 175.04, P < 0.0001) and in 2006 (F4,19 =

36.29, P < 0.0001). A paired t-test indicated that soil

NO3-N concentration was significantly higher in 2006

than in 2005 (t = )11.48, P < 0.0001).

Table 1 Soil properties under different N fertilizer treatments and their aboveground biomass in August (Values are means plus

standard errors and n = 4).

Treatment

Total organic

N (g kg)1 dry soil)

Total organic

C (g kg)1 dry soil) C ⁄ N ratio pH

Harvested aboveground

biomass

(g m)2)

2005 2006

N0 2.05 (0.16)a 20.93 (1.68)a 10.2 (0.3)a 7.30 (0.07)b 113.4 (4.7)a 151.5 (16.6)a

N2 2.17 (0.04)ab 21.44 (0.85)a 9.9 (0.3)a 7.27 (0.05)b 131.3 (7.8)a 165.6 (7.6)a

N4 2.28 (0.15)ab 23.73 (1.24)a 10.5 (0.2)a 6.97 (0.07)b 162.9 (16.9)b 251.4 (38.1)a

N8 2.31 (0.07)ab 24.37 (0.85)a 10.6 (0.5)a 6.92 (0.25)b 170.4 (0.9)b 393.8 (61.1)b

N16 2.53 (0.12)b 24.65 (1.24)a 9.8 (0.6)a 6.41 (0.24)a 176.8 (9.0)b 516.0 (24.5)c

Letters indicate statistical significance among the treatments at P < 0.05 level.
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Net N transformations

Soil net N mineralization rates ranged from )0.04 to

0.52 lg N g)1 soil d)1 during the growing season in

2005 and from )0.08 to 0.39 lg N g)1 soil d)1 in 2006

(Figure 4), with higher values occurring in July both in

2005 and 2006. In comparison with the control, mean

mineralization rate in the four fertilizer treatments

increased by 485% in 2005 (F4,19 = 22.52, P < 0.0001)

and 451% in 2006 (F4,19 = 35.69, P < 0.0001), respec-

tively (Figure 5). No significant difference in net N

mineralization rate was observed between 2005 and

2006 (t = 0.56, P = 0.58).

Net nitrification rates exhibited seasonal patterns

similar to those of net N mineralization (Figure 4),

ranging from )0.03 to 0.45 lg N g)1 soil d)1 in 2005

and from )0.05 to 0.48 lg N g)1 soil d)1 in 2006. The

highest means in both 2005 (0.28 lg N g)1 soil d)1)

and 2006 (0.30 lg N g)1 soil d)1) occurred in July.

There were significant differences in net nitrification

rates among fertilizer treatments in 2005 (F4,19 = 21.27,

P < 0.0001) and in 2006 (F4,19 = 143.69, P < 0.0001).

Net ammonification varied significantly over the

periods of incubation, with highest rates among treat-

ments occurring in September in both years (Figure 4).

There were significant differences among fertilizer

treatments in 2005 (F4,19 = 9.54, P < 0.0001) and in

2006(F4,19 = 4.85, P = 0.01), and the mean rate in 2005

(0.05 ± 0.01 lg N g)1 soil d)1) was higher than that in

2006 (0.03 ± 0.01 lg N g)1 soil d)1).

Repeated measures ANOVAANOVA indicated that N fertilizer

treatments significantly affected soil N transformations

(Table 2). Soil N transformations varied significantly

with sampling time; the interaction of fertilizer

rates · sampling time was also significant (Table 2).

Net nitrification was positively correlated with soil

temperature and rainfall in 2005 and with rainfall in

2006 (Table 3). Relationships between soil temperature

and N mineralization in 2005, and rainfall and soil

nitrification in both 2005 and 2006 were all significant.

Results of linear stepwise regressions suggested that

rainfall explained 88% of the variability in soil nitrifi-

cation in 2005 (R2 = 0.88, F = 21.97, P = 0.018). In

2006, rainfall and soil moisture explained 90%

(R2 = 0.90, F = 27.19, P = 0.014) and 99% (R2 = 0.99,

F = 112.27, P = 0.009) of variation, respectively.

Accumulation of mineral N

There were significant differences in accumulation of

mineral N among the five treatments in 2005 and 2006

(Figure 6); total mineral N in four fertilizer treatments

was, respectively, 2.7, 5.3, 6.7 and 6.7 times higher

than the control. In 2006, the mean of total mineral N

in the four fertilizer treatments was 498% higher than

that in control, and the difference among the five

treatments was significant (F4,19 = 45.75, P < 0.0001).

The difference in cumulative mineral N between 2005

and 2006 was not significant (T = 0.94, P = 0.36). The

difference in cumulative nitrified N among five treat-

ments showed similar patterns with mineral N in both

2005 and 2006. Cumulative net N ammonification of

the five treatments (except for N0) was lower than the

cumulative net nitrification both in 2005 and 2006. The

difference in cumulative ammonification rate between

2005 and 2006 was significant (t = 2.17, P = 0.04).

Effects of N fertilization on grass biomass

Grass biomass increased with N additions in both years,

but this was significant only in 2006 for the 8 and
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Figure 1 Variations in monthly soil temperatures (0–5 cm)

and precipitation during the periods of incubation (May–

September) in 2005 and 2006. Lines: mean monthly soil surface

temperature during the growing season in 2005 and 2006;

white bars: mean monthly precipitation during the growing

season in 2005 and 2006.
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16 g N m)2 year)1 treatments (Table 1). When the

effects of N fertilizers were assessed as the ratio of grass

biomass for each N treatment to that of the control, the

significantly positive linear relationship up to

8 g N m)2 year)1 overestimated biomass found for the

16 g N m)2 year)1 treatment (Table 1, Figure 7).

Discussion

Effects of N fertilization on net N
mineralization

The range of daily rates of net N mineralization for the

top 10 cm of soil (–0.08 to 0.53 lg N g)1 soil d)1) was

similar to values reported for Inner Mongolian grass-

land soils by Xu et al. (2007) and Zhang et al. (2008).

The relationship between N fertilizer and net N miner-

alization ⁄ nitrification indicated a direct response up to

8 g N m)2 year)1, with further, smaller increases be-

yond that level of N addition (Figure 5). This suggests

that N fertilizer treatments in excess of 8 g N

m)2 year)1 (80 kg N ha)1) may lead to N-saturated

soils, wherein N supply exceeds biotic demand for N

(Gilliam et al., 2005). The pattern of increases in

extractable NO3
) in August and September of both

2005 and 2006 for the N16 treatment (Figure 3) is

consistent with this notion. The possibility of N satura-

tion owing to N additions represents a potentially
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Figure 2 Temporal variations in soil

water content for the N fertilizer treat-

ments during the periods of incubation in

2005 and 2006. Values are means plus or

minus standard errors (n = 4).

Table 2 Results of F tests based on repeated measures ANOVAANOVA for soil water content (SWC) (%), soil inorganic N concentration

(lg N g)1) before incubation and soil net N mineralization rate (lg N g)1 d)1) under different N fertilizer treatments for the growing

season.

Fertilizer Time Time · Fertilizer

F P F P. F P

2005 SWC% 1.31 0.31 119.53 0 0.88 0.59

NO3-N 175.04 <0.001 15.47 <0.001 12.61 <0.001

NH4-N 9.02 0.001 14.94 <0.001 1.87 <0.001

Inorganic N 86.65 <0.001 11.69 <0.001 4.92 <0.001

Mineralization 22.52 <0.001 102 <0.001 3.50 0.001

Nitrification 21.27 <0.001 12.02 <0.001 4.69 <0.001

Ammonification 9.54 <0.001 104.31 <0.001 6.35 <0.001

2006 SWC% 0.16 0.95 441.48 0 1.41 0.19

NO3-N 36.29 <0.001 2185.28 <0.001 24.69 <0.001

NH4-N 38.54 <0.001 87.18 <0.001 3.86 <0.001

Inorganic N 88.96 <0.001 371.87 <0.001 9.53 <0.001

Mineralization 35.69 <0.001 15.92 <0.001 2.66 0.007

Nitrification 143.69 <0.001 59.61 <0.001 3.66 0.001

Ammonification 4.87 0.01 58.24 <0.001 7.53 <0.001
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serious threat to long-term sustainability and produc-

tivity of soils because increases in highly mobile NO3
)

from N saturation can (i) facilitate leaching losses of

essential base cations, for example calcium (Ca) and

magnesium (Mg), and (ii) create nutrient imbalances in

plant tissue (Gilliam et al., 2001, 2005). Indeed,

increases in extractable NO3
) for the N16 treatment

are coincidental with the end of the growing season, a

time when plant uptake declines rapidly, allowing for

more leaching losses from the rooting zone.

Additions of N fertilizer could profoundly affect soil N

transformation directly or indirectly through the alter-

ation of abiotic and biotic characteristics of soil and soil

organic matter quality. Nitrogen fertilizer may affect N

mineralization directly by increasing soil nutrition

(Delin and Linden, 2002; Güleryüz et al., 2008; Kadono

et al., 2008), by building up readily mineralizable soil

organic N and by stimulating microbial activity (Ag-

gangan et al., 1998).

Differences in plant biomass among the fertilizer

treatments (Table 1) may explain the reason that N

fertilization affected soil N mineralization indirectly.

Following N fertilization in grasslands, plant production

can regulate relationships between species dominance

and N availability (Huang et al., 2008). It can also alter

rates of litter decomposition (Aerts et al., 2006; Liu

et al., 2006). All of these can influence soil microbial

activity, mediate conversion of soil organic N to
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Figure 3 Temporal variations in soil

NO3-N, NH4-N and soil inorganic N

concentrations for the N fertilizer treat-

ments during the periods of incubation in

2005 and 2006. Values are means plus or

minus standard errors (n = 4). Nitrogen

was applied as urea on July 15 each year.
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inorganic forms (NO3
) and NH4

+) and affect soil N

cycling (Huang et al., 1998; Liu et al., 2000; Weintraub

and Schimel, 2003; Sun et al., 2004).

The pattern and amount of soil net N mineralization

varied among the four fertilizer treatments (Figure 4).

This was likely because the effects of N fertilizer on soil

N cycling can vary between N-poor and N-rich sites

(Chappell et al., 1999). In the case of the lower rate

fertilizer treatment, a larger part of applied N may be

immobilized in the soil, whereas at more N-rich sites,

more of the applied N may remain in the pools that are

actively recycled (Chappell et al., 1999). Another reason

may have been that much more plant biomass and litter

was produced in the higher fertilizer treatments

(Table 1) and maybe supplied as labile soil organic

matter, which may be readily mineralized (Chappell

et al., 1999).

Seasonal patterns of soil net N mineralization

Strong seasonal patterns were observed in net N

mineralization and nitrification during the study, with

rates generally increasing from May through June to

July as soil warmed, reaching a maximum in July, and

then declining (Figure 4). These patterns were consis-

tent with previous results in which higher soil net N

mineralization and nitrification rates occurred during

the warmest month (Xu et al., 2007; Zhang et al., 2008).
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Figure 4 Temporal variations in soil net

N mineralization and nitrification rates for

the N fertilizer treatments during the

periods of incubation in 2005 and 2006.

Values are means plus standard errors

(n = 4). Nitrogen was applied as urea on

July 15 each year.
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Seasonal variations in soil temperature and precipi-

tation may directly stimulate soil N transformation

(Sleutel et al., 2008), or by regulation of soil microbial

activity (Sierra, 1997; Gilliam et al., 2001; Bell et al.,

2008). In this study, seasonal patterns of soil net N

mineralization and nitrification rates in May, June and

July were consistent with the variation in soil temper-

ature and rainfall. The rise in temperature and adequate

precipitation during this time (May–July) should

increase microbial activity and enable more inorganic

N to be released (Table 1). Maximum rates of N

mineralization occurred during the warmest period in

2005 and 2006, mainly in the form of nitrification

(Table 3). Significant and positive correlations between

net nitrification and soil temperature and precipitation

over the two growing seasons support this contention.

Monthly rates of soil N transformations were also

dependent on small-scale variation in both soil micro-

climate and species cover, which can affect microbial

activity and regulate soil N mineralization (Steltzer and

Bowman, 1998; Eviner et al., 2006).

Prevailing conditions in August at this Inner Mongo-

lian grassland site, including suitable soil moisture

content (Figure 2) and input of high C:N ratio

substrates from root turnover and senescing of above-

ground plant biomass, might reduce soil N mineraliza-

tion (Figure 4) because labile C with high C ⁄ N ratio

could stimulate microbial growth and assimilate min-

eral N into microbial biomass (Luizão et al.,1992; van

der Krift and Berendse, 2001; Xu et al., 2007). In

September, mean net nitrification was lower over the

incubation periods, while soil net N mineralization was

higher than in May and August, and mainly in the form

of ammonification (Table 3). One reason may be that

nitrification can be greatly reduced at temperatures

below 5�C (10-year means for soil temperature were

<5�C at this site), and the rate declined in September

(Anderson and Boswell, 1964).

Effects of N fertilization on grass biomass

Grass above-ground biomass responded positively to all

N fertilizer treatments and in both years, although the

response was far more pronounced in 2006 than in

2005 (Figure 7). For both years, there was a linear

relationship between our measure of fertilizer-en-

hanced grass yield (biomass ratio of treatment:control)

and N fertilizer added up to the N8 treatment, but not

beyond. In fact, yield for the N16 treatment was

consistently 25% less than that which would have

been predicted from the linear model (based on 0–

8 g N m)2 year)1) for each year. This suggests that N

fertilizer additions beyond 8 g N m)2 year)1

(80 kg ha)1 year)1) may not provide an adequate

return on investment when attempting to increase

grass yield in Inner Mongolian grasslands. Dry-matter

yield as a function of added N declined almost fourfold

from N2 to N16 treatments, averaged over both years,

from approximately 75 to 21 kg dry matter kg)1 N

added, respectively.

Some of these patterns may be related to other

factors, for example weather and the effect of residual N

fertilizer, as has been demonstrated for grasslands

outside China (Kowalenko and Bittman, 2000; Vellinga

et al., 2010). However, the proportional drop in yield
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Figure 5 Differences in soil N mineralization, nitrification and

ammonification rates among five fertilizer treatments. Signifi-

cance of soil net N mineralization rates in 2005 (F4,19 = 22.52,

P < 0.0001) and in 2006 (F4,19 = 35.69, P < 0.0001), nitrifica-

tion rates in 2005 (F4,19 = 21.27, P < 0.0001) and in 2006

(F4,19 = 143.69, P < 0.0001) and net N ammonification rates in

2005 (F4,19 = 9.54, P < 0.0001) and in 2006(F4,19 = 4.85,

P < 0.01) among N fertilizer treatments were measured by

one-way ANOVAANOVA .
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found in Figure 6 is not likely related to abiotic factors,

considering the close proximity of the sample plots. On

the other hand, the pronounced variation in yield ⁄ N
response between 2005 and 2006 suggests that residual

effects, as reported in Canadian and European grass-

lands (Kowalenko and Bittman, 2000; Schröder et al.,

2010; Vellinga et al., 2010), may have occurred.

Conclusions

As expected, we found distinct temporal patterns in soil

N mineralization during the growing season, with

highest rates in July and similar seasonal patterns in N

mineralization ⁄ nitrification among fertilizer treatments

that appeared to be primarily regulated by ambient

temperature and moisture. Net N mineralization was

greatly dominated by nitrification, suggesting a preva-

lence of populations of nitrifying bacteria in these

grassland soils. Overall rates of soil N transformations

increased significantly in response to experimental

additions of N in Inner Mongolia grassland, particularly

up to 8 g N m)2 year)1, but also beyond this level,

Table 3 Correlation coefficients (r) and significance levels (P) of mean net N mineralization rate in the five treatments with climatic

factors (n = 5), respectively.

Mineralization

(lg g)1 d)1)

Nitrification

(lg g)1 d)1)

Ammonification

(lg g)1 d)1)

2005 2006 2005 2006 2005 2006

Soil temperature (�C) r 0.46 0.27 0.88 0.78 )0.23 )0.61

P 0.43 0.66 0.05 0.12 0.72 0.27

Rainfall (mm) r 0.50 0.70 0.94 0.95 )0.24 )0.39

P 0.39 0.19 0.02 0.01 0.70 0.51

Soil water content (%) r )0.04 )0.07 0.50 0.79 )0.53 )0.94

P 0.95 0.92 0.39 0.12 0.36 0.02
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P < 0.002, respectively.
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ultimately leading to substantial accumulations of

mobile NO3
) late in the growing season in the

16 g N m)2 year)1 treatment, a time when the potential

for leaching of NO3
) and nutrient cations, such as Ca

and Mg, is particularly high. More importantly, the

application of N fertilizer beyond 8 g N m)2 year)1 did

not result in proportional increases in grass yield, and

the actual grass yield at 16 g N m)2 year)1 was approx-

imately 25% less than that predicted from linear models

up to 8 g N m)2 year)1 for both years. Accordingly,

grassland managers might consider 8 g N m)2 year)1 as

a target level when applying N fertilizer to improve yield

of managed grasslands of Inner Mongolia.
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