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Summary.
An adaptive enrichment design is a randomized trial that allows enrollment criteria to be modified at interim
analyses, based on a preset decision rule. When there is prior uncertainty regarding treatment effect hetero-
geneity, these trial designs can provide improved power for detecting treatment effects in subpopulations. We
present a simulated annealing approach to search over the space of decision rules and other parameters for
an adaptive enrichment design. The goal is to minimize the expected number enrolled or expected duration,
while preserving the appropriate power and Type I error rate. We also explore the benefits of parallel com-
putation in the context of this goal. We find that optimized designs can be substantially more efficient than
simpler designs using Pocock or O’Brien-Fleming boundaries.

Keywords: Clinical Trials, Optimization, Simulated Annealing, Treatment Effect Heterogeneity

1. Introduction

Prior uncertainty regarding treatment effect heterogeneity can pose a challenge to trial designers. If
the treatment only benefits a subset of the population, standard clinical trials enrolling from the entire
population may have low power. However, if the entire population benefits, a standard trial enrolling
only one subpopulation will not provide any information about the complementary population.

These issues can be mitigated with the use of an adaptive enrichment trial design. Such a design
involves a decision rule for early stopping of participant accrual in different population subsets based
on interim analyses (Wang et al., 2009). For example, early stopping can occur if there is strong
evidence early in the trial of the treatment’s benefit or harm for a subpopulation. The design also
includes a multiple testing procedure, since there is one null hypothesis to test for each population of
interest.

We aim to optimize the enrollment modification rule and multiple testing procedure for an adaptive
enrichment design. The goal is to minimize either the expected number enrolled or expected trial
duration, under constraints on power and the Type I error rate. We focus on designs that are
guaranteed to strongly control the familywise Type I error rate, i.e., where the probability is at most
α that one or more true null hypotheses is rejected, regardless of the (unknown) data generating
distribution.

General approaches exist for constructing optimal designs for simpler problems, such as those
involving a single null hypothesis (Eales and Jennison, 1992; Hampson and Jennison, 2013). Hampson
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and Jennison (2015) extend this approach to handle multiple hypotheses in two-stage designs, but
the resulting designs are not guaranteed to strongly control the familywise Type I error rate (which
must be checked by simulation). Thall et al. (1988) perform a 2-dimensional grid search to minimize
the expected number enrolled of a 2-stage trial comparing the effects of several treatments. Krisam
and Kieser (2015), Graf et al. (2015), and Rosenblum et al. (2016), consider different adaptive designs
involving two subpopulations, which they optimize over at most a few parameters. In contrast to this
related work, our aim is to search over more flexible, higher dimensional families of designs. For trials
involving two subpopulations, optimal 2-stage designs can be found via sparse linear programming
(Rosenblum et al., 2014), but this approach becomes computationally infeasible for more than two
stages.

The optimization problems we consider are challenging in that no existing approach is guaranteed
to find the global optimum. The main difficulty is that there are many design parameters to optimize
over, as well as multiple constraints. The parameters in our adaptive enrichment designs include the
following (plus additional parameters in some settings): the number of stages; per-stage sample sizes;
and, an efficacy and futility boundary for each population at each stage. For example, in the case of
2 subpopulations and 5 stages, there are over 30 design parameters. To the best of our knowledge,
we are the first to address the problem of optimizing adaptive enrichment designs with more than
just a few parameters and more than 2 stages. Additionally, we explore a two step optimization
strategy, where first an unstructured search is conducted, and then its results are used to define a
more structured search.

While our approach based on simulated annealing (described below) does not ensure that a global
optimum is found, we show that it can substantially reduce the expected number enrolled compared to
simpler designs. In one of our examples, the optimized adaptive design reduces the expected number
enrolled by approximately 32% compared to simpler adaptive and non-adaptive designs; the cost is a
22% increase in maximum number enrolled. In another example, there is a longer follow-up time to
measurement of the primary outcome, compared to the enrollment rate; the benefits of adaptation on
expected number enrolled are meager since by the time sufficient information has accrued to make a
useful decision, most of the total enrollment has already been completed.

For trial design problems where no existing approach is guaranteed to find an optimal solution,
one may turn to general-purpose, approximate methods such as simulated annealing (SA). Wason
et al. (2012) apply SA to optimize the worst-case expected number enrolled using a group sequential
design, with penalties added to the objective function for violations of either Type I or Type II error
constraints. Wason and Jaki (2012) extend these results by applying SA to optimize a multi-arm,
multi-stage trial where several treatments groups are compared against a shared, single control group.

Our optimization problem differs from that of Wason and Jaki (2012) in that our futility bound-
aries are non-binding (which is typically preferred by regulators such as the U.S. Food and Drug
Administration, as noted by Liu and Anderson (2008)), and our designs allow continuation after one
null hypothesis is rejected (so other hypotheses may be rejected at later stages). Also, in our opti-
mization procedure, we include a final adjustment step after the SA algorithm to ensure that power
constraints are met. Without this, the optimal solution is generally not guaranteed to have the desired
power. Another difference is that we apply a parallelized version of SA. These and other differences
between our implementation of SA and that of Wason and Jaki (2012) are discussed in Section 4.

Over the course of developing the general optimization approach in this paper, we also applied
it in (Rosenblum et al., 2016) to a different problem than discussed here. The focus there was on
illustrating a novel multiple testing procedure, rather than on the optimization, which was summarized
in a paragraph and not otherwise mentioned. Unlike here, Rosenblum et al. (2016) did not compare
the optimized design to other designs in order to investigate the value added from the optimization.

In Section 2, we introduce motivating data examples based on a new surgical intervention for
stroke, and on a hypothetical intervention for preventing progression to Alzheimer’s disease. In Section
3, we introduce a class of adaptive enrichment designs, referred to hereafter as “adaptive designs.”
We discuss how efficacy boundaries can be constructed by incorporating either the covariance of the
test statistics (Rosenblum et al., 2016), or by using alpha-reallocation (Maurer and Bretz, 2013).
We also introduce different levels of trial design complexity, which balance design flexibility versus
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simplicity. In Section 4, we outline our approach for optimization. In Section 5, we explore the
performance of each type of trial, and compare to simpler trial designs using approximate O’Brien
Fleming boundaries (O’Brien and Fleming, 1979) or Pocock boundaries (Pocock, 1977). We end with
a discussion of future work.

2. Applications

2.1. Application 1: Surgical Treatment of Stroke (MISTIE)
We first describe an example of planning a Phase III trial of a surgical treatment for stroke, which was
also considered by Rosenblum et al. (2016). The treatment is called Minimally-Invasive Surgery Plus
rt-PA for Intracerebral Hemorrhage (MISTIE), and is described in detail by Morgan et al. (2008).
Each participant had his/her functional disability measured 180 days from enrollment, based on the
modified Rankin Scale (mRS). The primary outcome was the indicator of having mRS ≤ 3.

In planning the Phase III trial, the investigators were interested in two subpopulations defined by
size of intraventricular hemorrhage (IVH) at baseline. “Small IVH” participants are defined to have
IVH volume less than 10ml and not requiring a catheter for intracranial pressure monitoring. The
remaining participants are called “large IVH”. The Phase II trial only recruited small IVH partici-
pants. A preliminary analysis of the data resulted in an estimated treatment effect of approximately
12.1%. Knowledge of the underlying biology of these types of brain hemorrhage suggested a possible
benefit for those with large IVH as well. However, there was greater uncertainty about the treat-
ment effect in the large IVH subpopulation. Investigators inquired about the possibility of running a
phase III trial that included both small IVH and large IVH participants (called subpopulation 1 and
2, respectively), but with the option to stop a subpopulation’s accrual (using a preplanned rule) if
interim data indicated that a benefit was unlikely. The proportion of participants in subpopulation 1
was projected to be 0.33; the enrollment rate was projected to be 420 participants per year from the
combined population.

2.2. Application 2: Alzheimer’s Disease Neuroimaging Initiative (ADNI)
We also consider an example using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging, positron emission tomography, other biological markers, and clin-
ical and neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment and early Alzheimer’s disease. We focus on subpopulations defined by a participant’s
apolipoprotein E (APOE) ε4 allele carrier status, which is associated with increased risk of late on-
set Alzheimer’s disease (Sadigh-Eteghad et al., 2012). Non-carriers of the APOE ε4 allele are called
subpopulation 1, and carriers of at least one allele are called subpopulation 2. Clinical investigators,
who were planning a Phase III trial of a new treatment to prevent progression from mild cognitive
impairment to Alzheimer’s disease, suspected that there may be treatment effect heterogeneity across
carrier status. The proportion in subpopulation 1, based on the ADNI data, is 46.9%.

The primary outcome is the 2-year change in Clinical Dementia Rating Sum of Boxes score
(CDR-SB), an aggregate measure of symptom severity. Enrollment would include those with baseline
CDR-SB ≥ 0.5, which is indicative of mild cognitive impairment. The enrollment rate was projected
to be 500 participants per year from the combined population.

3. Adaptive Trial Designs

3.1. Notation, Hypotheses, and Statistics
We consider two subpopulations that partition the overall population. Let j = 1, 2, C be an index
respectively denoting subpopulation 1, subpopulation 2, or the combined population. The treatment
effect for a population is defined as the difference between the mean outcome for treatment and control.
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Outcomes may be continuous, binary, or on any scale that allows the treatment effect to be estimated
with a difference in means z-statistic. The data collected for each participant is a vector (S,A, Y )
representing his/her subpopulation, study arm assignment, and outcome, respectively. We assume
each participant’s data vector is an independent, identically distributed draw from an unknown joint
distribution on (S,A, Y ). We assume that study arm assignment is randomized with probability 1

2

independent of the subpopulation, and that each participant’s outcome is measured after a delay of
d years from enrollment.

Let πj denote the proportion of the combined population in subpopulation j (with πC = 1
by convention). Let δj denote the average treatment effect in population j. It follows that δC =
π1δ1 +π2δ2. Let H1, H2, and HC respectively be the null hypotheses of no average treatment benefit
in populations 1, 2 and C, i.e., Hj : δj ≤ 0. Each corresponding alternative hypothesis has the form
δj > 0. Let σ2

tj and σ2
cj denote the outcome variances in population j under treatment and control,

respectively, with all variances assumed known. The combined population outcome variance is a
function of π1 and the outcome variances for each subpopulation. Define the global null hypothesis
H0 : δ1 = δ2 = δC = 0; though this is not of primary interest, we refer to it in defining the different
multiple testing procedures below.

Analysis timing is based on the cumulative number of outcomes observed from each subpopulation,
referred to as the sample size. Because participant outcomes are measured with delay, there can be
enrolled participants at interim analyses whose outcomes are not yet measured. These participants
are referred to as “pipeline participants.” Pipeline participants do not contribute to test statistic
calculations, although they always contribute to the number enrolled in the trial.

Our designs have K > 0 stages, each concluding with an analysis. These analyses may lead
to stopping accrual in one or both subpopulations, according to a set of predefined rules that are
functions of the data collected so far. To stop accrual means to stop enrollment and follow-up of
pipeline participants.

We assume enrollment is proportional to subpopulation size πj , and enrollment is uniform over
time. Analysis k occurs when the kth stage is completed, defined to be the first time when πjnk
additional participant outcomes have been measured from each subpopulation j for which accrual has
not been previously stopped. The terms nk are design parameters that are not modified during the
trial. Let N :=

∑K
k=1 nk denote the maximum total sample size. The decision at the end of stage k

takes as input the following cumulative test-statistic:

Z
(k)
j := δ̂j

(
σ2
cj + σ2

tj

1
2

∑k
k′=1 nk′πj

)− 1
2

,

for each population j ∈ {1, 2, C} that is still being enrolled, where πC = 1, and δ̂j denotes the
difference in sample means estimator for δj based on the accrued data. The combined population

statistic Z
(k)
C is undefined if one or more subpopulations had accrual stopped early at a previous stage.

Throughout, we make the asymptotic approximation that the above statistics have the canonical
multivariate normal distribution from Jennison and Turnbull (1999, Chapter 3) with covariances:

Cov
(
Z

(k)
j , Z

(l)
j

)
=

(∑k
k′=1 nk′∑l
l′=1 nl′

)1/2

, Cov
(
Z

(k)
1 , Z

(l)
2

)
= 0,

Cov
(
Z

(k)
j , Z

(l)
C

)
=

{
πj

(
σ2
cj + σ2

tj

σ2
cC + σ2

tC

)(∑k
k′=1 nk′∑l
l′=1 nl′

)}1/2

,

for any j = 1, 2, C, and stages k and l such that 1 ≤ k ≤ l ≤ K. These covariances depend only on
the variables σ2

cj , σ
2
tj , nk, and πj . The mean vector for the z-statistics is a function of these variables

and the subpopulation treatment effects δ1, δ2.
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At the analysis just after stage k, each statistic Z
(k)
j is compared against an efficacy boundary e

(k)
j

and futility boundary f
(k)
j . If Z

(k)
j > e

(k)
j , Hj is rejected. Whenever H1 and H2 are both rejected, we

automatically reject HC as well. Rejecting any null hypothesis implies that the hypothesis remains
rejected in all future stages. If Z

(k)
j ≤ f

(k)
j , then accrual in population j is stopped for futility.

We use non-binding futility boundaries, i.e., strong control of the familywise Type I error rate is
asymptotically guaranteed for all designs in this paper, even if futility boundaries are ignored and
both subpopulations continue accrual through the end of the last stage K.

For each subpopulation j ∈ {1, 2}, its accrual continues until one (or more) of the following occurs:

Hj is rejected (Z
(k)
j > e

(k)
j ), subpopulation j is stopped for futility (Z

(k)
j ≤ f

(k)
j ), the combined

population is stopped for futility (Z
(k)
C ≤ f (k)

C ). Under this setup, rejecting the combined population
null hypothesis HC does not imply stopping all accrual; further tests of H1 and H2 may still be
conducted. Since Z

(k)
C is only defined if the combined population accrual is not stopped early before

stage k, we do not conduct the test Z
(k)
C > e

(k)
C at stages after accrual for at least one subpopulation

has stopped; it is still possible to reject HC at future stages, if both subpopulation null hypotheses
are rejected.

We compare two methods for calculating efficacy boundaries. The first uses an error spending
approach based on the covariances of the statistics Z

(k)
j (Rosenblum et al., 2016). The second method

involves a graphical approach to reallocating Type I error to the remaining null hypotheses after some
null hypotheses have been rejected (Bretz et al., 2009; Maurer and Bretz, 2013). We refer to these
two types of multiple testing procedures as H COV and H MB , respectively. For both, Type I error is
calculated under the assumption that futility boundaries are never adhered to (to give the worst-case
Type I error under non-binding futility boundaries). Power, expected number enrolled, and expected
duration are calculated under the assumption that futility boundaries are adhered to.

3.2. Multiple Testing Procedure 1: Covariance Approach
Rosenblum et al. (2016) propose a method for efficacy boundary calculation that incorporates the
covariance matrix among the statistics (which is assumed known), both across stages and across
populations. We refer to this approach as H COV . A key feature of this approach is that in order to
guarantee strong control of the familywise Type I error rate, it is sufficient to control the familywise
Type I error rate under the global null hypothesis H0 of no treatment effect in any subpopulation.

The first step of this approach is to prespecify an ordering for the null hypotheses. For example,
the ordering H1, H2, HC implies that we always first test H1, then H2, and finally HC , at each stage
where all three hypotheses are still being tested. If only a subset of hypotheses are still being tested at
a given stage, the same ordering applies to the remaining hypotheses. The second step is to prespecify
nonnegative values α

(k)
j for each population j ∈ {1, 2, C} and stage k : 1 ≤ k ≤ K, that sum to the

desired familywise Type I error rate α (e.g., α = 0.025). The efficacy boundaries e
(k)
j are iteratively

computed at the end of each stage k by solving the following for each j ∈ {1, 2, C} according to the
above ordering:

PH0{Z
(k)
j > e

(k)
j ; and Z

(k′)
j′ ≤ e(k′)

j′ for all k′, j′ such that (k′, j′) ≺ (k, j)} = α
(k)
j , (1)

using the known covariance for the test statistics, where (k′, j′) ≺ (k, j) means that either k′ < k or
(k′ = k and j′ precedes j in the ordering).

The required inputs to the multiple testing procedure H COV are nonnegative values α
(k)
j that

sum to α. We also consider simpler designs, called “structured”, that restrict these values to have a
particular form. Specifically, we consider setting the α

(k)
j allocated to each stage k and hypothesis Hj

to be wj×(ak−ak−1), where ak =
(∑k

k′=1 nk′/N
)ρej

, a0 = 0, ρej > 0, and wj =
∑K
k=1 α

(k)
j /α. This is

the power family of error spending functions, described by Jennison and Turnbull (1999). In this way,

the search space is reduced from the 3×K values for the α
(k)
j , to the six design parameters wj and ρej

for j = 1, 2, C. For a group sequential design testing only one null hypothesis, setting ρej to be 1 or 3
results in efficacy boundaries that are similar to those of Pocock (1977) or O’Brien and Fleming (1979)
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respectively (Jennison and Turnbull, 1999). We refer to the optimization problem where the search

space consists of designs that have no restrictions on α
(k)
j (except that they are nonnegative and sum

to α) as “unstructured.”

3.3. Multiple Testing Procedure 2: Alpha-Reallocation Approach
Maurer and Bretz (2013) propose a procedure that reallocates alpha from a rejected null hypothesis
to remaining null hypotheses; the result is a lowering of the efficacy boundaries for the remaining null
hypotheses, thereby increasing power. In contrast to the approach in the previous subsection, the
Maurer and Bretz (2013) procedure does not directly use the covariance among statistics for different
hypotheses (though it uses the covariance among statistics from the same hypothesis across stages).
We summarize this reallocation procedure, referred to as H MB ; a more detailed description is in the
supplemental materials.

The first step in H MB is for investigators to prespecify a weighted Bonferroni procedure to adjust
for multiple testing across the hypotheses H1, H2 and HC , with corresponding weights w1, w2 and
wC . Specifically, for each j ∈ {1, 2, C}, the null hypothesis Hj is tested using efficacy boundaries

e
(k)
j , k = 1, . . . ,K, corresponding to a standard group sequential design for a single null hypothesis

with total Type I error wjα; the fraction of wjα allocated to each stage is prespecified, and efficacy
boundaries are created using an error spending function analogous to (1) except only considering a
single null hypothesis. These boundaries are used until at least one null hypothesis is rejected, at
which point reallocation occurs, as described next.

After a null hypothesis Hj is rejected, its weight wj is reallocated across the remaining null
hypotheses. This reallocation follows a graphical procedure of Bretz et al. (2009), which must be
prespecified. Each node in the graph corresponds to a null hypothesis, and there is a directed edge
between each pair of nodes. The edge from Hi to Hj has a transition weight gij ∈ [0, 1] that indicates
the proportion of the weight at node i reallocated to Hj after rejection of Hi. Each rejection also
requires updating the edges gij , as transitions to the rejected hypotheses become defunct. We use gij
to refer to the initial transition weight, before any hypothesis has been rejected. Maurer and Bretz
(2013) prove that their procedure strongly controls the familywise Type I error rate.

The required inputs to the multiple testing procedure H MB are nonnegative values α
(k)
j that sum

to α (just as for H COV ), as well as the initial transition weight gij for each edge. Each initial node

weight is set as wj =
∑K
k=1 α

(k)
j /α. These inputs correspond to the unstructured design using H MB ;

a structured design, with fewer inputs, is defined analogously as in the previous subsection.

4. Optimization Problem

4.1. Search Space
Let D denote a trial design, which consists of the list of design parameters necessary to fully specify
the decision rule and testing procedure for a trial, i.e., the following: the maximum number of stages
K (which we restrict to be at most 10), the maximum sample size per stage {nk}k≤K (each nk being

a positive integer), alpha allocations {α(k)
j ≥ 0 : j ∈ {1, 2, C}, k ≤ K} (which sum to α), futility

boundaries {f (k)
j ∈ R : j ∈ {1, 2, C}, k ≤ K}, a hypothesis testing framework (H MB or H COV ), and

the alpha reallocation rule if using H MB . The class of trial designs satisfying the above restrictions
is the search space for the unstructured optimization problem. The structured optimization problem
has a reduced search space as described at the end of Section 3.2.

4.2. Constraints
We next define the power and Type I error constraints. Let δ = (δ(1), δ(2)) denote a vector of possible
values for the treatment effect in each subpopulation, and let δmin > 0 denote the minimum value of
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the treatment effect that is clinically meaningful. We consider the following values for δ:

δ(0) = (0, 0); δ(1) = (δmin, 0); δ(2) = (0, δmin); and δ(C) = (δmin, δmin).

Let 1 − βj(δ′,D) be the power of the design D to reject at least Hj by the end of the trial when
(δ1, δ2) is equal to the vector δ′. Let Pδ1,δ2,D and Eδ1,δ2,D , respectively, denote probability and
expectation with respect to the z-statistics defined in Section 3.1 for design D under treatment effects
(δ1, δ2); we assume this distribution of z-statistics is multivariate normal with covariance matrix given
in Section 3.1.

We impose the following constraints on power and familywise Type I error:

(a) 1− β1(δ(1),D) ≥ 0.8; (b) 1− β2(δ(2),D) ≥ 0.8; (c) 1− βC(δ(C),D) ≥ 0.8;
(d) Strong control of the familywise Type I error rate, i.e.,

sup
δ1,δ2∈R

Pδ1,δ2,D(reject one or more true null hypotheses) ≤ α = 0.025.

Constraints (a)-(c), respectively, represent having at least 80% power to reject H1 when the treatment
only benefits subpopulation 1 (at level δmin), at least 80% power to reject H2 when the treatment only
benefits subpopulation 2, and at least 80% power to reject the combined population null hypothesis
HC when the treatment benefits both subpopulations.

4.3. Objective Function
The objective function for the optimization problem is the expected number enrolled. (We also
consider the expected trial duration.) The expected number enrolled is computed with respect to a
prespecified distribution Λ on the treatment effects (δ1, δ2). We refer to this as the prior distribution
on the treatment effects. However, all of our designs have guaranteed asymptotic, familywise Type I
error control without regard to this prior, i.e., it holds for any possible pair (δ1, δ2).

We aim to minimize the following objective function (representing expected number enrolled) over
the space of trial designs D that satisfy constraints (a)-(d):

EΛ{ñ(D)} =

ˆ
δ1,δ2

Eδ1,δ2,D(total participants enrolled)dΛ(δ1, δ2), (2)

where ñ(D) denotes the inner expectation on the right side of (2), which represents the expected
number enrolled under Pδ1,δ2,D . In this paper, we set Λ to be a discrete distribution with equal mass
at δ(0), δ(1), δ(2), and δ(C). Under such a prior, EΛ{ñ(D)} is the expected number enrolled across
these four scenarios. While minimizing expected number enrolled is our primary goal, we also consider
the problem of minimizing expected duration – the expected time from the start of enrollment until
all accrual has stopped. This expectation is taken with respect to the same prior for the treatment
effects.

The power constraints (a)-(c), Type I error constraints (d), and objective function (2) depend
on the design parameters (encoded in D) and the population parameters σ2

cj , σ
2
tj , πj , δ

min. This is
because these parameters are sufficient to determine the distribution of the z-statistics in Section 3.1,
and all designs here use the data only through these z-statistics. For a given application (such as
the MISTIE and ADNI applications described below), it suffices to specify the population parameters
σ2
cj , σ

2
tj , πj , δ

min, and the class of designs to be searched over, in order to fully define the corresponding
optimization problem. The problem also depends on the prior Γ, defined above.

Due to the difficulty in directly solving the optimization problem (2) under the power and Type I
error constraints, we instead define an unconstrained optimization problem where the constraints are
incorporated as penalty terms as in (Wason and Jaki, 2012; Wason et al., 2012). The unconstrained
objective function we aim to minimize over D is

J(D) := EΛ{ñ(D)}+ λ
∑
j∈{1,2,C}

[
0.8− {1− βj(δ(j),D)}

]3
+
, (3)

7
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where λ is a positive tuning parameter (set here to 106), and (x)+ = max{x, 0}. The first term can
also be replaced with the expected trial duration. If any of the power constraints in Section 4.2 are
violated, the objective function will incur a severe penalty. The exponent in the penalty term is meant
to allow second order differentiability of J(D) with respect to the power of the trial. This exponent
is not necessary, but is potentially useful for some of the approaches discussed in Section 5.

Evaluating J(D) requires the calculation of several multidimensional integrals. Due to the com-
putational obstacle of these calculations, we instead estimate J(D) via simulation. We used 10,000
simulation iterations, such that the Monte Carlo standard error for estimating a power close to 0.80
is approximately {0.8(1− 0.8)/10000}1/2 ≈ 0.004.

Since we parametrize the trial in terms of alpha allocations α
(k)
j that sum to α = 0.025, all of our

proposed designs are asymptotically guaranteed to control the familywise Type I error as proved in
(Rosenblum et al., 2016; Maurer and Bretz, 2013), and it is not necessary to penalize for violations
of the required familywise Type I error rate in the manner of (Wason and Jaki, 2012; Wason et al.,
2012).

4.4. Optimization Using Simulated Annealing
We search for argminDJ(D) using simulated annealing (SA). The general form of SA is as follows.
Given a trial design D as a reference point, SA randomly perturbs D in order to generate a new
proposal design D ′. If J(D ′) < J(D) then the proposal is “accepted,” and D ′ becomes the new
reference point. If J(D ′) > J(D), then D ′ is accepted according to a certain probability, and discarded
otherwise. The nonzero probability of exploring undesirable regions of the parameter space allows SA
to avoid becoming stuck at a local minimum. As the algorithm progresses, new proposal designs D ′ are
taken from a closer neighborhood around the reference design, and the probability of accepting inferior
designs decreases. Both of these changes are modulated by a parameter known as the “temperature,”
which decreases with each iteration. We use the variant of SA implemented in the optim function in
R, which is based on the algorithm of (Bélisle, 1992). We implemented SA in parallel across 100 nodes,
each starting with a different random seed. Our implementation is “embarrassingly parallel” in that
each node runs the SA algorithm independent of the others (i.e., without communication between
nodes); when the SA search terminates for all nodes, we select the best design found, denoted DSA.

The search space for D is defined in Section 4.1. Separate searches are performed for the two
hypothesis testing frameworks H MB and H COV . One difficulty is that the dimension of this search
space changes with the value of K, since greater values of K require additional sample sizes, efficacy
boundaries, and futility boundaries. We give details on our method to address this issue in the
supplemental materials.

The SA algorithm allows design parameters to take any real values, which may violate the con-
straints on our search space of feasible designs. In particular, since the alpha allocated to each test
at each stage must be bounded between 0 and α, we instead use SA to search for the logit transform
of the alpha allocated, i.e., log{α(k)

j /(1 − α(k)
j )}. We then transform proposed values for logit(α

(k)
j )

back to the (0,1) interval, and rescale them to sum to α. In the same way, we search over the logit of
the graph transition weights gij ∈ [0, 1] when using the framework H MB . Non-negative and integer
constraints (e.g. for nk and K) are achieved by truncating and rounding respectively. We restricted
the designs to have at most K = 10 stages. Additionally, rather than searching for each individual
nk, we search across the space for N and separately search over the proportion of N allocated to
each stage. Under this parametrization, the maximum sample size can naturally be changed without
affecting the efficacy boundaries, as the efficacy boundaries depend only on the relative sample sizes
nk/N for each k.

Penalized approaches such as (Wason and Jaki, 2012; Wason et al., 2012), or approaches based
on (3), will not necessarily guarantee that the resulting optimized design meets the power constraints
in Section 4.2, as there may be cases where a small penalty is outweighed by a larger reduction in
expected number enrolled. For the designs proposed by (Wason and Jaki, 2012; Wason et al., 2012),
these concerns also apply to Type I error control.

To address the above issue, we built in an extra step to correct for cases where, after the SA
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algorithm completes, the resulting design DSA fails to satisfy one or more of the power constraints.
This step involves starting with DSA, and increasing only the total sample size parameter N . A binary
search over N is conducted to find the smallest value such that the constraints in Section 4.2 are met.
During this search, all other elements of DSA are held constant. When implementing the SA procedure
in parallel, we apply this extra step after SA completes in each node. These supplemental searches
also reduce the danger of choosing the tuning parameter λ in (3) to be too small. Our specific use of
binary search is motivated by our empirical experience of EΛ{ñ(D)} being monotonically increasing in
N for a variety of tested scenarios, and by the fact that the power constraints can always be satisfied
by a sufficient increase to N as long as each α

(k)
j > 0.

In order to derive designs that are simpler to interpret and perform approximately optimally,
we propose a two-step procedure for discovering efficacy and futility boundaries. First, we optimize
as above, and refer to the resulting design as “unstructured”. Based on the resulting design, we
next construct a lower dimensional parametrization that has a simpler form, and solve the same
optimization problem in this restricted space. If the value of the objective function is very close to
that attained in the unrestricted case, we report the simpler “structured” solution along with the
“unstructured” one, as the former may be easier to communicate. We discuss our specific choice of
structured boundaries in Section 5.

4.5. Comparison Designs
We compare optimized adaptive designs against three types of simpler designs, denoted “non-optimized
single stage designs,” “optimized single stage designs,” and “non-optimized multistage designs.” The
term “optimized” means that design parameters are optimized using our SA approach (or by grid
search for the simplest designs). Single stage (i.e., K = 1) designs can be optimized in terms of

their multiple testing procedure design parameters, such as α
(1)
j and gij . We define non-optimized

single stage designs as trials with equal alpha allocation (i.e., each α
(1)
j = α/3) and reallocation (i.e.,

each gij = 1/2). We define optimized single stage designs as trials where the alpha allocations and
reallocations are computed either through a grid search (for H COV ) or through SA (for H MB).

We define non-optimized multistage designs as 5-stage trials with each nk equal to a common value,
equal alpha allocation and reallocation (i.e., each gij = 1/2) across hypotheses, futility boundaries
set equal to zero, and the initial alpha allocations across stages set according to the structured alpha
spending function in Section 3.2, with ρej set equal to either 1 or 3 for all j. These settings for ρej
result in boundaries similar to those of Pocock (1977) or O’Brien and Fleming (1979), respectively
(Jennison and Turnbull, 1999). We refer to these sets of boundaries as Pocock and O’Brien-Fleming
boundaries, respectively. For all comparison designs, the maximum sample size was selected to be the
smallest value that satisfied the power constraints in Section 4.2.

5. Results

5.1. Overview
We compare the performance of optimized adaptive designs versus the simpler designs as described
in Section 4.5. We find that optimized designs can offer substantial reductions in expected number
enrolled for trials where the delay time between enrollment and outcome measurement is relatively
small compared to the enrollment rate. The reason is that in such trials, enrollment has not yet been
exhausted before enough information has accrued to make a useful decision about changing enrollment
criteria. The MISTIE example illustrates such a case, while the ADNI example demonstrates the
opposite situation.

Single stage (non-adaptive) designs generally have a lower maximum number enrolled than group
sequential designs and adaptive enrichment designs, but at the cost of a higher expected number
enrolled due to their lack of ability to stop early. We illustrate this tradeoff in the MISTIE and ADNI
examples.
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5.2. MISTIE Example
Before presenting results for the MISTIE example, we list the inputs to the corresponding trial design
problem that are used to set the power constraints and objective function in Sections 4.2–4.3. The
enrollment rate and subpopulation proportions are given in Section 2.1. Recall the primary outcome,
measured at 180 days (d = 1/2 year), is the indicator of having mRS score 3 or less (called a
successful outcome). The probability of a successful outcome after 180 days was projected to be
0.290 under control, for each subpopulation. Investigators aimed to satisfy the power constraints
listed in Section 3 for δmin = 0.122. The variance of the outcome under control is assumed to be
σ2
c1 = σ2

c2 = 0.290(1 − 0.290), and the variance of the outcome under treatment is assumed to be
σ2
t2 = σ2

t1 = 0.412(1− 0.412).
The first row of Figure 1 shows the z-statistic boundaries and per-stage sample sizes for the

optimized adaptive designs using H COV and H MB , respectively. These boundaries are the result
of the unstructured search described in the last paragraph of Section 4.4. For H MB , the boundaries
shown are those before any alpha-reallocation has taken place (referred to as “initial”). Initial efficacy
boundaries for H COV and H MB are similar, each roughly resembling Pocock boundaries. Futility
boundaries are similar across hypothesis testing frameworks as well, with futility boundaries for H1

or H2 being highest at the midpoint of the trial, and futility boundaries for HC remaining low
throughout the trial. Within a given design, symmetry between the futility boundaries for H1 and
H2 is not necessarily to be expected, as π1 = 0.33, π2 = 0.67.

We implemented the 2-step procedure described in the last paragraph of Section 4.4. Step 1 was
the optimization over unstructured designs leading to the sample sizes and boundaries in the top
row of Figure 1. Based on these results, we proposed the following structured form for the futility

boundaries in step 2: set f
(k)
j = cj + lj ×

(∑k
k′=1 nk′/N

)ρfj

, where cj , lj , and ρfj are unrestricted

design parameters for j = 1, 2, C. This form encompasses boundaries similar to those of Pocock
(1977) and O’Brien and Fleming (1979), with additional shift parameters cj to capture the behavior
discovered in the first row of Figure 1. We also restrict to the structured efficacy boundaries described
in Section 3.2. We reapplied our SA procedure optimizing over this restricted set of parameters that
includes cj , lj , ρfj , wj , ρej (and K, nk, H MB or H MB , gij). Starting values for both steps of
this search are given in the supplemental materials. The resulting optimized designs are shown
in the bottom row of Figure 1. These structured designs have expected number enrolled within
approximately 1% of the unstructured optimized designs.

Figure 2 shows the distribution of the number enrolled in the MISTIE example for the optimized
structured multistage designs (i.e., those in the bottom row of Figure 1), and for the simpler com-
parison designs described in Section 4.5. The distributions for multistage designs are shown as violin
plots, and the fixed number enrolled for the optimized and non-optimized single stage designs are
shown as horizontal lines. All distributions are calculated based on the prior distribution for the
treatment effects in Section 4.2. Our optimized adaptive designs using H COV and H MB , respec-
tively, have an expected number enrolled of 1006 and 981, with maximum number enrolled 2002 and
1762. Non-optimized single stage designs enroll 1875, regardless of whether H COV or H MB is used.
Optimized single stage designs using H COV and H MB , respectively, have number enrolled 1447 and
1443. Non-optimized multistage designs with Pocock boundaries have expected number enrolled 1562
and 1531 for H COV and H MB , respectively; when using O’Brien-Fleming boundaries, the analogous
results are 1682 and 1652. In summary, the optimized adaptive designs have a substantially lower
expected number enrolled than all the simpler designs, but have higher maximum number enrolled
than the single stage designs. Specifically, the optimized adaptive design using H MB has 32% (462
participants) lower expected number enrolled but 22% (319 participants) greater maximum number
enrolled versus the the best competitor (the optimized single stage design) among those we considered.

We next examine the progress of the SA algorithm versus the number of search iterations. Figure
3 shows the objective function of the best design discovered so far across iterations of the parallel,
unstructured SA search algorithm, for the MISTIE example. For each optimization problem, the
search procedure was parallelized across 100 computing nodes. Each node was set to run for 5000
iterations or 72 hours, whichever occurred first. The curves in Figure 3 represent the trajectory
of the cumulative minimum objective function value found by each parallel node. Quartiles with
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Fig. 1. MISTIE Example: Efficacy and Futility Boundaries for Optimized Adaptive Designs. The efficacy boundaries
e
(k)
j and futility boundaries f

(k)
j for four different optimized adaptive designs (one in each panel) are shown. Bound-

aries for H1, H2, and HC are respectively shown as solid, dotted, and dashed lines. Efficacy boundaries (blue)
are marked by circles, and futility boundaries (red) are marked by triangles. Boundaries are on the z-scale, and the
horizontal axis represents the sample size at the time of the interim analysis (if there is no early stopping). Each
of the 2 columns of panels corresponds to a different hypothesis testing framework, with H COV on the left and
H MB on the right. The top and bottom rows of panels show boundaries for the designs resulting from optimizing
using the unstructured and structured methods, respectively, described in the last paragraph of Section 4.4. For
H MB , the boundaries shown represent those before alpha reallocation; the alpha reallocation rules are given in
the supplemental materials, along with the initial alpha allocations for all four designs.
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Fig. 2. MISTIE Example: Distributions of Number Enrolled for Different Designs. Violin plots depict the approximate
distributions for three types of multistage designs: our optimized adaptive designs with structured boundaries (optim),
non-optimized multistage design with O’Brien-Fleming boundaries (OBF), and non-optimized multistage design with
Pocock boundaries (Pocock). These violin shapes represent smoothed histograms of the distribution of simulated
number enrolled. The distributions are taken with respect to the prior for the treatment effects given in Section
4.3, with the mean number enrolled for each design marked “×”. Horizontal lines show the deterministic number
enrolled from two types of single stage designs: non-optimized (dotted lines) and optimized (solid lines). Each panel
corresponds to a different hypothesis testing framework, with H COV on the left and H MB on the right.

respect to the distribution of final objective function values are shown as horizontal lines. The figure
is approximate in that no binary search corrections have yet been made to guarantee that power
constraints are met. (See Section 4.4.) The most notable increases in performance occur in the early
stages of SA, after which the distribution of performance across nodes remains relatively constant.
This implies that a reduced number of search iterations might achieve similar performance if the
temperature parameter of the search was set to decrease more slowly.

The quartile lines in Figure 3 can be used to roughly approximate performance in cases where fewer
computing resources would be available. For instance, if only 5 parallel nodes had been available, the
probability of achieving a result below the first quartile would be approximately (1 − 0.755) = 76%.
This implies that there is a roughly 24% chance of getting a substantially larger expected sample size
if the search used only 5 nodes compared to 100 nodes. This suggests that at least some parallelization
is useful in the search. It is an area of future research to optimize the degree of parallelization in the
search procedure.

5.3. ADNI Example
We next consider the ADNI data example. Inputs to the trial design problem, described next, were
based on values observed in the ADNI data. The enrollment rate and subpopulation proportions
are given in Section 2.2. Recall the primary outcome is the change in CDR-SB score measured
at d = 2 years compared to baseline. The sample variance in the 2-year change in CDR-SB was
approximately 3.35 for subpopulation 1, and 3.61 for subpopulation 2. We set σ2

c1 = σ2
t1 = 3.35 and

σ2
c2 = σ2

t2 = 3.61. The sample average change in CDR-SB in the data for the combined population
was 1.41. The minimum, clinically important treatment effect was set at a 30% relative reduction in
this CDR-SB change, i.e., δmin = 1.41× 0.3 = 0.42.

We optimized designs analogously as for the MISTIE example. In contrast to that example, no
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Fig. 3. MISTIE Example: Objective Function Progress versus Number of Search Iterations. Each curve shows the
trajectory of the cumulative minimum value of the objective function discovered by a parallel computing node. Black
dots show the terminal of each node’s trajectory. For the approximately 2% of nodes that did not complete 5000
iterations of SA within 72 hours, these dots mark the last iteration completed. Horizontal lines show the 0.25, 0.5,
and 0.75 quantiles, respectively, for the distribution of final objective function values across the 100 parallel nodes.
Each panel corresponds to a different hypothesis testing framework, with H COV on the left and H MB on the right.

adaptive trial in our search in the ADNI example had lower expected number enrolled relative to
an optimized single stage design. As mentioned above, this can be largely attributed to the high
enrollment required before any outcomes are measured. In such a case, it still may be possible to
reduce the trial’s expected duration using an adaptive enrichment design; such reductions can result
from stopping the trial for efficacy or futility before all participants have their outcomes measured.

We next optimized multistage designs for the ADNI example using trial duration rather than
number enrolled in the objective function. Figure 4 shows performance comparisons for the ADNI
example analogous to Figure 2, but with the vertical axis showing trial duration rather than number
enrolled. Relative to an optimized single stage design, the optimized multistage designs reduced
expected duration by 5.4% for H COV , and 7.4% for H MB . However, this comes at the cost of a
higher maximum duration. Relative to an optimized 1-stage design, the optimized multi-stage designs
increase maximum duration from 5.07 to 5.84 years for H COV , and from 5.02 to 5.75 years for H MB .

5.4. Alternative Optimization Algorithms
We also compared the performance of SA against other optimization algorithms available in the optim

function in R. For each combination of testing procedure (H MB or H COV ), application (ADNI or
MISTIE) and boundary form (structured or unstructured), each optimization method was allowed
to run on 250 parallel nodes for either 4 hours or 2500 iterations, whichever occurred first. Rather
than searching for the optimal number of stages (K), we fixed K within a node at either 2, 3, 4, 5,
or 6. These values for K were evenly distributed such that each unique configuration was allotted
250/5 = 50 parallel nodes with different starting seeds. The minimum objective function value across
all 250 parallel nodes was recorded for comparison.

SA outperformed gradient methods such as BFGS, L-BFGS-B, and Conjugate Gradient by 3-6%
in the ADNI example for expected duration and 7-27% in the MISTIE example for expected number
enrolled. Nelder-Mead and SA performed much more similarly, with Nelder-Mead outperforming SA
by approximately 1% in the ADNI example, and SA outperforming Nelder-Mead by approximately
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Fig. 4. ADNI Example: Distribution of Trial Durations. Violin plots show the trial duration distributions for three types
of multistage designs: our optimized adaptive designs with structured boundaries (optim), non-optimized multi-
stage design with O’Brien-Fleming boundaries (OBF), and non-optimized multistage design with Pocock boundaries
(Pocock). The duration distributions are taken with respect to the prior for the treatment effects described in Section
4.2, with the mean duration for each design marked “×”. Horizontal lines show the deterministic durations from two
types of single stage designs: non-optimized (dotted lines) and optimized (solid lines). Each panel corresponds to a
different hypothesis testing framework, with H COV on the left and H MB on the right.

1% in the MISTIE example.

We also compared against a version of SA where the objective function for the current design
D is re-evaluated (using a new Monte Carlo sample) at each comparison to a new candidate design
D ′, as discussed in the conclusion of Branke et al. (2008). Such an approach doubles the number
of simulations, but decreases the probability that the algorithm becomes stuck at an inferior design
whose objective function value is initially underestimated due to Monte Carlo error. This altered SA
algorithm improved over gradient based methods, but was outperformed by both Nelder-Mead and
by standard SA.

6. Discussion

We showed empirical evidence that SA can produce multistage adaptive enrichment designs with
substantially lower expected number enrolled compared to optimized single stage designs, and to non-
optimized multistage designs that use approximate Pocock or O’Brien-Fleming boundaries. Relative
to single stage designs, optimized multistage designs come at the cost of increases in maximum number
enrolled. There is an analogous tradeoff between expected and maximum number enrolled comparing
standard group sequential designs versus single stage designs (Eales and Jennison, 1992). In the
MISTIE example, the most striking difference between optimized and non-optimized trials is the
futility boundaries, while the other parameters are roughly similar. We conjecture that this change
in futility boundary is an important driver of improved trial performance.

In both the MISTIE and ADNI examples, we compared covariance-based (H COV ) and alpha-
reallocation-based (H MB) multiple testing procedures, based on optimizing multistage designs using
each procedure. The resulting designs were similar in both their design parameters and their perfor-
mance.

The optimized designs in this paper are the best designs found by the SA algorithm we used.

14

http://biostats.bepress.com/jhubiostat/paper279



These could be local optima. It is an open problem to determine how close these are to global optima
for the problems we addressed. This is because no current method exists to find the global optimum in
these problems due to the relatively large number of design parameters being simultaneously searched
over.

One exciting area of future work is to modify the search algorithm to actively account for the
Monte Carlo simulation error in each objective function evaluation. Some optimization methods
leverage noise present in the objective function, or add noise to the objective function (Kushner,
1987; Maryak and Chin, 2001), in order to increase the probability of reaching a global minimum. In
the specific context of SA, (Fink, 1998; Branke et al., 2008) argue that noise in the objective function
is analogous to having a higher temperature parameter.
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