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Abstract (250 words)  

Background: In biomarker discovery studies, markers are ranked for validation using P-values. 
Standard P-value calculations use normal approximations that may not be valid for small P-
values and small sample sizes common in discovery research. 

Methods: We compared exact P-values, valid by definition, with normal and logit-normal 
approximations in a simulated study of 40 cases and 160 controls. The key measure of 
biomarker performance was sensitivity at 90% specificity. Data for 3000 uninformative markers 
and 30 true markers were generated randomly, with 10 replications of the simulation. We also 
analyzed real data on 2371 antibody array markers measured in plasma from 121 cases with 
ER/PR positive breast cancer and 121 controls.  

Results: Using the same discovery criterion, the valid exact P-values lead to discovery of 24 
true and 82 false biomarkers while approximate P-values yielded 15 true and 15 false 
biomarkers (normal approximation) and 20 true and 86 false biomarkers (logit-normal 
approximation). Moreover, the estimated numbers of true markers among those discovered 
were substantially incorrect for approximate P-values: normal estimated 0 true markers 
discovered but found 15; logit-normal estimated 42 but found 20. The exact method estimated 
22, close to the actual number of 24 true discoveries. With real data, exact and approximate P-
values ranked candidate breast cancer biomarkers very differently. 

Conclusions: Exact P-values should be used because they are universally valid.  Approximate 
P-values can lead to inappropriate biomarker selection rules and incorrect conclusions. 

Impact: Rigorous data analysis methodology in discovery research may improve the yield of 
biomarkers that validate clinically. 
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Introduction  

Biomarker discovery research has yielded few clinically useful biomarkers. Poor methodologies 
in the statistical design and evaluation of discovery studies may be contributing factors (1).  
Guidelines for statistical design of discovery studies have recently been discussed, including 
sources and numbers of biological samples (2). In this article we address a common and 
underappreciated issue in the evaluation of biomarker discovery studies. 

The classic discovery study entails measuring many biomarkers, perhaps using array-based or 
other such high-throughput technology, on a set of biological samples from cases and controls. 
For each biomarker, one calculates a statistic and its P-value using the case and control data 
pertaining to that biomarker. The biomarkers are then ranked according to the P-values and top 
ranking candidates are considered for further development and validation. Thus statistical P-
values play a fundamental role in the evaluation of biomarker discovery studies. 

As an example, consider the “Colocare” study to discover and validate markers to predict colon 
cancer recurrence in patients diagnosed with stage 1 colon cancer (3).  Tissue and blood 
samples taken at diagnosis from 40 cases with colon cancer recurrence and 160 controls 
without recurrence will be tested with approximately 3000 autoantibodies.  As described in (2), 
the data analytic plan is to calculate the sensitivity corresponding to 90% specificity for each 
biomarker and to generate a corresponding standard P-value for no association between 
biomarker and case-control status. We simulated data for 3000 useless biomarkers not 
associated with case-control status and found that 69 (2.3%) had P-values less than 0.01 (see 
third row of Table 1 in (2)). Since one would expect that approximately 30 markers (i.e. 1% of 
markers) would attain P-values less than 0.01 if all 3000 biomarkers were useless, the data 
analysis suggests a positive result: it appears that 69-30 = 39 true biomarkers have been 
discovered. However this conclusion is incorrect since we generated the data in such a way that 
none of the 3000 markers are predictive of case-control status. The issue here is that standard 
P-value calculations that rely on asymptotic statistical theory are problematic and lead to an 
incorrect conclusion in this example. 

In this paper we demonstrate this phenomenon in more detail and propose an alternative 
method for calculating P-values that is generally valid and robust to the vagaries of biomarker 
discovery data. This exact P-value approach is applicable regardless of the statistic used to 
rank biomarkers and it is computationally reasonable with modern computing capacities. Most 
importantly, we show that it leads to more reliable conclusions from biomarker discovery data 
than do standard methods.  
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Materials and Methods  

Our study was designed to investigate if standard P-value calculations are potentially invalid in 
practice and if invalid P-value calculations can substantially affect the validity of conclusions 
drawn from biomarker discovery studies. To address these questions we simulated biomarker 
discovery data where the capacities of biomarkers to predict outcome were specified, allowing 
us to compare conclusions based on data analysis with the truth. The Colocare study provided a 
context to motivate the simulations.    

The purpose of Colocare is to find biomarkers predicting high risk of colon cancer recurrence in 
stage 1 patients treated with surgery. For each of 40 cases with recurrence and 160 controls 
without recurrence we simulated data corresponding to 3000 uninformative biomarkers that 
were uncorrelated with case-control status and for 30 informative biomarkers that were 
correlated with case-control status. We use the terminology “true biomarkers” for the 30 
informative biomarkers. Each biomarker was generated as standard normal, mean=0 and 
standard deviation=1, for the 160 controls. The uninformative biomarker data was generated for 
the 40 cases in the same way as for controls. For the 30 true biomarkers we generated case 
biomarker data as normal with mean 0.536 and standard deviation 1. The mean was chosen so 
that true biomarkers would satisfy a performance criterion described below. 

The key biomarker performance measure of interest in the Colocare study is the recurrence rate 
among biomarker positive patients. The biomarker positivity threshold is chosen as the 90th 
percentile of the control values (i.e. the 16th largest of the 160 control values) so as to guarantee 
the marker has 90% specificity. The recurrence rate among biomarker positive patients in the 
population (positive predictive value, PPV) will be estimated by Bayes formula as 

logit (PPV) = logit (p) + log (sensitivity) – log (1-specificity) (1) 

where the logit function is logit(x)=log(x/(1-x)), p=10%=the overall recurrence rate in stage 1 
patients (ie. prevalence), the specificity is set to 90% and sensitivity is the observed proportion 
of cases that are biomarker positive. The sensitivity is also known as the empirical estimate of 
ROC(0.1). Testing if a biomarker is uninformative is to test if biomarker-positive individuals have 
the same prevalence of the outcome as observed in the entire study population, i.e. H0: PPV 
=10% . Given the above formula this is equivalent to testing H0: ROC(0.1)=0.1 (ie. sensitivity=1-
specificity, where specificity=0.90), so P-values will be based on testing the null hypothesis 

H0: ROC(0.1)=0.1 

using the empirical ROC estimate, for which standard methods are available(4). Let obs-ROCemp 
be the value of the empirical ROC estimate, denoted by ROCemp, calculated with data on a 
biomarker from our study. The associated one-sided P-value is the probability that in repetitions 
of our study one would observe ROCemp values as large as the one we found assuming that 
biomarker values for cases in the population have the same distribution as biomarker values for 
controls in the population. 

P-value = Probability(ROCemp >= obs-ROCemp | cases same as controls). 
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Standard P-value calculations use the approximation that ROCemp is normally distributed in large 
samples 

standard normal P-value = 1- Φ(Z)  

where Z = (obs-ROCemp – 0.1) /se(ROCemp)), Φ is the standard normal cumulative distribution 
function and the standard error, se(ROCemp), is estimated by bootstrap resampling (4). We used 
500 bootstrap samples, separately resampling 40 cases and 160 controls per the study design. 
Other methods for calculating the standard error are also possible but are more involved 
because they require estimating probability densities (5, 6). An alternative P-value calculation 
acknowledges that the sensitivity, ROCemp(0.1),  can’t really be normally distributed since the 
normal distribution is unrestricted in negative and positive directions while proportions such as 
ROCemp(0.1) are restricted between 0 and 1. Proportions are often more like normal variables 
after applying the logit transform. This gives rise to the P-value calculation 

standard logit-normal P-value = 1- Φ(logit-Z) 

where logit-Z = (logit(obs-ROCemp) – logit(0.1)) /se(logit(ROCemp)) and se(logit(ROCemp)) is 
estimated by bootstrapping as above. 

Our proposal is to calculate the P-value exactly without approximation. This is in fact an old 
concept for rank statistics such as the Wilcoxon rank sum statistic where published tables have 
long been available for use with data from studies involving very small sample sizes (7). Modern 
computing power now makes the approach feasible for studies with larger sample sizes and for 
any statistic. The idea is to enumerate all the possible values of the statistic for the setting 
where cases have biomarker values with the same distribution as controls. For example, in the 
Colocare study we will have a total of 200 subjects and suppose the cases are labelled as 
subjects 1-40. If cases have biomarker values with the same population distribution as controls, 
the study data will be comprised of a random enumeration of ranks for 200 individuals. We 
calculate the corresponding ROCemp statistic for a large number of random enumerations (or all 
200! possible enumerations) and tabulate the results. Because there are 40 cases, there are at 
most 40 possible values for ROCemp, so it is easy to tabulate the distribution of ROCemp (Table 1) 
and report the exact P-value corresponding to an observed value of ROCemp 

exact P-value = proportion of enumerations with ROCemp >= obs-ROCemp. 

For example if the empirical ROC estimate calculated for a biomarker is 0.20, the corresponding 
exact P-value is 0.059175 (Table 1). We selected to use 40,000 enumerations at random with 
replacement since this required far fewer than all 200! enumerations and yet provided 
reasonably precise P-value calculations. In particular the standard errors of the P-value 
estimates are 0.001, 0.00063 and 0.00045 when the P-values are 0.05, 0.02 and 0.01, 
respectively.  

To demonstrate that the method used to calculate P-values in real data analysis can have a 
substantial effect on conclusions drawn, we reanalyzed data from an ER/PR positive breast 
cancer biomarker discovery study reported in (8). The study sought to discover early detection 
biomarkers that might be used to encourage women who do not have easy access to 
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mammography to go for mammography screening. Markers that maximize sensitivity while 
maintaining at least 90% specificity are preferred for this clinical context. As described in detail 
in (8), preclinical plasma samples from 121 cases and 121 controls from the WHI observational 
study were interrogated with an array of 3290 antibodies. There were 2467 biomarkers reported 
in (8) after removing technical controls and imposing quality control filters based on coefficient 
of variation across triplicate spots and a criterion for percent of observations missing data. We 
only included the subset of 2371 biomarkers where at least 100 controls and at least 100 cases 
have data. As noted above, and similar to the Colocare study, we focused on the sensitivity 
corresponding to 90% specificity as the biomarker performance measure of interest. Our 
analysis approach differed in many respects from that previously reported in (8) because our 
goals were different and more limited. For example, since we just wanted to investigate if 
different P-value calculations provided different rankings and selections of biomarkers, we did 
not need to split the data into training and test sets as was done in (8).  

Results  

Reference Distribution for Calculating Exact P-values 

Table 1 shows the reference distribution for ROCemp based on 40 cases and 160 controls when 
a biomarker is not informative about case-control status (a false biomarker). This table will be 
used to calculate exact P-values when biomarker data are available from the Colocare study. 
Possible values for the ROCemp are 0/40,  1/40, 2/40, 3/40, etc. because there are 40 cases and 
the estimated ROC is the fraction of those 40 cases whose biomarker values exceed the 90th 
percentile of control values (i.e. exceed the 16th largest control value). We see that among the 
40,000 simulated studies of uninformative markers, in only 1 study did the estimated ROC reach 
a value of 0.40. Therefore the exact P-value corresponding to an ROC of 0.40 is 1/40,000 = 
0.000025. Correspondingly, in 5 simulations the estimated ROC reached a value of 0.375 or 
more, so the P-value corresponding to 0.375 is 5/40,000 = 0.000125. Even though it is 
theoretically possible to observe an estimated ROC greater than 0.40 for a false (uninformative) 
biomarker, we see that the probability of that occurring is essentially zero. 

Normal P-values can be Incorrect 

Table 2 and Figure 1 demonstrate that P-values calculated with the standard normal 
approximation methods can be substantially different from the correct exact P-values. The data 
were simulated for a biomarker discovery study that included 30 true biomarkers and 3000 false 
biomarkers with all 3030 biomarkers evaluated on 40 case and 160 control samples. Figure 1 
shows P-values calculated with the two standard normal approximation methods versus the P-
value calculated with the exact method. Data are displayed for the 106 biomarkers where the 
exact P-value was less than 0.05. Values above the line are larger than the exact P-value. We 
see that P-values based on the normal approximation without logit transformation are generally 
larger than the exact P-value, sometimes very substantially so. For example there are 3 
biomarkers for which the exact P-values were 0.0119 while the normal P-values were 0.103, 
0.124 and 0.136. P-values based on the normal approximation to the logit transformed statistic, 
while closer to the exact P-values, have a tendency towards being smaller than the exact 
values. The magnitudes of the differences are easier to see in Table 2 where the actual values 
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are listed for the 30 true markers in the study. Although P-values are often of similar magnitudes 
that would lead to the same decisions about efforts to validate or not, there are multiple 
instances where the differences could lead to different decisions with use of logit-normal versus 
exact P-values (see highlighted biomarkers 3, 14 and 27).  

Impact of Invalid P-Values in the Simulated Colocare Study 

Differences in P-value calculations had a substantial effect on the numbers of biomarkers 
discovered in the simulated study. The top panel of Table 3 shows the numbers of biomarkers 
that passed the discovery criterion: P-value <=0.0277. We chose this odd threshold since 
among the finite set of attainable P-values that are possible (Table 1) it is closest to 0.02. If we 
had chosen say the threshold 0.02, the actual threshold for the exact P-value would have been 
0.0121 and the comparison between P-value methods would have been flawed. Observe from 
Table 3 that use of different P-value algorithms leads to substantially different numbers of 
markers discovered: 106 for exact, 30 for normal and 126 for logit-normal. Use of the exact P-
value led to discovery of 24 true biomarkers and 82 false biomarkers. Consistent with the overly 
conservative property of the normal P-values, fewer true and false biomarkers were discovered 
by applying the same criterion to the standard normal P-values, while the anti-conservative logit 
normal P-values led to 20 true discoveries and 106 false discoveries.  

We next examined if the incorrect normal P-value calculations impacted the validity of 
conclusions drawn from the discovery study. Discovery data analyses typically report estimates 
of the numbers of true and false biomarkers among those that meet the selection criterion. A 
simple way to estimate these numbers is as follows:  assuming that the vast majority of 3030 
markers are false (i.e. uninformative), one estimates that there are 3030 × 0.0277 = 84 false 
discoveries among the markers discovered. Comparing this number with the actual numbers of 
false discoveries in Table 3, we see that the estimate is very close for P-exact (84 versus 82), 
but a substantial under estimate (84 versus 106) for the logit-normal P-value and a substantial 
over estimate (84 versus 15) for the normal P-value. The number of markers estimated to be 
true discoveries is calculated as the number of discoveries less the estimated false discoveries. 
With logit normal we estimate that 126–84 = 42 (33%) of the 126 discoveries are true 
discoveries. However, only 20 (16%) of the discoveries are true. Therefore, with logit-normal P-
values we believe we are doing much better than we actually are.  For the untransformed 
normal P-value, we estimate that none (0%) of the discovered biomarkers are true while in fact 
15 (50%) are true discoveries. We are led to believe we are doing worse than we actually are. In 
contrast, the exact P-value method discovers 24 true biomarkers (23% of total discoveries) and 
this is in line with the estimated number of true discoveries, namely 106–84 = 22 (21%). In 
summary, estimates of numbers of true and false discoveries made are much closer to the 
actual numbers of true and false discoveries when the exact P-values are used. In this sense, 
conclusions drawn from the study are more valid for the exact P-value method than for the 
normal approximation P-values.  

Results with use of a more stringent P-value threshold criterion, namely 0.0121, shown in the 
lower panel of Table 3 are similar. We repeated the simulation study 10 times to determine if the 
observations made from the study shown in Table 3 were found in general. We see from Table 
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S.1 in the Supplementary materials that there is a consistent tendency for the normal 
approximation P-values to provide poor estimates of the numbers of true and false discoveries 
made and that the exact P-value method leads to more reliable conclusions. 

When the numbers of cases and controls available are small, investigators often resort to use of 
more global measures of biomarker performance such as AUC, although pitfalls of using such 
clinically irrelevant  measures are well documented(9, 10). Table 4 investigates performance of 
exact, normal and logit-normal P-values for the AUC statistic when 20 cases and 20 controls are 
included in the discovery study. Here normal P-values tend to be too small and logit-normal P-
values tend to be too large. Interestingly, this is opposite to results for ROCemp. Most 
importantly, we see again that estimates of true and false discoveries are much closer to the 
actual numbers of true and false discoveries when using exact rather than normal 
approximation P-values. 

Application to Real Data for Receptor Positive Breast Cancer Biomarker Candidates 

ROC statistics and P-values were calculated with antibody array data from the ER-PR positive 
Women’s Health Initiative breast cancer study (8). Of the two normal approximation P-value 
methods, for brevity we focus on one here, the logit-normal method. The top panel of Table 5 
shows the top 40 candidates ranked according to exact P-value and the bottom panel shows the 
top 40 candidates ranked according to logit-normal P-value. One gets very different impressions 
of the results depending on which P-value method is used. For exact P-value, the number of 
true biomarkers in the top 40 is estimated to be 15.7 and the estimated false discovery rate is 
63%. In contrast, the logit-normal P-value method estimates 33.8 true markers in the top 40 and 
a false discovery rate of only 15%. Given the previous simulation results, we believe that the 
estimates based on the exact P-values are more reliable. Note that we estimated the false 
discovery rate here using the Benjamini-Hochberg method (13) implemented with the qqvalue 
command and Simes option in the Stata software package (14, 15). The simple intuitive 
calculation method noted in previous tables gave very similar results (data not shown) but that 
method does not restrict the FDR to increase with increasing P-value as does the Benjamini-
Hochberg method. 

Another interesting observation in Table 5 is that the ROC values align pretty well with the P-
values when using the exact method, i.e. the highest ROC estimates are at the top of the list 
corresponding to the smallest P-values (see also Figure S.1 in the Supplementary Materials) . In 
contrast, the logit-normal P-value method does not align ROC estimates with P-values very well. 
For example, the highest ROC estimate, 0.339, is way down the list at rank 38 according to the 
logit normal P-value, just above a biomarker with estimated ROC = 0.198.  

Considering the biomarker selection criterion ‘p<0.05’ for which 0.05 X 2371 = 118.5 false 
biomarkers are expected to be identified, the estimated numbers of true biomarkers selected is 
11.5 based on exact P-values (130 markers selected in total) and 75.5 with logit-normal P-
values (194 markers selected in total). These are very different estimates. The biomarker 
selection criterion p<0.02, for which 47.4 false biomarkers are expected to be identified, yields 
estimated numbers of true biomarkers selected of 11.6 with exact P-values (59 markers 
selected in total) and 73.6 with logit-normal P-values (121 in total).  Again, given the simulation 
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results above, we have more trust in the estimated numbers of true and false biomarkers based 
on exact P-values than in those based on logit-normal P-values.   
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Discussion  

Exact P-value calculations are the most valid approach possible to calculating P-values 
because they exactly calculate (according to the definition of P-value) the probability of 
observing a statistic as extreme as that observed in the study when case biomarker values are 
derived from the same distribution as controls. Approximation P-values are typically used in 
practice. Our results show that approximations can be substantially off and can lead to less 
reliable conclusions drawn from discovery data compared with exact calculations. 

Our analyses used nonparametric rank statistics, in particular the sensitivity at fixed 90% 
specificity (a simple function of the positive predictive value when prevalence is fixed as shown 
in equation (1)) and the area under the ROC curve (a simple function of the Wilcoxon rank-sum 
statistic). The issues concerning exact versus approximate P-values also apply to parametric 
statistics, including the t-test for example. However, the null hypothesis reference distribution for 
the t-test that is needed to calculate exact P-values requires estimating the control distribution 
and repeatedly generating random case and control simulated study data from it. This can be a 
complicated exercise particularly in the context of discovery research where automated 
procedures are needed to deal with data on large numbers of biomarkers. We cannot assess 
parametric assumptions for each biomarker. Moreover, outliers and non-standard distributions 
are common in discovery research. Therefore, rank based nonparametric statistics are 
preferred, and those were the focus of our study.  

We found two additional advantages derived from use of exact P-values. The first is that 
biomarker performance measures align well with exact P-values in the sense that markers with 
the best estimated performances have the smallest P-values. This inverse relationship holds by 
definition when the same numbers of case and control data points are available for each 
biomarker. In addition we found the inverse relationship was mostly true in the analysis of the 
breast cancer data set where data were sporadically missing. However, the analysis that used 
approximate normal P-values led to some major inconsistencies between estimated 
performance and P-value. A second and unexpected advantage to use of exact P-values 
concerns computational effort. When there is no missing biomarker data, the number of case 
and control data points is the same for each biomarker, and only one reference distribution must 
be calculated for the entire analysis. For example, exact P-values were calculated for each of 
the 3030 biomarkers in our simulated study using only Table 1. The computation involved to 
calculate exact P-values is therefore very fast once the reference table is created. In contrast, 
the normal approximation P-values required calculation of standard errors for each biomarker 
separately, a process that was time consuming with use of bootstrap resampling. 

We considered two different types of statistical criteria for selecting biomarkers. One approach 
demonstrated in Tables 3 and 4 was of the form “P-value < threshold”. Another approach 
demonstrated in Table 5 was to select the “top K markers” where K was set to 40 in Table 5, 
similar to the number of biomarkers selected in previous analyses of the same data (8). Yet 
another criterion is to select markers for which the false discovery rate among markers ranked 
at or above is below a specified threshold (13). One can see from the breast cancer results in 
Table 5 that the different P-value calculations would lead to very different biomarker selections 
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based on a false discovery rate criterion. For example “false discovery rate<10%” would lead to 
two markers selected with exact P-values but 30 markers selected with the logit-normal P-
values. Since false discovery rates are functions of P-values, it is important to use valid P-value 
calculations when calculating false discovery rates. 

We recommend use of exact P-value calculations in the analysis of biomarker discovery data 
because they are always valid regardless of sample sizes and biomarker distributions. We 
showed that exact P-values can provide more reliable conclusions than standard approximate 
P-values. Specifically, they provide better estimates of true and false discovery rates, key 
parameters reported in discovery research. Robust valid calculation of P-values is crucial in 
discovery research where interest is often focused on small P-values, sample sizes are often 
small and the numbers of biomarkers tested often preclude evaluating data for distributional 
assumptions. Nevertheless, it may also be prudent to use exact rather than approximate 
calculations in biomarker validation research.  
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Table 1: Reference distribution for the sensitivity corresponding to 90% specificity estimated 
with the empirical ROC when calculated with data for 40 cases and 160 controlsa. The reference 
distribution is used to determine exact P-values and was generated by 40,000 randomly chosen 
enumerationsb of ranks for 200 subjects with the first 40 labelled as cases.  

 

r 
Probability that the 

estimated sensitivity ≥ r
0.000 1.000000 
0.025 0.976575 
0.050 0.892075 
0.075 0.739125 
0.100 0.549825 
0.125 0.367025 
0.150 0.218200 
0.175 0.119050 
0.200 0.059175 
0.225 0.027675 
0.250 0.012025 
0.275 0.004850 
0.300 0.001750 
0.325 0.000550 
0.350 0.000225 
0.375 0.000125 
0.400 0.000025 

 

a Smallest increment for realized values of the estimated sensitivity is 0.025 = 1/40 where 40 is the 
number of cases. 

b Smallest increment for probability is 0.000025 = 1/40000 where 40000 is the number of random rank 
enumerations. 
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Table 2: P-values calculated for the 30 true biomarkers in the simulated biomarker study of 40 
cases and 160 controls. Calculations use standard normal approximations to the distributions of 
the estimated sensitivity at 90% specificity with or without logit transformation or use exact 
methods. For at least 3 markers, P-values are substantially different. 

Biomarker Exact P-value Normal P-value
Logit-Normal 

P-value
1 0.001750 0.0065580 0.0002190 
2 0.012025 0.0161432 0.0016413 
3 0.059175 0.1601699 0.0986310 
4 0.004850 0.0183031 0.0017292 
5 0.000550 0.0029499 0.0000414 
6 0.000225 0.0060935 0.0001591 
7 0.027675 0.0607897 0.0190249 
8 0.000550 0.0263751 0.0028095 
9 0.027675 0.0691393 0.0235189 

10 0.059175 0.1051453 0.0520333 
11 0.000025 0.0010564 0.0000594 
12 0.012025 0.0376968 0.0073081 
13 0.027675 0.0917640 0.0373784 
14 0.012025 0.1239775 0.0563044 
15 0.027675 0.0853067 0.0331860 
16 0.218200 0.2179403 0.1790015 
17 0.000125 0.0111021 0.0005066 
18 0.000550 0.0056560 0.0001466 
19 0.119050 0.1620405 0.1098244 
20 0.004850 0.0466308 0.0094405 
21 0.218200 0.2377149 0.1999186 
22 0.001750 0.0116205 0.0006482 
23 0.000550 0.0022444 0.0000243 
24 0.004850 0.0147829 0.0011685 
25 0.367025 0.3739152 0.3618602 
26 0.027675 0.0529427 0.0151371 
27 0.027675 0.1341217 0.0689888 
28 0.004850 0.0098089 0.0005487 
29 0.004850 0.0164825 0.0014270 
30 0.001750 0.0158648 0.0011660 
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Table 3: Markers discovered in the simulated study by the selection criterion: biomarker P-value 
< threshold from a dataset with 3,000 uninformative (false) biomarkers and 30 true biomarkers 
when P-values are based on exact calculation or on normal approximation with or without logit 
transformation. The test statistic is the sensitivity at 90% specificity estimated with the empirical 
ROCa. Number of study subjects: 40 cases and 160 controls. 

  Number of Markers 

Threshold for Sensitivity P-value 
Exact  

P-value 
Normal  
P-value 

Logit-Normal
P-value 

0.0277 Total Discoveries 106 30 126 
 False Discoveries    
 estimatedb 84 84 84 
 actual 82 15 106 
 True Discoveries    
 estimatedd (tdrc) 22 (21%) 0 (0%) 42 (33%) 
 actual(tdr) 24 (23%) 15 (50%) 20(16%) 

     
0.0121 Total Discoveries 47 14 75 

 False Discoveries    
 estimated 37 37 37 
 actual 29 5 58 
 True Discoveries    
 estimated(tdr) 10 (21%) 0 (0%) 38 (51%) 
 actual(tdr) 18 (38%) 9 (64%) 17 (23%) 

 
a equivalent to hypothesis testing with the positive predictive value 
b estimated false discoveries = threshold-p × number of biomarkers 
c tdr:  True discovery rate = number of true discoveries/ number of discoveries 
d estimated true discoveries = total discoveries – estimated false discoveries 
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Table 4: Markers discovered by the selection criterion: biomarker P-value < threshold from a 
dataset with 3,000 uninformative (false) biomarkers and 30 true biomarkers when P-values are 
based on exact calculation or on normal approximation with or without logit transformation. The 
test statistic is the empirical area under the ROC curve (AUC). True biomarkers have AUC = 
0.758 (PPV = 0.30) while false (uninformative) biomarkers have AUC=0.50 (PPV = 0.10). 
Number of study subjects: 20 cases and 20 controls 

 

  Number of Markers 

Threshold for AUC P-value 
Exact 

P-value 
Normal 

P-value1,2  
Logit-Normal 

P-value1,2  
0.0216 Total Discoveries 94 108 82 

 False Discoveries    
 estimated3 65 65 65 
 actual 68 80 56 
 True Discoveries    
 estimated  29 43 17 
 actual 26 28 26 

     
0.01016 Total Discoveries 59 76 47 
 False Discoveries    
 estimated4 31 31 31 
 actual 37 51 26 
 True Discoveries    
 estimated 28 45 16 
 actual 22 25 21 

 

 

1 standard error calculated using 500 bootstrapped samples of the data 

2 similar results found with standard errors calculated using a large sample theory expression (11, 12)  

3 estimated false discoveries = 3030 × 0.0216 = 65.45 

4 estimated false discoveries = 3030 × 0.01016 = 30.78 
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Table 5. Candidate biomarkers for ER positive PR positive ductal breast cancer measured on preclinical 
plasma samples from 121 cases and 121 controls in the WHI observation study. The top 40 biomarkers 
ranked according to P-values for sensitivity at 90% specificity are shown. Rankings are with respect to 
exact P-values (top panel) and logit-normal P-values (bottom panel). 

Rank by 
exact  
P-value Marker 

Estimated 
Sensitivity P-value 

False 
Leads 

Expected 

Estimated 
True 

Markers 

Estimateda 
False 

Discovery 
Rate 

1 v2621 0.305 0.000050 0.12 0.88 8.9% 
2 v689 0.339 0.000075 0.18 1.82 8.9% 
3 v1830 0.281 0.000150 0.36 2.64 11.9% 
4 V1619 0.287 0.000250 0.59 3.41 14.8% 
5 V2261 0.264 0.000325 0.77 4.23 15.4% 
6 V1954 0.261 0.000825 1.96 4.04 29.6% 
7 V2407 0.248 0.000875 2.07 4.93 29.6% 
8 V1873 0.259 0.001050 2.49 5.51 30.3% 
9 V2542 0.264 0.001150 2.73 6.27 30.3% 
10 V1851 0.246 0.001300 3.08 6.92 30.8% 
11 V2512 0.248 0.001875 4.45 6.55 40.4% 
12 V2193 0.237 0.002225 5.28 6.72 40.4% 
13 V2706 0.244 0.002250 5.33 7.67 40.4% 
14 V2765 0.242 0.002475 5.87 8.13 40.4% 
15 V2622 0.244 0.002650 6.23 8.72 40.4% 
16 V1693 0.239 0.002725 6.46 9.54 40.4% 
17 V1969 0.239 0.003550 8.41 8.58 47.4% 
18 V1745 0.239 0.003600 8.54 9.46 47.4% 
19 V2424 0.225 0.003925 9.31 9.69 48.6% 
20 V2123 0.235 0.004100 9.72 10.28 48.6% 
21 V2302 0.236 0.004700 11.14 9.86 50.3% 
22 V2321 0.233 0.004850 11.50 10.50 50.3% 
23 V2548 0.233 0.005225 12.39 10.61 50.3% 
24 V845 0.223 0.005500 13.04 10.96 50.3% 
25 V1518 0.235 0.005700 13.51 11.49 50.3% 
26 V2322 0.215 0.005725 13.57 13.43 50.3% 
27 V2718 0.215 0.005725 13.57 12.43 50.3% 
28 V2327 0.215 0.006450 15.29 12.71 51.9% 
29 V2848 0.224 0.006550 15.53 13.47 51.9% 
30 V2090 0.223 0.006875 16.30 14.70 51.9% 
31 V2416 0.231 0.006875 16.30 13.70 51.9% 
32 V2500 0.219 0.007000 16.60 15.40 51.9% 
33 V2309 0.227 0.008400 19.92 13.08 59.8% 
34 V2820 0.217 0.008700 20.63 13.37 59.8% 
35 V2140 0.208 0.009075 21.52 14.48 59.8% 
36 V2892 0.208 0.009075 21.52 13.48 59.8% 
37 V2396 0.220 0.009325 22.11 14.89 59.8% 
38 V2305 0.214 0.010700 25.37 12.63 62.5% 
39 V1669 0.217 0.010800 25.61 13.39 62.5% 
40 V1649 0.215 0.011075 26.26 15.74 62.5% 
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Table 5, continued 

Rank by 
logit 
normal 
P-value  Marker 

Estimated 
Sensitivity P-value 

False 
Leads 

Expected 

Estimated 
True 

Markers 

Estimateda 
False 

Discovery 
Rate 

1 v1619 0.287 <.000001 <0.01 1.00 <0.1% 
2 v1830 0.281 <.000001 <0.01 2.00 <0.1% 
3 v1518 0.235 0.000009 0.02 2.98 0.7% 
4 v2512 0.248 0.000045 0.11 3.89 2.7% 
5 V2416 0.231 0.000087 0.21 4.79 4.1% 
6 V2765 0.242 0.000104 0.25 5.75 4.1% 
7 V2309 0.227 0.000195 0.46 6.54 6.4% 
8 V2622 0.244 0.000255 0.60 7.40 6.4% 
9 V1873 0.259 0.000263 0.62 8.38 6.4% 
10 V2090 0.223 0.000285 0.68 9.32 6.4% 
11 V1704 0.208 0.000298 0.71 10.29 6.4% 
12 V1954 0.261 0.000324 0.77 11.23 6.4% 
13 V2621 0.305 0.000454 1.08 11.92 7.6% 
14 V2123 0.235 0.000496 1.18 12.82 7.6% 
15 V2407 0.248 0.000505 1.20 13.80 7.6% 
16 V1914 0.214 0.000529 1.25 14.75 7.6% 
17 V2436 0.202 0.000543 1.29 15.71 7.6% 
18 V2302 0.236 0.000617 1.46 16.54 7.8% 
19 V1847 0.203 0.000643 1.52 17.48 7.8% 
20 V1648 0.215 0.000686 1.63 18.37 7.8% 
21 V1669 0.217 0.000701 1.66 19.34 7.8% 
22 V2321 0.233 0.000725 1.72 20.28 7.8% 
23 V2548 0.233 0.000756 1.79 21.21 7.8% 
24 V1740 0.198 0.000851 2.02 21.98 8.4% 
25 V2828 0.200 0.000899 2.13 22.87 8.5% 
26 V2706 0.244 0.000994 2.36 23.64 8.6% 
27 V2193 0.237 0.000996 2.36 24.64 8.6% 
28 V2426 0.202 0.001012 2.40 25.60 8.6% 
29 V291 0.198 0.001066 2.53 26.47 8.7% 
30 V2892 0.208 0.001176 2.79 27.21 9.3% 
31 V1969 0.239 0.001363 3.23 27.77 10.2% 
32 V1851 0.246 0.001373 3.25 28.75 10.2% 
33 V2417 0.198 0.001592 3.77 29.22 11.4% 
34 V826 0.209 0.001655 3.92 30.08 11.5% 
35 V2322 0.215 0.001777 4.21 30.79 12.0% 
36 V2908 0.220 0.001991 4.72 31.28 12.9% 
37 V2542 0.264 0.002021 4.79 32.21 12.9% 
38 V689 0.339 0.002248 5.33 32.67 14.0% 
39 V2814 0.198 0.002405 5.70 33.30 14.6% 
40 V720 0.198 0.002612 6.19 33.81 14.9% 

 

 

aBenjamini-Hochberg estimates (13)  
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Legends for Tables and Figures 

Table 1: Reference distribution for the sensitivity corresponding to 90% specificity estimated 
with the empirical ROC when calculated with data for 40 cases and 160 controlsa. The reference 
distribution is used to determine exact P-values and was generated by 40,000 randomly chosen 
enumerationsb of ranks for 200 subjects with the first 40 labelled as cases.  

Table 2: P-values calculated for the 30 true biomarkers in the simulated biomarker study of 40 
cases and 160 controls. Calculations use standard normal approximations to the distributions of 
the estimated sensitivity at 90% specificity with or without logit transformation or use exact 
methods. For at least 3 markers, P-values are substantially different. 

Table 3: Markers discovered in the simulated study by the selection criterion: biomarker P-value 
< threshold from a dataset with 3,000 uninformative (false) biomarkers and 30 true biomarkers 
when P-values are based on exact calculation or on normal approximation with or without logit 
transformation. The test statistic is the sensitivity at 90% specificity estimated with the empirical 
ROCa. Number of study subjects: 40 cases and 160 controls. 

Table 4: Markers discovered by the selection criterion: biomarker P-value < threshold from a 
dataset with 3,000 uninformative (false) biomarkers and 30 true biomarkers when P-values are 
based on exact calculation or on normal approximation with or without logit transformation. The 
test statistic is the empirical area under the ROC curve (AUC). True biomarkers have AUC = 
0.758 (PPV = 0.30) while false (uninformative) biomarkers have AUC=0.50 (PPV = 0.10). 
Number of study subjects: 20 cases and 20 controls 

Table 5. Candidate biomarkers for ER positive PR positive ductal breast cancer measured on 
preclinical plasma samples from 121 cases and 121 controls in the WHI observation study. The 
top 40 biomarkers ranked according to P-values for sensitivity at 90% specificity are shown. 
Rankings are with respect to exact P-values (top panel) and logit-normal P-values (bottom 
panel). 

 

 

Figure 1: Correspondence between P-values for sensitivity at 90% specificity in the simulated 
data calculated using standard normal approximations and exact P-values. Values above the 
diagonal line are larger than exact P-values while values below the line are smaller than exact 
P-values. The display is restricted to the 106 biomarkers with exact P-values <0.05. Number of 
study subjects 140 cases and 160 controls. 
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Supplementary Table S.1: Ten independent replications of the simulation study reported in 
Table 3. Markers discovered by the selection criterion: biomarker P-value < 0.0277 from a 
dataset with 3,000 uninformative (false) biomarkers and 30 true biomarkers when P-values are 
based on exact calculation or on normal approximation with or without logit transformation. The 
test statistic is the sensitivity at 90% specificity estimated with the empirical ROC. Number of 
study subjects: 40 cases and 160 controls. 

 

 

 
1 estimated false discoveries = (threshold-p) × number of biomarkers. This is the same for all P-value 
methods 
2 total discoveries – estimated false discoveries = estimated true discoveries 
3 when the total number of markers discovered is less than the expected number of false discoveries we 
estimate that the number of true discoveries is 0 

   

 

 

  False Discoveries True Discoveries 
  Observed Estimated2: Observed 

Replication Estimated1 
Exact  

P-value 
Normal  
P-value 

Logit-
Normal 
P-value 

Exact  
P-value 

Normal  
P-value 

Logit-
Normal 
P-value 

        
1 84 83 23 107 25 : 26 03: 17 48 : 25 
2 84 75 17 92 14 : 23 0 : 16 32 : 24 
3 84 85 29 114 26 : 25 0 : 17 55 : 25 
4 84 76 18 97 18 : 26 0 : 20 38 : 25 
5 84 84 29 107 26 : 26 0 : 18 47 : 24 
6 84 82 24 110 23 : 25 0 : 18 51 : 25 
7 84 70 11 90 11 : 25 0 : 19 28 : 22 
8 84 77 26 94 17 : 24 0 : 15 33 : 23 
9 84 74 22 100 18 : 28 0 : 25 44 : 28 

10 84 99 23 124 41 : 26 0 : 20 64 : 24 
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Supplementary Figure S.1: Rank orders of P-values versus corresponding estimated 
sensitivity at 90% specificity for the top 40 biomarkers according to exact P-values (top panel of 
Table 5) and for the top 40 biomarkers according to logit-normal P-values (lower panel of Table 
5). 
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