
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year  Paper 

Marginal Structural Models with
Counterfactual Effect Modifiers

Wenjing Zheng∗ Zhehui Luo†

Mark J. van der Laan‡

∗University of California, Berkeley, Division of Biostatistics, wenjing.zheng@berkeley.edu
†Michigan State University
‡University of California, Berkeley, University of California, Berkeley, Division of Biostatis-

tics, laan@berkeley.edu
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper348

Copyright c©2016 by the authors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Collection Of Biostatistics Research Archive

https://core.ac.uk/display/61322564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Marginal Structural Models with
Counterfactual Effect Modifiers

Wenjing Zheng, Zhehui Luo, and Mark J. van der Laan

Abstract

In health and social sciences, research questions often involve systematic assess-
ment of the modification of treatment causal effect by patient characteristics, in
longitudinal settings with time-varying or post-intervention effect modifiers of
interest. In this work, we investigate the robust and efficient estimation of the so-
called Counterfactual-History-Adjusted Marginal Structural Model (van der Laan
and Petersen (2007)), which models the conditional intervention-specific mean
outcome given modifier history in an ideal experiment where, possible contrary
to fact, the subject was assigned the intervention of interest, including the treat-
ment sequence in the conditioning history. We establish the semiparametric effi-
ciency theory for these models, and present a substitution-based, semiparametric
efficient and doubly robust estimator using the targeted maximum likelihood esti-
mation methodology (TMLE, e.g. van der Laan and Rubin (2006), van der Laan
and Rose (2011)). To facilitate implementation in applications where the effect
modifier is high dimensional, our third contribution is a projected influence curve
(and the corresponding TMLE estimator), which retains most of the robustness of
its efficient peer and can be easily implemented in applications where the use of
the efficient influence curve becomes taxing. In addition to these two robust es-
timators, we also present an Inverse-Probability-Weighted (IPW) estimator (e.g.
Robins (1997a), Hernan, Brumback, and Robins (2000)), and a non-targeted G-
computation estimator (Robins (1986)). The comparative performance of these
estimators are assessed in a simulation study. The use of the TMLE estimator
(based on the projected influence curve) is illustrated in a secondary data analysis
for the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial.



1 Introduction
In social and health sciences, research questions often involve systematic compar-
ison of the effectiveness of different longitudinal exposures or treatment strategies
on an outcome of interest. Specifically, consider a study where subjects are fol-
lowed over time. In addition to their baseline covariates, we record their time-
varying treatment of interest, time-varying covariates, and the outcomes of interest.
Time-varying confounding is ubiquituous in these situations: the treatment of inter-
est depends on past covariates and in turn affects future covariates; right censoring
is often present, in response to past covariates and treatment. It has been widely
recognized that in these cases, conventional analytic methods, such as multiple re-
gression, often fail to properly account for the time-varying confounding of the
treatment effect (e.g. Robins, Hernan, and Brumback (2000)). Marginal Structural
Models (MSMs), introduced by Robins (1997a), are well-established and widely
used tools to address this problem of time-varying confounding; these models spec-
ify the marginal expectation of an intervention-specific counterfactual outcome (i.e.
the mean outcome of a subject in an ideal experiment where he/she was assigned to
followed a given intervention).

To assess effect modification, MSMs are traditionally used to model the
conditional counterfactual mean outcome given an observed history. Yet, in many
settings one may wish to model the conditional counterfactual mean outcome given
a counterfactual history. Consider the simple case of effect modification by base-
line covariates. A traditional observed baseline MSM conditions on the observed
baseline modifiers (Robins et al. (2000)) and allows one to assess how the treat-
ment effect changes as a function of the observed covariate values. (Observed)
History-Adjusted MSMs (HA-MSMs), introduced in van der Laan, Petersen, and
Joffe (2005) and Petersen, Deeks, Martin, and van der Laan (2007a), generalize the
observed baseline MSMs by modeling the counterfactual mean outcome given the
observed history of treatment and modifiers of interest up till a time point. How-
ever, since the modifiers of interest may be affected by their preceding treatment
assignments, which may in turn depend on past modifiers and other covariates, the
counterfactual mean within each strata of this history will also be affected by the
observed treatment mechanism (i.e. the way treatment assignments based on past
covariates were made in the observed data. e.g. randomized assignment vs assign-
ment based on specific determinants of outcome). In this case, the parameters of
the HA-MSM would not be generalizable to an equivalent population with different
treatment mechanism (Petersen, Deeks, and van der Laan (2007b)). Instead, the
the true outcome that one wishes to model is in fact the the conditional mean out-
come given modifier history in an ideal experiment where subject were assigned a
given intervention on interest, including the treatment sequence in the conditioning
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history (i.e. the conditional counterfactual mean outcome given a counterfactual
history of the time-varying modifiers of interest up to a given time point).

To model these conditional counterfactual mean outcome given a counter-
factual history, we can use the so-called Counterfactual-History-Adjusted MSMs
(CHA-MSM), introduced by van der Laan and Petersen (2007). Inverse Probabil-
ity of Treatment Weighted (IPTW) estimators for CHA-MSM were proposed in
van der Laan and Petersen (2007). These estimators are very intuitive, can be easily
implemented using standard software, and offers influence-function based standard
error estimates. However, their consistency rely on consistent estimation of all the
treatment weights. Doubly Robust IPTW (DR-IPTW) estimators for CHA-MSM
were also described in van der Laan and Petersen (2007); they were based esti-
mating equations derived by orthogonalizing the IPTW estimating function with
respect to the treatment mechanism. Contrary to IPTW, these DR-IPTW estimators
are consistent if the treatment weights or the conditional covariate and outcome
densities are consistently estimated. Moreover, they are solutions to the estimat-
ing equation defined by the efficient influence function, and thus are asymptotically
semi-parametric efficient.

Despite these advances, there are still many gaps in the efficiency theory and
robust estimation of CHA-MSMs. Firstly, even with the efficient influence func-
tion being a key actor in semi-parametric estimation, there still lacks an explicit
representation of it as an orthogonal decomposition of the nuisance parameters cor-
responding to the time-varying covariates. Compared to the IPTW-orthogonalized
representation in van der Laan and Petersen (2007), such an explicit representation
would provide a comprehensive picture of the efficiency theory for CHA-MSM.
In particular, by shining a light on the role of the nuisance parameters in the ef-
ficient influence function, such an explicit representation can inform the study of
semi-parametric estimation for these models, advise on the trade-offs in estimating
different nuisances parameters, and provide insights on the challenges and solu-
tions to handling high-dimensional covariates. Secondly, as estimating equation
based estimators, both the IPTW and the DR-IPTW may be unstable in the pres-
ence of near positivity violations (Petersen, Porter, S.Gruber, Wang, and van der
Laan (2010)), resulting in biased point and standard error estimates in these set-
tings. In applications with dynamic treatment regimes, this instability is especially
difficult to circumvent due to the limitations of effective weight stabilization. By
contrast, a substitution-based estimator for these models can provide a way to max-
imize finite sampler performance by preserving global information about the model
and the parameters.

This paper aims to fill these gaps in the literature by establishing the effi-
ciency theory for CHA-MSM and providing semi-parametric, substitution-based,
efficient and robust estimators. Firstly, we describe the identification of the con-
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ditional counterfactual intervention-specific mean outcome given a counterfactual
history up to a given time point, and the identification of the corresponding MSM
parameters of interest. Secondly, we determine the efficient influence function for
these statistical parameters as an orthogonal decomposition of the nuisance param-
eters. This efficient influence function is used to construct a substitution-based,
semi-parametric efficient and doubly robust estimator using the targeted maximum
likelihood estimation methodology (TMLE, e.g. van der Laan and Rubin (2006),
van der Laan and Rose (2011)). However, as we shall see, due to the form of the
efficient influence function, the computations in this estimator may prove arduous
in applications where the effect modifier is high dimensional. To address this prob-
lem, our third contribution is a projected influence function (and the corresponding
TMLE estimator), which retains most of the robustness of its efficient peer and can
be used in applications where the use of the efficient influence function becomes
taxing. In addition to these two robust estimators, we also present a non-targeted
substitution estimator (Robins (1986)) which is also applicable in high-dimensional
data.

1.1 Illustrative example

Throughout this paper, we will illustrate our presentation using an example from
mental health research. The STAR*D (Sequenced Treatment Alternatives to Re-
lieve Depression) trial — a multi-level, longitudinal pragmatic trial of treatment
strategies for major depression (http://www.edc.gsph.pitt.edu/stard/). Af-
ter an initial screening, patients are enrolled into level 1 of the study, where every-
one is assigned citalopram. At the start of each subsequent level, if a patient still
remains in the study, then he is randomized to an option within one of his cho-
sen treatment strategies. At level 2, the patient can choose between augmenting
the citalopram with multiple options or switching to a new regimen with multi-
ple options, or both. We are interested in the comparative effect of augmenting vs
switching medication; because these two strategies are not randomized, this anal-
ysis is analogous to an observational study. Suppose we wish to assess the effect
modification of 2nd level’s treatment strategy (augmenting vs switching) by the
depression symptoms measured prior to entering level 2 (either measured at enroll-
ment or level 1 exit, for our purpose, they are both considered baseline modifiers).
These symptom measures are obtained at clinical visits and level exit surveys; it is
reasonable to believe that the more depressed patients and those less satisfied with
their level 1 treatment may be less inclined to follow up with the surveys and visits
or to report these symptom measures. In this case, a simple complete-case analy-
sis of effect modification may only provide results applicable to patients with less
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severe symptoms or more satisfied with their level 1 treatment. If we assume that
this missingness, while associated with outcome, can be predicted using covariate
history collected up to level 1 exit, then we can regain some of this generalizabil-
ity. Indeed, we cast these symptom measures as counterfactual variables under an
intervention on their missingness indicator. This way, the target parameter is for-
mulated in terms of an ideal experiment where the report of the symptom measures
was always ensured.

1.2 Organization of this article

This paper is organized as follows. In section 2, we use a nonparametric structural
equations framework (Pearl (2009)) to formulate the causal inference problem and
determine the identifiability of the desired causal parameters from the observed
data distribution. In section 3, we present the efficient influence function for the
parameter of interest under a saturated semiparametric model, as well as a projected
influence function. The robustness conditions for the efficient and the projected
influence functions are also established. In section 4, we present the construction
of two TMLE estimators, one using the projected influence function (we call it
the projected TMLE) and one using the efficient influence function (we call it the
full TMLE), and a non-targeted substitution estimator. In section 5, a simulation
study demonstrates robustness properties of the projected TMLE. In section 6, we
use STAR*D to illustrate the application of projected TMLE. A final discussion
concludes this article.

2 Data Structure and Parameters of Interest
For the simplicity of exposition, we consider the case where one wish to assess the
conditional intervention-specific mean outcome given the counterfactual history up
to the first time point.

Specifically, consider a longitudinal data structure

O = (W,A0,V,L0,A1,L1, . . . ,AK,LK)∼ P0,

where W encodes baseline covariates, At is the variable measured at time t that
encodes the exposures of interest and censoring indicators, V encodes the time-
varying history (between treatment A0 and A1) that one wishes to condition on, Lt
encodes covariates (including time-varying confounders) measured between At and
At+1, including the outcome process of interest Yt . YK is the final outcome of inter-
est. For the sake of discussion, assume that Yt is either a binary or a bounded con-
tinuous variable (without losing generality, we may assume it’s bounded in (0,1)).

http://biostats.bepress.com/ucbbiostat/paper348



We illustrate this notation with the data example introduced in section 1.1.
Our goal in this example is to assess the effect modification of 2nd level’s treatment
strategy (augmenting vs switching, measured at start of level 2) by the depression
symptoms measured prior to entering level 2; yet many of these baseline effect
modifiers were missing at random. By study protocol, all subjects will have either
entered remission (treatment success), moved onto the next level (treatment fail-
ure), or dropped out (right censoring), by the end of 23 weeks. For our study goal,
the variables that we would enforce/randomize in an ideal experiment are the miss-
ingness status of the baseline effect modifier, the treatment assignment at start of
level 2, and the censoring status at each week of the level. To this end, let V be the
baseline effect modifier of interest. Let A0 be the indicator for measurement of the
baseline effect modifier of interest, A1 = Arx

1 be the treatment strategy received by
a patient at level 2 (A1 = 0 for augmenting medication and A1 = 1 for switching
medication). We use W to encode the baseline covariates that may affect the mea-
surement status A0, and L0 to encode other baseline covariates (beside the modifier
of interest) measured prior to treatment assignment A1. Hence, under this indexing,
K = 24 and the first week of level 2 starts at t = 2. For t ≥ 2, At = AC

t is a counting
process which drops to 0 if patient was censored by time t, and Lt are time-varying
covariates such as visit statistics (duration in level thus far, visit frequency, etc),
side-effect burden and symptom measures at time t ≥ 2. The variable Lt also con-
tains two counting processes: the outcome process Yt , which is a binary indicator
for entering remission by time t, and an exit process Et that jumps to 1 if a patient
is moved to the next level, in which case the remission status will be zero for this
level and the patient is considered non-censored (since the outcome was observed
to be unsuccessful). Our final outcome of interest is Y — the remission status by
end of 23 weeks.

For later convenience, we introduce here some useful vector notations. For
an time-varying variable Xs, let Xs ≡ (X1, . . . ,Xs) and Xs ≡ (Xs, . . . ,XK); we will
also use the shorthand X = XK . The equivalent notations in lower case will apply
to the realizations of the corresponding variable. Finally, variables with degenerate
indices, such as t =−1, are empty sets.

2.1 Causal Model and Parameter of Interest

The time-ordering assumptions can be captured by a nonparametric structural equa-
tions model (NPSEM, Pearl (2009)):

W = fW (UW ) ; A0 = fA0 (W,UA0) ; V = fV (W,A0,UV ) ; L0 = fL0 (W,A0,V,UL0) ;

At = fAt (W,A0,V,At−1,Lt−1,UAt ) ; Lt = fLt (W,A0,V,At ,Lt−1,ULt ) , (1)
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This framework assumes that each variable X in the observed data structure is
an unknown deterministic function of observed variables and some unmeasured
exogenous random factors U . From here on, we will refer to the observed variables
in the input of fX as the parents of X and denote this set as Pa(X). This causal
model defines a random variable with distribution PO,U on a unit.

To assess the effect of the interventions, we can study the intervention-
specific counterfactual mean outcomes as a function of the interventions. These
counterfactual mean outcomes can be obtained from an ideal experiment where one
intervenes to assign A = a, and measures the resulting covariates (including effect
modifiers are interest) and the outcome of interest. In our example, an ideal experi-
ment would set A0 = a′0 (always measure baseline modifier), A1 = a1 (switching or
augmenting), and At≥2 = 1 (always prevent drop outs). This data-generating pro-
cess can be formalized using (1) by setting At = at in the equations for At and in the
parents of the non-intervention variables V , Lt and Y . We denote these resulting,
possibly counterfactual, covariates as V (a′0),Lt(at) and Y (a).

Now, we wish to assess effect modification of such treatment effect by the
changing values of V . That is, we want ask ’how does the differential effect of
(a0,a′1) vs (a0,a1), or of (a′0,a

′
1) vs (a0,a′1), differ as a function of V , which is

affected by the treatment assignment A0?’. To answer this question, our parame-
ters of interests are the so-called Counterfactual-History-Adjusted mean outcomes
(van der Laan and Petersen (2007))

ρa′0,a1,v(PO,U)≡ E
(
Y (a′0,a1) |V (a′0) = v

)
, (2)

and our goal is to study how these mean outcomes change as a function of a′0, a1 and
v. As discussed in section 1, (2) differs from the traditional History-Adjusted mean
outcomes (van der Laan et al. (2005)) E

(
Y (A0,a1) |V = v,A0 = a′0

)
in that these

traditional parameters condition on the observed treatment values, hence within
each such strata, the conditional mean outcome may still depend on the observed
treatment mechanism (thus affected by potential selection bias). In our example,
the conditional mean outcomes we wish to study are E(Y (1,a1) | V (1) = v), with
{a1 = (a1,a2 = · · ·= aK = 1) : a1 = 0,1}.

A challenge to study of (2) is that the curse of dimensionality of arises in
applications with more than two time points and/or with categorical or continuous
V . To address this issue, it is useful to summarize (2) using a working marginal
structural model, mψ(a′0,a1,v), which is parametrized by a finite dimensional ψ ∈
S ⊂ Rd . We refer to this model as the Counterfactual-History-Adjusted Marginal
Structural Model (CHA-MSM). Since our Y is binary (or bounded within the unit
interval), for concreteness sake, we consider a logistic MSM

mψ(a′0,a1,v) = expit
(
ψ ·φ(a′0,a1,v)

)
, (3)
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where φ(a′0,a1,v) is the vector of linear predictors in the generalized linear model.
We emphasize that the methods presented here are easily modified to other forms
of MSM.

Given a CHA-MSM (3) for the conditional mean outcomes (2), the true
MSM parameter ψ can be interpreted as the best summary measure of the condi-
tional mean outcomes ρa′0,a1,v(PO,U) as a function of a0, a′1 and v. Formally, let A

and A ′ denote the set of interventions of interest and V denote the set of modifier
values of interest. For a given kernel weight function h(a′0,a1,v), the true MSM
parameter ψ in (3) is defined as

Ψ(PO,U) = argmin
ψ∈S

{
− ∑

(a′0,a1,v)∈A ′×A×V

P(V (a′0) = v)h(a′0,a1,v)

×
{

ρa′0,a1,v(PO,U) logmψ(a′0,a1,v)+
(

1−ρa′0,a1,v(PO,U)
)

log
(
1−mψ(a′0,a1,v)

)}}
(4)

In words, Ψ(PO,U) yields the best weighted approximation of the counterfactual
conditional dose-response curve ρa′0,a1,v(PO,U), according to the quasi-loglikelihood
loss, kernel weights and working model mψ(a′0,a1,v).

The rest of this paper is devoted to the identification and inference of (4)
from the observed data.

2.2 Statistical Estimand

To identify (4) from the data generating distribution P0, we make a Positivity As-
sumption (PA) and the Sequential Randomization Assumption (SRA, derived by
Robins (1997b)). Specifically, under the PA, there exists αt > 0 such that αt ≤
P0(At = at | Pa(At)), for all t and a ∈ A , almost everywhere. The SRA assumes
that At ⊥ (W,V (a0),{Lt(a) : t}), given parents of At . Under these conditions, the
joint distribution (W,V (a0),{Lt(a) : t}) is identifiable from the observed data dis-
tribution P0. In our STAR*D example, the plausibility of the SRA can be fortified
by measuring enough confounders of the modifier’s missingness, the treatment se-
lection, and the censoring mechanism.

By straightforward calculations, the SRA allows us to identify P(V (a′0) = v)
as

γa′0,v
(P0)≡ EP0

{
P0(V = v | A0 = a′0,W )

}
, (5)

and the counterfactual mean outcome ρa′0,a1,v(PO,U) as

ρa′0,a1,v(P0)≡ EP0

{
P0(V = v | A0 = a′0,W )

EP0

{
P0(V = v | A0 = a′0,W )

} ×Qa′0,a1
t=0 (P0)(V = v,W )

}
, (6)
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where, for t = 0, . . . ,K,

Qa′0,a1
t (P0)(Lt−1,V,W ) ≡∑

`t,K

yK

(
K

∏
j=t

P0(l j | A j = a j,Lt−1, `t, j−1,V,A0 = a′0,W )

)
.(7)

It is also useful to rewrite (6) as

ρa′0,a1,v(P0)

= EP0

{
1/P0(A0 = a′0 |W )

EP0

(
1/P0(A0 = a′0 |W ) |V = v,A0 = a′0

)Qa′0,a1
t=1 (P0)(L0,V = v,W )

∣∣∣∣∣V = v,A0 = a′0

}
.

(8)

The weight 1/P0(A0=a′0|W )

EP0(1/P0(A0=a′0|W )|V=v,A0=a′0)
adjusts for potential selection bias intro-

duced by treatment assignmentA0 = a′0. Indeed, if A0 does not depend on W (in
our STAR*D example, this means missingness is completely at random), then this
weight equals 1, in which case (8) and (6) are equivalent to the estimands in an
analysis which simply stratifies by A0.

Combining (5) and (6), the causal MSM parameter Ψ(PO,U) in (4) identifies
to

ψ0 ≡Ψ(P0)≡ argmin
ψ∈S

{
− ∑

(a′0,a1,v)∈A ′×A×V

γa′0,v
(P0)h(a′0,a1,v)

×
{

ρa′0,a1,v(P0) logmψ(a′0,a1,v)+
(

1−ρa′0,a1,v(P0)
)

log
(
1−mψ(a′0,a1,v)

)}}
.

(9)

At this juncture, for a more concrete discussion we consider the following
MSM

mψ(a′0,a1,v) = expit
(
ψ ·φ(a′0,a1,v)

)
, (10)

where φ(a′0,a1,v) is the vector of linear predictors in the generalized linear model.
We emphasize that the methods in the next sections are easily modified to other
MSM.

In the forthcoming sections, we study the statistical inference of Ψ(P0).

2.3 Notations

Before we proceed, let us introduce some useful definitions and notations. Let M
be a saturated semiparametric model containing our data generating distribution P0.
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The parameter of interest in (9) is the map P 7→Ψ(P), from M to Rd , evaluated at
P0.

Suppose we observe n i.i.d. copies of O ∼ P0. Let Pn denote the empirical
distribution of this sample. For a function f of O, we will write Pn f ≡ 1

n ∑
n
i=1 f , and

for a distribution P, we will write P f = EP f (O).
We generalize the definitions in (7) to any P ∈M , for t ≤ K. At t = K +1,

we write Qa′0,a1
K+1 (P)(O)≡YK . Bang and Robins (2005) noted the following recursive

property when dealing with longitudinal intervention-specific mean outcomes:

Qa′0,a1
t (P)(Lt−1,V,W ) = EP

[
Qa′0,a1

t+1 (P)(Lt ,V,W )
∣∣∣At = at ,Lt−1,V,A0 = a′0,W

]
, (11)

for t = 0, . . . ,K. This will prove useful in our upcoming endeavor. We also adopt
the notations QW (P) for the marginal distribution of W , QV (P) for the conditional

distribution P(V |W,A0), and Q(P)≡
(

QW (P),QV (P),Qa′0,a1
t (P) : t = 0, . . .K

)
. We

write g for the treatment allocation probabilities P(At | At−1,Lt−1,V,W ), and gA0

for the one pertaining to A0. When referring to a generic P∈M , we may sometimes
write Q and g in place of Q(P) and g(P), similarly for their respective components;
when referring to the functionals at the data-generating distribution P0, we may
sometimes write Q0 and g0, in place of Q(P0) and g(P0).

3 A Tale of Two Influence functions
The first leg of our journey is determining the so-called Efficient influence function
(EIC) for our parameter of interest. From a fundamental result in Bickel, Klaassen,
Ritov, and Wellner (1997), under standard regularity conditions, the variance of the
canonical gradient of Ψ at P0 provides a generalized Cramer-Rao lower bound for
any regular and asymptotically linear estimators of Ψ(P0). Therefore, this canoni-
cal gradient is a vital ingredient in building asymptotically linear and efficient es-
timators; fittingly, it is also commonly known as the EIC. For parameters in causal
inference and missing data applications (such as those in our examples), the EIC
also provides insights into the potential robustness against model misspecifications.
In section 3.1, we determine the EIC of Ψ under M .

However, as we shall see, in spite their theoretical prowess, estimators which
use the EIC will be difficult to implement in practice when the dimension of V is
high. To solve this problem, in section 3.2 we present a projection of the EIC onto
a model where gA0 is known; we refer to it as the projected Influence Function
(projected-IC). This projected-IC retains most of the robustness properties of its
efficient peer while altogether avoiding estimation of the components relating to
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V , hence making a compelling case for trading full efficiency for practically more
attainable estimators in the case of high-dimensional V .

Recall that Ψ(P) optimizes a function of γa′0,v
(P) and ρa′0,a1,v(P) (see (5)

and (6) for definitions). Note also that ρa′0,a1,v(P) =
ηa′0,a1,v

(P)

γa′0,v
(P) , where

ηa′0,a1,v(P) = EP

{
QV (V = v | A0 = a′0,W )×Qa′0,a1

t=0 (V = v,W )
}
.

We will make use of the following useful characterizations for Ψ(P):

Remark 1. For mψ(a′0,a1,v) = expit
(
ψ ·φ(a′0,a1,v)

)
and Ψ(P) defined as in (9),

we have

0 =U(Ψ(P),P)≡ ∑
(a′0,a1,v)∈A ′×A×V

h(a′0,a1,v)φ(a
′
0,a1,v)γa′0,v

(P)

{
ηa′0,a1,v(P)

γa′0,v
(P)

−mΨ(P)(a
′
0,a1,v)

}

= EP

 ∑
(a′0,a1,v)∈A ′×A×V

h̃(a′0,a1,v)Q
V (V = v | A0 = a′0,W )

{
Qa′0,a1

t=0 (V = v,W )−mΨ(P)(a
′
0,a1,v)

}
= EP

 I(A0 = a′0)
gA0(1 |W ) ∑

(a′0,a1,v)∈A ′×A×V

h̃(a′0,a1,V )
{

Qa′0,a1
t=0 (V,W )−mΨ(P)(a

′
0,a1,V )

} ,

where h̃(a′0,a1,v)≡ h(a′0,a1,v)φ(a
′
0,a1,v). The computations are straightforward,

and we left them in the Appendix for reference.

3.1 Efficient Influence Function

From the first equality in remark 1, we can obtain the EIC for Ψ(P) via implicit dif-
ferentiation. We formally state the result here and leave the proof in the Appendix.

Lemma 1 (Efficient Influence Function).
Consider Ψ : M → Rd as defined in (9). Suppose that the following k× k

normalizing matrix is invertible at (ψ,P) = (Ψ(P),P):

M(ψ,P) =
∂

∂ψ
∑

(a′0,a1,v)∈A ′×A×V

γa′0,v
(P)h(a′0,a1,v)φ(a

′
0,a1,v)

{
ρa′0,a1,v(P)−mψ(a′0,a1,v)

}

= P

 I(A0 = a′0)
gA0(1 |W ) ∑

a′0,a1∈A ′×A

h(a, ,V )φ(a′0,a1,V )φ(a′0,a1,V )>mψ(a′0,a1,V )
[
1−mψ(a′0,a1,V )

] .

(12)
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The efficient influence function of Ψ at P ∈M is given by

M (Ψ(P),P)−1 D∗(Q,g,Ψ(P)),

where

D∗(Q,g,ψ) =
K

∑
t=0

D∗t (Q,g)+D∗V (Q,g,ψ)+D∗W (Q,ψ), (13)

with

D∗t (Q,g)≡
I(A0 = a′0)
gA0(1 |W ) ∑

a′0,a1∈A ′×A

h̃(a′0,a1,V )Ca1
t

{
Qa′0,a1

t+1 (Lt ,V,W )−Qa′0,a1
t (Lt−1,V,W )

}
,

D∗V (Q,g,ψ)≡
I(A0 = a′0)
gA0(1 |W ) ∑

a′0,a1∈A ′×A

{
h̃(a′0,a1,V )

[
Qa′0,a1

t=0 (V,W )−mψ(a′0,a1,V )
]

−EP

(
h̃(a′0,a1,V )

[
Qa′0,a1

t=0 (V,W )−mψ(a′0,a1,V )
]∣∣∣A0,W

)}
,

D∗W (Q,ψ)≡ ∑
a∈A

EP

{
h̃(a′0,a1,V )

[
Qa′0,a1

t=0 (V,W )−mψ(a′0,a1,V )
]∣∣∣A0 = a′0,W

}
,

where Ca1
t = I(At=at)

∏
t
j=1 gA(A j=a j|A j−1=a j−1,L j−1,V,A0=a′0,W)

, for t = 1, . . . ,K, and Ca1
t = 1

for t = 0.
Moreover, if Q=Q0 or g= g0, then P0D∗(Q,g) = 0 implies Ψ(Q) =Ψ(Q0).

Proof. The proof is given in the Appendix.

Note that in the first robustness condition of lemma 1, QV = QV (P0) can be
relaxed to

EP

{
h̃(a′0,a1,V )

[
Qa′0,a1

t=0 (V,W )−mψ(a′0,a1,V )
]∣∣∣A0 = a′0,W

}}
= EP0

{
h̃(a′0,a1,V )

[
Qa′0,a1

t=0 (V,W )−mψ(a′0,a1,V )
]∣∣∣A0 = a′0,W

}}
.

Remark 2. Dimensionality of V and Implementation: When V is high-dimensional
(or continuous), a regression-based estimator (parametric or data-adaptive) can
be used to directly estimate the conditional expectations with respect to QV that
appear in D∗V and in D∗W . However, for final evaluation of the target parameter
ψ , we must solve the estimating equation D∗W in the variable ψ . One way to im-
plement this is using standard generalized linear modeling software package to
regress Qa′0,a1

t=0 (v,W ) onto the model mψ with weights I(A0 = a′0)h(a
′
0,a1,V )QV (v |

A0 = a′0,W ), for a pooled data with every value in the outcome space of V . When
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V is high-dimensional, this may be difficult to accomplish. Instead, using the given
representation of D∗W , one may employ numerical tools to solve for ψ in the corre-
sponding estimating equation.

This dilemma motivates us to consider trading the fully efficient D∗ for an
influence function that retains most of the robustness properties while altogether
avoiding estimating of the components relating to V . We consider this option next.

3.2 Projected Influence Function

As motivated by remark 2, when V is high-dimensional, we may instead consider a
projected influence function which still retains most of the robustness of D∗.

Lemma 2 (Projected Influence Function).
Consider the setup in lemma 1. Up to a normalizing matrix M (Ψ(P),P)−1,

the following function is a gradient for Ψ at P under the model MA0 , in which gA0

is known:

DA0(Q,g,ψ) =
K

∑
t=1

D∗t (Q,g)+DA0
W (Q,g,ψ),

where

DA0
W ≡

I(A0 = a′0)
gA0(1 |W ) ∑

a′0,a1∈A ′×A

h̃(a′0,a1,V )
[
Qa′0,a1

t=1 (L0,V,W )−mψ(a′0,a1,V )
]
. (14)

In particular, it is a valid estimating function for Ψ : M → Rd .
Moreover, if gA0 = gA0(P0) and either Qa′0,a1

t = Qa′0,a1
t (P0) or gA = gA(P0),

then P0DA0(Q,g) = 0 implies Ψ(Q) = Ψ(Q0).

Proof. The proof is given in the Appendix.

At its face value, the proposed DA0 may seem less robust than D∗, as it al-
ways relies on consistent estimation of gA0(P0). However, as we noted in remark 2,
when V is high-dimensional, there are more standard machine learning algorithms
available for estimation of gA0 . Moreover, the estimators that utilizes DA0 are also
easier to implement, since standard software packages can be used to solve for ψ in
the corresponding estimating equation of DA0

W .
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4 Statistical Inference
With the two influence curves D∗ and DA0 under our belt, in section 4.1 we will
build two robust, substitution-based, asymptotically linear estimators via the tar-
geted maximum likelihood estimation (TMLE) methodology. In section 4.2, we
describe an inverse-probability-weighted (IPW) estimator that is most commonly
used in the literature for estimating coefficients in an MSM. It is easier to implement
and may be more intuitive than the robust estimators; however, its consistency relies
solely on the correct estimation of g0, and may suffer stability problems when the
weights are extreme. Under standard regularity and empirical process conditions
(detailed in e.g. Bickel et al. (1997)), both the TMLE and IPW are asymptotically
linear, hence allowing influence curve-based estimators for the standard errors. In
section 4.3, we describe a non-targeted substitution estimator which utilizes a non-
targeted MLE estimate of Q0 (or of Qa′0,a1

t (P0) and gA0(P0)). This estimator is biased
if these non-targeted MLE are not consistent.

For most of the estimators below, we first need to procure estimators gn =(
gA0

n ,gA
n

)
of g0. The marginal distribution of W will always be estimated by the

empirical distribution. For a given estimator ψn of ψ0, we will use

M(ψn)≡Pn

 I(A0 = a′0)

gA0
n (1 |W )

∑
a′0,a1∈A ′×A

h(a′0,a1,V )φ(a′0,a1,V )φ(a′0,a1,V )>mψn(a
′
0,a1,V )

[
1−mψn(a

′
0,a1,V )

]
to estimate the normalizing matrix.

4.1 Targeted Maximum Likelihood Estimator

In a traditional non-targeted MLE (like those in section 4.3), relevant parts of the
likelihood are estimated either by stratification (nonparametric MLE), by fitting a
parametric statistical model, or by using a machine-learning algorithm. These like-
lihood estimates are then used to evaluate the parameter of interest. As the number
of potential confounders increases, these methods may break down due to the curse
of dimensionality, or yield a bias–variance trade off that is not the most optimal for
the parameter of interest (which is a lower-dimensional object than the likelihood
components). A targeted MLE adds an updating (targeting) step to the likelihood
estimation process that aims to target the fit towards the parameter of interest, and
provide potential robustness and semiparametric efficiency gains. As a result of
this targeting step, the final likelihood estimate (coupled with the substitution-based
parameter estimate) satisfies a user-chosen score equation, hence also allowing in-
ference based on the Central Limit Theorem. We refer to van der Laan and Rubin

Hosted by The Berkeley Electronic Press



(2006) and van der Laan and Rose (2011) for the general methodology. Here, we
construct two targeted estimators using DA0 and D∗, respectively.

Both targeted estimators involve sequentially updating initial estimates of
the Q components by finding a best fluctuation along a submodel through a given
initial estimate. We gather the following two ingredients before proceeding. Re-
garding Qa′0,a1

t as a conditional expectation of Qa′0,a1
t+1 , as given in (11), we use the

quasi loglikelihood loss function for Qa′0,a1
t :

L
(

Qa′0,a1
t

)
=−I(At = at)

log
(

Qa′0,a1
t

)Q
a′0,a1
t+1

+ log
(

1−Qa′0,a1
t

)(1−Q
a′0,a1
t−1

) . (15)

For a given (Q,g), and each t = 0, . . . ,K, consider the d-dimensional working
submodel {Qt(ε) : ε}, with

Qa′0,a1
t (ε) = expit

(
logitQa′0,a1

t + ε · h̃(a′0,a1,V )
I(A0 = a′0)
gA0(1 |W )

Ca1
t

)
. (16)

This submodel satisfies 〈 d
dε ∑a L

(
Qa′0,a1

t (ε)
)
|ε=0〉 ⊃ 〈D∗t (Q,g)〉, where 〈x〉 repre-

sents the linear span of a vector x.

4.1.1 projected TMLE using projected-IC DA0

1. Start at t = K: regress YK on (LK−1,AK,L0,V,W ), and then evaluate at A0 =

a′0 and A1 = a1 to obtain an initial estimator Qa′0,a1
t=K,n of Qa′0,a1

t=K (P0). The optimal
fluctuation amount around this initial estimate is given by

εK,n ≡ argmin
ε

∑
a

PnL
(

Qa′0,a1
t=K,n(ε)

)
.

This can be implemented by creating one row for each individual and each
(a′0,a1) ∈ A ′×A , and fitting a weighted logistic regression of YK on the

multivariate covariate φ(a′0,a1,V )

g
A0
n (1|W )

Ca1
K (gn) on these observations with weights

I(A0 = a′0)I(A1 = a1)h(a
′
0,a1,V ) and offset Qa′0,a1

t=K,n(LK−1,V,W ). Update the

initial estimator using Q∗,a
′
0,a1

t=K,n ≡ Qa′0,a1
t=K,n(εK,n).

2. At each subsequent step t = K− 1, . . . ,1, we have thus far obtained an up-
dated estimator Q∗,a

′
0,a1

t+1,n for each individual with (A0)i = 1 and each a ∈ A .

Regress Q∗,a
′
0,a1

t+1,n on (Lt−1,At ,L0,W,V ) among observations with A0 = a′0
and evaluate at At = at to get an initial estimator Qa′0,a1

t,n of Qa′0,a1
t (P0). The
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optimal fluctuation amount around this initial estimator is given by εt,n =

argminε ∑a PnL
(

Qa′0,a1
t,n (ε)

)
, and can be obtained in an analogous manner to

step 1. The updated estimator is Q∗,a
′
0,a1

t,n ≡ Qa′0,a1
t,n (εt,n).

3. After sequentially performing step (2) in order of decreasing t, we now have
a targeted estimator Q∗,a

′
0,a1

t=1,n of Qa′0,a1
t=1 (P0). Obtain an estimator ψ

pT MLE
n of

ψ0 by fitting a weighted logistic regression of Q∗,a
′
0,a1

t=1,n (V,W ) on φ(a′0,a1,V ),

with weights h(a′0,a1,V )
I(A0=a′0)

g
A0
n (1|W )

. We call this estimator the projected TMLE.

By construction, PnDA0

(
Q∗,a

′
0,a1

t,n ,gn,ψ
pT MLE
n

)
= 0. From lemma 2, ψ

pT MLE
n is an

unbiased estimator of ψ0 if either (1) gA0
n and Q∗,a

′
0,a1

t,n for t = 1, . . . ,K are consis-
tent, or (2) gn is consistent. Compared to the full TMLE using D∗ in the next sec-
tion, this estimator is particularly appealing when V is high-dimensional, and still
provides more robustness protection than the estimators in sections 4.2 and 4.3.
Moreover, under standard regularity and empirical process conditions, ψ

pT MLE
n is

asymptotically linear with influence function M(Ψ(P0))
−1DA0(P0). The asymptotic

covariance of
√

n(ψ pT MLE
n −ψ0) can be estimated by the sample covariance matrix

Σ
pT MLE
n of M(ψ pT MLE

n )−1DA0

(
Q∗,a

′
0,a1

t,n ,gn,ψ
pT MLE
n

)
.

4.1.2 Full TMLE using EIC D∗

Motivated by remark 2, we rewrite D∗V and D∗W in (13) as

D∗V (Q,g,ψ)≡
I(A0 = a′0)
gA0(1 |W ) ∑

(a′0,a1,v)∈A ′×A×V

{
h̃(a′0,a1,v)

(
Qa′0,a1

t=0 (V = v,W )−mψ(a′0,a1,v)
)

×
(
I(V = v)−QV (v | A0,W )

)}
D∗W (Q,ψ)≡ ∑

(a′0,a1,v)∈A ′×A×V

h̃(a′0,a1,v)Q
V (v | A0 = a′0,W )

{
Qa′0,a1

t=0 (V = v,W )−mψ(a′0,a1,v)
}
,

To use D∗, we also consider the loss function L(QV ) ≡ − logQV (V | A0 =
a′0,W ), and a d-dimensional fluctuation model through a given QV at ε = 0 given
by

QV (ε)(V | A0 = a′0,W )≡
QV (V | A0 = a′0,W )exp [ε ·B(Q,ψ)(W,V )]

∑v QV (v | A0 = a′0,W )exp [ε ·B(Q,g,ψ)(W,v)]
,

where B(Q,ψ)(W,V )≡ ∑a h̃(a′0,a1,V )
{

Qa′0,a1
t=0 (V,W )−mψ(a′0,a1,V )

}
. It is easy

to verify that 〈 d
dε

I(A0=a′0)
gA0(1|W )L(Q

V (ε))|ε=0〉 ⊃ 〈D∗V (Q,g,ψ)〉. The targeted estimator
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which uses D∗ will do so via estimators for QV , instead of via estimators for a con-
ditional mean with respect to QV as discussed in remark 2. This way, the estimates
for ψ0 can be easily obtained by fitting a weighted regression.

1. Perform steps (1) and (2) over t =K, . . . ,0 in section 4.1.1 to obtain a targeted
estimator Q∗,a

′
0,a1

t=0,n .
2. Let QV

n be an estimator of QV (P0). For each a ∈A , v ∈ V and individual i,

create a row of data consisting of Q∗,a
′
0,a1

t=0,n (V = v,W ), h(a′0,a1,v), φ(a′0,a1,v)
and QV

n (v | A0 = a′0,W ). Obtain a first-iteration estimator ψ1
n of ψ0 by fit-

ting a weighted logistic regression of Q∗,a
′
0,a1

t=0,n (V = v,W ) on φ(a′0,a1,v), with
weights h(a′0,a1,v)×QV

n (v | A0 = a′0,W ), on this pooled data.
3. Given ψ1

n obtained in previous step, we update the estimator for QV (P0) as

follows. Using previously obtained Q∗,a
′
0,a1

t=0,n , gn, and ψ1
n , the optimal fluctua-

tion amount around the initial QV
n is given by εV

n = argminε Pn
I(A0=a′0)

g
A0
n (1|W )

L
(
QV

n (ε)
)
.

This can be obtained by solving for ε in the equation

0 =
n

∑
i=1

I((A0)i = 1)

gA0
n (1 |W1,i)

×

{
B̂n(W1,i,Vi)−

∑v B̂n(W1,i,v)QV
n (v | A0 = a′0,W1,i)exp

[
ε · B̂n(W1,i,v)

]
∑v QV

n (v | A0 = a′0,W1,i)exp
[
ε · B̂n(W1,i,v)

] }

where B̂n ≡ B
(
(Q∗,a

′
0,a1

t=0,n : a),ψ1
n

)
. The updated density is given by Q1

V,n ≡
QV

n (ε
V
n ).

4. Having obtained an updated density QV, j
n at the j-th iteration, repeat step (2)

and (3) to obtain a targeted estimate of ψ
j+1

n and Q j+1
V,n , until εV

n converges
to 0. In practice, this convergence can be achieved (close to 0) after a few
iterations. We denote the final updates as ψ

∗,T MLE
n , and Q∗,Vn . We call this

estimator the full TMLE.

Let Q∗n ≡
(

QW
n ,Q∗,Vn , f Q∗,a

′
0,a1

t,n

)
, where QW

n is the empirical distribution of

W . By design, PnD∗(Q∗n,gn,ψ
∗,T MLE
n ) = 0. From lemma 1, we know that ψ

∗,T MLE
n

is unbiased if either Q∗n = Q0 or gn = g0. Under standard regularity and empir-
ical process conditions, ψ

∗,T MLE
n is asymptotically linear with influence function

M(Ψ(P0))
−1D∗(P0). The asymptotic covariance of

√
n(ψ∗,T MLE

n −ψ0) can be esti-
mated by the sample covariance matrix Σ

∗,T MLE
n of

{
M(ψ∗,T MLE

n )−1D∗
(

Q∗n,gn,ψ
∗,T MLE
n

)}
.
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In particular, since M(Ψ(P0))
−1D∗(P0) is the canonical gradient of Ψ at P, the es-

timator ψ
∗,T MLE
n is asymptotically efficient if all relevant components in D∗ are

consistently estimated.

4.2 Inverse Probability Weighted estimator

From remark 1, another valid estimating function for Ψ is given by

DIPW (g,ψ)≡
I(A0 = a′0)
gA0(1 |W ) ∑

a′0,a1∈A ′×A

h̃(a′0,a1,V )Ca1
K

[
YK−mψ(a′0,a1,V )

]
. (17)

Up to a normalizing matrix M (Ψ(P),P)−1, as defined in (12), DIPW (g,ψ) is a
gradient for Ψ under a model Mg where g is known. This is an unbiased esti-
mating function for ψ0 if g(P) = g0. To implement the IPW estimator, for each
a′0,a1 and each individual i withA0 = a′0 and A1 = a1, we create a row of data
consisting of YK,i, φ(a′0,a1,Vi), h(a′0,a1,Vi), Ca1

K,i, gA0
n (1 | W1,i). The estimator

ψ IPW
n can be obtained by fitting a weighted regression of YK on φ(a′0,a1,V ), with

weights 1
g

A0
n (1|W )

h(a′0,a1,V )Ca1
K . This ψ IPW

n satisfies PnDIPW (gn,ψ
IPW
n ) = 0, and

it’s unbiased if gn consistently estimates g0. Under standard regularity and em-
pirical process conditions, ψ IPW

n is asymptotically linear with influence function
M(Ψ(P0))

−1DIPW (g0). The asymptotic covariance of
√

n(ψ IPW
n −ψ0) can be esti-

mated by the sample covariance matrix ΣIPW
n of

{
M(ψ IPW

n )−1DIPW (gn,ψ
IPW
n
)}

.

4.3 Non-Targeted Substitution Estimator

This is commonly referred to as the G-computation estimator; it utilizes non-targeted
MLE estimators for the components of the data generating distribution that are rel-
evant in the definition of Ψ. From (9) and remark 1, we can express Ψ(P0) as

Ψ

(
Qa′0,a1

t=0 (P0),QV (P0)
)

or Ψ

(
Qa′0,a1

t=0 (P0),g
A0
0

)
, the latter option opening the door

for G-computation estimator in applications with high-dimensional V . Unlike the
other estimators discussed so far, there is no theory ensuring a central limit theorem
based inference for the G-computation estimator.

To obtain an estimator Qa′0,a1
t=0 (P0), we can use a sequential regression ap-

proach by performing steps (1) and (2) of section 4.1.1, starting at t = K and ending
at t = 0, but without the targeting procedure, i.e. always use Qa′0,a1

t+1,n instead of

Q∗,a
′
0,a1

t+1,n at t. At the end of K +1 steps, we have an estimator Qa′0,a1
t=0,n.
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We first consider the representation Ψ

(
Qa′0,a1

t=0 (P0),QV (P0)
)

. Let QV
n be an

estimators of QV (P0). For each observation i, each a0,a1 and each v ∈ V , we

create a row of data consisting of Qa′0,a1
t=0,n(V = v,W ),φ(a′0,a1,v),h(a

′
0,a1,v),Q

V
n (v |

A0 = a′0,W ). The estimator ψ
V,Gcomp
n can be obtained by a weighted regression

Qa′0,a1
t=0,n(V = v,W ) on φ(a′0,a1,v), with weights h(a′0,a1,v)Q

V
n (v | A0 = a′0,W ). This

ψ
V,Gcomp
n is unbiased if both Qa′0,a1

t=0,n and QV
n are consistent.

Consider now the alternative representation Ψ

(
Qa′0,a1

t=0 (P0),g
A0
0

)
, from the

equalities in remark 1. For each observation i and each a0,a1, create a row of data

consisting of Qa′0,a1
t=0,n(V,W ), φ(a′0,a1,V ), h(a′0,a1,V ), gA0

n (1 |W ). The estimator

ψ
A0,Gcomp
n can be obtained by a weighted regression Qa′0,a1

t=0,n(V,W ) on φ(a′0,a1,V ),

with weights h(a′0,a1,V )

g
A0
n (1|W )

. This ψ
A0,Gcomp
n is unbiased if both Qa′0,a1

t=0,n and gA0
n are con-

sistent.

5 Simulation Study
In this section, we examine the relative performance of the projected TMLE es-
timator (section 4.1.1), the IPW estimator (section 4.2), and the G-computation
estimator (section 4.3) for the parameters of an MSM model.

5.1 Data Generating Process and Target Parameter

We consider a survival type example with data structure O = (W,A0,V,L0,(At ,Lt) :
t = 1, . . .K) with K = 3, where A1 is the treatment assignment, At for t > 1 is the
indicator of remaining in the study by time t. Time varying covariate Lt consist of
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L1
t , L2

t , and the death indicator Yt . The data generating process is as follows:(
W 1,W 2)∼ (Bern(0.3),Bern(0.7)) ;

A0 ∼ Bern
(
expit(1+2W 1 +0.1W 2)

)
;

V ∈ {0,1,2} ∼
{

I(V = 1)∼ Bern
(
expit(−2+1.2W 1 +0.7W 2)

)
,

{I(V = 2) |V 6= 1} ∼ Bern
(
expit(−0.7+1.2W 1 +W 2)

)}
;

L1
0 ∼ Bern

(
expit(−0.2+2W 1 +0.5W 2 +0.2I(V = 1)+0.4I(V = 2))

)
,

L2
0 ∼ Bern

(
expit(−0.8+W 1 +W 2−0.3I(V = 1)−0.1I(V = 2))

)
;

At ∼



Bern
(

expit(−1+W 1 +1.3W 2 +0.1I(V = 1)+0.1I(V = 2)+1.2L1
0 +L2

0−0.7W 1×L2
0

−0.5W 2×L1
0)
)

, for t = 1,

Bern
(

expit
(
2+W 1 +W 2 +0.1I(V = 1)+0.1I(V = 2)+0.6L1

0 +1.2L2
0−0.5A−0.1t

+0.8L1
t −0.3L2

t +0.1L1
t−1−0.2L2

t−1−0.3A×L2
0 +0.2A×W 1−0.3A×L2

t

−0.2A×L1
t−1
))

, for t > 1.

L1
t ∼ Bern

(
expit

(
−1+W 1 +0.1W 2−0.5I(V = 1)−0.7I(V = 2)+L1

0 +0.3L2
0 +1.5A+0.4t

−L1
t−1−0.8A× I(V = 1)−0.2A× I(V = 2)−0.3A×W 1));

L2
t ∼ Bern

(
expit

(
−2+0.1W 1 +0.1W 2 +0.5I(V = 1)+0.5I(V = 2)+0.7L1

0 +0.2L2
0−A+0.2t

+L2
t−1−0.2A× I(V = 1)−0.4A× I(V = 2)−0.3A×L2

0
))

;

Yt ∼ Bern
(

expit
(
−1.4+1.5W 1 +W 2−0.7I(V = 1)−0.8I(V = 2)+L1

0 +L2
0 +A−L1

t −0.1L2
t

−L1
t−1−0.3L2

t−1 +A× I(V = 1)+0.8A× I(V = 2)−0.3A×L1
t

−0.4A×L1
t−1−0.3A×L2

0−0.2A×W 1)).
Once either the censoring jumps to 0 or death process jump to 1, then all subsequent
variables are encoded by carrying forward their last observation.

Our interventions of interest are A0 = a′0 and A = {(0,1,1),(1,1,1)}. Un-
der the above distribution, 0.1 < g0(A1 = 1 | ·)< 0.95, and g0(At = 1 | ·)> 0.5 for
all t ≥ 2.

We model the dose response {ρa′0,a1,v : a,v} by the MSM

mψ(a′0,a1,v)= expit(ψ1+ψ2a1+ψ3v1+ψ4v2+ψ5a1v1+ψ6a1v2)= expit(ψ ·φ(a′0,a1,v)),

where φ(a′0,a1,v) = (1,a1,v1,v2,a1v1,a1v2), with kernel weights h(a′0,a1,v) =
P0(a | v,A0 = a′0). Note that in this case, the kernel weights are assumed to be
known. The target parameter defined in (9) takes value ψ0 =(0.825,0.105,0.249,−0.046,1.474,0.960).
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5.2 Estimators

The A0 mechanism gA0 is estimated using Super Learner (van der Laan, Polley,
and Hubbard (2007)) with candidate fitting algorithms glm and nnet, adjusting
for W 1 and W 2. Using sample splitting, Super Learner selects a convex combi-
nation of the candidate algorithms which yields an estimator with minimal cross
validated risk. Theoretical results from van der Vaart, Dudoit, and van der Laan
(2006) and van der Laan, Dudoit, and Keleş (2004) showed that this estimator con-
verges to an oracle estimator. We use two estimators for gA: a correctly specified
logistic model (shorthand ’gc’), and a misspecified logistic model (’gm’) that omits
W 1,W 2,L1

0,L
2
0,L

1
t . The denominator for each Ca1

t is truncated below by 0.025. We

use two estimators for Qa′0,a1
t (P0): both use Super Learner with candidate fitting

algorithms glm and nnet, the correctly specified estimator (’Qc’) adjusts for all
baseline variables and all time-varying covariates up to one time lag, the misspeci-
fied estimator (’Qm’) only adjusts for V1 and V2 at each time t.

We consider 3 cases of model misspecification on Qa′0,a1
t and gA: all cor-

rect (’Qc, gc’); correct Qa′0,a1
t and misspecified gA (’Qc,gm’); misspecified Qa′0,a1

t
and correct gA (’Qm, gc’). For all three cases we always use the same correctly
specified gA0 . We implement the second version of the G-comp estimator in 4.3,
where the weights are given by gA0 . The G-computation estimator changes only
under specifications ’Qc, gc’ and ’Qm, gc’. The IPW estimator changes only under
specifications ’Qc, gc’ and ’Qc, gm’.

5.3 Results

The bias, variance, and coverage probability (for the influence-function-based con-
fidence intervals) are appraised using 500 repetitions.

In table 1, we see that when gA is misspecified, projected TMLE using a
correct Qa′0,a1

t reduces bias over the misspecified IPW estimator. Similarly, when
Qa′0,a1

t is misspecified, projected TMLE using the correct gA reduces bias over the
misspecified G-computation estimator. When comparing the correct vs misspec-
ified G-computation estimators, and the correct vs misspecified IPW, coefficients
involving the adjusted covariates (V1,V2) were still estimated very well by the mis-
specified estimator. Under ’Qc, gc’, the correct G-computation estimator converges
much slower than the IPW and the projected TMLE estimators. We posit that this
may be due to its sole reliance on the nonparametric likelihood estimates. As ex-
pected, G-computation has the smallest sample variance, and IPW has the largest
sample variance despite the truncated estimators for g. Under certain regularity
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conditions, the IPW and projected TMLE estimators are asymptotically linear —
table 2 tabulates the coverage probability of their Influence-Function based con-
fidence intervals. At the correct models (Qc,gc), IPW and projected TMLE are
asymptotically linear with influence function DIPW and DA0 , respectively. We used√

ˆvarDIPW
n /n and

√
ˆvarDA0

n /n to estimate their respective standard errors. As sam-
ple size grows, the actual coverage probability is quite close to the nominal cover-
age probability, with IPW having a better coverage. When one of the components is
misspecified, the projected TMLE still provides very good coverage, even though
theoretically DA0 is only part of its influence curve; we postulate that this is be-
cause the influence function based standard error estimates are large relative to the
finite sample bias. The misspecified IPW has very good coverage for the covari-
ates that were adjusted for in the misspecified model, but very bad coverage for the
confounded coefficients (A and the intercept).

6 Data Analysis Example
To illustrate the application of the projected TMLE, we revisit our earlier example:
the Sequenced Treatment Alternatives to Relieve Depression (STAR*D). After an
initial screening process, patients are enrolled into level 1 of the treatment, where
everyone was treated with citalopram. At the start of each subsequent level, if a
patient still remains in the study, then he is randomized to an option (i.e. a par-
ticular mediation) within one of his accepted treatment strategies (augmenting vs
switching). Regular follow-up visits are conducted throughout each level. At each
follow-up visit, covariates are collected, and the patient is subject to dropout, enter-
ing remission, or moving onto next level.

In the field of depression research, there is very few literature concerning
individual baseline characteristics that may differentially modify the effect of the
treatment strategies. For this data analysis example, suppose at level 2 we wish
to identify potential modifiers of the effect of switching medication vs augmenting
medication on the chances of entering remission by the end of level 2. Because
the strategies themselves are not randomized, this analysis is de facto equivalent
to that of an observational study, and our estimators will correspondingly account
for baseline and time-varying confounding. All candidate modifiers are a priori
selected through a literature review of previous START*D publications. These co-
variates are measured prior to the assignment of level 2 treatment, either at study
screening, clinical visits or exit surveys at the end of level 1. Many of these can-
didate modifiers are subject to missingness, often times due to missing visits and
surveys, therein lies the need for the tools developed here. Our study population is
the set of 1395 patients at level 2 who found medication strategies acceptable. Note

Hosted by The Berkeley Electronic Press



that because switching medication and augmenting medication are general treat-
ment strategies that encompasses various treatment options (specific medications),
for most patients these strategies are self-selected. Table 3 tabulates the events in
level 2 by strategy received. Note that there are three strategies received, but we are
only comparing switching medication vs augmenting medication. The data struc-
ture was described in detail in section 2 as part of our running example.

We consider here two types of potential effect modifiers: some are mea-
sured at screening and some are measured at exit of level 1. Table 4 summarizes
percent of missingness, range, and scale of each effect modifier. Of all the candidate
modifiers proposed by literature review, we exclude from our analysis the history
of amphetamine use at baseline and history of drug abuse, since these two variables
are missing for more than 70% of the patients. The multivariate nature of most of
the effect modifiers underscores the need for projected TMLE. If V is screening
covariate, W includes all demographic variables and medical and psychiatric his-
tory prior to enrollment; if V is level 1 exit covariate, then we add to W variables
summarizing number of visits, adherence to study protocol, and time spent in level
1.

The MSM is a generalized linear model with logit link. The linear predictor
φ(a′0,a1,v)= (1,a1,v1, . . . ,vk,a1× v1, . . . ,a1× vk) and ψ ≡

(
ψ1,ψ2,ψ3,1, . . . ,ψ3,k,ψ4,1, . . . ,ψ4,k

)
∈

R2k+2 for the categorical V with k+1 categories, and φ(a′0,a1,v)=
(
1,a1,v,v2,a1× v,a1× v2)

and ψ ≡ (ψ1,ψ2,ψ3,1,ψ3,2,ψ4,1,ψ4,2) ∈ R6 for the semi-continuous V . The kernel
weights are h(a′0,a1,V ) =P0(A1 = a1 |V ), to be estimated using Super Learner with
fitting algorithms glm, knnreg, nnet and bayesglm. The Super Learner will
use 10-fold cross validation to select the best weighted combination of these fitting
algorithms to estimate h(a′0,a1,V ). The initial estimators of g and Qa′0,a1

t adjust for
all baseline covariates and time-varying covariates with up to 2 time lag (each co-
variate is coupled with its missingness indicator). We used Super Learner with the
fitting algorithms glm, knnreg, nnet and bayesglm; each fitting algorithm
is coupled with each of the following screening algorithms: Spearman correlation
tests at significance levels 0.01, 0.05, 0.1, 0.2; ranking p-values from the correlation
tests and take the top k variables, where k ranges from 10 variables up to 30% of the
total number of variables being considered, in increments of 20. The Super Learner
selects the best linear combination of all screening-fitting couples.

The goal of the analysis is to identify potential effect modifiers from a pool
of candidate pre-treatment covariates. Our strategy is to measure the treatment
heterogeneity for each of these covariates using an MSM, and then apply multiple
hypothesis testing methods to identify those for which the treatment heterogeneity
is significant. A common way to assess treatment heterogeneity across strata of V
is to test whether the coefficients of the interaction terms ψ4 = (ψ4,1, . . .ψ4,k) are
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different from 0. We perform the corresponding Wald test in table 5, with the null
hypothesis ψ4 = 0 and test statistics Tn = ψ4,n

>Σ−1
n ψ4,n ∼ χ2

k , where ψ4,n is the
A0−T MLE estimator, Σn = ˆCov(DA0

ψ4)/n, and k is the number of interaction terms.
The false discovery rate (FDR) of the simultaneous comparisons are controlled at
0.05 with the Benjamini-Hochberg procedure.

Since these candidate covariates differ in their type (semi-continuous vs bi-
nary vs multiple categories), the corresponding MSM parameters are of different
dimensions, we also consider the measure of treatment heterogeneity

β (ψ)≡max
v

`OR(v;ψ)−min
v

`OR(v;ψ),

where

`OR(v;ψ) = log m(1,v;ψ)
1−m(1,v;ψ) − log m((0,v;ψ)

1−m(0,v;ψ) =

{
ψ2 +ψ4,1v1 + · · ·+ψ4,kvk, for categorical V ,
ψ2 +ψ4,1v+ψ4,2v2, for semi-continuous V .

This measure quantifies the most change in log odds ratio between any two val-
ues of V . Consider the null hypothesis H0 : β (ψ0) = 0. Using projected TMLE,
we obtain an estimator βn = β (ψ pT MLE

n ) of β0 for each V . An application of the
functional delta Method, with the covariance matrix Σn of the estimated influence
function DA0

n , yields a standard error estimate SEn for βn. We use the test statistics
Tn = βn/SEn ∼ N(0,1). The results of the analysis are summarized in table 6. In-
terestingly, the two approaches yield almost all the same potential effect modifiers.

Using our methods, we identified six factors, two at screening and four
at level 1 exit, that modified the comparative treatment effect of augmenting vs
switching medication. These effect modifiers are: prior suicide attempts, atypical
depression, level 1 side-effect frequencies and burden (impairment), SF-36 phys-
ical functionality, and quality of life at level 1 exit. In general, the heterogeneity
of the treatment effects are most pronounced for the level 1 exit modifiers than for
those from screening, indicating opportunities for close monitoring and medication
management.

There has only been one publication that addressed the heterogeneous treat-
ment effects between switching and augmenting in level 2 treatment in STAR*D
(Ellis, Dusetzina, Hansen, Gaynes, Farley, and Stumer (2013)). The authors em-
ployed propensity score and weighting methods to examine heterogeneity of the
treatment effect among the treated (medication augmentation) through stratifica-
tion by propensity score decile. This approach does not explicitly identify factors
contributing to heterogeneity. Missing data is less problematic in this case, and is
handled by multiple imputation.
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Table 1: Results: Bias, Variance, MSE for estimators of ψ0. Qc = correct Qa′0,a1
t ,

Qm= misspecified Qa′0,a1
t , gc=correct gA, gm=misspecified gA.

ψ Intercept A V1 V2 A×V1 A×V2
n 500 2000 500 2000 500 2000 500 2000 500 2000 500 2000
Bias
Qc, gc
Gcomp 0.334 0.364 0.606 0.603 0.82 0.818 0.560 0.552 1.377 1.390 0.906 0.904
IPW 0.016 0.017 0.056 0.063 0.169 0.131 0.070 0.073 0.402 0.117 0.083 0.099
projected TMLE 0.036 0.001 0.021 0.002 0.078 0.054 0.014 0.008 0.519 0.018 0.002 0.006
Qc, gm
IPW 0.492 0.512 0.831 0.836 0.094 0.131 0.075 0.072 0.638 0.160 0.026 0.004
projected TMLE 0.022 0.033 0.029 0.028 0.069 0.029 0.02 0.006 0.499 0.015 0.008 0.008
Qm, gc
Gcomp 0.751 0.773 1.383 1.353 0.66 0.640 0.431 0.414 1.089 1.069 0.752 0.727
projected TMLE 0.01 0.024 0.04 0.064 0.123 0.124 0.048 0.062 0.462 0.103 0.041 0.081
Variance
Qc, gc
Gcomp 0.082 0.019 0.112 0.023 0.137 0.033 0.084 0.017 0.038 0.008 0.022 0.005
IPW 0.134 0.035 0.226 0.051 0.939 0.118 0.353 0.068 9.605 0.235 0.555 0.112
projected TMLE 0.113 0.029 0.187 0.041 0.734 0.091 0.279 0.053 9.149 0.169 0.398 0.092
Qc, gm
IPW 0.114 0.030 0.196 0.045 0.897 0.093 0.259 0.056 9.298 0.184 0.418 0.094
projected TMLE 0.097 0.026 0.16 0.036 0.718 0.078 0.21 0.048 9.062 0.141 0.319 0.078
Qm, gc
Gcomp 0.095 0.024 0.146 0.035 0.147 0.045 0.091 0.024 0.191 0.057 0.071 0.025
projected TMLE 0.123 0.031 0.201 0.044 0.839 0.105 0.316 0.057 9.424 0.207 0.464 0.096
MSE
Qc, gc
Gcomp 0.195 0.151 0.479 0.387 0.809 0.701 0.397 0.322 1.934 1.941 0.842 0.822
IPW 0.134 0.035 0.229 0.054 0.967 0.135 0.358 0.073 9.767 0.248 0.562 0.122
projected TMLE 0.115 0.029 0.187 0.041 0.740 0.094 0.279 0.053 9.419 0.17 0.398 0.092
Qc, gm
IPW 0.357 0.292 0.887 0.744 0.906 0.111 0.264 0.062 9.704 0.21 0.419 0.094
projected TMLE 0.097 0.027 0.16 0.036 0.723 0.079 0.210 0.048 9.311 0.141 0.319 0.078
Qm, gc
Gcomp 0.66 0.621 2.059 1.865 0.583 0.455 0.277 0.195 1.377 1.2 0.6378 0.554
projected TMLE 0.123 0.031 0.203 0.048 0.854 0.12 0.318 0.061 9.637 0.218 0.466 0.103
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Table 2: Coverage Probability for the Asymptotically Linear Estimators, using
Influence-Function based Confidence Interval. Qc = correct Qa′0,a1

t , Qm= misspeci-
fied Qa′0,a1

t , gc=correct gA, gm=misspecified gA.

Intercept A V1 V2 A×V1 A×V2
n 500 2000 500 2000 500 2000 500 2000 500 2000 500 2000
Qc, gc
IPW 0.948 0.946 0.944 0.940 0.966 0.930 0.940 0.952 0.912 0.950 0.956 0.960
projected TMLE 0.934 0.932 0.934 0.942 0.936 0.924 0.918 0.946 0.906 0.942 0.942 0.938
Qc, gm
IPW 0.698 0.146 0.556 0.022 0.956 0.928 0.958 0.958 0.928 0.942 0.958 0.964
projected TMLE 0.964 0.956 0.954 0.956 0.984 0.984 0.972 0.986 0.932 0.954 0.966 0.964
Qm, gc
projected TMLE 0.942 0.930 0.942 0.948 0.956 0.930 0.936 0.954 0.896 0.942 0.954 0.958

Table 3: Level 2 events by acceptable strategy received
Med-Sw Med-Aug any CT

Received 727 565 103
Success 257 (35%) 287 (51%) 53 (51%)

No Success 227 (32%) 132 (23%) 22 (21%)
Dropout 243 (33%) 146 (26%) 28 (27%)
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Table 4: Candidate effect modifiers of interest for level 2. Candidates with more
than 50% missing in the study population will be discarded from the analysis.

% missing type (# of categories, or range of
semi-continuous variable)

At screening
race 0 Categorical (3)
years of schooling completed 0 Semi-continuous (0,27)
employment status 0 Categorical (3)
education level 0 Categorical (3)
attempted suicide 0 Categorical (2)
duration of current major depression episode (in units of
6 months)

1 Semi-continuous (0,111)

AxI: Amphetamine 73 (will not use) Categorical (2)
history of drug abuse 76 (will not use) Categorical (2)
# of Cumulative Illness Rating (CIRS) categories 0 Semi-continuous (0,12)
CIRS severity score 0 Semi-continuous (0,4)
Have AxI Obsessive-Compulsive Disorder 1 Categorical (2)
Have AxI Panic Disorder 1 Categorical (2)
Have AxI Post Traumatic Stress Disorder 2 Categorical (2)
Have AxI Agoraphobia 1 Categorical (2)
Have AxI Social Anxiety Disorder 2 Categorical (2)
Have AxI Generalized Anxiety Disorder 2 Categorical (2)
Anxious Depression at screening 6 Categorical (2)
Atypical Depression at screening 5 Categorical (2)
Melancholic Depression at screening 5 Categorical (2)
At level 1 exit
Maximum Side Effects 1 Categorical (7)
SF-36 Physical Health (in units of 5) 23 Semi-continuous (0,12)
SF-36 Mental Health (in units of 5) 23 Semi-continuous ((0,12)
Quality of Life 23 Semi-continuous (0,98)
Side effect burden 1 Categorical (7)
Quick Inventory of Depressive Symptom (QIDS) total
score (self-reported)

1 Semi-continuous (0,27)

Hamilton rating scale for depression (17-time) score 12 Semi-continuous (0,43)
IDS (30-item) score 13 Semi-continuous (0,74)
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Table 5: Data Analysis Results: Multivariate Wald Test. ψ4 = (ψ4,1, . . .ψ4,k) are
the coefficients of the interaction terms in the MSM; if V is semi-continuous, in-
teraction terms are ψ4 · (v,v2), if V is categorical with k+ 1 categories, interaction
terms are ψ4 ·(v1, . . . ,vk). H0 : ψ4 = 0. Tn = ψ4,n

>Σ−1
n ψ4,n ∼ χ2

k , where ψn is given
by projected TMLE, and Σn is the corresponding covariance estimator based on
the covariance matrix of the projected-IC. Control false discovery rate at 0.05 with
Benjamini-Hochberg procedure

P-value reject ψ4 SE(ψ4)
At screening
race 4.97e-01 F (-1.68e-01, -4.62e-01) (2.62e-01, 4.27e-01)
years of schooling completed 2.89e-01 F ( 2.50e-01, -1.10e-02) (1.71e-01, 7.07e-03)
employment status 1.50e-01 F ( 3.92e-01, -3.94e-01) (2.30e-01, 5.89e-01)
education level 1.13e-01 F ( 4.89e-01, -5.69e-03) (3.13e-01, 3.80e-01)
attempted suicide 1.80e-05 T (-1.10e+00) (2.56e-01)
duration of current major depres-
sion episode (in units of 6 months)

4.44e-02 F ( 1.92e-02, -9.41e-04) (2.78e-02, 5.59e-04)

# of Cumulative Illness Rating
(CIRS) categories

2.05e-02 F ( 3.40e-01, -4.51e-02) (1.42e-01, 1.65e-02)

CIRS severity score 8.09e-02 F (-6.21e-01, 3.65e-01) (4.41e-01, 1.85e-01)
Have AxI Obsessive-Compulsive
Disorder

5.20e-01 F (-1.86e-01) (2.89e-01)

Have AxI Panic Disorder 1.17e-01 F ( 5.53e-01) (3.53e-01)
Have AxI Post-Traumatic Stress
Disorder

8.78e-01 F ( 3.86e-02) (2.51e-01)

Have AxI Agoraphobia Disorder 9.73e-01 F ( 1.04e-02) (3.12e-01)
Have AxI Social Anxiety Disorder 5.15e-01 F ( 1.81e-01) (2.78e-01)
Have AxI Generalized Anxiety Dis-
order

1.90e-01 F ( 3.68e-01) (2.81e-01)

Anxious Depression at screening 6.89e-01 F (-9.17e-02) (2.3e-01)
Atypical Depression at screening 4.15e-04 T ( 9.79e-01) (2.77e-01)
Melancholic Depression at screen-
ing

1.58e-01 F (-3.48e-01) (2.46e-01)

At level 1 exit
Maximum side effects 6.46e-09 T ( 5.53e-01, 8.10e-02,

1.85e+00, -2.62e-01,
1.39e+00, 5.88e-01)

(5.27e-01, 5.25e-01, 4.59e-
01, 5.02e-01, 5.20e-01,
5.65e-01)

SF-36 Physical Health (in units of
5)

6.83e-09 T ( 2.55e+00, -1.74e-01) (4.17e-01, 2.91e-02)

SF-36 Mental Health (in units of 5) 1.36e-01 F ( 5.55e-01, -5.48e-02) (2.78e-01, 2.86e-02)
Quality of Life 4.84e-04 T (-7.53e-02, 5.35e-04) (3.12e-02, 3.46e-04)
Side effect burden 0.00e+00 T ( 2.91e-01, 5.18e-01, -6.26e-

02, 1.29e+00, 2.73e+00, -
5.85e-01)

(2.00e-03, 2.41e-03, 2.60e-
03, 2.50e-03, 1.96e-03,
1.21e-03)

Quick Inventory of Depressive
Symptom (QIDS) to- tal score
(self-reported)

7.61e-02 F ( 2.82e-01, -1.03e-02) (1.24e-01, 4.62e-03)

Hamilton rating scale for depres-
sion (17-item) score

4.83e-02 F ( 1.16e-01, -1.88e-03) (8.45e-02, 2.17e-03)

IDS (30 item) score 1.27e-01 F ( 5.06e-02, -4.75e-04) (4.47e-02, 6.72e-04)
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Table 6: Data Analysis Results: β0 =maxv`OR(v;ψ0)−minv`OR(v;ψ0), H0 : β0 = 0.
Tn = βn/SEn ∼N(0,1), where ψn given by projected TMLE. The standard error es-
timate ˆSE(βn) is computed using on the variance of the projected-IC and the func-
tional delta method. Control false discovery rate at 0.05 with Benjamini-Hochberg
procedure

P reject βn ˆSE(βn) argminv `OR(v;ψ0) argmaxv `OR(v;ψ0)
At screening
race 2.8e-01 F 4.6e-01 4.3e-01 3.0e+00 2.0e+00
years of schooling com-
pleted

1.2e-01 F 2.7e+00 1.7e+00 2.7e+01 1.1e+01

employment status 1.9e-01 F 7.9e-01 6.0e-01 3.0e+00 2.0e+00
education level 9.2e-02 F 4.9e-01 2.9e-01 3.0e+00 2.0e+00
attempted suicide 1.8e-05 T 1.1e+00 2.6e-01 1.0e+00 0.0e+00
duration of current major de-
pression episode (in units of
6 months)

3.3e-02 F 9.6e+00 4.5e+00 1.1e+02 1.0e+01

# of Cumulative Illness Rat-
ing (CIRS) categories

5.9e-03 T 3.1e+00 1.1e+00 1.2e+01 3.8e+00

CIRS severity score 2.7e-02 F 3.6e+00 1.6e+00 8.5e-01 4.0e+00
Have AxI Obsessive-
Compulsive Disorder

5.2e-01 F 1.9e-01 2.9e-01 1.0e+00 0.0e+00

Have AxI Panic Disorder 1.2e-01 F 5.5e-01 3.5e-01 0.0e+00 1.0e+00
Have AxI Post-Traumatic
Stress Disorder

8.8e-01 F 3.9e-02 2.5e-01 0.0e+00 1.0e+00

Have AxI Agoraphobia Dis-
order

9.7e-01 F 1.0e-02 3.1e-01 0.0e+00 1.0e+00

Have AxI Social Anxiety
Disorder

5.2e-01 F 1.8e-01 2.8e-01 0.0e+00 1.0e+00

Have AxI Generalized Anx-
iety Disorder

1.9e-01 F 3.7e-01 2.8e-01 0.0e+00 1.0e+00

Anxious Depression at
screening

6.9e-01 F 9.2e-02 2.3e-01 1.0e+00 0.0e+00

Atypical Depression at
screening

4.2e-04 T 9.8e-01 2.8e-01 0.0e+00 1.0e+00

Melancholic Depression at
screening

1.6e-01 F 3.5e-01 2.5e-01 1.0e+00 0.0e+00

At level 1 exit
Maximum side effects 8.1e-09 T 2.1e+00 3.7e-01 4.0e+00 3.0e+00
SF-36 Physical Health (in
units of 5)

9.0e-10 T 9.3e+00 1.5e+00 0.0e+00 7.3e+00

SF-36 Mental Health (in
units of 5)

1.0e-01 F 2.6e+00 1.6e+00 1.2e+01 5.1e+00

Quality of Life 1.4e-04 T 2.6e+00 7.0e-01 7.0e+01 0.0e+00
Side effect burden 0.0e+00 T 3.3e+00 2.3e-03 6.0e+00 5.0e+00
Quick Inventory of Depres-
sive Symptom (QIDS) to- tal
score (self-reported)

2.7e-02 F 1.9e+00 8.7e-01 0.0e+00 1.4e+01

Hamilton rating scale for de-
pression (17-item) score

2.0e-02 F 1.8e+00 7.6e-01 0.0e+00 3.1e+01

IDS (30 item) score 5.1e-02 F 1.3e+00 6.9e-01 0.0e+00 5.3e+01
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7 Summary
In this work, we studied causal effect modification by a counterfactual modifier.
The tools developed here are applicable in situations where the effect modifier of
interest may be better cast as counterfactual variables. Examples of such situations
include the study of time-varying effect modification, or the study of baseline ef-
fect modification with modifiers that are missing at random. We established the
efficient influence function (EIC) for the corresponding marginal structural model
parameters which provides the semiparametric efficiency bound for all the asymp-
totically linear estimators. This efficient influence function is also doubly robust
in that it remains an unbiased estimating function if either 1) the outcome expecta-
tions and the modifier density, or 2) the treatment and censoring mechanisms, are
consistently estimated. However, in applications with high-dimensional V , we saw
that it may be difficult to fully utilize the EIC without potentially compromising
consistency. To solve this problem, we presented a projected influence function
(projected IC), which equals the EIC in a model where the missingness mechanism
(or more generally, pre-modifier intervention, A0) is known. Though not fully ef-
ficient under the larger model, this projected IC is robust against misspecification
of the outcome models or the treatment mechanisms, whenever the missingness
mechanism is consistently estimated. We presented two TMLE estimators using
the EIC and the projected IC which also inherit the corresponding robustness prop-
erties. We also described an IPW estimator that is unbiased if the intervention
probabilities are consistently estimated, and a non-targeted G-computation estima-
tor that is unbiased if the outcome expectations and either the modifier density or
the missingness mechanism are consistently estimated. Under standard regularity
and empirical process conditions, the two TMLE estimators and the IPW estimators
are asymptotically linear, thereby allowing Central Limit Theorem based standard
error estimates. Moreover, the full TMLE estimator using the EIC will be semipara-
metric efficient if all the components of the likelihood are consistently estimated.
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9 Appendix

9.1 Proof of remark 1

The first equality in the remark follows from definition of Ψ(P) and choice of
mψ(a′0,a1,v), the third equality is trivial. We only show the second one.

∑
(a′0,a1,v)∈A ′×A×V

h(a′0,a1,v)φ(a
′
0,a1,v)γa′0,v

(P)

{
ηa′0,a1,v(P)

γa′0,v
(P)

−mΨ(P)(a
′
0,a1,v)

}
=−EP ∑

(a′0,a1,v)∈A ′×A×V

h(a′0,a1,v)φ(a
′
0,a1,v)

{
QV (v | A0 = a′0,W )Qa′0,a1

t=0 (v,W )−ηa′0,a1,v(P)
}

+EP ∑
(a′0,a1,v)∈A ′×A×V

h(a′0,a1,v)φ(a
′
0,a1,v)Q

V (v | A0 = a′0,W )
{

Qa′0,a1
t=0 (v,W )−mΨ(P)(a

′
0,a1,v)

}
The first-line in the right-hand-side of the above equation is zero by definition of

ηa′0,a1,v(P).

9.2 Proof of lemma 1: Efficient influence function for Ψ(P) un-
der M

In this appendix, we derive the efficient influence function at P of the map Ψ : M →
Rd . For each P ∈M , let HP denote the Hilbert space of 1-dimensional mean zero
measurable functions of O with finite variance, endowed with the covariance inner
product. For an r∈HP, define a 1-dimensional parametric submodel {Pr(α) : |α|<
1/‖r‖∞}, through P at α = 0, given by dPr(α)

dP = 1+αr(O). Since we are working
under a saturated model M , this submodel is indeed contained in M . We shall
consider the the class of all such 1-dimensional submodels indexed by HP.

For a given D ∈H d
P , we define the vector inner product EP (D× r) as the

vector of the component-wise inner products
(
EP
(
D j× r

)
: j = 1 . . .d

)
. We wish

to how that D∗ satisfies

dΨ(Pr(α))

dα

∣∣∣∣
α=0

= M (Ψ(P),P)−1 EP (D∗× r) .

From definition of the maps Ψ, γa′0,v
and ηa′0,a1,v, and our choice of working

model mψ(a′0,a1,v), we know that at each Pr(α)

0= ∑
(a′0,a1,v)∈A ′×A×V

γa′0,v
(Pr(α))h(a′0,a1,v)φ(a

′
0,a1,v)

[
ηa′0,a1,v(Pr(α))

γa′0,v
(Pr(α))

−mΨ(Pr(α))

(
a0,a′,v

)]
.

(18)
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We perform an implicit differentiation with respect to α on the above equation, at
α = 0, to obtain the equality

dΨ(Pr(α))

dα

∣∣∣∣
α=0
× (19) ∑

(a′0,a1,v)∈A ′×A×V

γa′0,v
(P)h(a′0,a1,v)φ(a

′
0,a1,v)mΨ(P)(a

′
0,a1,v)

[
1−mΨ(P)(a

′
0,a1,v)

]
φ(a′0,a1,v)

>


= ∑

(a′0,a1,v)∈A ′×A×V

h(a′0,a1,v)φ(a
′
0,a1,v)

{
dηa′0,a1,v(Pr(α))

dα

∣∣∣∣∣
α=0

−

(
dγa′0,v

(Pr(α))

dα

∣∣∣∣∣
α=0

)
mΨ(P)(a

′
0,a1,v)

}
.

(20)

Next, we proceed to express
dγa′0,v

(Pr(α))

dα

∣∣∣∣
α=0

and
dηa′0,a1,v

(Pr(α))

dα

∣∣∣∣
α=0

as EP(Dγa′0,v
×

r) and EP(Dρa′0,a1,v
× r), respectively, for some functions Dγa′0,v

and Dηa′0,a1,v
belong-

ing to the Hilbert space HP.
For convenience of indexing, for a given vector `K , we shall use the short

hand ha′0,a1,v
t = (A0 = a′0,V = v,Lt−1 = `t−1,At = at), for t = 1, . . . ,K, and ha′0,a1,v

t =
(A0 = a′0,V = v) for t = 0. From definition of Pr(α), it follows that

Pr(α)(W ) = P(W )(1+αEP(r |W )) ,

Pr(α)(v | A0 = a′0,W ) = P(v | A0 = a′0,W )
1+αEP(r |V = v,A0 = a′0,W )

1+αEP(r | A0 = a′0,W )
,

and Pr(α)(lt |W,Ha′0,a1,v
t ) = P(lt |W,Ha′0,a1,v

t )
1+αEP

(
r|lt ,H

a′0,a1,v
t

)
1+αEP

(
r|H

a′0,a1,v
t

) .

Proposition 1. For a given v ∈ V ,
dγa′0,v

(Pr(α))

dα

∣∣∣∣
α=0

= EP(Dγa′0,v
× r), where

Dγa′0,v
(P) =

I(A0 = a′0)
gA0(1 |W )

(
I(V = v)−QV (v | A0 = a′0,W )

)
+QV (v | A0 = a′0,W )− γa′0,v

(P).

(21)
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Proof.

dγa′0,v
(Pr(α))

dα

∣∣∣∣∣
α=0

= lim
α→0

γa′0,v
(Pr(α))− γa′0,v

(P)

α
= lim

α→0

1
α

∫
W

{
P(W )P(v | A0 = a′0,W )α

EP(r | v,A0 = a′0,W )−EP(r | A0 = a′0,W )+EP(r |W )+αEP(r |W )EP(r | v,A0 = a′0,W )

1+αEP(r | A0 = a′0,W )

}
=
∫

W
P(W )P(vmidA0 = a′0,W )

{
EP(rI(V = v) | A0 = a′0,W )−EP(r | A0 = a′0,W )+EP(r |W )

}
= EP

{(
I(A0 = a′0
gA0(1 |W )

(
I(V = v)−P(V | A0 = a′0,W )

)
+QV (v | A0 = a′0,W )

)
× r(O)

}
= EP

(
Dγv(P)× r(O)

)
.

In obtaining the last equality, we note that centering the left factor of the integrand by
γa′0,v

(P) does not change the expression because EP(γa′0,v
(P)r(O)) = γa′0,v

(P)EP(r(O)) = 0
by definition of r. It is straightforward to check that indeed EPD∗γa′0,v

(P) = 0. Moreover,

under our saturated model D∗γa′0,v
(P) is in fact in the tangent space. Therefore, it is indeed

the efficient influence curve. This concludes the proof of proposition 1.

Proposition 2. For a given a ∈A , v ∈ V ,
dηa′0,a1,v

(Pr(α))

dα

∣∣∣∣
α=0

= EP(Dηa′0,a1,v
× r), where

Dηa′0,a1,v
(P)

≡
I(A0 = a′0)
gA0(1 |W )

I(V = v)
K

∑
t=1

Ca1
t

{
Qa′0,a1

t+1 (Lt ,v,W )−Qa′0,a1
t (Lt−1,v,W )

}
+

I(A0 = a′0)
gA0(1 |W )

I(V = v)
{

Qa′0,a1
t=1 (L0,v,W )−Qa′0,a1

t=0 (v,W )
}

+
I(A0 = a′0)
gA0(1 |W )

Qa′0,a1
t=0 (v,W )

{
I(V = v)−QV (v | A0 = a′0,W )

}
+QV (v | A0 = a′0,W )Qa′0,a1

t=0 (v,W )−ηa′0,a1,v(P). (22)

where with Ca1
t = I(At=at)

∏
t
j=1 gA(a j|A j−1=a j−1,L j−1,V,A0=a′0,W
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Proof.

dηa′0,a1,v(Pr(α))

dα

∣∣∣∣∣
α=0

= lim
α→0

ηa′0,a1,v(Pr(α))−ηa′0,a1,v(P)

α

= lim
α→0

1
α

∫
w1,l0,`K

yKP(W )P(vmidA0 = a′0,W )
K

∏
j=0

P(l j | w1,h
a,v
j )α

×

{
∑

K
t=0 EP(r | lt ,w1,h

a′0,a1,v
t )+EP(r | v,A0 = a′0,W )+EP(r |W )

1+αM′P(w1, l0, `K)

−∑
K
t=0 EP(r | w1,h

a′0,a1,v
t )−EP(r | A0 = a′0,W )+αMP(w1, l0, `K)

1+αM′P(w1, l0, `K)

}

=
∫

w1,l0,`K

yKP(w1)P(vmidA0 = a′0,w1)
K

∏
j=0

P(l j | w1,h
a,v
j )

×
{ K

∑
t=0

EP(r | lt ,w1,h
a′0,a1,v
t )−

K

∑
t=0

EP(r | w1,h
a′0,a1,v
t )+EP(r | v,A0 = a′0,w1)

−EP(r | A0 = a′0,w1)+EP(r | w1)
}

= EP

{
I(A0 = a′0)
gA0(1 |W )

I(V = v)
K

∑
t=0

I(At = at)

∏
t
j=1 gA(at | parents(at))

×
[
Qa′0,a1

t+1 (`t ,v,w1)−Qa′0,a1
t (`t−1,v,w1)

]
× r(O)

}

+EP

{
I(A0 = a′0)
gA0(1 |W )

Qa′0,a1
t=0 (V = v,W )

[
I(V = v)−QV (v | A0 = a′0,W )

]
× r(O)

}
+EP

{
QV (v | A0 = a′0,W )Qa′0,a1

t=0 (V = v,W )× r(O)
}

= EP(Dηa′0,a1,v
× r)

In the first equality, MP and M′P are shorthand for the remaining terms in the expansion of
the products. This concludes the proof of proposition 2

Now, we derive the efficient influence function for Ψ at P ∈M . From proposition
1 and 2, after some simplifications, we conclude that the right-hand-side of (20) can be
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written as

∑
(a′0,a1,v)∈A ′×A×V

h(a′0,a1,v)φ(a
′
0,a1,v)

{
dηa′0,a1,v(Pr(α))

dα

∣∣∣∣∣
α=0

−

(
dγa′0,v

(Pr(α))

dα

∣∣∣∣∣
α=0

)
mΨ(P)(a

′
0,a1,v)

}
= ∑

(a′0,a1,v)∈A ′×A×V

h(a′0,a1,v)φ(a
′
0,a1,v)

{
EP(Dηa′0,a1,v

(P)× r)−EP(Dγv(P)× r)mΨ(P)(a
′
0,a1,v)

}

= EP

 ∑
(a′0,a1,v)∈A ′×A×V

h̃(a′0,a1,v)
[
Dηa′0,a1,v

(P)−Dγv(P)mΨ(P)(a
′
0,a1,v)

]
× r(O)


= EP {D∗(Q,g,Ψ(P))× r} ,

where

D∗(Q,g,ψ) =
I(A0 = a′0)
gA0(1 |W ) ∑

a
h̃(a′0,a1,V )

K

∑
t=1

Ca1
t

{
Qa′0,a1

t+1 (Lt ,V,W )−Qa′0,a1
t (Lt−1,V,W )

}
+

I(A0 = a′0)
gA0(1 |W ) ∑

a
h̃(a′0,a1,V )

{
Qa′0,a1

t=1 (L0,V,W )−Qa′0,a1
t=0 (V,W )

}
+

I(A0 = a′0)
gA0(1 |W ) ∑

(a′0,a1,v)∈A ′×A×V

{
h̃(a′0,a1,V )

[
Qa′0,a1

t=0 (v,W )−mψ(a′0,a1,v)
]

×
(
I(V = v)−QV (v | A0 = a′0,W )

)}
+ ∑

(a′0,a1,v)∈A ′×A×V

h̃(a′0,a1,V )QV (v | A0 = a′0,W )
{

Qa′0,a1
t=0 (v,W )−mψ(a′0,a1,v)

}
.

To emphasize the role of P, we shall write D∗(Q,g,Ψ(P)) as D∗(P). To see that D∗(P)
has zero expectation, we first note that all but the last line are expressed as an expression
times a centered function with respect to P, therefore they will have zero expectation under
P; secondly, from remark 1, the last line also has zero expectation under P. Since we are
operating under a saturated model, each component of D∗(P) is in the tangent space, hence
it is in fact the efficient influence curve.

To finish the proof of first part of lemma 1, it suffices to see from (20) that the
normalizing quantity is given by the inverse of

∂U(Ψ(P),P)
∂Ψ(P)

= ∑
(a′0,a1,v)∈A ′×A×V

γa′0,v
(P)h(a′0,a1,v)φ(a

′
0,a1,v)mΨ(P)(a

′
0,a1,v)

[
1−mΨ(P)(a

′
0,a1,v)

]
φ(a′0,a1,v)

>

=
∫

W
P(W )∑

v,a
QV (v | A0 = a′0,W )h(a′0,a1,v)φ(a

′
0,a1,v)mΨ(P)(a

′
0,a1,v)

[
1−mΨ(P)(a

′
0,a1,v)

]
φ(a′0,a1,v)

>

= P
{

I(A0 = a′0)
gA0(1 |W ) ∑

a
h(a′0,a1,v)φ(a

′
0,a1,V )mΨ(P)(a

′
0,a1,v)

[
1−mΨ(P)(a

′
0,a1,v)

]
φ(a′0,a1,V )>

}
= M (Ψ(P),P)
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To prove the robustness statement, we first consider the case Q(P) = Q0. All but
the last line in D∗(Q0,g(P),ψ0) are centered about a component of Q0, therefore they will
have expectation zero under P0. On the other hand, the last line in P0D∗(Q0,g(P),ψ0) is∫

w1
P0(w1)∑(a′0,a1,v)∈A ′×A×V P0(v |A0 = a′0,w1)h̃(a′0,a1,v)

{
ηa′0,a1,v

(Q0)

γa′0,v
(Q0)

−mψ0(a
′
0,a1,v)

}
, which

equals zero by definition of ψ0.
Next, we consider the case g(P) = g0. By telescoping the sums in (13) and applying

definition of Qa′0,a1
t=0 (P0), we obtain

P0D∗(Q(P),g0,ψ0)

= EP0

 ∑
(a′0,a1,v)∈A ′×A×V

P0(V = v | (A0 = a′0,W )h̃(a′0,a1,v)Q
a′0,a1
t=0 (P0)(V = v,W )


−EP0

 ∑
(a′0,a1,v)∈A ′×A×V

P0(V = v | (A0 = a′0,W )h̃(a′0,a1,v)mψ0(a
′
0,a1,v)

 ,

which equals 0 by remark 1.

9.3 Proof of lemma 2

To see that DA0 is a score, up to a normalizing matrix, on the model where gA0 is known, we
repeat the steps in section 9.2, but this time we only consider the the class of 1-dimensional
submodels indexed by

RP =
{

r = r′−EP(r′ | A0,W )+EP(r′ |W )−EP(r′) : r′ ∈HP
}
⊂HP.

It is straight forward to verify that EP(r | A0 = a′0,W ) = 0 = EP(r |W ) for such r ∈ RP.
Therefore, Dγa′0,v

(P) in this case becomes I(A0=a′0)
gA0 (1|W )

I(V = v)− γa′0,v
(P) and

Dηa′0,a1,v
(P) =

I(A0 = a′0)
gA0(1 |W )

I(V = v)
K

∑
t=1

Ca1
t

{
Qa′0,a1

t+1 (Lt ,v,W )−Qa′0,a1
t (Lt−1,v,W )

}
+

I(A0 = a′0)
gA0(1 |W )

I(V = v)
{

Qa′0,a1
t=1 (L0,v,W )−Qa′0,a1

t=0 (v,W )
}

+
I(A0 = a′0)
gA0(1 |W )

I(V = v)Qa′0,a1
t=0 (v,W )−ηa′0,a1,v.

The rest is straightforward from equation (18).
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To see that PDA0(Q,g,Ψ(P)) = 0, it suffices to show that PDA0
W (Q,g,Ψ(P)) = 0:

P
{

I(A0 = a′0)
gA0(1 |W ) ∑

a
h(a′0,a1,V )φ(a′0,a1,V )

[
Qa′0,a1

t=1 (L0,V,W )−mΨ(P)(a
′
0,a1,V )

]}
= P

{
I(A0 = a′0)
gA0(1 |W ) ∑

a
h(a′0,a1,V )φ(a′0,a1,V )

{
Qa′0,a1

t=1 (L0,V,W )−Qa′0,a1
t=0 (V,W )

}}
+P

{
I(A0 = a′0)
gA0(1 |W ) ∑

a
h(a′0,a1,V )φ(a′0,a1,V )

[
Qa′0,a1

t=0 (V,W )−mΨ(P)(a
′
0,a1,V )

]}
.

The first term in the right hand side of the equality is zero by definition of Qa′0,a1
1 ; the second

term is zero by remark 1. There DA0 is a valid estimating function.
To see its robustness properties under gA0 = gA0(P0), first consider the case of

Qa′0,a1
t (P) = Qa′0,a1

t (P0) for t = 1, . . . ,K. Trivially, P0D∗t (Q,g) = 0 for each t ≥ 1 by defi-
nition of Qa′0,a1

t . On the term DA0
W , we have

P0

{
I(A0 = a′0)

gA0(P0)(1 |W ) ∑
a

h̃(a′0,a1,V )
[
Qa′0,a1

t=1 (P0)(L0,V,W )−mψ0(a
′
0,a1,V )

]}
= P0

{
∑
v

QV (P0)(v | A0 = a′0,W )∑
a

h̃(a′0,a1,V )
[
Qa′0,a1

t=0 (P0)(V = v,W )−mψ0(a
′
0,a1,V )

]}
= 0,

per definition of Qa′0,a1
t=0 and ψ0.

Next, we consider the case of g(P) = g0. By telescoping the sums in (14) and
applying definition of Qa′0,a1

t=0 , we again obtain

P0DA0(Q,g0,ψ0) = P0

 ∑
(a′0,a1,v)∈A ′×A×V

P0(V = v | (A0 = a′0,W )h̃(a′0,a1,v)Q
a′0,a1
t=0 (P0)(V = v,W )


−P0

 ∑
(a′0,a1,v)∈A ′×A×V

P0(V = v | (A0 = a′0,W )h̃(a′0,a1,v)mψ0(a
′
0,a1,v)

= 0,

This completes proof of lemma 2.
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