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Simulating Longer Vectors of Correlated
Binary Random Variables via Multinomial

Sampling

Justine Shults

Abstract

The ability to simulate correlated binary data is important for sample size cal-
culation and comparison of methods for analysis of clustered and longitudinal
data with dichotomous outcomes. One available approach for simulating length n
vectors of dichotomous random variables is to sample from the multinomial dis-
tribution of all possible length n permutations of zeros and ones. However, the
multinomial sampling method has only been implemented in general form (with-
out ?rst making restrictive assumptions) for vectors of length 2 and 3, because
specifying the multinomial distribution is very challenging for longer vectors. I
overcome this di?culty by presenting an algorithm for simulating correlated bi-
nary data via multinomial sampling that can be easily applied to directly compute
the multinomial distribution for any n. I demonstrate the approach to simulate
vectors of length 4 and 8 in an assessment of power during the planning phases
of a study and to assess the choice of working correlation structure in an analysis
with generalized estimating equations.
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The ability to simulate correlated binary data is important for sample size calculation and
comparison of methods for analysis of clustered and longitudinal data with dichotomous
outcomes. One available approach for simulating length n vectors of dichotomous random
variables is to sample from the multinomial distribution of all possible length n permutations
of zeros and ones. However, the multinomial sampling method has only been implemented
in general form (without first making restrictive assumptions) for vectors of length 2 and
3, because specifying the multinomial distribution is very challenging for longer vectors. I
overcome this difficulty by presenting an algorithm for simulating correlated binary data
via multinomial sampling that can be easily applied to directly compute the multinomial
distribution for any n. I demonstrate the approach to simulate vectors of length 4 and 8 in
an assessment of power during the planning phases of a study and to assess the choice of
working correlation structure in an analysis with generalized estimating equations.

Keywords: binary random variables; dichotomous; generalized estimating equations;
multinomial sampling; simulation

1. Introduction

Methods to simulate realizations of dependent variables with specified marginal means
and pairwise correlations are useful to assess semi-parametric approaches such as general-
ized estimating equations (GEE) [1], which only require models for the first two moments
of the distribution of the outcome variable. Continuous variables can be simulated via the
multivariate normal distribution that is determined by its mean and covariance matrix.
In contrast, dependent Bernoulli random variables present a greater simulation challenge,
due to the lack of an equally general and flexible equivalent of the normal distribution
for discrete data.

Quite a few useful methods have been proposed, but how best to simulate correlated
binary data remains an active area of research in the statistical literature. [2] reviewed
methods for the simulation of correlated binary data, including an approach by [3] that
allows for unstructured correlations and non-stationary data. [4] offered a flexible method
for simulation that is somewhat complex because it involves the solution of non-linear
equations via numerical integration. [5] proposed an approach that relies on the associa-
tion among the random variables resulting from their sharing some common components
that induce correlation. Recently, [6] compared the approach of [3] with a method based
on the multivariate probit distribution.
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This manuscript considers the simulation of Bernoulli random variables with specified
marginal means and pairwise correlations via the multinomial sampling approach that
considers “k-variate binary data as a multinomial distribution with 2k possible outcomes”
[7]. For paired data, the multinomial sampling approach that was proposed by [7] is a
special case of the simulation method proposed for bivariate binomial data by [8, p.751].
More recently, [9] showed that multinomial sampling was comparable with the method of
[4], which [9] referred to as the gold-standard approach. (However, [9] also acknowledged
that they did not make comparisons with the approach of [3].)

Because the multinomial sampling approach involves complete specification of the un-
derlying distribution of all possible permutations of zeros and ones, its use will ensure
that a valid multivariate parent distribution exists that is compatible with particular
specified marginal means and covariance matrix. The lack of a compatible parent is not
typically a concern for continuous variables, because the multivariate normal distribu-
tion is a possible valid parent, even if it does not fit the data well. However, for discrete
random variables it is known that for a given marginal mean, covariance matrix pair, it
is not guaranteed that a valid distribution exists with the specified mean and covariance
matrix [10]. As discussed by [11], although not fully specified, the parent distribution
provides an estimation framework and probabilistic basis for semi-parametric methods
such as GEE or the quasi-least squares approach [12–14, QLS] that is in the framework
of GEE.

From a practical perspective, [15] cautioned that the additional constraints necessary
to ensure a valid parent distribution are especially important to assess during the plan-
ning phases of a study. For example, consider sample size calculation with a standard
formula, such as the one provided in [16, p. 167]. If means and correlations for which
there is no valid parent distribution are used, the formula will provide results, but they
will be invalid, and no warning will be provided. Assessing power with a method that
simulates from a compatible parent distribution will ensure that the results are sound.
[17] suggested that a severe violation of constraints during the analysis could be used
as a rule-out criterion in the selection of a working correlation structure to describe the
pattern of association in the data.

Although it is useful for assessing the parent distribution, the multinomial sampling
approach has not been implemented for vectors of length four or more, without first mak-
ing simplifying assumptions such as the first-order Markov property [18, p. 13] or the
exchangeability condition [7, Section 5]. As explained by [9] (who simulated vectors of
length 2 and 3), “the CDF for establishing decision rules becomes complicated for cases
of four or more repeated measures. While not impossible, constructing higher order joint
probabilities can be computationally challenging.” To overcome the difficulty described
by [9], this paper presents an algorithm for constructing higher order joint probabilities
that is straightforward to implement. I describe the method in Section 2 and demon-
strate its application in Section 3, in an assessment of power and selection of a working
correlation structure for GEE.

2. Methods

2.1. Notation and assumptions

Let Y n = (Y1, . . . , Yn) be an n×1 vector of Bernoulli random variables Yj with marginal
means E(Yj) = P (Yj = 1) = pj and variances V ar(Yj) = pj qj , where qj = 1 − pj
(j = 1, . . . , n). Let Rn = Corr(Y n) be the n × n correlation matrix of Y n, with (j, k)th
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entry,

Rn[j, k] = ρjk (1)

=
E(YjYk)− pjpk√

pjpkqjqk
(2)

=
pjk − pjpk√
pjpkqjqk

, (3)

where pjk = E(YjYk) = P (Yj = 1, Yk = 1).
Let mod(x, y) represent the modulus of x with respect to y, so that

mod(x, y) = x− y floor(x/y), (4)

where floor(x/y) is the unique integer n such that n ≤ x/y < n + 1. Let Bn(i) be the
length n binary representation of i−1 that is expressed as an n×1 vector (i = 1, . . . , 2n).

For example, B3(2) =
(
1, 0, 0

)′
is the length 3 binary representation of 1 because 1 =

1× 20 + 0× 21 + 0× 22. Furthermore, let Pn(i) = P (Y n = Bn(i)) (i = 1, . . . , 2n).

2.2. Construction of multinomial distribution for Bernoulli vectors of
length n

Kang and Jung [7] proposed an algorithm for simulating dependent Bernoulli random
variables Y n via multinomial sampling that, with slightly different notation, can be
described as follows. To simulate a sample of size m, alternate m times between the
following two steps. Step One: Simulate a value U from a uniform (0, 1) distribution.
Step Two: Select sequence Bn(i) if Zn(i − 1) ≤ U < Zn(i), where Zn(0) = 0 and

Zn(i) =
∑i

j=0 Pn(j) for i = 1, . . . 2n. The probability that Bn(i) is selected in Step Two

is the length of the interval [Zn(i− 1), Zn(i)〉 = Zn(i) - Zn(i−1) = Pn(i) (i = 1, . . . , 2n).
This algorithm is straightforward to implement for n = 2 because the marginal means

p1, p2 and the pairwise correlation ρ12 can be used to easily construct the well-known
bivariate Bernoulli distribution, for which P2(1) = q1 q2 + ρ12

√
p1q1p2q2; P2(2) = p1q2 −

ρ12
√
p1q1p2q2; P2(3) = q1p2− ρ12

√
p1q1p2q2; and P2(4) = p1p2 + ρ12

√
p1q1p2q2. [7] noted

that we also require 0 ≤ Pn(i) ≤ 1 (i = 1, . . . , 2n); simple algebra can be used to show
that these inequalities will be satisfied for n = 2 as long as the pairwise correlations
satisfy the following constraints that were provided by Prentice [19, p. 46]:

ρ12L < ρ12 < ρ12U , (5)

where ρ12L = max
[
−
√

p1p2
q1q2

,−
√

q1q2
p1p2

]
and ρ12U = min

[√
p2q1
p1q2

,
√

p1q2
p2q1

]
.

However, as noted earlier, it becomes increasingly difficult to directly obtain expres-
sions for the Pn(i) for larger n. I therefore developed an easy to program algorithm for
constructing a consistent system of equations with a unique solution that contains the
probabilities Pn(i) of all possible length n permutations of zeros and ones. To achieve
this, I first note that Bn(j) can be expressed as follows:

3
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Bn(j) =


y1j

y2j
...
ynj

 , (6)

where yij is mod [wn(i, j), 2] and wn(i, j) is the integer part of (2n − j)/2i−1 + 1. Then,
the set of all possible length n permutations of zeros and ones is given by Sn, where Sn
= {Bn(j), j = 1, . . . , 2n} . For example, if n = 3, then

S3 = {B3(1), . . . , B3(8)} =


0

0
0

 ,

1
0
0

 ,

0
1
0

 ,

1
1
0

 ,

0
0
1

 ,

1
0
1

 ,

0
1
1

 ,

1
1
1

 .

The following theorem then provides the basis for an approach to construct the multi-
nomial distribution for any n.

Theorem 2.1 Define Prob = (Pn(1), . . . , Pn(2n))′ , where Pn(i) is the probability that
Y n = (Y1, . . . , Yn)′ is the binary representation of i− 1. Then, Prob can be expressed as

Prob =
(
X ′X

)−1
X ′E, (7)

where X and E are defined as follows.

X2n×2n =


X1
...
Xn

One2n

 and E2n×1 =


E1
...
En
1

 , where (8)

X1 =
(
Bn(1) Bn(2) . . . Bn(2n)

)
, (9)

Bn(i) are defined using (6), One2n is a 1× 2n is row vector of ones,

E1 =
(
p1 p2 . . . pn

)′
, (10)

and Xj and Ej are constructed using the following algorithm (j = 2, . . . , n):

• Let num = 1.
• Let i1 = 1.
• While i1 ≤ n− j + 1 {
• Let i2 = i1 + 1.
• While i2 ≤ n− j + 2 {

•
...

• Let ij = ij−1 + 1.
• While ij ≤ n− j + j = n {

4
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• Row num of Xj is

rn(i1) · rn(i2) · . . . rn(ij) =

(
j∏

w=1

yiw 1 . . . ,

j∏
w=1

yiw 2n

)
, (11)

the row vector obtained by element-wise multiplication of rn(i1) through rn(ij), where
rn(a) is the ath row of matrix X1.

• The corresponding element num of Ej is

E(

j∏
w=1

Yiw) = P (Yi1 = 1, . . . , Yij = 1) = pi1...ij . (12)

• Let num = num + 1.
• Let ij = ij + 1. }

•
...

• Let i2 = i2 + 1 }
• Let i1 = i1 + 1 }.

Proof. To prove that X Prob = E, I first note that the product of row i of matrix X1 and
Prob is

∑2n

j=1 yijPn(j) = E(Yi) = P (Yi = 1) = pi (i = 1, . . . , n). Similarly, the product

of row num of matrix Xj in (11) and Prob is
∑2n

k=1

∏j
w=1 yiw kPn(k) = E(

∏j
w=1 Yiw) =

P (Yi1 = 1, . . . , Yij = 1) = pi1...ij (j = 2, . . . , n). In addition, the product of the last row

of X and Prob is
∑2n

i=1 Pn(i) = 1. Next, the dimension of matrix X is
∑n

j=1

(
n
j

)
+ 1 =∑n

j=0

(
n
j

)
= 2n by 2n. The rank of X is 2n because X1 has full column rank. Matrix X

is therefore a full-rank square matrix, and is invertible. Equation X Prob = E therefore
has a unique explicit solution Prob = (X ′X)−1X ′E. �

In words, matrix X was obtained by first stacking matrices X1 through Xn, where the

rows of Xj contain the

(
n
j

)
rows (j = 1) or element-wise products (j = 2, . . . , n) of

matrix
(
Bn(1) Bn(2) . . . Bn(2n)

)
that contains all possible realizations of Y n. Note that

Xn will be the element-wise product of all rows of X1, and will therefore be a 1 by 2n

row vector with all elements equal to 0, except for element (1, 2n) that equals 1. The
final row of X is then a 1 by 2n row vector of ones.

The probabilities in (7) satisfy Prob[i] = Pn(i) for which
∑2n

i=1 Pn(i) = 1. However, as
was the case for n = 2, additional constraints must be satisfied to ensure that the Pn(i)
take value in (0, 1). To achieve 0 ≤ Pn(i) ≤ 1 (i = 1, . . . , 2n) for a specified value for
E, it is sufficient to ensure that each element of Ej satisfies the constraints necessary to
ensure non-negative probabilities for a vector of length j (j = 1, . . . , n). For example, for
n = 4, we first check that the constraints are satisfied for (p1, p2, p3, p4), and then for
(p12, p13, p14, p23, p24, p34), and then for (p123, p124, p134, p234), and finally, for p1234.

Since
∑2n

i=1 Pn(i) = 1, we can find the constraints on p1 ... n by solving 0 ≤ Pn(i) for
p1 ... n (i = 1, . . . , 2n). The Pn(i) are linear combinations of the elements of E that each
have a coefficient of +1 or −1 for p1 ... n. As a result, it is trivial to solve the equations
directly for smaller n, or by using the following algorithm that can be applied using
software that performs symbolic computations:

5
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• Let j = 1 and k = 1.
• For i = 1, . . . , 2n:
◦ Let δ = Pn(i)− sol + p1 ... n, where sol is the solution of Pn(i) = 0 for p1 ... n.
◦ If δ = 0 then Upper(k) = sol and then k = k + 1.
◦ Else Lower(j) = sol and then j = j + 1.

The overall constraints for p1 ... n will then be

(L1,...,n, U1,...,n) =

(
max

j∈{1,...,J}
{Lower(j)} , min

k∈{1,...,K}
{Upper(k)}

)
,

where J and K are the maximum values of j and k, respectively. This algorithm can also
be applied to obtain the constraints for pi1...iw , by substituting ij for j (j = 1, . . . , w) in
the expressions for the constraints for p1...w.

I next demonstrate the use of Theorem 2.1 to obtain the Prob[i] = Pn(i) in (7), and
obtain constraints sufficient to ensure 0 ≤ Pn(i) (i = 1, . . . , 2n), for n = 1, . . . , 4. Results
for n = 5 are provided in Appendix B. Text files that contain summarized results for
n = 2, . . . , 12 are provided in the Supplemental Material, as described in Section 5.

2.2.1. For n = 1:

X =

(
X1

One2

)
=

(
0 1
1 1

)
and E =

(
p1

1

)
. (13)

Then,

Prob = (P1(1), P1(2))′ (14)

=
(
X ′X

)−1
X ′E (15)

= (1− p1, p1)′. (16)

Solving 0 ≤ P1(i) for p1 (i = 1, 2) yields the known constraint 0 ≤ p1 ≤ 1.

2.2.2. For n = 2:

X =

 X1

X2

One4

 =


0 1 0 1
0 0 1 1
0 0 0 1
1 1 1 1

 and E =


p1

p2

p12

1

 ,

where

p12 = p1p2 + ρ12
√
p2p2q1q2. (17)

Then,

Prob = (P2(1), P2(2), P2(3), P2(4))′ (18)

=
(
X ′X

)−1
X ′E (19)

= (p12 − p2 − p1 + 1, p1 − p12, p2 − p12, p12)′. (20)

6
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Solving 0 ≤ P2(i) for p12 (i = 1, 2, 3, 4) yields the known constraints

max {0, p1 + p2 − 1} ≤ p12 ≤ min {p1, p2, } , (21)

or solving for ρ12 yields the Prentice constraints (5) for the pairwise correlation.

2.2.3. For n = 3:

X =


X1

X2

X3

One8

 =



0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1


and E =



p1

p2

p3

p12

p13

p23

p123

1


. (22)

Then,

Prob = (P3(1), . . . P3(8))′

=
(
X ′X

)−1
X ′E

= (p12 − p2 − p3 − p1 + p13 + p23 − p123 + 1, p1 − p12 − p13 + p123, p2 − p12 − p23 + p123,

p12 − p123, p3 − p13 − p23 + p123, p13 − p123, p23 − p123, p123)′. (23)

Solving 0 ≤ P3(i) for p123 (i = 1, . . . , 8) yields the known constraints

L123 ≤ p123 ≤ U123, (24)

where L123 = max {0, p12 + p13 − p1, p12 + p23 − p2, p13 + p23 − p3} and U123 =
min {p13, p12, p23, 1 + p12 − p2 − p3 − p1 + p13 + p23} . See Appendix A for discussion of
prior work for n = 3.

7
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2.2.4. For n = 4:

X =


X1

X2

X3

X4

One16

 =



0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



and E =



p1

p2

p3

p4

p12

p13

p14

p23

p24

p34

p123

p124

p134

p234

p1234

1



.

Then,

Prob = (P4(1), . . . P4(16))′

=
(
X ′X

)−1
X ′E

= p12 − p2 − p3 − p4 − p1 + p13 + p14 + p23 + p24 + p34 − p123 − p124 − p134 − p234 + p1234 + 1,

p1 − p12 − p13 − p14 + p123 + p124 + p134 − p1234, p2 − p12 − p23 − p24 + p123 + p124 + p234

−p1234, p12 − p123 − p124 + p1234, p3 − p13 − p23 − p34 + p123 + p134 + p234 − p1234, p13

−p123 − p134 + p1234, p23 − p123 − p234 + p1234, p123 − p1234, p4 − p14 − p24 − p34 + p124 +

p134 + p234 − p1234, p14 − p124 − p134 + p1234, p24 − p124 − p234 + p1234, p124 − p1234,

p34 − p134 − p234 + p1234, p134 − p1234, p234 − p1234, p1234)′.

Solving 0 ≤ P4(i) for p1234 (i = 1, . . . , 16) yields the constraints

L1234 ≤ p1234 ≤ U1234, (25)

where L1234 = max { p1 + p2 + p3 + p4 - p12 - p13 - p14 - p23 - p24 - p34 + p123 + p124 +
p134 + p234 - 1, p123 - p12 + p124, p123 - p13 + p134, p123 - p23 + p234, p124 - p14 + p134,
p124 - p24 + p234, p134 - p34 + p234, 0 } and U1234 = min { p1 - p12 - p13 - p14 + p123 +
p124 + p134, p2 - p12 - p23 - p24 + p123 + p124 + p234, p3 - p13 - p23 - p34 + p123 + p134

+ p234, p123, p4 - p14 - p24 - p34 + p124 + p134 + p234, p124, p134, p234, } . As mentioned
earlier, these results for n = 4 (and for n > 4) are new.

3. Demonstration

Here I demonstrate the multinomial sampling approach to simulate vectors of length 4
and 8, for assumed values of the marginal means pi and pairwise correlations ρjk.

8
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3.1. Vectors of length 4

For this brief demonstration, I consider a model that could be used in a cross-sectional
study to compare the probability of positive response between two equally sized groups
(treatment A versus B) of clusters of size four. I assume that the marginal means E(Yij)
= pij can be expressed as pij = pi, where

logit (pi) = β0xi1 + β1xi2; (26)

xi1 = 1 and xi2 is an indicator variable for treatment A, which equals 1 for the treatment
A group (i = 1, . . . ,m/2) and 0 for treatment B (i = m/2 + 1, . . . ,m). For this model,
logit (p1) = β0 for subjects receiving treatment A and logit (p2) = β0 + β1 for subjects
receiving treatment B. For specified (p1,p2), (β0, β1) = (logit(p1),logit(p2) - logit(p1)).

I also assume that the pairwise correlations are equal within clusters, which is a plau-
sible (and common) assumption for clustered data in cross-sectional studies. The corre-
lation matrix for each cluster is therefore a 4×4 exchangeable (equicorrelated) structure,
with parameter α that must take value in (−1/(n − 1), 1) = (−1/3, 1) to yield a posi-
tive definite correlation matrix. The constraints (5) necessary to achieve valid bivariate
Bernoulli distributions are (−0.2195, 1), so that α must take value in (−0.2195, 1) for
this example.

I assessed the power to test the hypothesis that the probability of response is equal
between the two groups, when GEE was implemented in Stata 14.0 with a two-sided test
of the hypothesis that β1 is 0. The power with type-one error of 0.05 was estimated as
the proportion of 10000 simulation runs that resulted in a p-value less than 0.05 based
on Wald’s test, with application of a “sandwich” covariance matrix for estimation of the
covariance matrix of β̂. For this demonstration, my goal was to determine the sample
size necessary to achieve 80 % power to detect a difference between 25 % versus 15 %
response in the low versus high income groups, respectively.

Table 1 displays the values of (Z4(i − 1), Z4(i)) (i = 1, . . . , 16) used to simulate de-
pendent Bernoulli random variables Y 4 within each group according to the algorithm of
Kang and Jung [7] described in Section 2.2, when α = .80. (Tables for α = 0 and α =
0.40 are provided in Table C1 and Table C2 in Appendix C.) I obtained the values in
Table 1 using the expressions for Prob that are provided in Section 2.2.4. The values for
pjk ( j,k ∈ {1, 2, 3, 4} ; j 6= k ) were determined by the assumed values for p1, p2, and
α. (See Section 2.2.2.) I then specified the values of pijk as pijk = Lijk +w (Uijk − Lijk)
( i, j,k ∈ {1, 2, 3, 4}; i 6= j; j 6= k; i 6= k), for w = 0.90 and (Lijk, Uijk) as defined in
Section 2.2.3. Finally, I specified p1234 = L1234 + w (U1234 − L1234) , for w = 0.90 and
(L1234, U1234) as defined in Section 2.2.4.

Table 2 displays the simulation results. Table 2 indicates that when α = 0, a sample
size of 240 per group (m/2 = 60 clusters of size 4 per group) will achieve approximately
79 % power to detect a difference between p1 = 0.15 and p2 = 0.25 in a GEE analysis.
This is similar to the 78 % power that would be achieved for a two-group Chi-Square
test with a 0.05 two-sided significance level (per nQuery Advisor statistical software). As
the value of α increases, the sample size required to achieve approximately 80 % power
increases. For example, for α = 0.80, a sample size of 820 per group (m/2 = 210 clusters
of size 4 per group) is required to achieve 80 % power. The results were very similar for
w = 0.30 and w = 0.60.

9
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Table 1. Values to simulate dependent Bernoulli random variables Y 4 within each group according
to the algorithm of Kang and Jung [7] described in Section 2.2, for p1 = .15, p2 = .25, α = .80, and

w = 0.90. Simulation results are provided in Table 2.

Group 1 Group 2
Y1 Y2 Y3 Y4 i− 1a P4(i− 1) Z4(i− 1) Z4(i) P4(i− 1) Z4(i− 1) Z4(i)

0 0 0 0 0 .780895 0 .780895 .648375 0 .648375
1 0 0 0 1 .020655 .780895 .80155 .030375 .648375 .67875
0 1 0 0 2 .020655 .80155 .822205 .030375 .67875 .709125
1 1 0 0 3 .002295 .822205 .8245 .003375 .709125 .7125
0 0 1 0 4 .020655 .8245 .845155 .030375 .7125 .742875
1 0 1 0 5 .002295 .845155 .84745 .003375 .742875 .74625
0 1 1 0 6 .002295 .84745 .849745 .003375 .74625 .749625
1 1 1 0 7 .000255 .849745 .85 .000375 .749625 .75
0 0 0 1 8 .020655 .85 .870655 .030375 .75 .780375
1 0 0 1 9 .002295 .870655 .87295 .003375 .780375 .78375
0 1 0 1 10 .002295 .87295 .875245 .003375 .78375 .787125
1 1 0 1 11 .000255 .875245 .8755 .000375 .787125 .7875
0 0 1 1 12 .002295 .8755 .877795 .003375 .7875 .790875
1 0 1 1 13 .000255 .877795 .87805 .000375 .790875 .79125
0 1 1 1 14 .000255 .87805 .878305 .000375 .79125 .791625
1 1 1 1 15 .121695 .878305 1 .208375 .791625 1

a Each realization of (Y1, Y2, Y3, Y4) = B4(i) = the binary representation of i− 1.

Table 2. Simulated power (Pow) in the test of equal-
ity of the probability of response (p1 versus p2 ) be-

tween equally sized groups (m/2) of clusters of size

4, for varying levels of α, when p1 = .15, p2 = .25
and w = 0.90.

p1 p2 OR α w %a m/2 Pow
.15 .25 1.89 0 .9 100 30 .53
.15 .25 1.89 .4 .9 100 30 .27
.15 .25 1.89 .8 .9 100 30 .18
.15 .25 1.89 0 .9 100 60 .79
.15 .25 1.89 .4 .9 100 60 .45
.15 .25 1.89 .8 .9 100 60 .31
.15 .25 1.89 0 .9 100 90 .92
.15 .25 1.89 .4 .9 100 90 .61
.15 .25 1.89 .8 .9 100 90 .44
.15 .25 1.89 0 .9 100 120 .97
.15 .25 1.89 .4 .9 100 120 .74
.15 .25 1.89 .8 .9 100 120 .55
.15 .25 1.89 0 .9 100 150 .99
.15 .25 1.89 .4 .9 100 150 .84
.15 .25 1.89 .8 .9 100 150 .65
.15 .25 1.89 0 .9 100 180 1
.15 .25 1.89 .4 .9 100 180 .89
.15 .25 1.89 .8 .9 100 180 .73
.15 .25 1.89 0 .9 100 210 1
.15 .25 1.89 .4 .9 100 210 .93
.15 .25 1.89 .8 .9 100 210 .8
.15 .25 1.89 0 .9 100 240 1
.15 .25 1.89 .4 .9 100 240 .96
.15 .25 1.89 .8 .9 100 240 .85

a The percentage of simulation runs that resulted in
convergence for GEE.

3.2. Vectors of length 8

In [17, 20, 21] we used simulations to demonstrate that a severe violation of the Pren-
tice constraints could be used as a rule-out criterion when assessing working correlation
structures for GEE or QLS analysis of longitudinal binary data. As is appropriate for a
short demonstration, here I replicate some of the simulations. The results are similar to
our earlier findings, but for slightly different assumptions.
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I consider a model that could be used to compare the change over time in an 8 study
period in the probability of positive response between two equally sized groups of patients
who had been randomized to one of two treatment groups (A versus B). I assume that
the marginal means E(Yij) = pij satisfy

logit (pij) = β0xi1 + β1xi2 + β1xi3 + β3xi4, (27)

where xi1 = 1; xi2 ∈ {1, 2, 3, 4, 5, 6, 7, 8} indicates month of measurement; xi3 is an
indicator variable that equals 1 for treatment group A (i = 1, . . . ,m/2); and xi4 is an
interaction term that was constructed as the product of xi2 and xi3. If the regression
coefficient β3 differs significantly from zero, this indicates that the change over time in the
probability of response differs significantly between the two treatment groups. I assumed
that (β0, β1, β2, β3)′ = (0,−.1− .01.13), which yields probabilities that increase linearly
(in the logit) from 0.512 and 0.505 at month 1 to 0.858 and 0.703 at month 8, in groups
A and B, respectively. I considered group sizes 15, 30, 60, and 120.

For this model, I assumed that the true correlation structure is first-order autoregres-
sive [AR(1)], so that Corr(Yij , Yik) = α|j−k|. The AR(1) structure is plausible when we
expect measurements on a subject to be more similar, and therefore to be more highly
correlated, when they are measured more closely together in time. The correlation matrix
for each subject is therefore an 8× 8 AR(1) structure, with parameter α that must take
value in (−1, 1) to yield a positive definite correlation matrix.

For the AR(1) structure and, more generally, for any product correlation structure
of the form Corr(Yij , Yij+w) =

∏w−1
z=1 Corr(Yiz, Yiz+1), satisfaction of the Prentice con-

straints (5) for adjacent Yij , Yij+1 (j = 1, . . . , ni − 1) is sufficient to ensure satisfaction
of the Prentice constraints for all Yij , Yik [20, Theorem 7.1, p.146]. The Prentice con-
straints (5) are (−0.449, 0.942) and (−0.187, 0.882) for groups A and B respectively, so
that α must take value in (−0.187, 0.882) for this example.

Previous authors simulated longer length binary vectors with an AR(1) structure, by
assuming first-order antedependence and linearity of the expectations of the conditional
distributions. They simulated from the distribution of Y1 and then from the distribution
of Yj given Yj−1 (j = 1, . . . , n) [3, 6, 22–24]. Also see [25, p.14] for a very brief review.
[18, p. 13] also assumed the first-order Markov property and linearity of the conditional
expectations, but fully specified the distribution of all length n possible permutations of
zeros and ones, and used multinomial sampling [7] for the simulations.

For this short demonstration, I compared results for the distribution that stems from
assumed first-order antedependence and linear conditional expectations (MARK1) (so
that the true correlation structure is AR(1)), with a different distribution that has the
same specified marginal means and AR(1) structure. For assumed pij and α, I first used
[24, (5)] to obtain the MARK1 distribution for each group. Next, to modify the MARK1
distributions, I first used the explicit expressions that are provided in the Supplemental
Material (see Section 5) to obtain the constraints (L12345678, U12345678) for p12345678. I then
changed the value of p12345678 to L12345678 + .99(U12345678 − L12345678). I then used the
explicit expressions for the P8(i) (i = 1, . . . , 256) that are provided in the Supplemental
Material to obtain a new distribution based on the modified value of p12345678. Tables
D1 and D2 provide a partial listing i = 1, . . . , 50 of the distributions for α = 0.20. The
complete distributions are provided in Supplemental Material (see Section 5). In each of
1000 simulation runs, I used this approach to simulate data for model (27), for a true
AR(1) structure with α =−0.10, 0, 0.20, 0.40, 0.80, 0.88 and group sizes 15, 30, 60, and
120. The results were almost identical for the MARK1 and non-MARK1 distributions,
so only the figures for the non-MARK1 distributions are shown here.
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In each simulation run I correctly specified model (27) and the correct AR(1) cor-
relation structure in a QLS analysis. In addition, I correctly specified model (27), but
incorrectly specified the true AR(1) structure as exchangeable. The QLS models con-
verged in 100 % of simulation runs for the AR(1) and exchangeable working structures,
except for (α = 0.8 and group-size 15) and (α = 0.88 and group-sizes 15 or 30); the %
convergence was 99.8 for each of these scenarios.

Figure 1 displays box-plots of the QLS estimates α̂ along with their estimated Prentice
constraints (5) versus the true values of α. To improve readability, the Prentice lower
and upper values of the constraints are plotted slightly to the left and right, respectively,
of the true value of α. Figure 3.2 shows what we have observed earlier [17, 20, 21], that
violation of the Prentice constraints is unlikely unless the true value of α is very close to
the upper or lower boundary value for the Prentice constraint. Furthermore, the severity
of violation decreases with increasing group size.

To allow for more carefully assessment of the concept of severity of violation of the
Prentice constraints, figure 2 displays box-plots of α̂ and the estimated upper constraint
for α = 0.80 and 0.88. These graphs show that as the sample sizes increase, the estimates
of the correlation and of upper Prentice constraint move closer to their true values. As a
result, the distance between α̂ and the estimated upper value of the Prentice constraint
decreases as the group sizes increase. The average distance for simulation runs that
resulted in a violation of constraints (number of simulation runs that resulted in violation)
was 0.027 (503), 0.018 (497), 0.013 (463), 0.008 (401) when α = 0.88, for group sizes 15,
30,60, and 120, respectively. Although it was not shown on the graphs, the same behavior
was observed at the lower constraints. The average distance for simulation runs that
resulted in a violation of constraints (number of simulation runs that resulted in violation)
was 0.044 (185), 0.027 (78), 0.014 (27), 0.006 (5) when α = -0.10, for group sizes 15, 30,60,
and 120, respectively. What we observed earlier for MARK1 distributions therefore also
holds true for this non-MARK1 distrbution. Severe violation of the constraints is unlikely
for a moderate sample size, when the true correlation structure is correctly specified as
AR(1).

Figure 3 then displays the same triplets (estimated lower constraint, α̂, estimated
upper constraint) versus the true value of α, when the working correlation structure
is misspecified as exchangeable. Horizontal solid lines are again displayed at the true
Prentice constraints, but horizontal dashed lines are only displayed at the limiting values
of α̂, when the limiting values exceed the Prentice constraints. The limiting value of α̂
when the true AR(1) correlation structure is misspecified as exchangeable was provided
earlier; for example see [21, (9) and (10) of Online Appendix C]. Figure 3 shows that
a severe violation of constraints is likely to occur for larger values of α when the true
AR(1) structure is misspecified as exchangeable.

To allow for more careful assessment of the severity of violation of constraints, figure 4
then displays box-plots of α̂ and the estimated upper constraint for α = 0.80 and 0.88.
These graphs show that as the group sizes increase, the severity of violation of con-
straints increases. The average distance for simulation runs that resulted in a violation
of constraints (number of simulation runs that resulted in violation) was 0.027 (503),
0.018 (497), 0.013 (463), 0.008 (401) when α = 0.88, for group sizes 15, 30,60, and 120,
respectively. What we observed earlier for MARK1 distributions therefore again holds
true for this non-MARK1 distrbution. Severe violation of the constraints is likely for
larger values of the correlation, and for increasing sample sizes, when the true AR(1)
structure is misspecified as exchangeable. The rule-out criterion [17] could be applied in
situations like these, to remove working correlation structure from consideration, when
its application results in a severe violation of constraints for QLS or GEE.
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Figure 1. Box-plots of the estimated correlations α̂ along with their estimated Prentice constraints versus the

true values of α. The Prentice lower and upper values of the constraints are plotted slightly to the left and right,

respectively, of the true value of α. The estimates were obtained in a QLS analysis, when model 27 and the AR(1)
structure were correctly specified. Solid horizontal lines are displayed at the true upper and lower values of the

Prentice constraints, and dashed horizontal lines are displayed at −0.10, 0, 0.20, 0.40, 0.80, 0.88, the true values of
α. Looking from left to right within each graph, we see the triplet (estimated lower constraint,α̂, estimated upper

constraint) plotted above each true value of α. The figures show that as the group sizes increase, the estimates

become closer to their true values.

4. Discussion

Simulation via multinomial sampling requires the user to specify the full likelihood of
the length n correlated binary variables. Specifying the likelihood is helpful to ensure
the existence of a valid parent distribution, to avoid unknowingly specifying impossible
parameter values in a sample size formula, or incorrectly basing results of a GEE or
QLS analysis on estimates that are not compatible with any valid parent distribution.
However, the multinomial sampling approach was only implemented in previous papers
for vectors of length 2 or 3, unless simplifying assumptions such as assuming the first-
order Markov property were made first. I therefore proved a theorem that can be used
to obtain expressions for the probabilities of all possible length n permutations of zeros
and ones. I also provided an algorithm that can be easily implemented in a program
such as MATLAB to obtain the constraints that must be satisfied by the probability
that Y1, . . . , Yn all take value one. I implemented my approach to obtain explicit expres-
sions of the probabilities and constraints for n = 2, . . . , 12; these results are provided in
Supplemental Material and will be updated to include results for larger values of n.
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Figure 2. Box-plots of the estimated correlations α̂ along with their estimated upper Prentice constraints versus
the true values of α, for α = 0.80 and 0.88. These values were also displayed in Figure 1 but are shown here to

allow for greater examination of the violation of the Prentice constraints, which tends to occur when α is close to

a boundary value. Looking from left to right within each graph, we see the pair (α̂, estimated upper constraint)
plotted above each true value of α, for α = 0.80 and α= 0.88.

5. Supplemental material

The supplemental materials include the following:

(1) Files that contain explicit expressions for the probabilities Prob(i) (i = 1, . . . , 2n)
and lower level constraints L1...n and upper level constraints U1...n. For each n, three
files were written, to organize the expressions and facilitate their use in programs.
The files Probn.txt, Lowern.txt,Uppern.txt provide expressions for the probabilities,
lower, and upper values for the constraints (n = 2, . . . , 13).

(2) Full listing of the values (for i− 1 = 0 through 255) to simulate dependent Bernoulli
random variables Y 8 within each group according to the algorithm of Kang and Jung
[7] described in Section 2.2 for α = −0.10, 0.20, 0.40, 0.60, 0.80, 0.88. The listings
are provided in the files DemonstrationN8w.txt where w = −1, 0, 20, 40, 60, 80, 88
for α = −.10, 0, 0.20, 0.40, 0.60, 0.88, respectively. Corresponding files for distribu-
tions obtained under an assumption of the first order Markov property are named
DemonstrationN8FM1w.txt, with the same definitions for w.

14

(Supplemental files are available under Downloadable Files at https://
dbe.med.upenn.edu/biostat-research/JustineShults .) 
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Figure 3. Box-plots of the estimated correlations α̂ along with their estimated Prentice constraints versus the
true values of α. The Prentice lower and upper values of the constraints are plotted slightly to the left and right,

respectively, of the true value of α. The estimates were obtained in a QLS analysis, when model (27) was correctly

specified, but the model for the correlation was incorrect (exchangeable). Solid horizontal lines are displayed at the
true upper and lower values of the Prentice constraints, and dashed horizontal lines are displayed at the limiting

values of the α̂ when the limiting values exceed the Prentice constraints. Looking from left to right within each
graph, we see the triplet (estimated lower constraint,α̂, estimated upper constraint) plotted above each true value

of α. The figures show that as the group sizes increase, the estimates become closer to their true values. This

means that for increasing group sizes, we tend to have more severe violation of constraints for larger values of α,
when the limiting values of α̂ violate the Prentice constraints.
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Appendix A. Prior Work for n = 3:

As mentioned earlier, the multinomial sampling approach has only been implemented
without simplifying assumptions, for n ≤ 3. Here I describe the example provided in [7]
for n = 3. [7] assumed (p1, p2, p3) = (0.9,0.7,0.5,0.2) and (ρ12, ρ13, ρ23) = (0.2, 0.3, 0.4).
Noting that specified values for the marginal means and pairwise correlations are not
sufficient to determine a particular distribution for n = 3, [7] assumed P3(1) = 0.055 and
reported that they obtained a solution with Mathematica. Their code was not printed
with the paper and is no longer available (per personal correspondence with the authors).
However, we can obtain their reported probability density function by first using the
bivariate Bernoulli distribution to obtain p12 = 0.65749545, p13 = 0.495, and p23 =
Then, using (23), p123 = p12 - p2 - p3 - p1 + p13 + p23 + 1 - P3(1) = 0.43914697.
Next, substituting the assumed values for (p1, p2, p3, p12, p13, p23, p123) into (23) yields
the following values that agree, after rounding, with those provided in [7, Table 1]:

P3(1) = 0.055 P3(2) = 0.186652 P3(3) = 0.04 P3(4) = 0.218348
P3(5) = 0.002495 P3(6) = 0.055853 P3(7) = 0.002505 P3(8) = 0.439147

Note that there was a typographical error in [7, Table 1] because the authors wrote
(p1, p2, p3) = (0.1, 0.3, 0.5) which is actually (1− p1, 1− p2, 1− p3) for this example.

[7] presumably chose a value for P3(1) that yields a valid probability density function
(all non-negative probabilities) by trial and error. In contrast, [9] provided expressions
for P3(i) (i = 1, . . . , 8) and suggested selecting a value for p123 that is the midpoint of
its constraints, although they noted that any value within the constraints could be used.
For this example, the midpoint of (L123, U123) = (0.43665151, 0.44165151) is 0.43915151,
which agrees to five digits with the value for P3(8) = P123 that is provided in the table
above. Selecting the midpoint therefore yields a distribution that agrees, after rounding,
with the one provided in [7, Table 1, p. 266].
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Appendix B. Results for n = 5:

X =
(
X1
′, X2

′, X3
′, X4

′, X5
′, One32

′)′ =


0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


and E = ( p1, p2, p3, p4, p5, p12, p13, p14, p15, p23, p24, p25, p34, p35, p45, p123, p124, p125,
p134, p135, p145, p234, p235, p245, p345, p1234, p1235, p1245, p1345, p2345, p12345, 1 )′ . Then,
Prob = (P5(1), . . . P5(32))′ = ( p12 - p2 - p3 - p4 - p5 - p1 + p13 + p14 + p15 + p23 + p24

+ p25 + p34 + p35 + p45 - p123 - p124 - p125 - p134 - p135 - p145 - p234 - p235 - p245 - p345

+ p1234 + p1235 + p1245 + p1345 + p2345 - p12345 + 1, p1 - p12 - p13 - p14 - p15 + p123 +
p124 + p125 + p134 + p135 + p145 - p1234 - p1235 - p1245 - p1345 + p12345, p2 - p12 - p23

- p24 - p25 + p123 + p124 + p125 + p234 + p235 + p245 - p1234 - p1235 - p1245 - p2345 +
p12345, p12 - p123 - p124 - p125 + p1234 + p1235 + p1245 - p12345, p3 - p13 - p23 - p34 - p35

+ p123 + p134 + p135 + p234 + p235 + p345 - p1234 - p1235 - p1345 - p2345 + p12345, p13 -
p123 - p134 - p135 + p1234 + p1235 + p1345 - p12345, p23 - p123 - p234 - p235 + p1234 + p1235

+ p2345 - p12345, p123 - p1234 - p1235 + p12345, p4 - p14 - p24 - p34 - p45 + p124 + p134 +
p145 + p234 + p245 + p345 - p1234 - p1245 - p1345 - p2345 + p12345, p14 - p124 - p134 - p145

+ p1234 + p1245 + p1345 - p12345, p24 - p124 - p234 - p245 + p1234 + p1245 + p2345 - p12345,
p124 - p1234 - p1245 + p12345, p34 - p134 - p234 - p345 + p1234 + p1345 + p2345 - p12345, p134

- p1234 - p1345 + p12345, p234 - p1234 - p2345 + p12345, p1234 - p12345, p5 - p15 - p25 - p35 -
p45 + p125 + p135 + p145 + p235 + p245 + p345 - p1235 - p1245 - p1345 - p2345 + p12345, p15

- p125 - p135 - p145 + p1235 + p1245 + p1345 - p12345, p25 - p125 - p235 - p245 + p1235 +
p1245 + p2345 - p12345, p125 - p1235 - p1245 + p12345, p35 - p135 - p235 - p345 + p1235 + p1345

+ p2345 - p12345, p135 - p1235 - p1345 + p12345, p235 - p1235 - p2345 + p12345, p1235 - p12345,
p45 - p145 - p245 - p345 + p1245 + p1345 + p2345 - p12345, p145 - p1245 - p1345 + p12345, p245

- p1245 - p2345 + p12345, p1245 - p12345, p345 - p1345 - p2345 + p12345, p1345 - p12345, p2345 -
p12345, p12345 } . Solving 0 ≤ P5(i) for p12345 (i = 1, . . . , 32) yields the constraints

L12345 ≤ p12345 ≤ U12345, (B1)

where L12345 = max { p12 - p1 + p13 + p14 + p15 - p123 - p124 - p125 - p134 - p135 - p145 +
p1234 + p1235 + p1245 + p1345, p12 - p2 + p23 + p24 + p25 - p123 - p124 - p125 - p234 - p235
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Table C1. Values to simulate dependent Bernoulli random variables Y 4 within each group according
to the algorithm of Kang and Jung [7] described in Section 2.2, for p1 = .15, p2 = .25, α = 0, and

w = 0.90. Simulation results are provided in Table 2.

Group 1 Group 2
Y1 Y2 Y3 Y4 i− 1a P4(i− 1) Z4(i− 1) Z4(i) P4(i− 1) Z4(i− 1) Z4(i)

0 0 0 0 0 .474025 0 .474025 .205625 0 .205625
1 0 0 0 1 .123225 .474025 .59725 .175625 .205625 .38125
0 1 0 0 2 .123225 .59725 .720475 .175625 .38125 .556875
1 1 0 0 3 .002025 .720475 .7225 .005625 .556875 .5625
0 0 1 0 4 .123225 .7225 .845725 .175625 .5625 .738125
1 0 1 0 5 .002025 .845725 .84775 .005625 .738125 .74375
0 1 1 0 6 .002025 .84775 .849775 .005625 .74375 .749375
1 1 1 0 7 .000225 .849775 .85 .000625 .749375 .75
0 0 0 1 8 .123225 .85 .973225 .175625 .75 .925625
1 0 0 1 9 .002025 .973225 .97525 .005625 .925625 .93125
0 1 0 1 10 .002025 .97525 .977275 .005625 .93125 .936875
1 1 0 1 11 .000225 .977275 .9775 .000625 .936875 .9375
0 0 1 1 12 .002025 .9775 .979525 .005625 .9375 .943125
1 0 1 1 13 .000225 .979525 .97975 .000625 .943125 .94375
0 1 1 1 14 .000225 .97975 .979975 .000625 .94375 .944375
1 1 1 1 15 .020025 .979975 1 .055625 .944375 1

a Each realization of (Y1, Y2, Y3, Y4) = B4(i) = the binary representation of i− 1.

- p245 + p1234 + p1235 + p1245 + p2345, p13 - p3 + p23 + p34 + p35 - p123 - p134 - p135 -
p234 - p235 - p345 + p1234 + p1235 + p1345 + p2345, p1234 - p123 + p1235, p14 - p4 + p24 +
p34 + p45 - p124 - p134 - p145 - p234 - p245 - p345 + p1234 + p1245 + p1345 + p2345, p1234 -
p124 + p1245, p1234 - p134 + p1345, p1234 - p234 + p2345, p15 - p5 + p25 + p35 + p45 - p125 -
p135 - p145 - p235 - p245 - p345 + p1235 + p1245 + p1345 + p2345, p1235 - p125 + p1245, p1235

- p135 + p1345, p1235 - p235 + p2345, p1245 - p145 + p1345, p1245 - p245 + p2345, p1345 - p345

+ p2345, 0 } and U12345 = min { p12 - p2 - p3 - p4 - p5 - p1 + p13 + p14 + p15 + p23 +
p24 + p25 + p34 + p35 + p45 - p123 - p124 - p125 - p134 - p135 - p145 - p234 - p235 - p245 -
p345 + p1234 + p1235 + p1245 + p1345 + p2345 + 1, p12 - p123 - p124 - p125 + p1234 + p1235

+ p1245, p13 - p123 - p134 - p135 + p1234 + p1235 + p1345, p23 - p123 - p234 - p235 + p1234 +
p1235 + p2345, p14 - p124 - p134 - p145 + p1234 + p1245 + p1345, p24 - p124 - p234 - p245 +
p1234 + p1245 + p2345, p34 - p134 - p234 - p345 + p1234 + p1345 + p2345, p1234, p15 - p125 -
p135 - p145 + p1235 + p1245 + p1345, p25 - p125 - p235 - p245 + p1235 + p1245 + p2345, p35 -
p135 - p235 - p345 + p1235 + p1345 + p2345, p1235, p45 - p145 - p245 - p345 + p1245 + p1345

+ p2345, p1245, p1345, p2345 } . Expressions for the probabilities and constraints also are
provided in text files in the on-line supplemental materials, as described in Section 5.

Appendix C. Demonstration for n = 4: Tables for α = 0 and α = 0.40

Appendix D. Tables for Demonstration for n = 8:
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Table C2. Values to simulate dependent Bernoulli random variables Y 4 within each group according

to the algorithm of Kang and Jung [7] described in Section 2.2, for p1 = .15, p2 = .25, α = 0.40, and

w = 0.90. Simulation results are provided in Table 2.

Group 1 Group 2
Y1 Y2 Y3 Y4 i− 1a P4(i− 1) Z4(i− 1) Z4(i) P4(i− 1) Z4(i− 1) Z4(i)

0 0 0 0 0 .641815 0 .641815 .445125 0 .445125
1 0 0 0 1 .062535 .641815 .70435 .091125 .445125 .53625
0 1 0 0 2 .062535 .70435 .766885 .091125 .53625 .627375
1 1 0 0 3 .006615 .766885 .7735 .010125 .627375 .6375
0 0 1 0 4 .062535 .7735 .836035 .091125 .6375 .728625
1 0 1 0 5 .006615 .836035 .84265 .010125 .728625 .73875
0 1 1 0 6 .006615 .84265 .849265 .010125 .73875 .748875
1 1 1 0 7 .000735 .849265 .85 .001125 .748875 .75
0 0 0 1 8 .062535 .85 .912535 .091125 .75 .841125
1 0 0 1 9 .006615 .912535 .91915 .010125 .841125 .85125
0 1 0 1 10 .006615 .91915 .925765 .010125 .85125 .861375
1 1 0 1 11 .000735 .925765 .9265 .001125 .861375 .8625
0 0 1 1 12 .006615 .9265 .933115 .010125 .8625 .872625
1 0 1 1 13 .000735 .933115 .93385 .001125 .872625 .87375
0 1 1 1 14 .000735 .93385 .934585 .001125 .87375 .874875
1 1 1 1 15 .065415 .934585 1 .125125 .874875 1

a Each realization of (Y1, Y2, Y3, Y4) = B4(i) = the binary representation of i− 1.
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Table D1. Partial listing of the values (for i− 1 = 0 through 68) to simulate dependent Bernoulli random variables Y 8 within each

group according to the algorithm of Kang and Jung [7] described in Section 2.2 when α = 0.20. The full listing of values is provided
in Supplemental Material, as described in Section 5.

Group 1 Group 2
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 i− 1a P8(i− 1) Z8(i− 1) Z8(i) P8(i− 1) Z8(i− 1) Z8(i)

0 0 0 0 0 0 0 0 0 .00415331 0 .00415331 .00087353 0 .00087353
1 0 0 0 0 0 0 0 1 .00174934 .00415331 .00590265 .00026287 .00087353 .0011364
0 1 0 0 0 0 0 0 2 .00112827 .00590265 .00703092 .00017716 .0011364 .00131356
1 1 0 0 0 0 0 0 3 .0031696 .00703092 .01020053 .00073127 .00131356 .00204483
0 0 1 0 0 0 0 0 4 .00125872 .01020053 .01145924 .00022878 .00204483 .00227361
1 0 1 0 0 0 0 0 5 .00182505 .01145924 .01328429 .00046089 .00227361 .0027345
0 1 1 0 0 0 0 0 6 .00264183 .01328429 .01592612 .00070072 .0027345 .00343522
1 1 1 0 0 0 0 0 7 .00244413 .01592612 .01837026 .00057757 .00343522 .00401279
0 0 0 1 0 0 0 0 8 .00138963 .01837026 .01975989 .0002765 .00401279 .00428929
1 0 0 1 0 0 0 0 9 .00191151 .01975989 .0216714 .00049222 .00428929 .00478152
0 1 0 1 0 0 0 0 10 .00156417 .0216714 .02323557 .00043424 .00478152 .00521576
1 1 0 1 0 0 0 0 11 .00083948 .02323557 .02407505 .00018027 .00521576 .00539603
0 0 1 1 0 0 0 0 12 .00297164 .02407505 .02704668 .00086615 .00539603 .00626218
1 0 1 1 0 0 0 0 13 .0009689 .02704668 .02801558 .00025803 .00626218 .00652021
0 1 1 1 0 0 0 0 14 .00201261 .02801558 .03002819 .00064896 .00652021 .00716917
1 1 1 1 0 0 0 0 15 .0044864 .03002819 .03451459 .00143469 .00716917 .00860386
0 0 0 0 1 0 0 0 16 .00151907 .03451459 .03603366 .00031615 .00860386 .00892001
1 0 0 0 1 0 0 0 17 .001997 .03603366 .03803066 .00051826 .00892001 .00943827
0 1 0 0 1 0 0 0 18 .00162704 .03803066 .0396577 .00045532 .00943827 .00989359
1 1 0 0 1 0 0 0 19 .0009331 .0396577 .0405908 .0002117 .00989359 .01010528
0 0 1 0 1 0 0 0 20 .00170475 .0405908 .04229555 .00049322 .01010528 .01059851
1 0 1 0 1 0 0 0 21 .00013218 .04229555 .04242773 .00001317 .01059851 .01061167
0 1 1 0 1 0 0 0 22 .00061872 .04242773 .04304645 .00018927 .01061167 .01080094
1 1 1 0 1 0 0 0 23 .00241087 .04304645 .04545732 .00074932 .01080094 .01155026
0 0 0 1 1 0 0 0 24 .00333895 .04545732 .04879627 .0010562 .01155026 .01260647
1 0 0 1 1 0 0 0 25 .00121149 .04879627 .05000777 .00038282 .01260647 .01298928
0 1 0 1 1 0 0 0 26 .0007327 .05000777 .05074047 .00027428 .01298928 .01326356
1 1 0 1 1 0 0 0 27 .0025806 .05074047 .05332107 .00087607 .01326356 .01413963
0 0 1 1 1 0 0 0 28 .00267282 .05332107 .05599389 .00108278 .01413963 .01522241
1 0 1 1 1 0 0 0 29 .002759 .05599389 .05875288 .00102162 .01522241 .01624402
0 1 1 1 1 0 0 0 30 .0041977 .05875288 .06295058 .00175343 .01624402 .01799745
1 1 1 1 1 0 0 0 31 .00476084 .06295058 .06771142 .00214707 .01799745 .02014453
0 0 0 0 0 1 0 0 32 .00164486 .06771142 .06935628 .00034367 .02014453 .0204882
1 0 0 0 0 1 0 0 33 .00208008 .06935628 .07143636 .00053633 .0204882 .02102453
0 1 0 0 0 1 0 0 34 .00168815 .07143636 .07312451 .00046995 .02102453 .02149448
1 1 0 0 0 1 0 0 35 .00102408 .07312451 .07414859 .00023351 .02149448 .02172799
0 0 1 0 0 1 0 0 36 .00177047 .07414859 .07591905 .00050992 .02172799 .02223791
1 0 1 0 0 1 0 0 37 .00017558 .07591905 .07609464 .00002414 .02223791 .02226205
0 1 1 0 0 1 0 0 38 .00069102 .07609464 .07678566 .00020986 .02226205 .02247191
1 1 1 0 0 1 0 0 39 .00251854 .07678566 .0793042 .00078002 .02247191 .02325193
0 0 0 1 0 1 0 0 40 .00185308 .0793042 .08115728 .00054688 .02325193 .02379881
1 0 0 1 0 1 0 0 41 .00023014 .08115728 .08138742 .0000484 .02379881 .02384721
0 1 0 1 0 1 0 0 42 .00001095 .08138742 .08139837 3.501e-06 .02384721 .02385071
1 1 0 1 0 1 0 0 43 .0015059 .08139837 .08290427 .00047236 .02385071 .02432308
0 0 1 1 0 1 0 0 44 .00089915 .08290427 .08380342 .00033796 .02432308 .02466103
1 0 1 1 0 1 0 0 45 .00158757 .08380342 .085391 .00053257 .02466103 .02519361
0 1 1 1 0 1 0 0 46 .00224622 .085391 .08763722 .0008353 .02519361 .02602891
1 1 1 1 0 1 0 0 47 .00185506 .08763722 .08949228 .00077822 .02602891 .02680714
0 0 0 0 1 1 0 0 48 .00374309 .08949228 .09323537 .00125893 .02680714 .02806607
1 0 0 0 1 1 0 0 49 .00147841 .09323537 .09471378 .00051593 .02806607 .028582
0 1 0 0 1 1 0 0 50 .00092901 .09471378 .09564278 .00038205 .028582 .02896405

a Each realization of (Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8) = B8(i) = the binary representation of i− 1.
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Table D2. Partial listing of the values (for i − 1 = 0 through 50) to simulate dependent Bernoulli random variables Y 8 within
each group according to the algorithm of Kang and Jung [7] described in Section 2.2. These values were obtained under an

assumption of first-order antedependence for α = 0.20. The full listing of values is provided in Supplemental Material, as

described in Section 5.

Group 1 Group 2
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 i− 1a P8(i− 1) Z8(i− 1) Z8(i) P8(i− 1) Z8(i− 1) Z8(i)

0 0 0 0 0 0 0 0 0 .00355485 0 .00355485 .00068599 0 .00068599
1 0 0 0 0 0 0 0 1 .00234781 .00355485 .00590265 .00045041 .00068599 .0011364
0 1 0 0 0 0 0 0 2 .00172674 .00590265 .00762939 .0003647 .0011364 .0015011
1 1 0 0 0 0 0 0 3 .00257114 .00762939 .01020053 .00054373 .0015011 .00204483
0 0 1 0 0 0 0 0 4 .00185718 .01020053 .01205771 .00041632 .00204483 .00246115
1 0 1 0 0 0 0 0 5 .00122658 .01205771 .01328429 .00027335 .00246115 .0027345
0 1 1 0 0 0 0 0 6 .00204337 .01328429 .01532766 .00051318 .0027345 .00324768
1 1 1 0 0 0 0 0 7 .0030426 .01532766 .01837026 .00076511 .00324768 .00401279
0 0 0 1 0 0 0 0 8 .0019881 .01837026 .02035835 .00046404 .00401279 .00447683
1 0 0 1 0 0 0 0 9 .00131304 .02035835 .0216714 .00030469 .00447683 .00478152
0 1 0 1 0 0 0 0 10 .0009657 .0216714 .0226371 .0002467 .00478152 .00502822
1 1 0 1 0 0 0 0 11 .00143794 .0226371 .02407505 .00036781 .00502822 .00539603
0 0 1 1 0 0 0 0 12 .00237317 .02407505 .02644821 .00067861 .00539603 .00607464
1 0 1 1 0 0 0 0 13 .00156736 .02644821 .02801558 .00044557 .00607464 .00652021
0 1 1 1 0 0 0 0 14 .00261108 .02801558 .03062666 .0008365 .00652021 .00735671
1 1 1 1 0 0 0 0 15 .00388793 .03062666 .03451459 .00124715 .00735671 .00860386
0 0 0 0 1 0 0 0 16 .00211754 .03451459 .03663213 .00050369 .00860386 .00910755
1 0 0 0 1 0 0 0 17 .00139853 .03663213 .03803066 .00033072 .00910755 .00943827
0 1 0 0 1 0 0 0 18 .00102858 .03803066 .03905924 .00026778 .00943827 .00970605
1 1 0 0 1 0 0 0 19 .00153157 .03905924 .0405908 .00039924 .00970605 .01010528
0 0 1 0 1 0 0 0 20 .00110628 .0405908 .04169708 .00030568 .01010528 .01041097
1 0 1 0 1 0 0 0 21 .00073065 .04169708 .04242773 .00020071 .01041097 .01061167
0 1 1 0 1 0 0 0 22 .00121718 .04242773 .04364491 .00037681 .01061167 .01098848
1 1 1 0 1 0 0 0 23 .00181241 .04364491 .04545732 .00056179 .01098848 .01155026
0 0 0 1 1 0 0 0 24 .00274049 .04545732 .04819781 .00086866 .01155026 .01241893
1 0 0 1 1 0 0 0 25 .00180996 .04819781 .05000777 .00057036 .01241893 .01298928
0 1 0 1 1 0 0 0 26 .00133117 .05000777 .05133894 .00046181 .01298928 .0134511
1 1 0 1 1 0 0 0 27 .00198213 .05133894 .05332107 .00068853 .0134511 .01413963
0 0 1 1 1 0 0 0 28 .00327129 .05332107 .05659235 .00127032 .01413963 .01540995
1 0 1 1 1 0 0 0 29 .00216053 .05659235 .05875288 .00083408 .01540995 .01624402
0 1 1 1 1 0 0 0 30 .00359923 .05875288 .06235211 .00156589 .01624402 .01780991
1 1 1 1 1 0 0 0 31 .00535931 .06235211 .06771142 .00233461 .01780991 .02014453
0 0 0 0 0 1 0 0 32 .00224333 .06771142 .06995475 .00053121 .02014453 .02067574
1 0 0 0 0 1 0 0 33 .00148161 .06995475 .07143636 .00034879 .02067574 .02102453
0 1 0 0 0 1 0 0 34 .00108968 .07143636 .07252604 .00028241 .02102453 .02130694
1 1 0 0 0 1 0 0 35 .00162255 .07252604 .07414859 .00042105 .02130694 .02172799
0 0 1 0 0 1 0 0 36 .001172 .07414859 .07532059 .00032238 .02172799 .02205038
1 0 1 0 0 1 0 0 37 .00077405 .07532059 .07609464 .00021167 .02205038 .02226205
0 1 1 0 0 1 0 0 38 .00128949 .07609464 .07738413 .0003974 .02226205 .02265945
1 1 1 0 0 1 0 0 39 .00192007 .07738413 .0793042 .00059248 .02265945 .02325193
0 0 0 1 0 1 0 0 40 .00125461 .0793042 .08055881 .00035934 .02325193 .02361127
1 0 0 1 0 1 0 0 41 .00082861 .08055881 .08138742 .00023594 .02361127 .02384721
0 1 0 1 0 1 0 0 42 .00060942 .08138742 .08199684 .00019104 .02384721 .02403825
1 1 0 1 0 1 0 0 43 .00090743 .08199684 .08290427 .00028482 .02403825 .02432308
0 0 1 1 0 1 0 0 44 .00149762 .08290427 .08440189 .0005255 .02432308 .02484857
1 0 1 1 0 1 0 0 45 .0009891 .08440189 .085391 .00034504 .02484857 .02519361
0 1 1 1 0 1 0 0 46 .00164775 .085391 .08703875 .00064777 .02519361 .02584137
1 1 1 1 0 1 0 0 47 .00245353 .08703875 .08949228 .00096576 .02584137 .02680714
0 0 0 0 1 1 0 0 48 .00314463 .08949228 .0926369 .00107139 .02680714 .02787853
1 0 0 0 1 1 0 0 49 .00207687 .0926369 .09471378 .00070347 .02787853 .028582
0 1 0 0 1 1 0 0 50 .00152748 .09471378 .09624125 .00056959 .028582 .02915159

a Each realization of (Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8) = B8(i) = the binary representation of i− 1.
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