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Abstract: 
We have frequently implemented crossover studies to evaluate new therapeutic interventions for 
genital herpes simplex virus infection.  The outcome measured to assess the efficacy of 
interventions on herpes disease severity is the viral shedding rate, defined as the frequency of 
detection of HSV on the genital skin and mucosa.  We performed a simulation study to ascertain 
whether our standard model, which we have used previously, was appropriately considering all 
the necessary features of the shedding data to provide correct inference.  We simulated shedding 
data under our standard, validated assumptions and assessed the ability of 5 different models to 
reproduce the parameters used and assess model performance.  Our standard Poisson model, 
which includes a random per-person intercept to account for overdispersion, provided surprising 
findings: excess type I error (up to 28%) and poor coverage (~70%).  A Poisson model with data-
derived empirical variance structure, however, provided optimal power with type I error 
controlled at 5% and near 95% coverage.  Explanations include that HSV detection frequency is 
doubly overdispersed:  1) person-level differences in shedding frequency must be accounted for by 
a random intercept and 2) the episodic nature of shedding induces additional extra-Poisson 
variance in person-level shedding frequency that must be accounted for using an empirical 
variance structure.  These data support using the model with empirical variance structure for 
future crossover studies of HSV shedding. 
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Background 
Herpes simplex virus (HSV) causes a lifelong infection. Following initial infection of mucosal 
epithelium, the virus resides in the neurons and frequently reactivates, emerging again at mucosal 
surfaces and causing ulcerations or lesions.  The infection can be caused by either herpes simplex 
type 1 (HSV1, occurring in the mouth or genital region) or herpes simplex type 2 virus (HSV2, 
commonly occurring genitally).  As many as 11% of the world’s population may be infected with 
HSV2, and 67% with HSV11,2.  When virus is detected on the skin or mucosa, it is often associated 
with symptoms or signs; but the virus is also frequently present in the absence of oral or genital 
lesions.   
 
Genital viral shedding is an efficient and powerful outcome for assessing herpes disease severity, 
and an accurate surrogate marker in studies evaluating the efficacy of candidate antiviral agents3.  
HSV shedding is more common than lesions, can be assessed by a laboratory measure that is more 
accurate than patient or clinician assessment of lesions, and correlates with frequency of genital 
lesions.  Importantly, the strong within-person consistency makes it a meaningful and reliable 
measure upon which to base evaluation of disease severity.  As such, we have conducted several 
studies of interventions designed to demonstrate benefit for HSV infections by using frequency of 
HSV detection (viral shedding) as the primary outcome3-6. In these studies participants obtain daily 
swabs from the genital mucosa which are tested for HSV by PCR, and the information is 
summarized as the proportion of swabs with detectable HSV DNA.  Observed reductions in 
frequency of shedding induced by interventions provide information regarding efficacy that can be 
further confirmed through studying clinical outcomes such as frequency of genital lesions in larger 
Phase III studies.  
 
There are two sources of variability in HSV mucosal shedding.  The first is wide variation in 
shedding rate noted between persons that reflects the unique host-pathogen interaction within 
the individual7,8.  The second variability results from the occurrence of shedding in clusters of days, 
followed by shedding-free intervals9.  Therefore, the risk of shedding on a given day depends not 
only on the shedding rate inherent for a person, but also on whether shedding occurred the prior 
day.   
 
In the current simulation study, we evaluate a range of analytic methods to address viral shedding 
as an outcome in cross-over clinical trials.  Our findings result in a recommendation for an optimal 
method to be used in currently ongoing and forthcoming studies. 
 

Methods 

Design choice:  the crossover 
Crossover designs are efficient in making use of the demonstrated consistency in person-specific 
HSV detection frequencies.  When comparing individuals to themselves in a crossover design, the 
variability of the effect size is reduced, relative to cohort designs that make comparisons between 
groups.  Consequently, we have made use of the efficiency of within-persons comparisons by 
conducting crossovers, in which all persons receive, sequentially, the intervention followed by or 
preceded by a standard comparator (usually placebo).  Shedding frequency is subsequently 
compared between the two treatment periods, and the difference is described as a ratio of 
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shedding rates.  When an investigational treatment is compared as such to a standard treatment, 
the shedding rate ratio can be less than 1, describing a proportionate reduction in shedding. 

Model choices 
In order to estimate average rates of shedding on both arms and to estimate the shedding rate 
ratio, we have utilized Poisson regression.  Poisson regression assumes that the variability of 
responses is equal to the average response10.  In HSV2 infections, person-to-person differences in 
shedding rates indicate that there is no single average response rate, but that each individual 
responds to HSV infection with a unique severity level.  Accordingly, we have historically 
accounted for this variation by including in regression models an adjustment that allows each 
person to have their own baseline shedding rate estimate, against which the shedding rate while 
on treatment is compared.  This was done using a random intercept.  This intercept removed the 
assumption of constant variance as well.  Remaining error variance was then estimated using 
model-based methods, assuming the variance could be estimated using the within-person 
response rate.   
 
In this simulation study, we compare our standard model against 4 other models, listed here and 
further detailed below.  These models represent the most likely options that take into account all 
the features of the data.  Not included are marginal models, such as generalized estimating 
equations, that do not make use of the interest in assessing within-person differences by arm but 
instead compare average outcomes on each arm.  Also not included are linear regressions that 
would assume shedding rate can take all possible real numbered values. 

 Poisson regression with random intercept and empirical variance structure 

 Negative binomial regression (allows extra Poisson variance per individual) 

 Negative binomial with random intercept and empirical variance structure 

 Baseline covariate model that includes baseline shedding as predictor 
 
All four of these new models relax the assumption that, even at the individual level, the variance 
could be estimated by the average shedding rate.  Empirically estimated variance allows error 
variance to be estimated from the observed data itself, negative binomial models also utilize 
observed data and allow for variation inflation at the individual level, assuming the variance is 
proportional to (but may be larger than) the average outcome rate.   
 
All but the baseline covariate model are random effect models, so they allow two rows of data per 
participant in the study: one row per person for each arm.  They can generally be designated using 
the following notation, where Yij is the number of positive swabs for person i on arm j, nij is the 
number of swabs taken for person i on arm j, T is an indicator for arm (1=investigational treatment 

of interest, 0=comparator or placebo), i is the random person-level intercept and ij is the error 

term.  The computation of both i + ij differ depending on the specification of the variance 
structures as described above, however the standard model and the first three proposed potential 
models share this structure: 

 log(Yij) =  + *T + log(nij) + i + ij 

We can expand to show that the log shedding rates on the two treatment arms differ by the 

coefficient  and random error. 

 log(Yi0/ni0) =  + i + i0 
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 log(Yi1/ni1) =  +  + i + i1 

Rearranging then and acknowledging that the errors have mean zero, we can see that  is the 
estimate of the log shedding rate ratio, or equivalently that the shedding rate ratio is estimated by 

e. 

E[log(Yi1/ni1) - log(Yi0/ni0)] = E[log(Yi1/ni1  Yi0/ni0)] =  
The final baseline covariate model, however, includes only one row per participant, and includes 
offset terms for both the log shedding rate during the comparator arm and the log number of 

swabs while on the investigational arm.  Here we estimate the variance i by allowing 
overdispersion and including the standard residual-derived scale parameter, again not relying on 
the distributional assumptions of a Poisson model. 

 log(Yi1) =  + log(Yi0/ni0)  + log(ni1) + i 

Rearranging the above expression we see that the interpretation of  is of the estimated shedding 
rate ratio, intervention versus run-in, and therefore is has the identical interpretation to that of 

the  term in the previous models.   

 log(Yi1/ni1) - log(Yi0/ni0) = log(Yi1/ni1  Yi0/ni0) =  + i 

 E[log(Yi1/ni1  Yi0/ni0)] =  

The advantage of the baseline covariate model is that fewer assumptions are required:  there is no 
person-to-person correlation when each person contributes only one data point.  The 

disadvantage is that the offset log(Yi0/ni0) is often undefined in real data (log(0)=-), as perhaps 
30% of participants do not shed over the usual sampling period of about a month and so for them 
Yi0=0.  For our purposes in simulation, we reassigned the value of Yi0 to be 0.5 whenever the 
observed Yi0 was 0.  This allowed us to compute a valid log(Yi0/ni0), but likely biased findings by 
inflating the observed shedding rate while not on intervention. 
 

Simulation specifics 
We simulated and tested each condition 1600 times to allow approximately 1% precision for our 
estimates of power and type I error.  For each, we imposed the following characteristics on the 
data.  The parameters describing shedding characteristics were previously shown to correspond 
well to clinical data from a large cohort of HSV2 seropositive persons11,12.   

 20 - 50 persons enrolled in a crossover study 

 28 days of samples collected for HSV detection, per person on each of two arms 

 A 13% average baseline shedding rate, allowing individual variation in true rate using a  

prior with standard deviation of 12% ( = 1.0,  = 6.2),  

 Auto-regressive correlation to create shedding episodes, with  = 0.54 the average 
correlation in the probability of shedding between two consecutive days for the same 

person.   also employed a beta prior, standard deviation 0.23, ( = 2.1,  = 1.8).   

 An intervention with 0%, 20%, 40%, 60% or 80% efficacy (corresponding to shedding rate 
ratios of 1.0, 0.8, 0.6, 0.4, and 0.2, respectively). 

 

Definitions 
We define power as the probability of detecting a statistically significant effect of the intervention 
when in fact that intervention is effective (has an imposed shedding rate ratio not equal to 1.0).  
We define type I error as the probability of detecting a statistically significant effect of the 
intervention when the intervention is not effective (an imposed shedding rate ratio of 1.0).  
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Coverage is the probability that the model-derived 95% confidence interval includes the true 
parameter:  for our purposes we tested coverage of the intervention efficacy.  Monte-Carlo 
confidence intervals for the intervention efficacy are computed using the standard error of the 
shedding rate ratio estimates over repeated simulation.  Model-based confidence intervals do not 
contribute to this computation. 

Results 
Simulation results when 50 persons per arm were simulated are shown in Figures 1, 2 and 3.  
Figure 1 shows that both the Poisson (standard, in brown) method with the random intercept and 
the Poisson method that also includes the empirical variance estimate (purple) provide the most 
accurate estimates for treatment efficacy, as they are closest to zero bias.   
 
Figure 1. Estimates and 95% confidence intervals for mean treatment effect; they are based on 
variance over the simulations (Monte-Carlo variation). 

 

Figure 2 shows, in red lines, the targeted range for coverage, which is 95% plus and minus the 
expected Monte-Carlo error of 1.6% based on 1600 simulated datasets.  Bars with heights that fall 
between the red dashed lines have coverage that would be consistent with the anticipated 95% 
coverage.  While most analytic methods are close to 95% coverage, the standard method is closer 
to 70% coverage, indicating that about 30% of the time, the 95% confidence interval for the true 
intervention efficacy does not include the true value. 
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Figure 2.  Coverage: The y-axis shows the proportion of times that the model-estimated 
confidence interval for the treatment effect actually includes the simulated treatment effect.  We 
would expect 95% coverage from all models. 

 

In Figure 3 we examine power or Type 1 error rate, and show that when the imposed or simulated 
shedding rate ratio is actually 1, indicating no benefit of treatment, the standard Poisson 
regression method with random intercept provides an almost 28% probability of detecting a 
statistically significant treatment effect.  This type I error can be interpreted to mean that when 
the treatment has no impact on the outcome rate, there is still an approximate 1:4 chance that a 
significant p-value (<0.05) will result from the study.    

Both analytic methods using the empirical variance structure (Poisson and negative binomial) 
provide type I error of approximately 5%.  Since these methods control type I error, we refer back 
to Figure 1 showing Poisson and Poisson empirical to be most accurate of all methods tried, and 
conclude that Poisson regression with empirical variance structure performs ideally among 
methods tried.  Looking back again to figure 3, and comparing power this time, the power for the 
Poisson regression with empirical variance estimate (second darkest bar) is comparable to other 
models tested, when considering those that control type I error at 5%.  (Note that power can fall 
below the standard target of 80% for these simulations, but relative relationships between 
methods are consistent.)  

Results were similar when 20 persons were used, with nearly identical rankings of the methods in 
terms of power, coverage and bias (data not shown).  
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Figure 3.  Power, or type I error rate, depending on what is true.  Each bar shows the proportion of 
times the p-value is less than 0.05, that is, a significant treatment effect is detected. For simulated 
shedding ratios less than 1.0, the bar height is interpreted as power, as there is a true treatment 
benefit.  When the simulated ratio equals 1.0, the bar height is interpreted as type I error.  The red 
lines show the anticipated range for type I error, which is 5% plus and minus the expected Monte-
Carlo error of 1.6%.  Bars whose height falls between the red dashed lines have a type I error that 
is consistent with 5%.    
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Conclusions 
In this simulation study, we determined that shedding frequency data involves two nested levels 
of extra-Poisson variance (overdispersion), one at the population level and one at the individual 
level, and both needed to be accounted for in the analysis.  While standard Poisson random 
effects model which we have used in our prior work accounted for the population level 
overdispersion, that model was not sufficient to account for the additional increased variability at 
the individual level due to the clustering of days with shedding (i.e, shedding episodes).  

We have demonstrated for the first time that previously used regression techniques for analyzing 
shedding rate resulted in inflated type I error rates of as high as 28%.  We were surprised to find 
that shedding episodes had such a dramatic effect on variance estimates that they could result in 
false inference.  This type I error can be interpreted to mean that when the treatment has no 
impact on the shedding frequency, there is still an approximate 1:4 chance that a significant p-
value of less than 0.05 will result from the study.  This is different from concluding that a 
significant p-value has a 1:4 chance of being spurious (this is inverted conditional logic).  The 
knowledge of an inflated type I error leads us to consider p-values obtained from this previous 
standard method with concern.  Consequently, we are in the process of re-analyzing previously 
published studies. 
 
Importantly, we note that the effect estimates obtained from the Poisson regression without 
empirical variance structures do not change when those data are subjected to the new model.  
However, both standard error estimates and the corresponding confidence intervals are likely to 
widen, with p-values being simultaneously likely to increase in value (and decrease in significance).   
 
In the future, we plan to adopt this Poisson regression with a random intercept and empirical 
variance estimate, as an analytic approach with optimally desirable properties.  This new method 
assures us that model-generated confidence intervals provide the stated level of confidence.  We 
can be certain that p-values generated under the new model are only likely to be significant under 
the null model fewer than 5% of the time, the desired error rate.  And we are also certain to have 
power about as high as can be obtained, since we have considered all reasonable candidate 
models likely to be implemented.  The simulation results reassure us that we have identified a 
method with predictable and desirable properties to implement in future studies.   
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