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Statistical estimation of white matter
microstructure from conventional MRI

Leah Suttner, Amanda Mejia, Blake Dewey, Pascal Sati, Daniel S. Reich, and
Russell T. Shinohara

Abstract

Diffusion tensor imaging (DTI) has become the predominant modality for study-
ing white matter integrity in multiple sclerosis (MS) and other neurological disor-
ders. Unfortunately, the use of DTI-based biomarkers in large multi-center stud-
ies is hindered by systematic biases that confound the study of disease-related
changes. Furthermore, the site-to-site variability in multi-center studies is signifi-
cantly higher for DTI than that for conventional MRI-based markers. In our study,
we apply the Quantitative MR Estimation Employing Normalization (QuEEN)
model to estimate the four DTI measures: MD, FA, RD, and AD. QuEEN uses a
voxel-wise generalized additive regression model to relate the normalized intensi-
ties of one or more conventional MRI modalities to a quantitative modality, such
as DTI. We assess the accuracy of the models by comparing the prediction error of
estimated DTI images to the scan-rescan error in subjects with two sets of scans.
Across the four DTI measures, the performance of the models is not consistent:
Both MD and RD estimations appear to be quite accurate, while AD estimation
is less accurate than MD and RD; the accuracy of FA estimation is poor. Thus,
it some cases when assessing white matter integrity, it may sufficient to acquire
conventional MRI sequences alone.
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Abstract 
Diffusion tensor imaging (DTI) has become the predominant modality for studying white 
matter integrity in multiple sclerosis (MS) and other neurological disorders. Unfortunate-
ly, the use of DTI-based biomarkers in large multi-center studies is hindered by systemat-
ic biases that confound the study of disease-related changes. Furthermore, the site-to-site 
variability in multi-center studies is significantly higher for DTI than that for convention-
al MRI-based markers. In our study, we apply the Quantitative MR Estimation Employ-
ing Normalization (QuEEN) model to estimate the four DTI measures: MD, FA, RD, and 
AD. QuEEN uses a voxel-wise generalized additive regression model to relate the nor-
malized intensities of one or more conventional MRI modalities to a quantitative modali-
ty, such as DTI. We assess the accuracy of the models by comparing the prediction error 
of estimated DTI images to the scan-rescan error in subjects with two sets of scans. 
Across the four DTI measures, the performance of the models is not consistent: Both MD 
and RD estimations appear to be quite accurate, while AD estimation is less accurate than 
MD and RD; the accuracy of FA estimation is poor. Thus, it some cases when assessing 
white matter integrity, it may sufficient to acquire conventional MRI sequences alone. 
 
Introduction 
 
Diffusion tensor imaging (DTI) has become the predominant modality for studying white 
matter integrity in multiple sclerosis (MS) and other neurological disorders, including 
Alzheimer’s disease, traumatic brain injury, epilepsy, depression, and stroke. In MS, DTI 
is generally understood to provide information about diffuse changes in the microstruc-
ture and integrity in the white matter of patients. Numerous studies have shown that cer-
tain DTI measures differ between MS subjects and controls. In particular, researchers 
have found that patients with MS have increased mean diffusivity (MD) and decreased 
fractional anisotropy (FA) in normal appearing white matter (NAWM) compared to 
healthy controls [1]–[4]. As changes in NAWM are frequently used to study and monitor 
the progression of MS, new biomarkers based on these differences could offer better dis-
ease management for patients. Moreover, many of these studies promote the use of DTI 
by suggesting that DTI can measure microstructural changes, whereas conventional mag-
netic resonance imaging (MRI) is only able identify changes at the macrostructural level 
[3], [5], [6]. 
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Unfortunately, the use of DTI-based biomarkers in large multi-center studies is hindered 
by systematic biases [7], [8], which confound the study of disease-related changes. Fur-
thermore, the site-to-site variability in multi-center studies is significantly higher for DTI 
[9], [10] than that for conventional MRI-based markers [11], [12]. These issues necessi-
tate larger sample size in multi-center studies using DTI and highlight the potential for 
less generalizable findings from single-scanner studies. Additionally, DTI sequences re-
quire additional scanning time, which increases the cost of MRI in both clinical and re-
search settings. In this paper, we investigate whether conventional MRI can be used to 
detect microstructural changes and estimate DTI measures. 
  
Synthesizing or estimating a specific imaging modality or sequence from other imaging 
sequences can be advantageous for several reasons. Doing so allows for larger multicen-
ter imaging studies in which patients, or even entire centers, are missing particular types 
of images. It also allows researchers to capitalize on imaging datasets that have already 
been acquired. For example, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database [13] contains thousands of conventional MRIs, and the Comprehensive Longi-
tudinal Investigation of Multiple sclerosis at the Brigham and Women’s Hospital 
(CLIMB) contains conventional MRI from thousands of MS patients [14]; there are also 
numerous well controlled phase 3 studies that have acquired conventional MRI data. Us-
ing image estimation, these and other databases could be used to conduct large-scale 
studies with quantitative imaging not acquired at every study site. Image synthesis also 
has significant applications in multi-modal image registration [15],[16],[17] and normali-
zation [16].  Thus, there has been a growing interest in this field in recent years. A recent 
study on image synthesis showed that it is possible to synthesize T2-weighted contrasts 
from T1-weighted images and to synthesize 3-tesla T1-weighted magnetization prepared 
rapid gradient echo (MPRAGE) images from 1.5-tesla MPRAGEs using an atlas image-
based nonlinear regression [18]. [17] uses a generalized patch-based label propagation 
method to synthesis arbitrary target image modalities. Specifically, they use T1-wighted 
MRI to synthesize T2 MRI and, with much less accuracy, DTI-fractional anisotropy. 
 
In our study, we adopt the methods introduced by [19], in which quantitative T1 maps 
(qT1) are estimated from the conventional MRI sequences: T1-weighted (T1w), T2-
weighted (T2w), proton density-weighted (PDw), and T2-weighted fluid attenuated inver-
sion recovery (FLAIR) images. We apply their Quantitative MR Estimation Employing 
Normalization (QuEEN) model to estimate the four DTI measures: MD, FA, radial diffu-
sivity (RD) and axial diffusivity (AD). 
 
Methods 
 
Study Sample 
 
The dataset we use in this study includes 73 subjects with clinically diagnosed MS and at 
least one set of MRI and DTI scans. After performing quality control to exclude images 
that exhibit subject movement, major segmentation errors, and registration problems, we 
have 50 subjects, including 14 with relapsing-remitting MS (RRMS), 12 with secondary-
progressive MS (SPMS), and 24 with primary-progressive MS (PPMS). The resulting 
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study sample is 64 % female with a mean age of 53 (S.D. 11). Additionally, a second set 
of MRI and DTI scans was acquired for 19 subjects, which we use to evaluate the predic-
tive accuracy of the model. The median time between scans is 181 days (range 147 – 
301). Additional summary statistics are provided in Table 1.  
 
 All MS PPMS RRMS SPMS 
n 50 24 14 12 
% Female 64.0 50.0 85.7 66.7 
Mean Age (SD) 52.9 (11.4) 56.6 (7.4) 44.4 (15.0) 55.4 (8.3) 
Disease Duration (SD) 14.9 (10.8) 13.5(9.5) 15.0 (7.9) 25.7 (9.2) 
Median EDSS Score 
(range) 3.5 (1.0 – 7.5) 5.5 (1.5 – 7.5) 1.5 (1.0 – 6.0) 6.25 (1.5 – 7.0) 

Table 1: Study Sample Summary Statistics 
 
Imaging Protocol 
 
Each MRI study includes the following volumes, all collected on a Siemens Skyra 3T 
scanner equipped with a 32-channel receive coil: T1-MPRAGE (Magnetization-Prepared 
RApid Gradient Echo) [TR=3000ms, TE=3.03ms, TI=900ms, FA=9]; PDw and T2w  im-

- -ages from a dual-echo turbo spin echo (TSE) sequence [TR=3000ms, TE=11ms/101ms, 
FA=150, ETL=14]; and a 3D T2-weighted FLAIR image acquired using a T2-selective 
inversion pulse optimized for T2 of 120ms [TR=4800ms, TE=354ms, TI=1800ms, varia-
ble FA]. All scans are acquired at 1.0mm isotropic resolution except the PDw/T2w TSE 

. x . x .sequence, which is acquired at 0 93  0 93  3 0mm resolution. 
 
Each DTI study was obtained using a two-acquisition method with opposite phase encode 
directions to minimize influence of B0-related image distortions. Each acquisition ac-
quired 1 reference image without diffusion weighting and 30 images with radially spaced 
diffusion directions and a diffusion weighting of b=1000s/mm2. Diffusion weighted im-
ages were acquired at 2 x 2 x 2mm isotropic resolution. 
 
Image Processing 
 
We perform image preprocessing as described in [19]. Briefly, we rigidly align all images 
to the MNI152 1.0 mm nonlinear template. To remove extracerebral voxels, we use the 
SPECTRE skull-stripping algorithm [20]. To segment tissue classes, we use Lesion To-
pology Preserving Anatomy Driven Segmentation (Lesion-TOADS) [21]. We correct for 
ventricular segmentation errors using non-topologically constrained maximum member-
ship classes. We generate brain masks by excluding cerebrospinal fluid (CSF), hy-
pointense voxels in FLAIR, and any voxels outside the field of view on any image. To 
create conservative tissue class masks, we use a 3x3x3 diamond-shaped kernel for ero-
sion of the Lesion-TOADS segmentation. We use the conservative masks for training and 
validation, but we use the full masks for whole-image predictions. 
 
Image Normalization 
 
As conventional structural MRI is acquired in arbitrary units, intensity normalization is 
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required to compare values across images acquired at different sites; using different 
hardware, software or protocols; or even on different dates using the same scanner and 
protocol. Historically, image normalization has been performed with respect to NAWM 
[22] or CSF [23]–[28] as a reference region. However, both of these tissue classes are 
less than optimal for this study. CSF is highly variable in intensity, which can lead to in-
consistent normalization. Changes in NAWM are of primary interest, and thus normaliz-
ing with respect to NAWM could obscure disease-related changes. 
 
Instead, we utilize the adaptation of the z-score normalization method [22], [29] proposed 
by [19].  The z-score method subtracts a measure of location and divides by a measure of 
scale; we refer to these two steps as scaling and shifting, respectively. The adapted meth-
od proposed by [13] utilizes a combination of NAWM and cerebellar gray matter 
(CBGM). Although using NAWM alone as a reference can confound the normalization, 
the standard deviation of NAWM is well estimated and can be used for scaling. Abnor-
malities of CBGM in MS are poorly detected by conventional MRI methods, and thus 
CBGM signal intensity should be similar between subjects and disease groups. Thus, 
CBGM can be used for shifting. Previously, CBMG has been used for normalization in 
positron emission tomography (PET) in MS [30] and Alzheimer’s disease [31]. 
 
The normalized units are given by  
 

𝑀!
! 𝑣 =   

𝑀! 𝑣 −   𝜇!,!
(!"#$)

𝜎!,!
(!"#$)  

 
𝑀!(𝑣) denotes the intensity of voxel v for subject i in modality M ∈ {FLAIR, PDw, T1w, 
T2w}.  For subject i in modality M, 𝜇!,!(!"#$)is the mean intensity in CBGM, and 
𝜎!,!(!"#$)is the standard deviation of intensities within NAWM. 
 
Statistical Prediction Model 
 
To model each DTI modality, we apply the QuEEN statistical model to generate “statisti-
cal DTI” measures of MD, FA, RD and AD. QuEEN uses a voxel-wise generalized addi-
tive regression model to relate the normalized intensities of one or more conventional 
MRI modalities to a quantitative modality, such as qT1 or DTI. We specify a set of mod-
els to use the standard MRI modalities, T1w, T2w, PDw, and FLAIR, to predict the DTI 
measures MD, FA, RD, and AD. As in the QuEEN model, we fit a separate model for 
each tissue class, c. Thus, for each DTI measure, we relate the value at each voxel v in 
class c of subject i to the corresponding predictor modalities by:  
 

𝐷𝑇𝐼!" 𝑣 ~𝑓!!! 𝑇!𝑤!! 𝑣 + 𝑓!!! 𝑇!𝑤!! 𝑣 + 𝑓!!! 𝑃𝐷𝑤!! 𝑣

+ 𝑓!!! 𝐹𝐿𝐴𝐼𝑅!! 𝑣 +   𝜖! 𝑣  

 

 
where 𝑗 = 1,2,3,4 indexes the four DTI measures we wish to predict. The smooth func-
tions 𝑓!"! (⋅), 𝑘 = 1,2,3,4, relate predictor modality 𝑘 to DTI measure 𝑗 within tissue class 
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𝑐. We implement the models in R using the gam function from the mgcv package (ver-
sion 1.7-28, [32], [33]) as described in [19]. The gam function represents the smooth 
curves as penalized regression splines. The degree of smoothness is estimated using gen-
eralized cross-validation, and the smoothing parameter estimation criterion is optimized 
using the Newton method [34]. The statistical DTI measures (stat-MD, stat-FA, stat-RD, 
and stat-AD) are estimated by applying the estimated regression curves to the respective 
predictor modalities. 
 
Model Validation 
 
To evaluate each model, we assess the accuracy and utility of the statistical DTI 
measures. First, we assess the accuracy of the models by comparing the statistical predic-
tion mean square error (MSE) to the scan-rescan MSE in subjects with two sets of scans.  
The statistical prediction MSE is defined as the voxel-wise squared difference in intensity 
between the acquired and statistical DTI measures, averaged across voxels; the scan-
rescan MSE is defined as the voxel-wise squared difference in intensity between two ac-
quired images, averaged across voxels. We summarize both measures by tissue class.  
 
Second, we assess the utility of the model by comparing the mean DTI values in NAWM 
across MS subtypes for the statistical and acquired images. For each DTI measure, we 
conduct two-sided Wilcoxon rank sum tests between each subtype. [35] found evidence 
that RRMS patients had decreased FA and increased MD, RD, and AD in white matter 
regions compared to healthy controls.  
 
Associations with Clinical Measures 
 
To investigate the use of theses images as potential biomarkers we conduct a preliminary 
assessment of the association of the observed and predicted DTI measures and two com-
monly used scores for disability and cognition. First, we test the correlations between 
mean MD and mean RD in NAWM and the Expanded Disability Status Scale (EDSS) 
score [36], a common measure designed to assess neurological impairment in MS. We 
also test the correlation of mean MD and mean RD in NAWM with the Symbol Digit 
Modality Test (SDMT) [37] score, a tool for measuring cognitive function. We use the 
nonparametric Kendall’s Tau coefficient for assessing correlations. 
 
Results 
 
Sample images from two randomly selected subjects are shown in Figure 1. The subject 
in Figure 1a has PPMS and the subject in Figure 1b has SPMS. The top rows in Figures 
1a/b show the acquired DTI images, the middle rows show the statistical DTI images es-
timated using the leave-one-subject-out cross-validation (LOOCV), and the bottom rows 
show the absolute value of the difference between the acquired and statistical DTI imag-
es. Both stat-MD and stat-RD appear to be quite accurate estimates of MD and RD, re-
spectively, while stat-AD is less accurate than stat-MD and stat-RD, and the accuracy of 
stat-FA is poor (although stat-FA still captures the strong gray/white differentiation typi-
cal of FA maps). 
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To assess the accuracy of our statistical DTI models, we compare the prediction MSE of 
the statistical DTI images to the scan-rescan MSE of the acquired images. Figure 2 shows 
boxplots of the scan-rescan log-MSE for the acquired DTI images (shown in green) and 
the prediction log-MSE for the statistical estimate of each DTI image (shown in orange) 
for three tissue classes of interest: NAWM, GM, and lesions. Each boxplot was con-
structed based on the MSE from 19 subjects with two sets of DTI scans. In MD and RD, 
the MSEs are comparable in NAWM and lesions. In MD, the prediction log-MSE in the 
statistical images and the scan-rescan log-MSE in the acquired images have means in 
NAWM of -7.4 mm2s-1 (25th percentile = -7.5, 75th percentile = -7.3) and -7.4 mm2s-1  
(-7.5, -7.3), respectively, and means in lesions of -7.4 mm2 s-1 (-7.5, -7.1) and -7.5 mm2s-1 
(-7.6, -7.3), respectively. In RD, the prediction log-MSE and the scan-rescan log-MSE 
have means in NAWM of -7.3 mm2s-1 (-7.5, -7.3) and -7.3 mm2s-1 (-7.5, -7.2), respective-
ly, and means in lesions of -7.2 mm2s-1 (-7.3, -7.1) and -7.4 mm2s-1 (-7.6, -7.1), respec-
tively. Across all four DTI measures, the statistical prediction log-MSE of the estimated 
images is smaller in GM compared to the scan-rescan log-MSE of the acquired images, 
indicating that our models can accurately estimate GM. However, in FA and AD, the 
prediction log-MSE is much larger in NAWM and lesions compared to the scan-rescan 
log-MSE of the acquired images, suggesting that the FA and AD models may be incor-
rect. 
 
Figures 3 and 4 show the MS subtype group differences for mean MD and mean RD, re-
spectively, in NAWM. In all comparisons, the differences between subgroups were not 
significant. However, the spread of the data is tighter in the statistical images compared 
to the acquired images. As shown in Figure 4, the level of significance between groups 
was similar for the statistical and acquired RD images. Figure 3 shows more pronounced 
differences in statistical MD between PPMS and each of the other subtypes compared to 
the acquired images as well as a smaller spread. 
 
Table 2a provides the results of the exploratory analyses of the correlations between 
mean MD in NAWM and EDSS and SDMT scores, respectively. Table 2b provides the 
correlations between mean RD in NAWM and the EDSS and SDMT scores. None of the 
results withstand the multiple comparisons correction, however these results suggest that 
higher RD values may be associated with lower SDMT scores, and this association is 
stronger using the statistical RD measure.  
 
MD Score Correlation p-value 
Acquired EDSS 0.133 0.20 
Statistical EDSS 0.0378 0.72 
Acquired SDMT -0.19 0.07 
Statistical SDMT -0.141 0.17 
Table 2a: Mean MD correlations 

 
  

RD Score Correlation p-value 
Acquired EDSS 0.133 0.20 
Statistical EDSS 0.171 0.10 
Acquired SDMT -0.184 0.07 
Statistical SDMT -0.248 0.02 
Table 2b: Mean RD correlations 
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Figure	  1a:	  The	  four	  DTI	  measures	  are	  shown	  for	  a	  PPMS	  subject.	  The	  top	  row	  shows	  the	  acquired	  DTI,	  the	  
middle	  row	  shows	  the	  statistical	  DTI,	  and	  the	  bottom	  row	  shows	  the	  absolute	  value	  of	  the	  difference	  be-‐
tween	  the	  acquired	  and	  statistical	  DTI.	  The	  models	  for	  MD	  and	  RD	  perform	  relatively	  well,	  while	  the	  models	  
for	  AD	  and	  FA	  appear	  to	  fail.	  
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Figure 1b: The four DTI measures are shown for a SPMS subject. The top row shows the acquired DTI, the mid-
dle row shows the statistical DTI, and the bottom row shows the absolute value of the difference between the ac-
quired and statistical DTI. The models for MD and RD perform relatively well, while the models for AD and FA 
appear to fail. 
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Figure 2: For each DTI measure, acquired scan-rescan MSE (green) and statistical prediction MSE 
(orange) are shown in lesion, GM, and NAWM. In NAWM the prediction MSEs in MD (a) and RD (b) are 
similar to scan-rescan MSEs, but these are slightly larger in AD (c) and FA (d). 
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Figure 3: Differences in MD in NAWM between MS subtypes were tested using (a) the acquired DTI im-
ages and (b) the statistical MD images. The plots show the mean MD in NAWM for each subject (gray) 
and the Wilcoxon 95 % confidence intervals for each subtype.  The p-values are reported for the two-sided 
Wilcoxon tests. There are no significant differences between the subgroups in either DTI MD or statistical 
MD. However, the variance of the data is smaller in the statistical MD images compared to the acquired 
MD images. 
 
 

Figure 4: Differences in RD in NAWM between MS subtypes were tested using (a) the acquired DTI im-
ages and (b) the statistical RD images. The plots show the mean RD in NAWM for each subject (gray) and 
the Wilcoxon 95 % confidence intervals for each subtype.  The p-values are reported for the two-sided 
Wilcoxon tests. There are no significant differences between the subgroups in either DTI RD or statistical 
RD. 
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Discussion 
 
Here, we have used conventional MRI to estimate several common DTI measures, name-
ly MD, RD, AD, and FA. Across the four DTI measures, the performance of the models 
is not consistent: while MD and RD are accurately estimated within NAWM using statis-
tical methods, AD and FA are less so. The difference in the performance of the models 
may be explained by what each DTI measure describes. MD is a global measure sensitive 
to tissue microstructure, and in practice it is highly correlated to RD, which, in NAWM, 
represents diffusivity perpendicular to white matter bundles. On the other hand, AD 
quantifies diffusivity along the major orientation of the axon bundles and is substantially 
less sensitive to pathology, such as diffuse inflammation, demyelination, and edema – all 
of which are detectable by the conventional MRI approaches. Finally, FA represents tis-
sue anisotropy as a measure of contrast between AD and RD; thus, any prediction errors 
for either AD or RD are likely to be magnified in the FA prediction [38], [39]. Further-
more, the four MRI contrasts that we use in the estimation are not sensitive to fiber orien-
tation, but another contrast, T2*, can be quite sensitive to fiber orientation. Thus, includ-
ing T2* in our statistical model may improve the accuracy of our AD and FA estimations. 
 
As described above, we fit a separate model within each tissue class for each DTI predic-
tion model. Model performance differs by tissue class both within and across DTI 
measures, as seen by the prediction MSE plots. Across all DTI measures, we predict GM 
well with respect to the acquired DTI scans. This is likely due to the lack of variation in 
structured diffusion across the brain in GM. In NAWM, we can accurately predict MD 
and RD but not AD and FA, again indicating that the model is insufficient for the latter 
DTI measures or that additional information exists in the AD and FA maps. In lesions, 
the statistical DTI predictions are generally worse than the acquired DTI predictions for 
each measure, which may be due to the greater amount of variability in DTI measures 
within lesions. 
 
In addition, we show that in NAWM the group differences between the MS subtypes are 
more pronounced in the statistical MD images than in the acquired MD images, however 
none of the differences are significant. This finding needs further examination in a larger 
sample. In the present sample, the PPMS subjects are older, have shorter disease dura-
tion, and have fewer females compared to the subjects in the RRMS and SPMS groups. 
 
We have discussed the differences in the performance of our statistical estimation across 
the four DTI measures and various tissue classes. Although we do not present accurate 
estimation models for AD or FA maps, we can accurately estimate MD and RD. Thus, we 
have shown that the information in the latter image types is not unique, and that the in-
formation may even be better captured by using statistical methods on conventional im-
aging. Therefore, in studies that are not interested in anisotropy, or only interested in MD, 
it may be sufficient to acquire only conventional MRI sequences. 
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