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Addressing Confounding in Predictive Models
with an Application to Neuroimaging

Kristin A. Linn, Bilwaj Gaonkar, Jimit Doshi, Christos Davatzikos, and Russell
T. Shinohara

Abstract

Understanding structural changes in the brain that are caused by a particular dis-
ease is a major goal of neuroimaging research. Multivariate pattern analysis
(MVPA) comprises a collection of tools that can be used to understand complex
disease effects across the brain. We discuss several important issues that must be
considered when analyzing data from neuroimaging studies using MVPA. In par-
ticular, we focus on the consequences of confounding by non-imaging variables
such as age and sex on the results of MVPA. After reviewing current practice to
address confounding in neuroimaging studies, we propose an alternative approach
based on inverse probability weighting. Although the proposed method is moti-
vated by neuroimaging applications, it is broadly applicable to many problems in
machine learning and predictive modeling. We demonstrate the advantages of our
approach on simulated and real data examples.
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Russell T. Shinohara

Abstract

Understanding structural changes in the brain that are caused by a particular dis-
ease is a major goal of neuroimaging research. Multivariate pattern analysis (MVPA)
comprises a collection of tools that can be used to understand complex disease ef-
fects across the brain. We discuss several important issues that must be considered
when analyzing data from neuroimaging studies using MVPA. In particular, we focus
on the consequences of confounding by non-imaging variables such as age and sex on
the results of MVPA. After reviewing current practice to address confounding in neu-
roimaging studies, we propose an alternative approach based on inverse probability
weighting. Although the proposed method is motivated by neuroimaging applications,
it is broadly applicable to many problems in machine learning and predictive modeling.
We demonstrate the advantages of our approach on simulated and real data examples.

1 Introduction

Quantifying population-level differences in the brain that are attributable to neurological or
psychiatric disorders is a major focus of neuroimaging research. Structural magnetic reso-
nance imaging (MRI) is widely used to investigate changes in brain structure that may aid
the diagnosis and monitoring of disease. A structural MRI of the brain consists of many
voxels, where a voxel is the three dimensional analogue of a pixel. Each voxel has a corre-
sponding intensity, and jointly the voxels encode information about the size and structure
of the brain. Functional MRI (fMRI) also plays an important role in the understanding of
disease mechanisms by revealing relationships between disease and brain function. In this
work we focus on structural MRI data, but many of the concepts apply to fMRI studies.

One way to assess group-level differences in the brain is to take a “mass-univariate”
approach, where statistical tests are applied separately at each voxel. This is the basic
idea behind statistical parametric mapping (SPM) [20–22] and voxel-based morphometry
(VBM) [1, 12]. Voxel-based methods are limited in the sense that they do not make use
of information contained jointly among multiple voxels. Figure 1 illustrates this concept
using toy data with two variables, X1 and X2. Marginally, X1 and X2 discriminate poorly
between the groups, but perfect linear separability exists when X1 and X2 are considered
jointly. Thus, there has been a shift away from voxel-wise methods to multivariate pattern
analysis (MVPA) in the neuroimaging community. In general, MVPA refers to any approach
that is able to identify disease effects that are manifested as spatially distributed patterns
across multiple brain regions [9–11, 13–16, 19, 23, 35–37, 41, 43, 45, 50, 51, 56, 63–65, 67].

The goal of MVPA is often two-fold: (i) to understand underlying patterns in the
brain that characterize a disease, and (ii) to develop sensitive and specific image-based
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Figure 1: Marginally, X1 and X2 discriminate poorly between the groups, but perfect separa-
bility is attained when X1 and X2 are considered jointly.

biomarkers for disease diagnosis, the prediction of disease progression, or prediction of treat-
ment response. Although the MVPA literature often uses terminology that suggests a causal
interpretation of disease patterns in the brain, little has been done to formalize a causal
framework for neuroimaging, with the notable exception of recent work by Weichwald et al.
[66]. In this paper, we elucidate subtle differences between the two goals of MVPA and
provide guidance for future implementation of MVPA in neuroimaging studies. We focus
attention on the consequences of confounding on goal (i) and give a few remarks regarding
goal (ii).

Confounding of the disease-image relationship by non-imaging variables such as age
and gender can have undesirable effects on the output of MVPA. In particular, confounding
may lead to identification of false disease patterns, undermining the usefulness and repro-
ducibility of MVPA results. We discuss the implications of “regressing out” confounding
effects using voxel-wise parametric models, a widely used approach for addressing confound-
ing, and propose an alternative based on inverse probability weighting.

The structure of this paper is the following. Section 2 provides a brief overview of the
use of MVPA in neuroimaging with focus on the use of the support vector machine (SVM)
as a tool for MVPA. In Section 3, we address the issue of confounding by reviewing current
practice in neuroimaging and proposing an alternative approach. In Section 4, we illustrate
our method using simulated data, and Section 5 presents an application to data from an
Alzheimer’s disease neuroimaging study. We conclude with a discussion in Section 6.

http://biostats.bepress.com/upennbiostat/art41



2 Multivariate Pattern Analysis in Neuroimaging

Let (Yi,X
T
i ,A

T
i )T, i = 1, . . . , n, denote n independent and identically distributed observa-

tions of the random vector (Y,XT ,AT)T, where Y ∈ {−1, 1} denotes the group label, e.g.,
control versus disease, X ∈ Rp denotes a vectorized image with p voxels, andA ∈ Rr denotes
a vector of non-image variables such as age and gender. Suppose Y and A both affect X.
For example, Alzheimer’s disease is associated with patterns of atrophy in the brain that are
manifested in structural MRIs. It is well known that age also affects brain structure [48].
Our primary aim is to develop a framework for studying multivariate differences in the brain
between disease groups that are attributable solely to the disease and not to differences in
non-imaging variables between the groups. Thus, we advocate for creating balance between
the groups with respect to non-imaging variables before performing MVPA. More formal
details are given in the next section.

A popular MVPA tool used by the neuroimaging community is the support vector
machine (SVM) [7, 62]. This choice is partly motivated by the fact that SVMs are known
to work well for high dimension, low sample size data [57]. Often, the number of voxels in
a single MRI can exceed one million depending on the resolution of the scanner and the
protocol used to obtain the image. The SVM is trained to predict the group label from
the vectorized set of voxels that comprise an image. Alternatives include penalized logistic
regression [61] as well as functional principal components and functional partial least squares
[49, 69]. Henceforth, we focus on MVPA using the SVM.

The hard-margin linear SVM solves the contrained optimization problem

arg min
v,b

1

2
||v||2

such that Yi(v
TX i + b) ≥ 1 ∀i = 1, . . . , n, (1)

where b ∈ R, and v ∈ Rp are feature weights that describe the relative contribution of each
voxel to the classification function. When the data from the two groups are not linearly
separable, the soft-margin linear SVM allows some observations to be misclassified during
training through the use of slack variables ξi with associated penalty parameter C. In this
case, the optimization problem becomes

arg min
v,b,ξ

1

2
||v||2 + C

n∑
i=1

ξi

such that:

Yi(v
TX i + b) ≥ 1− ξi ∀i = 1, . . . , n,

ξi ≥ 0 ∀i = 1, . . . , n, (2)

where C ∈ R is a tuning parameter that penalizes misclassification, and ξ = (ξ1, ξ2, . . . , ξn)T.
For details about solving optimization problems (1) and (2) we refer the reader to Hastie
et al. [28].

In high-dimensional problems where the number of features is greater than the number
of observations, the data are almost always separable by a linear hyperplane [44]. Thus,
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MVPA is often applied using the hard-margin linear SVM in (1). For example, this is the
approach implemented by: Bendfeldt et al. [3] to classify subgroups of multiple sclerosis
patients; Cuingnet et al. [10] and Davatzikos et al. [11] in Alzheimer’s disease applications;
and Liu et al. [40], Gong et al. [26], and Costafreda et al. [8] for various classification tasks
involving patients with depression. This is only a small subset of the relavant literature,
which illustrates the widespread popularity of the approach.

3 Multivariate Pattern Analysis and Confounding

3.1 Causal Framework for Descriptive Aims

When the goal of MVPA is to understand patterns of change in the brain that are attributable
to a disease, the ideal dataset would contain two images for each subject: one where the
subject has the disease and another at the same point in time where the subject is healthy.
Of course, this is the fundamental problem of causal inference, as it is impossible to observe

Y

A

X

Figure 2: The relationship between Y (disease) and X (image) is confounded by A (e.g.,
age), which affects both Y and X.

both of these potential outcomes [31, 55]. In addition, confounding of the disease–image
relationship presents challenges. Figure 2 depicts confounding of the Y –X relationship by
a single confounder, A. Training a classifier in the presence of confounding may lead to
biased estimation of the underlying disease pattern. This occurs when classifiers rely heavily
on regions that are strongly correlated with confounders instead of regions that encode
subtle disease changes [39]. Failing to address confounding in MVPA can lead to a false
understanding of image signatures that characterize the disease and a lack of generalizability
of the estimated classifier.

Let X i(y) denote the image that would have been observed had subject i been ob-
served with group status Yi = y, possibly contrary to fact. Let FX(−1) and FX(1) denote
the distributions of the counterfactual images X(−1) and X(1), respectively. Assume there
exists a unique hyperplane in Rp that maximally separates the counterfactural distributions
in the sense that the centers of the two distributions lie on opposite sides of the hyperplane
and the total combined mass on the “wrong” side of the hyperplane is minimized. Let S be
a map from the space of two distributions with the same support to this unique separating
hyperplane, S : (FD, FD′) 7→ Rp for distributions D and D′. Define θ∗ = S(FX(−1), FX(1)).

http://biostats.bepress.com/upennbiostat/art41



We do not directly observe samples from FX(−1) and FX(1), but under certain identi-
fying assumptions, we can estimate the counterfactual distributions using the observed data.
In particular, assume

(i) X i =
X i(1) +X i(−1)

2
+ Yi

X i(1)−X i(−1)

2
,

(ii) {X i(1),X i(−1)} ⊥⊥ Yi | Ai,

for all i = 1, . . . n. Assumption (i) is the usual consistency assumption, and (ii) is the
assmption of no unmeasured confounding, i.e., ignorability of exposure given measured con-
founders. Using (i) and (ii),

FX(y) = pr{X(y) ≤ x}
= E[pr{X(y) ≤ x | A}]
= E[pr{X(y) ≤ x | Y = y,A}] (ii)

= E{pr(X ≤ x | Y = y,A)}. (i)

Note that the expectation is over the marginal distribution of A rather than the conditional
distribution of A given Y = y. Thus, we reweight the integrand as follows:

E{pr(X ≤ x | Y = y,A)} = E

{
pr(X ≤ x | Y = y,A)

pr(Y = y | A)pr(Y = y)

pr(Y = y | A)pr(Y = y)

}
=

1

pr(Y = y)

∫
pr(X ≤ x, Y = y | A)

pr(Y = y)

pr(Y = y | A)
dPA

=
1

pr(Y = y)

∫
pr(X ≤ x, Y = y | A)dP ∗A

= F ∗X|Y=y,

where F ∗X|Y=y is the conditional distribution of X given Y = y that results from averaging
over a weighted version of the distribution of A. The weights are the inverse of the proba-
bility of being in observed group Y = y given confounders A multiplied by the normalizing
constant, pr(Y = y). We assume positivity, meaning pr(Y = y | A) is bounded away from
zero for all possible values of A. We have shown under assumptions (i) and (ii) that FX(−1)
and FX(1) are identifiable from the observed data. Thus, our target parameter corresponds

to θ∗ = S(F ∗X|Y=−1, F
∗
X|Y=1), which can be estimated by θ̂∗ = S(F̂ ∗X|Y=−1, F̂

∗
X|Y=1).

To illustrate the effects of confounding on MVPA, consider a toy example with a single
confounder A. Let X consist of two features, X = (X1, X2)

T, and define the corresponding
potential outcomes, X(Y ) = {X1(Y ), X2(Y )}T. In the study of Alzheimer’s disease, A might
be age, Y an indicator of disease group, and X1 and X2 gray matter volumes of two brain
regions. We generate N = 1, 000 independent observations from the generative model

X1 = 4− Y + ε1, X2 = −.25− 7A− .25Y − 2AY + ε2,

A ∼ Unif[0, 1], Y ∼ Unif{−1, 1}(
ε1
ε2

)
∼ Normal

{(
0
0

)
,

(
3 1
1 3

)}
. (3)

Hosted by The Berkeley Electronic Press



Note that model (3) has the property that Y and A are independent, so that A is not a con-
founder of the Y –X relationship. Next, we generate an additional N = 1, 000 independent
observations from model (3) except with Y = 2Y ∗ − 1, where Y ∗ ∼ Bernoulli(A), so that A
is a confounder of the Y –X relationship in this second sample. The first sample is plotted
in the top three panels of Figure 3 and the linear SVM decision boundary estimated from
the unconfounded data is drawn in gray in the top right panel. The Y –X relationship is
confounded by A in second sample which is displayed in the bottom three panels of Figure
3. Here, A mimics the confounding effect of age in Alzheimer’s disease in two ways: (i) we
give larger values of A a higher probability of being observed with Y = 1, and (ii) A has a
decreasing linear effect on X2. The decision boundary estimated from the confounded sample
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Figure 3: Top row: unconfounded data generated from model (3). Bottom row: biased-
sample data with the Y –X relationship confounded by A. The target parameter is the linear
SVM decision rule learned from the data in the top right plot, shown in gray. The black line
is the linear SVM decision rule learned from the confounded sample in the bottom right plot.

is shown in black in the bottom right panel. Confounding by A shifts the estimated decision
boundary and obscures the true relationship between the features X1, X2 and outcome Y .

There is some variation in the definition of confounding in the imaging literature,
making it unclear in some instances if, when, and why an adjustment is made. For exam-
ple, some researchers recommend correcting images for age effects even after age-matching
patients and contols [18]. In an age-matched study, age is not a confounder, and adjusting
for its relationship with X is unnecessary. To address confounding, one approach proposed
in the neuroimaging literature is to “regress-out” the effects of confounders from the image
X. This is commonly done by fitting a (usually linear) regression of voxel intensity on con-
founders separately at each voxel and subtracting the fitted value at each location [18, 22].

http://biostats.bepress.com/upennbiostat/art41



The resulting “residual image” is then used in MVPA. Formally, the following model is fit
using least squares, separately for each j = 1, . . . , p:

Xj = β0,j + βT
1,jA+ εj, (4)

where the εj are assumed to be independent for all j. The least squares estimates β̂0,j and

β̂1,j define the jth residual voxel,

X̃j = Xj − (β̂0,j + β̂
T

1,jA).

Combining all residuals gives the vector X̃ = (X̃1, X̃2, . . . , X̃p) which is used as the feature
vector to train the MVPA classifier. We henceforth refer to this method as the adjusted
MVPA.

A similar procedure is to fit model (4) using the control group only [18]. We refer

to this approach as the control-adjusted MVPA. Let β̂c
0,j and β̂

c

1,j denote the least squares
estimates of β0,j and β1,j when model (4) is fit using only control-group data. The control-

group adjusted features used in the MVPA classifier are then X̃
c

= (X̃c
1, X̃

c
2, . . . , X̃

c
p), where

X̃c
j = Xj − (β̂

cT

0,j + β̂
cT

1,jA).
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Figure 4: Comparison of adjusted and control-adjusted MVPA features. Left to right: original
X2 with estimated age effect; residuals, X̃2; original X2 with contol-group estimated age effect;
residuals, X̃c

2. Lines are the least squares fit of X2 on A using the full and control-group data,
respectively.

A comparison of the adjusted and control-adjusted MVPA features is displayed in
Figure 4. The first two plots of Figure 4 show the original feature X2 and the adjusted MVPA
feature, X̃2. Although the residuals X̃2 are orthogonal to A by definition of least squares
residuals, separability of the classes by X̃2 alone is much less than marginal separabilty of
the classes on the original feature X2. This implies that using adjusted features for marginal
MVPA may have undesirable consequences on discrimination accuracy and the estimated
disease pattern. The right two plots in Figure 4 show that the contol-adjusted MVPA fails
to remove the association between X2 and A. Higher X̃c

2 values correspond to lower values
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of A and lower values of X̃c
2 correspond to higher values of A. Thus, Figure 4 suggests

that regression-based methods for addressing confounding are ineffective, motivating our
proposed method described next.

3.1.1 Inverse Probability Weighted Classifiers

Having formally defined the problem of confounding in MVPA, we now propose a general
solution based on inverse probability weighting (IPW) [6, 29, 52, 53]. We have already shown
that weighting observations by the inverse probability of Y givenA relates the observed data
to the counterfactual distributions FX(−1) and FX(1). The idea of weighting observations for
classifier training is not new and in practice, applying IPW in this way is similar to weighting
approaches that address dataset shift, a well-established concept in the machine learning
literature [see, for example: 42, 46, 68].

The inverse probability weights are often unknown and must be estimated from the
data. One way to estimate the weights is by positing a model and obtaining fitted values
for the probability that Y = 1 given confounders A, also known as the propensity score
[2, 54]. Logistic regression is commonly used to model the propensity score, however, more
flexible approaches using machine learning have also received attention [38]. Using logistic
regression, the model would be specified as

logit[pr(Y = 1 | A)] = γ0 +ATγ1.

Then, the estimated inverse probability weights would follow as

ŵ−1i = [1Yi=1expit(γ̂0 +AT
i γ̂1) + 1Yi=0{1− expit(γ̂0 +AT

i γ̂1))}]−1,

where expit(x) is the inverse of the logit function, expit(x) = ex/(1 + ex).
IPW can be naturally incorporated into some classification models such as logistic

regression. Subject-level weighting can be accomplished in the soft-margin linear SVM frame-
work defined in expression (2) by weighting the slack variables. Suppose the true weights wi

are known. To demonstrate how IPW can be incorporated in the soft-margin linear SVM,
we first consider approximate weights, Ti, defined as subject i’s inverse probability weight
rounded to the nearest integer. For example, suppose subject i’s inverse weight is 1/wi = 3.2;
then, Ti = 3. Next, consider creating an approximately balanced psuedo-population which
consists of Ti copies of each original subject’s data, i = 1, . . . , n. This psuedo-population has
n∗ =

∑n
i=1 Ti observations. The soft-margin SVM in the psuedo-population is then

arg min
v,b,ξ∗

1

2
||v||2 + C

n∗∑
j=1

ξ∗j

such that:

y∗j (vTx∗j + b) ≥ 1− ξ∗j ∀j = 1, . . . , n∗,

ξ∗j ≥ 0 ∀j = 1, . . . , n∗. (5)

However, in the approximately balanced psuedo-population, some of the (y∗j ,x
∗
j) pairs are

identical copies which implies some of the constraints are redundant. For example, if (y∗1,x
∗
1)
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and (y∗2,x
∗
2) are identical copies that correspond to (y1,x1) in the original sample, then it

can be seen that ξ∗1 = ξ∗2 must hold in (5). Let ξ1 = ξ∗1 = ξ∗2 . Then, the constraints

y∗1(vTx∗1 + b) ≥ 1− ξ∗1 ,
y∗2(vTx∗2 + b) ≥ 1− ξ∗2 ,
ξ∗1 ≥ 0,

ξ∗2 ≥ 0,

in (5) are equivalent to

y1(v
Tx1 + b) ≥ 1− ξ1,

ξ1 ≥ 0.

In fact, assuming all observations in the original n samples are unique, there are n unique
constraints of the form yi(v

Txi + b) ≥ 1 − ξi and ξi ≥ 0, corresponding to the original
i = 1, . . . , n samples. In addition, it is straightforward to show that

∑n∗

j=1 ξ
∗
j =

∑n
i=1 Tiξi.

Thus, (5) is equivalent to the original data soft-margin linear SVM with weighted slack
variables in the objective function:

arg min
v,b,ξ

1

2
||v||2 + C

n∑
i=1

Tiξi

such that:

yi(v
Txi + b) ≥ 1− ξi ∀i = 1, . . . , n,

ξi ≥ 0 ∀i = 1, . . . , n. (6)

The previous argument suggests one could use the true weights wi, rather than the truncated
weights, Ti. To our knowledge, an implementation of the SVM in R [47] that enables weighting
the slack variables at the subject level does not exist. Subject-level weighting is available
in the popular library libSVM [5]. Practitioners familiar with C++, MATLAB, or Python
can implement the weighted SVM directly or by calling one of these languages from R using
tools such as the “Rcpp” or “rPython” packages (rcpp.org, rpython.r-forge.r-project.org).
We are currently working on an R implementation of the inverse probability weighted SVM
(IPW-SVM). Development code is available at github.com/kalinn

The IPW-SVM algorithm only works when the data are not linearly separable. Other-
wise, there are no slack variables in the optimization problem to weight. To provide intuition,
suppose we are trying to separate two points in two-dimensional space. The optimization
problem is then the hard-margin linear SVM formulation:

arg min
v,b

1

2
||v||2

such that:

y1(v
Tx1 + b) = 1,

y2(v
Tx2 + b) = 1.

Adding copies of the data only adds redundant constraints that do not affect the optimiza-
tion. This is a major issue in neuroimaging because the data often have more features than
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observations and are thus almost always linearly separable. When p ≥ n, one idea would be
to preprocess the data using a variable selection or other dimension reduction technique that
accounts for possible confounding in the data. Then the IPW-SVM could be implemented
on the reduced feature space. We are currently exploring alternatives to address confounding
when p ≥ n that retain the original interpretability of the features.

3.2 Remarks on Biomarker Development

Goal of MVPA
Biomarker

Development
Estimate Disease

Pattern

Dataset Shift?Matched Study? SVM
No

Yes

IPW-SVM

No

Apply dataset shift
methods to optimize

predictive accuracy in
the population of interest

Yes

Figure 5: Recommended anaylsis plan for MVPA in the presence of measured confounding
or dataset shift.

Non-imaging variables play a different, and sometimes advantageous, role when MVPA
is used to develop biomarkers for disease diagnosis, progression, or treatment response. It
is unlikely that the true underlying distribution of non-imaging variables such as age is bal-
anced with respect to disease. That is, it is unlikely a matched study is representative of the
population to which a derived biomarker will be applied. As a result, matched studies or
IPW methods that create balance with respect to the disease and non-imaging variables may
not result in the optimal classifier or biomarker. This observation has been made previously
in different contexts, including the in the statistical literature [34] and the machine learning
literature [42, 46].
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In machine learning, dataset shift is the phenomenon where the joint distribution of
training data differs from the data distribution where the classifier will be applied [42, 46].
Covariate shift is a special case of dataset shift which corresponds to a shift in the feature dis-
tribution used to obtain predictions from the classification model. Solutions usually involve
some version of observation weighting or moment matching to make the training and test
feature distributions more comparable [4, 27, 32, 58–60]. Applying dataset shift methods to
neuroimaging data has the potential to improve biomarker effectiveness and generalizability.
For example, suppose a biomarker is developed using imaging and demographic data from
a matched study. That is, patients have been selected so that there are equal numbers of
cases and controls for all values of the demographic variables. However, suppose it is known
that in the general population the disease is more prevalent in older patients. Then, the
matched study data and the population to which the biomarker will be applied come from
different joint distributions. Dataset shift methods enable prior knowledge of the population
distribution to be leveraged to attain optimal predictive performance of the biomarker.

To summarize the main points in this section, Figure 5 provides a decision tree with
recommended analysis plans for given data structures and scientific aims. We believe tools
such as Figure 5 may be useful to help initiate or guide discussion with collaborators about
the design and analysis of future neuroimaging studies.

4 Simulation Study
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Figure 6: Left: Distribution of L2 distance between the true and estimated weight vectors
resulting from the IPW-SVM, Unadjusted SVM, Adjusted SVM, and Control-Adjusted SVM.
Right: Percent test accuracy of the estimated SVM decision rules on an unconfounded test
set.
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In this section we evaluate the finite sample performance of the IPW-SVM relative
to the regression methods discussed in Section 3.1. We simulate training data from the
following generative model with p = 100:

A ∼ Unif(0, 1), Xj(Y ) =

{
1− Y + Aε1,j + ε2,j j = 1, 2

5− 11.25 ∗ A− .75Y A+ Aε1,j + ε2,j j = 3, . . . , p

ε1 ∼ Normal(0p×1,Σ1), ε2 ∼ Normal(0p×1,Σ2), (7)

where Σ1 is a p × p identity matrix, and Σ2 is a p × p matrix with 1s on the diagonal and
0.2s on all off-diagonal elements.

For each of M = 1, 000 iterations, we generate a sample of size N = 300 of the
trajectory (A,X(−1)T,X(1)T)T from model (7). We train a SVM using the featuresX i(−1)
and X i(1), i = 1, . . . N , and take the resulting SVM weights to be the “true” weight vector.
Next, we simulate confounding by setting X = X(Y obs), where Y obs = 2Y ∗ − 1, Y ∗ =
Bernoulli(Ã2) and Ã = 0.51A<0.5 + A1A≥0.5. Thus, subjects with larger values of A are
more likely to be observed with Y = 1. Finally, we create a test set with no confounding
by A by generating a separate sample of N = 300 trajectories from model (7) and setting
X = X(Y test), where Y test = 2Y ∗ − 1, Y ∗ = Bernoulli(.5).

We compare the performance of the IPW-SVM (IPW) to an unadjusted SVM (Un-
adjusted), a SVM after “regressing out” A from each feature separately using a linear model
(Adjusted), and a SVM after “regressing out” A from each feature separately using a linear
model fit in the group observed with Y obs = −1 (CN-Adjusted). Section 3.1 gives details
about the regression-based adjustment methods. We use L2 distance between the true and
estimated weight vectors as one criterion for comparison. Figure 6 displays boxplots of the
average test accuracy and average L2 distance from the true weights for M = 1, 000 iter-
ations. The IPW-SVM performs the best with respect to median L2 distance and attains
the highest median test accuracy. The left plot of Figure 6 has been zoomed-in to better
compare the interquartile ranges. The IPW-SVM and Unadjusted SVM resulted in more
outliers than the regression-based adjustment methods. The IPW-SVM seems sensitive to
very large weights which occured by chance in several iterations. Using stabilized weights
provided modest improvement improvement (results not presented here) in this simulation
study.

5 Application

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (http://www.adni.loni.usc.edu) is
a $60 million study funded by public and private resources including the National Institute
on Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and
Drug Administration, private pharmaceutical companies, and non-profit organizations. The
goals of the ADNI are to better understand progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD) as well as to determine effective biomarkers for disease
diagnosis, monitoring, and treatment development. MCI is characterized by cognitive decline
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that does not generally interfere with normal daily function and is distinct from Alzheimer’s
disease [25]. However, individuals with MCI are considered to be at risk for progression to
Alzheimer’s disease. Thus, studying the development of MCI and factors associated with
progression to Alzheimer’s disease is of critical scientific importance. In this analysis, we
study the effects of confounding on the identification of multivariate patterns of atrophy in
the brain that are associated with MCI.

Figure 7: Top 10 weighted SVM features from the one-to-one age-matched data. Blue (red)
regions correspond to negative (positive) weights.

We apply the IPW-SVM to structural MRIs from the ADNI database. Before per-
forming group-level analyses, each subject’s MRI is passed through a series of preprocessing
steps that facilitate between-subject comparability. We implemented a multi-atlas segmen-
tation pipeline [17] to estimate the volumes of 137 regions of interest (ROIs) in the brain for
each subject. Each region is divided by the subject’s total intracranial volume to adjust for
differences in individual brain size. The data we use here consist of 224 healthy controls and
327 patients diagnosed with MCI between the ages of 69 and 90. Neurodegenerative diseases
are associated with atrophy in the brain, and thus the MCI group has smaller volumes on
average in particular ROIs compared to the control group.

Although the ADNI study was approximately matched on age and gender, a logistic
regression of disease group on age in our sample returns a significant p-value (p=0.003),
indicating that age is a possible confounder of the disease-image relationship. In this anal-
ysis, our focus is on identifying multivariate patterns in the brain that represent differences
between the MCI and control groups, rather than predictive performance of the MVPA
classifier. We perform four separate multivariate pattern analyses: (i) an unadjusted SVM,
(ii) the adjusted SVM described in Section 3.1, (iii) the control-adjusted SVM described
in Section 3.1, and the IPW-SVM described in Section 3.1 with estimated, non-truncated
weights. We compare the results from these four methods to the estimated weight pattern
from a SVM trained on a one-to-one age-matched subsample of the data. Figure 7 displays
the top 10 weighted SVM features from the one-to-one age-matched data. Blue (red) regions
correspond to negative (positive) weights. From top to bottom, Figure 8 displays the top 10
weighted SVM features from the IPW-SVM, unadjusted SVM, control-adjusted SVM, and
adjusted SVM.
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Figure 8: Top 10 weighted SVM features from the (top to bottom) IPW-SVM, unadjusted
SVM, control-adjusted SVM, and adjusted SVM. Blue (red) regions correspond to negative
(positive) weights.
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In general, all four methods perform similarly and return patterns that closely resem-
ble the pattern learned from the matched data. Table 1 gives the L2 distance between the
estimated patterns and the matched-data SVM weight pattern. The IPW-SVM results in the
least-biased weight pattern, and the regression-based adjustments demonstrate improvement
over the unadjusted SVM.

Method Distance
IPW-SVM 0.52

Unadjusted SVM 0.76
Control-Adjusted SVM 0.58

Adjusted SVM 0.56

Table 1: L2 distance between the estimated patterns and the matched-data SVM weight pat-
tern.

It should be noted that although there is a significant disease-age relationship in
the observed data, it is unlikely representative of the true disease-age relationship in the
population because the MCI cases are over-sampled. Thus, MVPA classifiers trained to study
disease patterns in the brain may demonstrate suboptimal performance when classifying
new subjects in the population. Dataset shift methods, or models that integrate imaging
biomarkers with knowledge of the true disease-age relationship in the target population, may
be applied to improve any MVPA imaging biomarkers derived from the ADNI data.

6 Discussion

We have proposed a framework for addressing confounding in MVPA that weights individual
subjects by the conditional probability of observed class given confounders, i.e., inverse prob-
ability weighting (IPW). In addition, we have distinguished the goal of optimizing biomarker
performance from the goal of studying multivariate disease-related changes in the brain. In
the former case, IPW may not be appropriate since the true disease prevalance in the pop-
ulation of interest is likely not balanced across the distribution of the confounders. Instead,
weighting methods designed to address dataset shift should be applied to optimize and evalu-
ate the performance of the classifier. However, when the goal of MVPA is to estimate complex
disease patterns in the brain, using IPW to address confounding is more principled that the
current practice of “regressing out” confounder effects separately at each voxel without re-
gard to the correlation structure of the data. When machine learning predictive models such
as the SVM are used to perform MVPA, the IPW approach can recover underlying patterns
in the brain associated with disease in the presence of measured confounding.

We believe there are several advantages to addressing confounding in MVPA using
IPW. First, as demonstrated by simulation results, IPW better estimates the target param-
eter of interest, which is the disease pattern that would be present under no confounding.
In cases where a matched study is too expensive or otherwise infeasible, IPW methods will
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enable researchers to perform MVPA and obtain correct, reproducible results. Finally, IPW
is simple and intuitive, and the general idea is well-established in the causal inference and
statistics communities. Thus, future research aiming to perform inference on the estimated
disease patterns can rely on existing theory. We are currently working on extending existing
inference methods for MVPA [23, 24] to account for confounding.

Further exploring the effects of confounding on high-dimensional classification models
is imperative for neuroimaging research and may greatly impact current practice in the field.
An interesting avenue for future research would be develop dimension reduction techniques
that could be applied before or concurrently with MVPA that account for possible confound-
ing in the data. Developing sensitivity analysis methods for assessing the role of confounding
in MVPA also merits attention in future work.

Although we have focused on the use of SVMs for binary classification problems,
the idea of subject-level weighting to address confounding applies more generally to ma-
chine learning techniques for a variety of classification problems. In practice, incorporating
subject-level weights into black box machine learning methods may not always be straight-
forward, and implementation of IPW might require specific tailoring to each problem. For
example, generalizied versions of the propensity score exist for exposures with more than
two groups and continuous exposures [30, 33]. Intuitively, it seems that applying generalized
propensity score methods to multiclass classification problems or support vector regression
for a continuous exposure is a natural extension of the methods proposed in this work. We
believe these extensions are non-trivial and warrant focused attention in future research.
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