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Quantitative T1 maps estimate T1 relaxation times and can be used to assess dif-
fuse tissue abnormalities within normal-appearing tissue. T1 maps are popular
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Abstract

Quantitative T1 maps estimate T1 relaxation times and can be used to assess diffuse
tissue abnormalities within normal-appearing tissue. T1 maps are popular for studying
the progression and treatment of multiple sclerosis (MS). However, their inclusion in
standard imaging protocols remains limited due to the additional scanning time and
expert calibration required and susceptibility to bias and noise. Here, we propose a new
method of estimating T1 maps using four conventional MR images, which are intensity-
normalized using cerebellar gray matter as a reference tissue and related to T1 using a
smooth regression model. Using leave-one-out cross-validation, we generate statistical
T1 maps for 61 subjects with MS. The statistical maps are less noisy than the acquired
maps and show similar accuracy. Tests of group differences in normal-appearing white
matter across MS subtypes give similar results using both methods, but tests performed
using statistical maps are more powerful.

∗Correspondence should be addressed to R.T.S. (rshi@upenn.edu).
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1 Introduction

Quantitative magnetic resonance imaging (MRI) techniques are used to estimate features of human
body tissue for the study of progression and treatment of diseases. For example, T1 maps estimate
T1 relaxation times, which can be used as an indicator of inflammation and in nervous system tissue,
demyelination, axonal loss and gliosis [1, 2]. Increased relaxation times across normal-appearing white
matter of the brain have been associated with a number of neurological diseases and disorders, including
multiple sclerosis (MS), schizophrenia, alcoholism, optic neuritis, and near-terminal AIDS [3].

In MS specifically, elevated T1 relaxation times have been consistently observed in normal-appearing
white matter (NAWM), relative to that of healthy control subjects [1, 4, 5, 6, 7]. There is also evidence
for elevated T1 in MS patients in deep gray matter (DGM), particularly in the thalamus [1, 4, 6], and in
cortical gray matter (CGM) [1]. Longitudinal studies have shown that the variance of T1 in NAWM and
CGM increases over time for MS patients [8, 9, 10, 11] and that average T1 in NAWM may also increase
[10]. Furthermore, T1 is a clinically meaningful measure that is necessary to obtain a full picture of MS
disease burden. In particular, the mean and variance of T1 in NAWM have been found to be predictive
of current and future disability [6, 10], and elevated T1 in DGM has been associated with fatigue [12, 13].
Compared with lesion-based assessments of MS disease burden, which can be detected on standard
clinical MR images, T1 maps appear to provide complementary, not redudant, information [4, 11].

However, multiple factors have limited the widespread availability of T1 maps. First, T1 maps are still
not included in most standard clinical or research protocols, due in part to the additional scanning time
required for their acquisition. This is particularly true in the clinical setting, where limited resources
and patient considerations typically limit acquisition to conventional MR images. Second, while the
availability of T1 maps in observational studies is increasing, many longitudinal studies of MS and other
neurological diseases include years or even decades of imaging history, during only a fraction of which
T1 maps may have been acquired, thus limiting our longitudinal understanding of T1 in these diseases.
Finally, T1 mapping requires very careful scanner calibration, and many technical and environmental
factors can introduce bias and noise, limiting reproducibility across acquisition methods, centers, scanners
or visits.

In this paper, we introduce a novel method of computing T1 maps. Traditional T1 maps estimate
T1 analytically, using multiple (often two) T1w images acquired with different flip angles or inversion
times to interpolate the T1 relaxation curve. This curve is a non-linear function of T1, a constant at a
given physical location, and can be back-solved to estimate T1. By contrast, our method estimates T1
statistically using a voxel-wise regression model based on four conventional MR images that are already
included in many standard protocols: T1-weighted (T1w), T2-weighted (T2w), proton density-weighted
(PDw), and T2-weighted fluid attenuated inversion recovery (FLAIR). Using our method, a T1 map
can be added to a clinical or research study at any point after acquiring these four images.

A novel intensity normalization technique that utilizes the cerebellar gray matter (CBGM) as a refer-
ence tissue is key to the success of our method, Quantitative MR Estimation Employing Normalization
(QuEEN). The cerebellum has been previously utilized as a reference region for intensity normalization
of positron emission tomography (PET) in the contexts of MS [14] and Alzheimer’s disease [15], though
to the best of our knowledge it has not been used for intensity normalization of MRI. We use cerebellar
gray matter only, rather than the entire cerebellum, since the latter is sensitive to the relative volume of
gray and white matter within each subject’s cerebellum. Henceforth, we refer to the traditional, analyt-
ically estimated T1 maps as “T1 maps” and to the QuEEN-estimated T1 maps as “QuEEN maps”. The
QuEEN model is fully automated and computationally efficient.

2 Methods

In this section, we detail the QuEEN method of T1 estimation. QuEEN is comprised of two primary
steps: intensity normalization of four predictor MR images, followed by training of a regression model
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relating the intensity-normalized predictor images to T1. Before either of these steps takes place, a
standard MRI preprocessing pipeline is performed, including rigid registration (alignment) of images
within each subject, removal of voxels corresponding to extracerebral tissue, skull and background, and
segmentation of brain tissue types. We validate the proposed methods by demonstrating that QuEEN
maps are comparable to T1 maps in terms of accuracy and utility. Most notably, we establish that QuEEN
maps can detect group differences in acute and diffuse white matter pathologies between subjects with
different MS subtypes as well as, and in some cases better than, T1 maps. Finally, we show that QuEEN
and T1 maps have similar measurement error rates.

2.1 QuEEN Model

2.1.1 Intensity Normalization

The four MR images used as predictors in the QuEEN model are unitless, and therefore their intensities
only have relative meaning within a scan. Intensity normalization of conventional MR images is often
performed to make intensities comparable across images by converting intensities to deviations from
some reference point. The z-score normalization method [16, 17] subtracts an estimate of the “center” of
the distribution of intensities in an image and divides by a measure of its “scale”. An appropriate choice
of reference region(s) to estimate this center and scale can uncover quantitative information within the
predictor images (e.g. elevated T1 in NAWM of MS patients) and is crucial for accurate estimation of
T1 in the QuEEN model.

Unfortunately, two commonly used reference regions—normal appearing white matter (NAWM) [16] and
cerebral spinal fluid (CSF) [18, 19, 20, 21, 22, 23]—can introduce unnecessary bias or variance into the
estimates of T1 in the QuEEN model. We argue that use of CSF as a reference class would lead to a
variance problem, while use of NAWM would lead to a bias problem. T1 of CSF is generally unaffected
by disease, making it a potentially attractive reference class. However, MRI intensities within CSF tend
to contain high levels of noise, which introduces variance into intensity-normalized MR images. On
the other hand, the distribution of intensities in NAWM is well-estimated, making it a stable reference
class. However, in MS patients and other disease populations, diffuse changes in T1 within NAWM
are commonplace and furthermore are of interest to researchers. Intensity-normalizing with respect to
NAWM would obscure such changes, as normalized intensities measure deviation from the reference class.

Therefore, we propose a novel intensity normalization method that utilizes a combination of cerebellar
gray matter (CBGM) and NAWM. This method takes advantage of qualities of both tissue classes: T1
in CBGM is similar across subjects and disease groups, making it a meaningful “center”; NAWM is
well-estimated, making it a stable reference class for estimation of “scale”.

Let Mi(v) denote the raw intensity of voxel v for subject i in image M ∈ {FLAIR,PDw, T1w, T2w}.
Using the z-score method, we normalize image Mi:

MN
i (v) =

Mi(v)− µ(CBGM)
i,M

σ
(NAWM)
i,M

,

where µ
(CBGM)
i,M is the median intensity within CBGM and σ

(NAWM)
i,M is the standard deviation of inten-

sities within NAWM. Figure 1 shows the relationships between T1 and each predictor image before and
after normalization and illustrates how normalization serves to standardize these curves across subjects.

2.1.2 Statistical Model

Following intensity normalization, a set of nonlinear regression models is trained to predict T1 from the
normalized predictor images. A separate regression model is fit within each tissue class. We assume
independence across subjects; furthermore we assume that, conditional on the predictor images, T1 is
independent across voxels. The T1 map intensity at voxel v in tissue class c for subject i is therefore
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(a) T1 versus non-normalized intensities of T1w, T2w, PDw and FLAIR within NAWM

(b) T1 versus normalized intensities of T1w, T2w, PDw and FLAIR within NAWM

1

Figure 1: T1 versus non-normalized (a) and normalized (b) intensities of predictor images within
NAWM. Each line is a smoothed curve from a single subject, and confidence bands for each curve are
shown in gray. Confidence bands are wider for more extreme values of the normalized predictor images,
due to low density of voxels with such intensities. Before intensity normalization, the relationships
between T1 and each predictor image varies greatly across subjects; after intensity normalization, the
curves appear much more similar across subjects. Furthermore, the relationships between T1 and each
predictor image are clearly nonlinear.

related to the corresponding normalized T1w, T2w, PDw and FLAIR intensities through the following
model:

T1i(v) ∼ f c1
(
T1w

N
i (v)

)
+ f c2

(
T2w

N
i (v)

)
+ f c3

(
PDwN

i (v)
)

+ f c4
(
FLAIRN

i (v)
)

+ εi(v),

where f cj (·), j = 1, 2, 3, 4, are smooth curves and εi(v) ∼ N(0, σ2
c ). We fit this model in the R statistical

environment (version 3.0.2, [24]) using the gam function from the mgcv package (version 1.7-28, [25, 26]).
This function represents the smooth curves as penalized regression splines. Generalized cross validation
is used to estimate the degree of smoothness, and the smoothing parameter estimation criterion is
optimized using the Newton method [27]. For any subject with T1w, T2w, PDw and FLAIR images,

a QuEEN map may be obtained by applying the estimated regression curves f̂ cj (·), j = 1, 2, 3, 4, to the
corresponding normalized predictor image intensities.

2.2 Method Validation

We assess the performance of the QuEEN model using several criteria. To assess the accuracy of QuEEN
maps, we compute their estimation error and prediction error. We define the estimation error of a QuEEN
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map at each voxel as the difference between the intensities on the QuEEN map and corresponding T1
map. We note that the regression framework used to generate QuEEN maps may serve to reduce the
noise typically found on T1 maps due to the “shrinkage” effect of regression, in which observations are
pulled towards the mean. The shrinkage effect has previously been shown to improve reproducibility of
functional MRI measures [28, 29]. However, it is difficult to determine what constitutes a good or bad
estimation error without knowing the measurement error of T1 maps.

Therefore we also define prediction error, the difference at each voxel between a T1 or QuEEN map and
a second T1 map acquired at a later date. We compute the prediction error of the T1 and QuEEN maps
of those subjects in our dataset for whom a second T1 map is available. Note that while prediction
error may be affected by real biological changes, such changes will affect the prediction errors of T1 and
QuEEN maps similarly, and hence they can be compared fairly. For each error rate, we compute the
root mean squared error (rMSE) within each image and tissue class and compare the distributions of
rMSE across subjects. It is important to note that, due to measurement error inherent in T1 maps and
the possibility for such errors to be recurring across multiple scans, both error measures of QuEEN maps
may be somewhat inflated.

To assess utility of QuEEN maps, we assess the performance of QuEEN maps in detecting acute and
diffuse changes in white matter, a common use of T1 maps. Specifically, we perform tests of group
differences of T1 in NAWM and lesions between different MS subtypes using both T1 and QuEEN maps
and compare the results. Previous work suggests that SPMS subjects show elevated T1 in NAWM relative
to RRMS and PPMS patients, and that RRMS patients show elevated T1 in NAWM relative to PPMS
patients [1]. Therefore, for each of these pairs we conduct a one-sided test for differences in T1 in NAWM.
Much extant literature also finds that patients with MS show elevated T1 relative to healthy volunteers
(HVs) [1, 4, 5, 6, 8, 30]. We therefore also conduct a one-sided test for differences in T1 in NAWM for
MS patients and each MS subtype versus HVs. However, as our HV group is very small, we present
these results as preliminary findings in Appendix Figure D.6. Finally, we also perform a two-sided test
for differences in T1 in lesions between each pair of MS subtypes.

2.3 Materials

2.3.1 Study Population

Our dataset consists of MRI studies collected from 75 subjects. In order to ensure image quality for
model training and validation, we performed extensive quality control. Four studies were excluded due
to subject motion. An additional 2 studies were excluded due to registration problems, and 6 studies
were excluded due to tissue class segmentation errors. Of the 63 remaining studies, 29 are from patients
with PPMS, 15 are from patients with RRMS, 17 are from patients with SPMS, and 2 are healthy
volunteers (HVs). Additional summary statistics are shown in Table 1. For model training, we formed
a high-quality dataset containing 45 studies by excluding any studies where even minor segmentation
errors or subject motion were present. The high-quality dataset was also included in model validation,
using cross-validation for image prediction within this dataset to avoid over-fitting.

To assess reproducibility, a second MRI study was collected for 37 subjects. Of these, one study was
excluded due to motion, and two studies were excluded due to segmentation errors. Of the remaining
34 studies, 20 are from patients with PPMS, 13 are from patients with SPMS, and one is from a patient
with RRMS. The average length of time between the two studies is 169 days and ranges from 21 to 301
days.

2.3.2 Image Acquisition

Each MRI study includes the following images, all collected on a Siemens Skyra 3T scanner: a T1 map, ac-
quired as two T1-FLASH (Fast Low Angle SHot) sequences at differing flip angles [TR=7.8ms, TE=3ms,
FA=3/18] [31, 32] with a B0+B1 field map for FA correction [33]; T1-MPRAGE (Magnetization-Prepared
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Table 1: Summary statistics of study population

HV PPMS RRMS SPMS
n 2 29 15 17

% Female 50% 55% 87% 41%
Mean Age (sd) 24 (0.6) 56 (7.4) 45 (13.8) 53 (7.9)

Mean Disease Duration (sd) NA 13.6 (9.4) 8.2 (6.8) 24.6 (8.8)
Median EDSS (range) NA 6.0 (2.0-7.5) 1.5 (1.0-6.0) 6.5 (1.5-7.0)

RApid Gradient Echo) [TR=3000ms, TE=3.03ms, TI=900ms, FA=9]; PDw and T2w images from a
dual-echo turbo spin echo (TSE) sequence [TR=3000ms, TE=11ms/101ms, FA=150, ETL=14]; and a
3D T2-weighted FLAIR image acquired using a T2-selective inversion pulse optimized for T2 of 120ms
[TR=4800ms, TE=354ms, TI=1800ms, Variable FA]. All scans were acquired at 1.0mm isotropic reso-
lution except the PDw/T2w TSE sequence, which was acquired at 0.93× 0.93× 3.0mm resolution.

2.3.3 Image Preprocessing & Tissue Segmentation

For the T1 map of each subject, we perform B0-field correction to reduce magnetic field inhomogeniety
and B1-field correction to account for the radio-frequency transmit bias field. For each subject, we rigidly
align the corrected T1 map and T1w, T2w, PDw and FLAIR images to the MNI152 1.0 mm nonlinear
template, using a two-step registration technique where a second alignment is done after skull-stripping.
We apply the N4 inhomogeneity correction algorithm [34] to the T1w, T2w, PDw and FLAIR images,
and we remove extracerebral voxels using the SPECTRE skull-stripping algorithm [35].

For each study, we use a coarse tissue class segmentation from Topology Preserving Anatomy Driven
Segmentation (TOADS) (Bazin and Pham 2008) for HVs and Lesion-TOADS (Shiee et al. 2010) for
patients with MS. Both algorithms identify eight normal tissue classes and CSF; Lesion-TOADS also
identifies white matter lesions. Since TOADS and Lesion-TOADS employ topological constraints that
can cause segmentation errors within the ventricles, which can appear discontinuous on MRI, we correct
the ventricular segmentation using the non-topologically constrained maximum membership classes.

To create a brain mask including only the eight normal tissue classes and white matter lesions, we exclude
voxels identified as CSF. Furthermore, we exclude any voxels that appear hypointense in the FLAIR
image by thresholding the image below the 80th percentile, which has been shown to help correct for
CSF segmentation errors [36]. Finally, we exclude any voxels outside the field of view on any image and
voxels on the T1 map with physically implausible values for brain tissue (defined as less than zero or
greater than 5s). The voxels that remain after these exclusions comprise the brain mask.

To create a conservative mask of each tissue class, we start with the tissue class segmentation described
above and remove any voxels outside of the brain mask. To exclude voxels exhibiting partial volume
effects along tissue class borders, we erode the mask of each tissue class using a 3×3×3 diamond-shaped
kernel. Eroded voxels are excluded from model training and validation measures, but are included for
whole-image prediction.

2.3.4 QuEEN Map Generation

Within the high-quality dataset, we generate QuEEN maps through leave-one-subject-out cross-validation.
That is, for each subject, the QuEEN statistical model is fit on all other subjects in the high-quality
dataset, and the resulting model is used to generate the QuEEN map for that subject. For subjects not
included in the high-quality dataset, QuEEN maps are generated using the QuEEN statistical model
trained on all subjects in the high-quality dataset. The results reported below are based on the high-
quality dataset; results including the full dataset are shown in Appendix Figures C.3-C.5.
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3 Results

Appendix Figure A.1 shows the estimated coefficient curves for the GAM model fit within each tissue
class across all subjects in the high-quality dataset. Figure 2 shows, for one randomly selected subject,
two axial slices of the T1 map (Figure 2a), QuEEN map (Figure 2b), and the magnitude of the difference
between them. The difference image is shown on the same scale as the images (Figure 2c) and again
on a different scale to show greater detail (Figure 2d). The T1 and QuEEN maps appear very similar;
however, the QuEEN map appears smoother and contains less noise on the border between brain tissue
and cerebral spinal fluid (CSF). The subject displayed is an RRMS patient; example images from subjects
with PPMS and SPMS and a healthy control subject are shown in Appendix Figure B.2.

Figure 31 shows boxplots over subjects of the QuEEN estimation error (shown in orange), QuEEN
prediction error (shown in light blue), and T1 prediction error (shown in dark blue), in terms of root
mean squared error (rMSE) within each image and tissue class. The error rates of QuEEN and T1 maps
appear quite similar overall, with differences within certain tissue classes. In particular, the QuEEN
maps tend to be more accurate in deep gray matter structures, cerebellar white matter (CBWM) and
the brainstem, while the T1 maps tend to be more accurate in CGM, NAWM and lesions.

Figures 4 and 5 show the results of tests of group differences between disease types. Figure 4 shows the
median T1 in NAWM as estimated by T1 maps (Figure 4a) and QuEEN maps (Figure 4b). For each
pair of groups, the p-value reported corresponds to a one-sided Wilcoxon test that the group on the left
has NAWM T1 greater than the group on the right. These comparisons were chosen based on previous
findings [1]. Surprisingly, while none of the expected differences are significant when T1 maps are used,
we do find significant differences using QuEEN maps. Specifically, SPMS patients show a significant
or marginally significant increase in NAWM T1 compared to RRMS patients (p = 0.018) and PPMS
patients (p = 0.082).

Similarly, Figure 5 shows the median T1 in lesions as estimated by T1 maps (Figure 5a) and QuEEN
maps (Figure 5b). The p-value reported for each group corresponds to a two-sided Wilcoxon test for
differences. We perform two-sided tests because we do not have strong a-priori beliefs about differences
in lesion T1 between disease types. Again, while none of the differences are significant when T1 maps are
used, we see increased power using QuEEN maps: PPMS patients show marginally elevated T1 in lesions
compared with RRMS patients (p = 0.082) and SPMS patients (p = 0.092). This finding is supported
by earlier work that identified indicators of increased gliosis and axonal loss in PPMS lesions relative to
RRMS lesions [37]. The increase in power we observe in both NAWM and lesions is likely due to smaller
within-group variance of T1 using QuEEN maps, which is reflected by slightly narrower confidence bands
and fewer outliers in each group (Figures 4 and 5).

4 Discussion

In this paper, we have proposed QuEEN, a new method to estimate T1 that only requires the acquisition
or availability of four conventional MR images. We have demonstrated the accuracy of QuEEN maps
by showing that they have similar prediction error compared with T1 maps and, in fact, have improved
accuracy in deep gray matter structures. Given the emerging recognition of the importance in MS of deep
gray matter structures, including the thalamus [38, 39, 40], this may represent an important advancement
in the study of MS. Furthermore, we have demonstrated the utility of QuEEN maps, as tests of group
comparisons of T1 in NAWM and lesions using QuEEN maps resulted in similar findings but were more
powerful than those same tests performed using T1 maps.

Key to the success of QuEEN is a novel intensity normalization procedure that uses cerebellar gray
matter to estimate the “center” of the distribution of image intensities. We also evaluated several other
tissue types for this purpose, including NAWM, CSF, and extra-cerebral soft tissue, and we found CBGM

1In Figure 3, data points corresponding to lesion masks containing fewer than 500 voxels and caudate masks containing
fewer than 1000 voxels are excluded. Such masks usually represent significant overlap with CSF voxels.
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Figure 2: For one randomly selected example subject with RRMS, two axial slices of the T1 map (a),
QuEEN map (b), and the absolute value of the difference between the two on the same scale as the
images (c) and rescaled to show greater detail (d).
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Figure 3: For each tissue class, boxplots of the QuEEN estimation error (shown in orange), QuEEN
prediction error (shown in light blue), and T1 prediction error (shown in dark blue). Each error rate is
summarized as the root MSE over all voxels in the eroded mask of each tissue class for a single subject.
The boxplots of QuEEN estimation error show the distribution over all subjects in the high-quality
dataset, while the boxplots of QuEEN and T1 prediction errors show the distribution over those subjects
in the high-quality dataset who received a second scan. The error rates of QuEEN and T1 maps appear
quite similar overall, with differences within certain tissue classes.
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Figure 4: Tests of group differences in median NAWM T1 using T1 maps (a) and QuEEN maps (b).
Each gray point indicates the median T1 in NAWM for a single subject. The bars indicate Wilcoxon
95% confidence intervals for the median across subjects in each group. The p-value for each pair of
groups corresponds to a one-sided Wilcoxon test that the group on the left has NAWM T1 greater than
the group on the right. For example, the test that SPMS patients have NAWM T1 greater than RRMS
patients has p = 0.378 using T1 maps and p = 0.018 using QuEEN maps. Due to smaller within-group
variance, tests performed using QuEEN maps instead of T1 maps appear to be more powerful (have
smaller p-values) in general.
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(b) QuEEN Maps

1

Figure 5: Tests of group differences in median lesion T1 using T1 maps (a) and QuEEN maps (b).
Each gray point indicates the median T1 in lesions for a single subject. The bars indicate Wilcoxon 95%
confidence intervals for the median across subjects in each group. The p-value for each pair of groups
corresponds to a two-sided Wilcoxon test of group differences. While no group differences are significant
at α = 0.05, there is some evidence that T1 in lesions is higher for PPMS patients than RRMS or SPMS
patients. Tests performed using QuEEN maps instead of T1 maps again appear to be more powerful.

to have by far the best performance. We believe this is due to the combination of its relatively high
similarity across subjects (compared with NAWM) and relatively low noise (compared with CSF and
extra-cerebral soft tissue). However, there are some potential issues to consider before employing this
normalization approach. First, CBGM can exhibit some changes due to MS disease pathology [41]. From
an imaging point of view, these changes may be small in MS, but for patients with other neurological
diseases in which CBGM may be affected to a larger degree, the choice of reference region should be
revisited before generating QuEEN maps. Second, the cerebellum is close to the receive coil array, and is
hence more susceptible to bias-field inhomogeneities. Finally, segmentation of gray and white cerebellar
tissue is required. However, this segmentation is not required to be perfect, as the methods we propose
are designed to be robust to partial volume effects and minor segmentation errors.

QuEEN also uses a full tissue class segmentation for model training and prediction. The methods cur-
rently available for segmentation in diseased populations require tuning and are prone to errors, even
when applied by an expert technician. In fact, several of the subjects in our dataset were excluded due
to problems with the tissue class segmentation, illustrating the need for more accurate segmentation
methods for diseased populations. To account for small errors and partial volume effects, we use eroded
tissue class masks for intensity normalization and model training. Alternatively, for the purposes of
intensity normalization it may be possible to avoid the tissue class segmentation entirely by using his-
togram “stripe”-based methods such as that described in [16]. Existing “white stripe” methods could be
used to estimate the standard deviation within NAWM; further research would be needed to develop a
method to identify the histogram peak location within CBGM.

A limitation of our validation is that we have tested our method on a single protocol acquired on a
Siemens scanner and at a single field strength. Additional validation should be conducted on a large,
multi-center dataset to assess the site-to-site and scanner-to-scanner reproducibility of QuEEN maps.
However, as QuEEN maps do not depend on the careful scanner calibration required for acquisition of
traditional T1 maps, we expect that they may be more reproducible across sites and protocols compared
with traditional T1 maps, which are sensitive to many technical factors.
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One advantage of the QuEEN model is that it treats each individual voxel as a separate, independent
observation and hence does not require spatial normalization across subjects. As diseased brains can
be difficult to normalize to a template [42], avoiding this step is a strength of our approach. While
the QuEEN regression residuals may in truth exhibit some spatial correlation, this does not affect the
validity of our results, as we rely on out-of-sample prediction rather than model coefficients and their
standard errors to evaluate model fit.

QuEEN is a flexible model framework that can be adapted to various contexts through model retraining.
For example, while the model specified in this paper utilizes four standard MR images, we also tested
the model using only T1w plus one or more additional predictor images and observed a relatively minor
loss of accuracy (results not reported). The QuEEN model can be re-trained to adapt to a setting where
the types of images or the protocol under which they were acquired are different from what we have
described. For example, the model may need to be retrained to accommodate an FSPGR (Fast SPoiled
Gradient Echo) rather than an MPRAGE T1w image. The QuEEN framework can also be extended to
other quantitative modalities.

Finally, QuEEN maps may also be useful for the study of diseases other than MS where T1 is an important
biomarker, including Parkinsons disease, cancers, and diseases of the heart, lungs and abdominal system.
The intensity normalization procedure is key to accuracy of the QuEEN model, and should be adapted to
each context by identifying a region that is minimally affected by the disease in question and is relatively
well imaged. Future research should focus on assessing accuracy of QuEEN maps for different patient
populations.

5 Conclusion

In this paper, we have proposed a new way to create T1 maps retroactively that only requires the
acquisition of four standard clinical MR images. The “QuEEN maps” produced using these methods
were shown to have similar accuracy and reproducibility compared with traditional acquired T1 maps.
Furthermore, QuEEN maps offer several advantages over traditional T1 maps. Of primary importance
is convenience and retroactive availability: QuEEN maps can be computed without any additional scan
time using four conventional images. Since these images have historically been included in most clinical
and research protocols, our method has the potential to greatly increase the availability of T1 maps for
clinical and research use. Furthermore, QuEEN maps were shown to be more powerful than traditional
T1 maps for tests of differences in T1 between MS subtypes in NAWM and lesions. Further research is
needed to validate QuEEN across scanners, protocols and populations.

References

[1] Vrenken, H. et al. Whole-brain t1 mapping in multiple sclerosis: global changes of normal-appearing
gray and white matter. Radiology 240, 811–820 (2006).

[2] Larsson, H. et al. Assessment of demyelination, edema, and gliosis by in vivo determination of
t1 and t2 in the brain of patients with acute attack of multiple sclerosis. Magnetic resonance in
medicine 11, 337–348 (1989).

[3] Tofts, P. & Du Boulay, E. Towards quantitative measurements of relaxation times and other pa-
rameters in the brain. Neuroradiology 32, 407–415 (1990).

[4] Griffin, C. M. et al. The relationship between lesion and normal appearing brain tissue abnormalities
in early relapsing remitting multiple sclerosis. Journal of neurology 249, 193–199 (2002).

[5] Vaithianathar, L., Tench, C. R., Morgan, P. S., Lin, X. & Blumhardt, L. D. White matter t1
relaxation time histograms and cerebral atrophy in multiple sclerosis. Journal of the neurological
sciences 197, 45–50 (2002).

11

Hosted by The Berkeley Electronic Press



[6] Parry, A. et al. White matter and lesion t1 relaxation times increase in parallel and correlate with
disability in multiple sclerosis. Journal of neurology 249, 1279–1286 (2002).

[7] Castriota-Scanderbeg, A., Fasano, F., Filippi, M. & Caltagirone, C. T1 relaxation maps allow
differentiation between pathologic tissue subsets in relapsing-remitting and secondary progressive
multiple sclerosis. Multiple sclerosis 10, 556–561 (2004).

[8] Parry, A. et al. Mri brain t1 relaxation time changes in ms patients increase over time in both the
white matter and the cortex. Journal of Neuroimaging 13, 234–239 (2003).

[9] Davies, G. R. et al. Normal-appearing grey and white matter t1 abnormality in early relapsing-
remitting multiple sclerosis: a longitudinal study. Multiple Sclerosis 13, 169–177 (2007).

[10] Manfredonia, F. et al. Normal-appearing brain t1 relaxation time predicts disability in early primary
progressive multiple sclerosis. Archives of neurology 64, 411 (2007).

[11] Papadopoulos, K. et al. Ti-relaxation time changes over five years in relapsing-remitting multiple
sclerosis. Multiple Sclerosis 16, 427–433 (2010).

[12] Neema, M. et al. T1-and t2-based mri measures of diffuse gray matter and white matter damage in
patients with multiple sclerosis. Journal of Neuroimaging 17, 16S–21S (2007).

[13] Niepel, G. et al. Deep gray matter and fatigue in ms. Journal of neurology 253, 896–902 (2006).

[14] Ratchford, J. N. et al. Decreased microglial activation in ms patients treated with glatiramer acetate.
Journal of neurology 259, 1199–1205 (2012).

[15] Kropholler, M. A. et al. Evaluation of reference regions for (r)[11c]pk11195 studies in alzheimer’s
disease and mild cognitive impairment. Journal of Cerebral Blood Flow & Metabolism 27, 1965–1974
(2007).

[16] Shinohara, R. T. et al. Statistical normalization techniques for magnetic resonance imaging. Neu-
roImage: Clinical (2014).

[17] Shinohara, R. T., Crainiceanu, C. M., Caffo, B. S., Gaitán, M. I. & Reich, D. S. Population-
wide principal component-based quantification of blood-brain-barrier dynamics in multiple sclerosis.
NeuroImage 57, 1430–1446 (2011).

[18] Pujol, J. et al. Biological significance of iron-related magnetic resonance imaging changes in the
brain. Archives of neurology 49, 711 (1992).

[19] Van Waesberghe, J. et al. Patterns of lesion development in multiple sclerosis: longitudinal observa-
tions with t1-weighted spin-echo and magnetization transfer mr. American journal of neuroradiology
19, 675–683 (1998).

[20] Bakshi, R. et al. T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a
quantitative magnetic resonance imaging study. Archives of Neurology 59, 62 (2002).

[21] Tjoa, C., Benedict, R., Weinstock-Guttman, B., Fabiano, A. & Bakshi, R. Mri t2 hypointensity
of the dentate nucleus is related to ambulatory impairment in multiple sclerosis. Journal of the
neurological sciences 234, 17–24 (2005).

[22] Brass, S., Benedict, R. H., Weinstock-Guttman, B., Munschauer, F. & Bakshi, R. Cognitive im-
pairment is associated with subcortical magnetic resonance imaging grey matter t2 hypointensity
in multiple sclerosis. Multiple sclerosis 12, 437–444 (2006).

[23] Neema, M. et al. Deep gray matter involvement on brain mri scans is associated with clinical
progression in multiple sclerosis. Journal of Neuroimaging 19, 3–8 (2009).

[24] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria (2013). URL http://www.R-project.org/.

12

http://biostats.bepress.com/upennbiostat/art37

http://www.R-project.org/


[25] Wood, S. Generalized additive models: an introduction with R (CRC press, 2006).

[26] Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semi-
parametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 73, 3–36 (2011).

[27] Gu, C. & Wahba, G. Minimizing gcv/gml scores with multiple smoothing parameters via the newton
method. SIAM Journal on Scientific and Statistical Computing 12, 383–398 (1991).

[28] Shou, H. et al. Shrinkage prediction of seed-voxel brain connectivity using resting state fmri. Neu-
roImage (2014).

[29] Mejia, A. F. et al. Improving reliability of subject-level resting-state fmri parcellation with shrinkage
estimators. NeuroImage (2015).

[30] Miller, D., Johnson, G., Tofts, P., MacManus, D. & McDonald, W. Precise relaxation time measure-
ments of normal-appearing white matter in inflammatory central nervous system disease. Magnetic
resonance in medicine 11, 331–336 (1989).

[31] Christensen, K. A., Grant, D. M., Schulman, E. M. & Walling, C. Optimal determination of relax-
ation times of fourier transform nuclear magnetic resonance. determination of spin-lattice relaxation
times in chemically polarized species. The Journal of Physical Chemistry 78, 1971–1977 (1974).

[32] Gupta, R. K. A new look at the method of variable nutation angle for the measurement of spin-
lattice relaxation times using fourier transform nmr. Journal of Magnetic Resonance (1969) 25,
231–235 (1977).

[33] Duan, Q., Gelderen, P. & Duyn, J. Improved bloch-siegert based b1 mapping by reducing off-
resonance shift. NMR in Biomedicine 26, 1070–1078 (2013).

[34] Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29, 1310–1320
(2010). URL http://dx.doi.org/10.1109/TMI.2010.2046908.

[35] Carass, A. et al. Simple paradigm for extra-cerebral tissue removal: Algorithm and analysis. Neu-
roImage 56, 1982–1992 (2011).

[36] Sweeney, E. M. et al. Oasis is automated statistical inference for segmentation, with applications
to multiple sclerosis lesion segmentation in mri. NeuroImage: clinical 2, 402–413 (2013).

[37] Suhy, J. et al. 1h mrsi comparison of white matter and lesions in primary progressive and relapsing-
remitting ms. Multiple sclerosis 6, 148–155 (2000).

[38] Minagar, A. et al. The thalamus and multiple sclerosis modern views on pathologic, imaging, and
clinical aspects. Neurology 80, 210–219 (2013).

[39] Zivadinov, R. et al. Evolution of cortical and thalamus atrophy and disability progression in early
relapsing-remitting ms during 5 years. American Journal of Neuroradiology 34, 1931–1939 (2013).

[40] Haider, L. et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurode-
generation, inflammation and iron. Journal of Neurology, Neurosurgery & Psychiatry jnnp–2014
(2014).

[41] Howell, O. W. et al. Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked
to inflammation in the subarachnoid space. Neuropathology and applied neurobiology (2014).

[42] Eloyan, A. et al. Health effects of lesion localization in multiple sclerosis: Spatial registration and
confounding adjustment. PloS one 9, e107263 (2014).

13

Hosted by The Berkeley Electronic Press

http://dx.doi.org/10.1109/TMI.2010.2046908


Funding Acknowledgments

Mejia, Sweeney, and Shinohara are partially funded by the NIH grant RO1 NS085211 from the National
Institute of Neurological Disorders and Stroke (NINDS). Mejia is partially funded by the National Science
Foundation Graduate Research Fellowship Program under Grant No. DGE-1232825. The study was
supported in part by the Intramural Research Program of NINDS. We acknowledge the contribution of
the NINDS Neuroimmunology Clinic and the NIH Functional MRI Facility. This work represents the
opinions of the researchers and not necessarily that of the granting organizations.

Author Contribution Statement

All authors contributed extensively to the work presented in this paper.

14

http://biostats.bepress.com/upennbiostat/art37



A
C

o
e
ffi

ci
e
n
t

cu
rv

e
s

fr
o
m

G
A

M
re

g
re

ss
io

n
m

o
d

e
ls

a

−1
0

−5
0

5
10

05001500

T1
W

s(T1W,9)

−1
0

−5
0

5

05001500

PD
W

s(PDW,9)

−5
0

5
10

05001500

T2
W

s(T2W,8.77)

−5
0

5
10

05001500

FL
AI
R

s(FLAIR,8.94)

b

−
5

0
5

10

−2002006001000

T
1W

s(T1W,8.96)

−
8

−
4

0
2

4

−2002006001000

P
D

W

s(PDW,9)

−
5

0
5

10

−2002006001000

T
2W

s(T2W,8.96)

−
6

−
4

−
2

0
2

4

−2002006001000

F
LA

IR

s(FLAIR,8.84)

c

−
10

−
5

0
5

−100005001500

T
1W

s(T1W,7.61)

−
2

0
2

4
6

8
10

−100005001500

P
D

W
s(PDW,8.23)

0
5

10
15

−100005001500

T
2W

s(T2W,7.34)

0
5

10

−100005001500

F
LA

IR

s(FLAIR,7.42)

d

−
10

0
5

10
15

−50005001500

T
1W

s(T1W,8.99)

−
10

−
5

0
5

10

−50005001500

P
D

W

s(PDW,8.71)

−
5

0
5

10
15

20

−50005001500

T
2W

s(T2W,8.81)

−
5

0
5

10

−50005001500

F
LA

IR

s(FLAIR,8.78)

e

−
10

−
5

0
5

10

−50005001500

T
1W

s(T1W,8.4)

−
10

−
5

0
5

−50005001500

P
D

W

s(PDW,8.85)

−
5

0
5

10
15

−50005001500

T
2W

s(T2W,8.33)

−
5

0
5

−50005001500

F
LA

IR

s(FLAIR,6.88)

f

−
5

0
5

10

−500050010001500

T
1W

s(T1W,8.91)

−
10

−
5

0
5

−500050010001500

P
D

W

s(PDW,8.84)

−
5

0
5

10
15

−500050010001500

T
2W

s(T2W,8.82)

−
5

0
5

−500050010001500

F
LA

IR

s(FLAIR,8.71)

g

−
6

−
4

−
2

0
2

4

−50005001000

T
1W

s(T1W,8.36)

−
6

−
4

−
2

0
2

4
6

−50005001000

P
D

W

s(PDW,8.55)

−
5

0
5

10

−50005001000

T
2W

s(T2W,8.61)

−
4

−
2

0
2

4
6

−50005001000

F
LA

IR
s(FLAIR,6)

h

−
5

0
5

−50005001500

T
1W

s(T1W,8.84)

−
6

−
4

−
2

0
2

4

−50005001500

P
D

W

s(PDW,8.24)

−
5

0
5

10

−50005001500

T
2W

s(T2W,8.83)

−
6

−
4

−
2

0
2

4

−50005001500

F
LA

IR

s(FLAIR,7.95)

i

−
5

0
5

10

05001500

T
1W

s(T1W,8.97)

−
10

−
5

0
5

05001500

P
D

W

s(PDW,8.92)

−
5

0
5

10

05001500

T
2W

s(T2W,8.92)

−
5

0
5

05001500

F
LA

IR

s(FLAIR,8.65)

F
ig
u
re

A
.1
:

E
st

im
at

ed
co

effi
ci

en
t

cu
rv

es
fo

r
th

e
G

A
M

(s
p

li
n

e)
re

gr
es

si
on

m
o
d

el
w

it
h

in
ea

ch
ti

ss
u

e
cl

as
s:

(a
)

ce
re

b
ra

l
N

A
W

M
,

(b
)

ce
re

b
el

la
r

w
h

it
e

m
at

te
r,

(c
)

le
si

on
,

(d
)

co
rt

ic
al

gr
ay

m
a
tt

er
,

(e
)

ce
re

b
el

la
r

gr
ay

m
at

te
r,

(f
)

th
al

am
u

s,
(g

)
ca

u
d

at
e,

(h
)

p
u

ta
m

en
,

an
d

(i
)

b
ra

in
st

em
.

F
or

ea
ch

ti
ss

u
e

cl
a
ss

,
th

er
e

a
re

fo
u

r
es

ti
m

at
ed

co
effi

ci
en

t
cu

rv
es

,
co

rr
es

p
on

d
in

g
to

th
e

fo
u

r
p

re
d

ic
to

r
se

q
u

en
ce

s
in

th
e

m
o
d

el
.

P
oi

n
tw

is
e

95
%

co
n

fi
d

en
ce

b
an

d
s

a
re

sh
ow

n
in

gr
ay

.
F

or
a

gi
v
en

ti
ss

u
e

cl
as

s
a
n

d
im

ag
e,

th
e

va
lu

e
of

th
e

co
effi

ci
en

t
fu

n
ct

io
n

ev
al

u
at

ed
at

a
p

ar
ti

cu
la

r
(n

or
m

al
iz

ed
)

im
ag

e
in

te
n

si
ty

is
th

e
a
m

o
u

n
t

(i
n

m
s)

th
at

a
vo

x
el

in
th

at
cl

as
s

w
it

h
th

at
in

te
n
si

ty
co

n
tr

ib
u

te
s

to
th

e
p

re
d

ic
te

d
T
1

va
lu

e.
F

or
ex

am
p

le
,

(a
)

sh
ow

s
th

at
a

vo
x
el

in
N

A
W

M
w

it
h

n
o
rm

a
li

ze
d

T
1
w

in
te

n
si

ty
of
−

5
w

ou
ld

co
n
tr

ib
u

te
ap

p
ro

x
im

at
el

y
13

00
m
s

to
th

e
p

re
d

ic
te

d
T
1

va
lu

e.
T

h
e

y
-a

x
is

la
b

el
in

d
ic

at
es

th
e

es
ti

m
at

ed
d

eg
re

e
o
f

ea
ch

cu
rv

e
(e

.g
.

d
eg

re
e

of
2

in
d

ic
at

es
a

q
u

ad
ra

ti
c

fi
t)

.

15

Hosted by The Berkeley Electronic Press



B Example images and difference images

a

b

c

1

Figure B.2: For three randomly selected example subjects, two axial slices of the T1 map (a), the
QuEEN map (b), and the absolute value of the difference between the two on a different scale (c). The
first column shows a subject with SPMS, the middle column shows a subject with PPMS, and the third
column shows a healthy volunteer.
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C Results on full validation set
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Figure C.3: For each tissue class, boxplots of the QuEEN estimation error (shown in orange), QuEEN
prediction error (shown in light blue), and T1 prediction error (shown in dark blue), using the full dataset.
Each error rate is summarized as the root MSE over all voxels in the eroded mask of each tissue class for
a single subject. The boxplots of QuEEN estimation error show the distribution over all subjects, while
the boxplots of QuEEN and T1 prediction error show the distribution over those subjects who received a
second scan. We see more outliers compared with Figure 3, but the relationship between the error rates
in each tissue class remains relatively unchanged.
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Figure C.4: Tests of group differences in median NAWM T1 using T1 maps (a) and QuEEN maps
(b), using the full dataset. Each gray point indicates the median estimate of T1 in NAWM for a single
subject. The bars indicate Wilcoxon 95% confidence intervals for the median across subjects in each
group. The p-value for each pair of groups corresponds to a one-sided Wilcoxon test that the group on
the left has NAWM T1 greater than the group on the right. For example, the test that SPMS patients
have NAWM T1 greater than RRMS patients has p = 0.485 using the T1 maps and p = 0.077 using the
QuEEN maps. As seen in Figure 4, tests performed using QuEEN maps instead of T1 maps appear to
be more powerful.

a

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

1500

2000

2500

3000

SPMS RRMS PPMS
Diagnosis

M
ed

ia
n 

T1
 in

 L
es

io
ns

p =0.911 

p =0.258 

p =0.181 

b

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

1500

2000

2500

3000

SPMS RRMS PPMS
Diagnosis

M
ed

ia
n 

T1
 in

 L
es

io
ns

p =0.576 

p =0.039 

p =0.084 

1

Figure C.5: Tests of group differences in median T1 in lesions using T1 maps (a) and QuEEN maps
(b), using the full dataset. Each gray point indicates the median estimate of T1 in lesions for a single
subject. The bars indicate Wilcoxon 95% confidence intervals for the median across subjects in each
group. The p-value for each pair of groups corresponds to a two-sided Wilcoxon test of group differences.
While no group differences are significant using T1 maps, two differences are significant or marginally
significant using QuEEN maps: PPMS patients have significantly elevated T1 in lesions compared with
RRMS patients (p = 0.039) and marginally elevated T1 compared with SPMS patients (p = 0.084).
Again, tests performed using QuEEN maps instead of T1 maps appear to be more powerful.
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D Tests of group differences with healthy controls
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Figure D.6: Exploratory tests of group differences in median NAWM T1 between MS groups and
healthy volunteers using T1 maps (a) and QuEEN maps (b), using the high-quality dataset. The bars
indicate the Wilcoxon 95% confidence intervals for the median across subjects in each MS group and the
50% confidence interval for the HV group. The p-value for each pair of groups corresponds to a one-sided
Wilcoxon test that the group on the left has NAWM T1 greater than the HV group. Using T1 maps,
none of the MS groups show significantly elevated T1 relative to HVs, though the SPMS group shows a
marginally significant elevation (p = 0.061). However, using QuEEN maps, the MS, SPMS and PPMS
groups show significantly elevated T1 relative to HVs (p = 0.012, p = 0.015 and p = 0.014, respectively),
and the RRMS group shows a marginally significant elevation (p = 0.077). The p-value for all groups
is smaller when QuEEN maps rather than T1 maps are used. This provides further evidence that using
QuEEN maps results in more powerful tests of group differences.
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