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Tests for Gene-Environment Interactions and
Joint Effects with Exposure Misclassification

Philip S. Boonstra, Bhramar Mukherjee, Stephen B. Gruber, Jaeil Ahn, Stephanie
L. Schmit, and Nilanjan Chatterjee

Abstract

The number of methods for genome-wide testing of gene-environment interac-
tions (GEI) continues to increase with the hope of discovering new genetic risk
factors and obtaining insight into the disease-gene-environment relationship. The
relative performance of these methods based on family-wise type 1 error rate
and power depends on underlying disease-gene-environment associations, esti-
mates of which may be biased in the presence of exposure misclassification. This
simulation study expands on a previously published simulation study of meth-
ods for detecting GEI by evaluating the impact of exposure misclassification.
We consider seven single step and modular screening methods for identifying
GEI at a genome-wide level and seven joint tests for genetic association and
GEI, for which the goal is to discover new genetic susceptibility loci by lever-
aging GEI when present. In terms of statistical power, modular methods that
screen based on the marginal disease-gene relationship are more robust to expo-
sure misclassification. Joints tests that include main/marginal effects of a gene
display a similar robustness, confirming results from earlier studies. Our results
offer an increased understanding of the strengths and limitations of methods for
genome-wide search for GEI and joint tests in presence of exposure misclassi-
fication. KEY WORDS: case-control; genome-wide association; gene discov-
ery, gene-environment independence; modular methods; multiple testing; screen-
ing test; weighted hypothesis test. Abbreviations: CC, case-control; CC(EXP),
CC in the exposed subgroup; CO, case-only; CT, cocktail; DF, degree of free-
dom; D-G, disease-gene; EB, empirical Bayes; EB(EXP), EB in the exposed sub-
group; EDGxE, joint marginal/association screening; FWER, family-wise error
rate; G-E, gene-environment; GEI, gene-environment interaction; GEWIS, Gene
Environment Wide Interaction Study; H2, hybrid two-step; LR, likelihood ratio;



MA, marginal; OR, odds ratio; SE, sensitivity; SP, specificity; TS, two-step gene-
environment screening;
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ABSTRACT

The number of methods for genome-wide testing of gene-environment interactions (GEI) contin-

ues to increase with the hope of discovering new genetic risk factors and obtaining insight into

the disease-gene-environment relationship. The relative performance of these methods based on

family-wise type 1 error rate and power depends on underlying disease-gene-environment asso-

ciations, estimates of which may be biased in the presence of exposure misclassification. This

simulation study expands on a previously published simulation study of methods for detecting

GEI by evaluating the impact of exposure misclassification. We consider seven single step and

modular screening methods for identifying GEI at a genome-wide level and seven joint tests for

genetic association and GEI, for which the goal is to discover new genetic susceptibility loci by

leveraging GEI when present. In terms of statistical power, modular methods that screen based on

the marginal disease-gene relationship are more robust to exposure misclassification. Joints tests

that include main/marginal effects of a gene display a similar robustness, confirming results from

earlier studies. Our results offer an increased understanding of the strengths and limitations of

methods for genome-wide search for GEI and joint tests in presence of exposure misclassification.

KEY WORDS: case-control; genome-wide association; gene discovery, gene-environment inde-

pendence; modular methods; multiple testing; screening test; weighted hypothesis test.

Abbreviations: CC, case-control; CC(EXP), CC in the exposed subgroup; CO, case-only; CT,

cocktail; DF, degree of freedom; D-G, disease-gene; EB, empirical Bayes; EB(EXP), EB in the

exposed subgroup; EDGxE, joint marginal/association screening; FWER, family-wise error rate;

G-E, gene-environment; GEI, gene-environment interaction; GEWIS, Gene Environment Wide

Interaction Study; H2, hybrid two-step; LR, likelihood ratio; MA, marginal; OR, odds ratio; SE,

sensitivity; SP, specificity; TS, two-step gene-environment screening;
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Introduction

Many complex diseases (D) have a multifactorial etiology resulting from the interplay of genetic

factors (G) and environmental exposures (E). Numerous statistical and epidemiological papers

have considered the discovery and characterization of gene-environment interaction (GEI) [1]–[16]

including discussions regarding efficiently testing GEIs [17] and conducting Gene Environment

Wide Interaction Studies (GEWIS) [18, 19]. These have examined the effect of violations to gene-

environment (G-E) independence in great detail.

In this paper, we build upon Mukherjee, et al. [12], who compared via simulation study the false

positive rate and empirical power of several GEI search methods. We extend the simulation study

in two ways. First, we augment the catalog of GEI search strategies with recently-introduced meth-

ods. Our catalog contains single-step and modular GEI search strategies, the latter of which screen

for G-E and/or marginal disease-gene (D-G) association before subsequent GEI testing. Beyond

these, we also evaluate “gene discovery” tests for the joint effect of gene and GEI [20, 21, 22].

These 2-degrees-of-freedom (DF) methods are less powerful than a pure marginal D-G test when

there is no multiplicative GEI and empirically noted to be more powerful given modest-to-strong

GEI. Power for testing the GEI component may be further increased relative to the standard 2-

DF likelihood ratio (LR) test [20] through data-adaptive use of the G-E independence assumption

[2, 21]. In all, we evaluate fourteen GEI and gene discovery methods.

The second extension of this paper relative to Mukherjee, et al. [12] is an evaluation of the

effects of exposure misclassification on all methods. Previous studies have investigated exposure

misclassification [20],[23]–[26], but no systematic published comparison under uniform simula-

tion settings is available. Exposure misclassification/measurement error may arise in case-control

studies due to recall bias, with the extent of misclassification possibly differing between cases and

controls [25]–[27]. This may be particularly challenging in meta-analyses of GEI, in which the

degree of measurement error in exposure data may differ across studies, leading to spurious null

and non-null findings.

1

Hosted by The Berkeley Electronic Press



Misclassification in E introduces bias in the estimation of main effects and GEIs [28]–[30] and

non-differential misclassification typically reduces power [31, 32]. Lindström et al. [24] study the

effects of non-differential misclassification on four tests for G or GEI and found that tests with

a marginal D-G association component were more robust to exposure misclassification. Recent

workshops initiated by the National Institutes of Health discussed the detrimental effects of expo-

sure misclassification, both in increased type I error and decreased power [33, 34]. Zhang et al.

[23] correct the maximum likelihood estimate of odds ratios (ORs) under misclassification, using

an estimate of the misclassification error rate from separate validation data. In many GEWIS, no

validation data are available to implement regression calibration or other methods of adjustment

from the measurement error literature [35, 36]. Stenzel et al. [37] compare several single-step

procedures for GEI under the dual scenario of exposure-biased sampling and exposure misclassi-

fication. Others have studied the effect of model violations on estimation of GEI, including mis-

specification of the main effects in characterizing the outcome-exposure relationship [38] and the

impact of unmeasured exposure confounders on GEI [22]. However, limited literature is available

on studying gene-environment correlation and exposure misclassification simultaneously.

This report is organized as follows. In “Materials and Methods”, we describe the testing pro-

cedures evaluated, divided into single-step or modular GEI methods and gene discovery methods.

In “Simulation Settings”, we describe our simulation design to evaluate each method including our

approach for generating misclassified exposure data. We present operating characteristics of the

methods under correctly classified and misclassified exposure scenarios in the “Results” section

and conclude the paper with the “Discussion” section.

Materials and Methods

We consider a case-control study with n1 cases and n0 controls evaluating a set of M binary ge-

netic markers G and a single environmental exposure E. Let E = 1 (E = 0) denote an exposed

(unexposed) individual and, for each genetic marker, G = 1 (G = 0) denote whether an individual
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is a carrier (non-carrier). Let D denote disease status, where D = 1 (D = 0) indicates an affected

(unaffected) individual. The population parameters for a given marker are pdge ≡ Pr(G = g, E =

e|D = d), d, g, e ∈ {0, 1}. Due to the sampling mechanism,
∑

g,e p0ge =
∑

g,e p1ge = 1, and thus

the corresponding frequencies follow a multinomial distribution. Table 1 defines seven log-ORs

pertaining to these probabilities. The quantities θGE and γGE give G-E association in the control

and case populations, respectively, αG and αE give marginal D-G and disease-environment asso-

ciation, respectively, and βG and βE give the respective main effects of G and E (D-G association

in the sub-group E = 0 and disease-environment association in the sub-group G = 0). A non-

zero value of βGE , in the final row of Table 1, defines a multiplicative GEI. In its simplest form, a

GEWIS tests M potential GEIs, namely βGE = 0 corresponding to each marker.

Single Step Exhaustive Methods

The methods herein test allM markers for GEI, with no initial screening or prioritizing. A common

adjustment to the significance threshold αtest is the Bonferroni correction. Each marker is tested at

significance threshold αtest/M , controlling the family-wise error rate (FWER) at level αtest.

I. CASE-CONTROL (CC): The standard approach, CC calculates β̂GE , the maximum likelihood

estimate of βGE and tests H0 : βGE = 0 via Wald or LR tests using logistic regression for P (D =

1|G,E).

II. CASE-ONLY (CO): Proposed by Piegorsch et al. [1], CO tests for G-E association among

cases (D = 1), namelyH0 : γGE = 0. This can be achieved through modeling P (G = 1|E,D = 1)

via logistic regression. Making a rare disease approximation and assuming G-E independence in

the entire population, the likelihood-ratio test for H0 : γGE = 0 is also a valid test for H0 : βGE =

0. This does not estimate main effects of G or E (βG or βE).

III. EMPIRICAL BAYES (EB): To trade off between the more efficient but potentially-biased CO

analysis and the always-unbiased but less efficient CC analysis, Mukherjee and Chatterjee [2] pro-

pose a shrinkage estimator based on the retrospective likelihood framework of Chatterjee and Car-

3
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roll [39]. The estimator is given by (ŵ)γ̂GE+(1−ŵ)β̂GE , where the weight ŵ = V̂ar(β̂GE)/[V̂ar(β̂GE)+

(β̂GE − γ̂GE)
2] adaptively controls the contribution from γ̂GE . The Delta method approximates the

variance of this shrinkage estimator, and Wald tests based on asymptotic normality allow for in-

ference. Regression versions of CO and EB using the retrospective likelihood framework [39]

based on case-control data that provide estimates of all model parameters – not just βGE – are

implemented in the R package CGEN [40, 41].

Modular Methods

These methods introduce a screening or prioritizing step based on G-E or marginal D-G associ-

ation before proceeding to the final GEI test. In contrast to single-step exhaustive methods, these

either test only a subset of markers or vary the significance threshold for each marker based on the

screening results. Statistical independence of the screening step and the final GEI test underlies

these modular methods, thereby maintaining overall type 1 error.

IV. TWO-STEP G-E SCREENING (TS): Murcray et al. [4] propose this two-step procedure to

leverage the efficiency of CO while maintaining robustness to G-E association:

1. Screening step: Conduct a likelihood ratio test of G-E association in the combined sample

of cases and controls. The subset of m markers exceeding a screening significance threshold

with marker-level error rate αscr proceeds to the next testing step.

2. Testing step: For thesemmarkers, conduct a CC analysis ofH0 : βGE = 0 using significance

threshold αtest/m.

UnderG-E independence in the underlying population, G-E correlation in the case-enriched case-

control sample indicates the presence of GEI. Screening based on γGE alone, i.e. CO, would not

be asymptotically independent of the second step test statistic given by CC. The power of TS

is increased when many null markers are screened out, i.e. m � M , with the magnitude of

increase depending on the choice of αscr. Murcray et al. [4] use αscr = 0.05, but follow-up

4
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empirical studies show that the power increase is maximized when αscr is chosen based on the case-

control ratio, number of markers, and disease prevalence [11, 18]. A more recent approach from

Wason and Dudbridge [13] screens based on a linear combination of the observedG-E associations

resembling EB: γ̂GE + (k̂)θ̂GE , where k̂ = V̂ar(γ̂GE)/V̂ar(θ̂GE) ensures asymptotic independence

with the subsequent testing step. Like Wason and Dudbridge, we found this method to have very

similar performance to TS and thus refrain from presenting the results.

V. HYBRID TWO-STEP (H2): Murcray et al. [11] later extend TS to two screening steps, one for

G-E association, as in TS, and the other for marginal D-G association using αG, the rationale

being that the presence of GEIs will lead to G-E or D-G association in the case-control sample.

Given a significance threshold αscr, massc and mmarg markers, respectively, will pass each screening

step, and only these are eligible for the final step GEI test. As with TS, many markers will fail both

screenings, and so a less restrictive Bonferroni correction is needed at the second step CC test for

GEI. The desired FWER, αtest, is spent between the markers from each screening step based on a

pre-selected weight ρ ∈ (0, 1). For those markers that pass both screening steps, the significance

threshold is max{ραtest/mmarg, (1 − ρ)αtest/massc}. For the “D-G only” markers, the significance

level is ραtest/mmarg, and for the “G-E only” markers, it is (1− ρ)αtest/massc. Using ρ = 0 makes

H2 and TS equivalent. The G-E and D-G screening components are asymptotically independent

of the testing step [4, 42], implying that the hybrid screening and GEI testing steps are independent.

Thus, a FWER of αtest is maintained.

VI. COCKTAIL (CT): Hsu, et al. [14] characterize TS and H2 as special cases of a class of modular

methods for GEWIS testing, comprised of separate choices of (i) screening, (ii) GEI test and (iii)

type I error control modules, and propose the comprehensive class of “cocktail” procedures. In

the screening step (the first module), CT adaptively tests for G-E association or marginal D-G

association as in H2. In the second module, if marginal D-G association is declared statistically

significant, then EB, which is independent of the D-G test, is used to test for GEI. Otherwise,

CC is used, being independent of a test for G-E association in the combined case-control sample.

5
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In the third module, and in contrast to TS and H2, no markers “fail” the screening step in CT.

Rather, following the weighted hypothesis testing approach of Ionita Laza, et al. [43], αtest is spent

differentially between all markers: those that are more significant at the screening step are given a

lower significance threshold to pass at the final interaction test, as explained below.

For each marker, pGE and pDG denote, respectively, the p-values corresponding to the G-E and

D-G screening steps. The screening module p-value is pCT
scr = pDGI(pDG ≤ t) + pGEI(pDG > t),

where t is a pre-specified threshold, e.g. t = 0.001, and I(·) is the indicator function. The GEI-test

p-value is pCT
test = pEBI(pDG ≤ t) + pCCI(pDG > t), where pEB and pCC are the p-values from

EB and CC, respectively. To combine these modules, CT spends αtest between markers, comparing

each pCT
test to a potentially different significance threshold. The five markers with the smallest values

of pCT
scr have the most liberal significance threshold for testing for interaction: αtest/(2×5). The next

10 markers have a stricter threshold, αtest/(2
2 × 10), and so forth. Each time, the size of the group

doubles (5, 10, 20, . . .) and half of the remaining significance level (αtest/2, αtest/2
2, αtest/2

3, . . .) is

equally distributed to all markers in the group. The p-values pCT
scr and pCT

test are independent [14] but

depend on a subjective threshold t. Hsu, et al. [14] proposed a modified version not requiring a

threshold but for which the screening and test p-values may be correlated. Because the modified

CT did not appreciably differ from CT in our simulation studies, we do not consider it further.

VII. JOINT MARGINAL/ASSOCIATION SCREENING (EDGXE): Gauderman, et al. [16] propose

adding the asymptotically independent LR test statistics from the G-E and D-G screening steps

and comparing to a χ2
2 distribution as a single screening statistic. This screening step can remove

markers from the GEI step, as in TS or H2, or preferentially rank markers, as in CT. We consider

the latter, which had better performance in Gauderman, et al. Ege and Strachan [15] propose a

similar extension: G-E and D-G associations are separately estimated for each exposure group,

and the LR statistics are averaged between exposure groups. Owing to its similarity, we do not

evaluate this approach.
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Joint tests for discovering new loci by leveraging GEI

Even though some previously-described methods leverage information regardingG-E and/or marginal

D-G association to screen markers, the final underlying null hypothesis tested is H0 : βGE = 0,

and the search is one for pure GEIs. In contrast, the proceeding four strategies expand this null hy-

pothesis and represent an agnostic search for discovery of loci, identifying those for which αG 6= 0,

βG 6= 0, or βGE 6= 0. This modifies the definition of type I error and power relative to the standard

GEI null hypothesis and results in increased rejection rates.

VIII. MARGINAL ASSOCIATION (MA): This is the standard genome-wide association study test

ofH0 : αG = 0, the marginalD-G association test H2, CT, and EDGxE use for screening/prioritizing

candidate markers. Although counter-intuitive, it is possible that αG 6= 0 and βG = βGE = 0, i.e.

there is a marginal effect of G but no effect in either of the exposure sub-groups. This will hold if

βE 6= 0 and θGE 6= 0 (cf. Equation W1, Web Appendix 1). Thus, due to non-linearity of the OR

measures, MA may identify markers that are not associated with D in either exposure subgroup.

IX. 2-DF JOINT TESTS (JOINT(CC), JOINT(EB)) Kraft, et al. [20] suggest a joint test of

H0 : βG = βGE = 0, which tests for an effect of G in either exposure subgroup using stan-

dard prospective logistic regression and case-control data. We call this test JOINT(CC). A LR

test statistic is compared to a χ2
2 distribution. Rejecting H0 does not indicate in which subgroup

D-G association holds. In contrast, CC tests for a difference in association between exposure

groups: H0 : βGE = (βG + βGE) − βG = 0. When estimates of βG and βGE are negatively

correlated, JOINT(CC) may have a larger rejection rate than CC, even when βG = 0 [cf. page

114, 20]. We may also use the retrospective likelihood framework [39] to derive 2-DF tests for

H0 : βG = βGE = 0. When based on the constrained maximum likelihood, it is susceptible to

bias and type 1 error inflation, like CO. Thus, we consider the EB version of this joint test that

adaptively leverages G-E independence. Implemented in CGEN, this is denoted by JOINT(EB).

X. 2-DF MARGINAL+GEI TESTS (MA+CC, MA+EB) Dai, et al. [42] prove that the maximum

likelihood estimate of αG is asymptotically independent of that of both βGE (CC) and γGE (CO),

7
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and, consequently, any weighted average of the two (EB). Based on this, in a contemporaneous

paper by the same authors, Dai, et al. [21] propose a simultaneous test of H0 : αG = βGE = 0.

The marginal effect, αG, is estimated via maximum likelihood, and CC, CO, or EB can estimate

βGE . Denoted MA+CC or MA+EB, this leverages the G-E independence assumption, leading

to a more powerful test for the GEI component βGE than JOINT. As with MA, these 2-DF tests

may have larger rejection rates than either CC or JOINT, because αG may be nonzero, even if

βG = βGE = 0.

REMARK 1: The difference between JOINT(CC)/JOINT(EB) and MA+CC/MA+EB is whether

one is testing the main or marginal effect of G (βG or αG, respectively). In the case of crossover

interactions with opposite effects of G in each exposure sub-group, JOINT(CC) and JOINT(EB)

are likely to be more powerful MA+CC and MA+EB.

XI. SUB-GROUP TESTS IN THE EXPOSED GROUP (CC(EXP), EB(EXP)). We propose a novel

test of D-G association in the exposed group (E = 1) alone, namely, H0 : βG + βGE = 0. This is

equivalently a test of H0 : β∗
GE = 0 from the constrained prospective model logit(P(D|G,E)) =

β0+βEE+β
∗
GEG×E, which assumes βG = 0. The resultant χ2 test statistic will have one DF and be

more powerful for testing pure interactions where the genetic effect is present only in the exposed

group. Asymptotically, CC(EXP) is more powerful than CC if βG = 0 [44], i.e. if the constraint

is satisfied, but will lead to type 1 error when βG 6= 0. We also use the general retrospective

likelihood framework to derive a Wald test for the above hypothesis H0 : βG + βGE = 0. We

consider the EB version of this sub-group test in the exposed group, again using CGEN. This test,

denoted by EB(EXP), adaptively leverages the G-E independence assumption.

Simulation Settings

To quantitatively evaluate these GEI methods, we modify the simulation study of Mukherjee, et

al. [12], focusing on modest but plausible effect sizes for βGE and αG, based on recent published

analysis findings [45]–[47]. We simulated M = 100, 000 genetic markers with n0 = n1 = 20, 000

8
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cases and controls. Given the control prevalence of a marker G and the environmental factor E,

respectively PG and PE , and θGE , the control probability vector p0 is obtained by solving the

following system of equations:

exp{θGE} =
p000(p000 − (1− PG − PE))

(1− PG − p000)(1− PE − p000)
,

p001 = 1− PG − p000, p010 = 1− PE − p000.

We set PG = f 2 + 2f(1 − f), where the minor allele frequency f is 0.2 for the causal marker

and f ∼ Unif[0.1, 0.3] for null markers, and PE = 0.3. For the causal marker, we used θGE ∈

{log(0.8), log(1), log(1.1)}, and, for the null markers, we sampled θGE from a mixture of Normal(0, log(1.5)/2),

and point-mass, δ0(0), distributions, with the proportion of zeros given by pind ∈ {0.95, 0.995, 1}.

This is a key parameter controlling the fraction of markers correlated with E.

Choices of βE , βG and βGE , together with p0, define the case probability vector p1 [48]: p100 ∝

p000, p101 ∝ exp{βE}p001, p110 ∝ exp{βG}p010, and p111 ∝ exp{βE + βG + βGE}p011. Equation

W1 in Web Appendix 1 expresses the marginal log-ORs αG and αE as functions of p0, βG, βE ,

and βGE , demonstrating that, given p0, there are three free parameters between αG, αE , βG, βE ,

and βGE . By definition, αE is constant across all genetic markers, i.e. for any given set of p0,

βG, βE , and βGE . However, when θGE and PG randomly vary across markers, the strategy used by

Mukherjee, et al. [12] and others, which specifies βE , βG and βGE , will not satisfy this invariance

of αE across all markers. This incoherence is avoided by fixing αE = 1.35, βG, and βGE , the latter

two of which are specific to each marker, and then solving for each marker-specific βE . For the

causal marker, we used βG ∈ {log(1), log(1.2)} and βGE < log(1.35). For all other markers, we

set βG = log(1). Fixing αE , βG, and βGE induces a value of αG, the marginal genetic log-OR.

For each marker, we generate the case and control data independently from multinomial dis-

tributions using p0 and p1, respectively. To simulate exposure misclassification, we varied the

sensitivity (SE) and specificity (SP) parameters. For a given marker, let r1 be the cell frequency

vector for the cases. Each subject in r111 or r101, corresponding to those for whom E = 1 in truth,

was independently moved to r110 or r100, respectively, with probability 1 − SE. Simultaneously,

9
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each subject in r110 or r100, corresponding to E = 0, was moved to r111 or r101, respectively,

with probability 1 − SP. An analogous strategy was used for the control vector r0. Perfect clas-

sification corresponds to SE = SP = 1. We also considered non-differential misclassification,

SE = SP = 0.8, and differential misclassification, SE = 1.0 and SP = 0.8 for cases and SE = SP

= 0.8 for controls.

Web Table 1 describes additional settings: different effect or sample sizes, a rare exposure

with more severe misclassification, or some null markers having non-null genetic main effects,

with the results plotted in Web Figures 1–9. We generated 5,000 case-control datasets for each

setting, calculating FWER, nominally 0.05, expected number of false positives, and power. We

used αscr = 5× 10−4 (TS and H2), ρ = 0.5 (H2), and t = 10−3 (CT).

Results

Methods for GEI search

Table 2 presents FWER and expected number of false positives for all GEI methods. Due to

differences in the null hypotheses, no such table can be meaningfully extracted for the gene dis-

covery methods. All methods have inflated error rates under differential misclassification when

pind = 0.95, i.e. when 5% of markers are associated with exposure, including the robust CC, iden-

tifying 3 null markers per dataset. In contrast, when all markers are independent of E (pind = 1),

FWER is generally controlled. Under non-differential misclassification, FWER is less inflated,

with the exception of CO: when pind = 0.995, FWER is 0.06-0.08 for EB, TS, and H2 and 0.13

for EDGxE and CT. Under perfect classification, the expected number of false positives is 2234

for CO when pind = 0.95. However, misclassification attenuates both G-E association and the

observed GEI, and the expected number of false positives correspondingly decreases, e.g. to 1039.

For EB, the adaptive linear combination of CC and CO, FWER is as large as 0.49 under differential

misclassification and pind = 0.95.

Figure 1 plots power for the GEI methods and, for comparison, MA, against exp{βGE} for
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βG = log(1.2), PE = 0.3 and pind = 0.995. Web Figures 1–6 plot power under additional settings.

The gene discovery method MA is considerably more powerful than the GEI methods, since αG

is typically much larger than βGE in this parameterization (cf. Equation W1 in Web Appendix

1). Screening for D-G association confers robustness to misclassification, which is most evident

when θGE = log(0.8) (left column of Figure 1), but no single method dominates in all settings.

Most robust to misclassification are CT and EDGxE, which use a weighted p-value screening

step; H2, for which screening is a dichotomous step, also has high power but is more susceptible

to misclassification. When θGE = log(1) (middle column of Figure 1) and exp{βGE} = 1.25,

the relative power loss of CT, EDGxE, and H2 between correct classification and non-differential

misclassification is 20%, 42%, and 64%, respectively. Finally, the rejection rate of CO, which is

non-monotonic with βGE when θGE = log(0.8), is explained by noting that γGE = βGE + θGE (cf.

Table 1).

Joint tests for discovery of new loci

Figure 2 presents the empirical rejection rates of the gene discovery methods and, for comparison,

CC, against exp{βGE} for βG = log(1), and Web Figures 7–9 plot rejection rates under several

additional settings. The rejection rate of MA is smaller than others but invariant to misclassifica-

tion, as it does not depend on E; this robustness translates in part to the joint tests MA+CC and

MA+EB. The data-adaptive EB methods, JOINT(EB), MA+EB, and EB(EXP), are more power-

ful than those maximizing the prospective likelihood alone, JOINT(CC), MA+CC, and CC(EXP)

when θGE = 0 or, on occasion, when misclassification attenuates the empirical θGE sufficiently to

zero (bottom-right panel, Figure 2). Finally, we note that if βG 6= log(1), CC(EXP) and EB(EXP),

which assume this equality constraint, would be less powerful. In general, the expanded null hy-

pothesis of the gene discovery methods is more robust to exposure misclassification, as expected.

A large marginal D-G association will increase the rejection rate substantially (Web Figure 8,

which differs from Figure 2 by βG = log(1.2)). Conversely, a small marginal D-G association, in
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conjunction with misclassification, will decrease the rejection rate substantially (Web Figure 9).

Discussion

Non-differential misclassification may reduce power to detect true interactions in a GEWIS setting;

however, differential misclassification may increase or decrease type I error and power. Relative to

testing all markers, modular procedures that leverage empirical G-E and/or D-G associations to

first screen or prioritize markers may have more power to detect GEIs. In the first such two-stage

procedure, which uses only G-E association [4], the power gain depends on choosing the optimal

value of screening significance level, which in turn depends on the case-control ratio, number of

markers, and disease prevalence [11, 18]. A suboptimal choice may result in an empirical power

curve that is non-monotonic with βGE , seen here and previously [12]. Later two-step procedures

that also account for D-G association (H2, EDGxE, CT) do not exhibit this undesirable property.

Because D-G association is unaffected by exposure misclassification, modular methods for

GEI that use D-G association for screening or prioritization were found to be more robust to

exposure misclassification. That joint tests making use of D-G association are more robust to

misclassified exposure has been noted previously [24], but we document and quantify this for

modern modular methods for GEI. However, even for these methods, FWER inflation under the

dual challenge of differential misclassification and G-E association still remains. A limitation of

all modular methods is a dependence on the choice of multiple tuning parameters: αscr (TS, H2),

size of weighted p-value groups (CT, EDGxE), ρ (H2), t (CT).

Gene discovery methods using joint tests for genetic association and GEI fundamentally dif-

fer and may identify genetic markers with marginal effects (αG 6= 0) or joint effects (βG 6= 0,

βGE 6= 0). An implication of this expanded null hypothesis is that, in realistic scenarios in which

more genetic markers will have detectable non-null effects for a given sample size, the number of

markers identified will be considerably larger than those obtained from GEI methods. One must

then investigate which markers are implicated in GEI. Any metric to evaluate gene discovery meth-
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ods must take into account the context of the study, specifically what types of markers are of greater

importance to identify. If discovery of new loci by leveraging GEI is the goal and marginal D-G

association is anticipated, then the joint tests, particularly MA+EB and JOINT(EB), are robust to

modest levels of misclassification – confirming and expanding upon the results of Lindström et

al. [24] – and are able to leverage G-E independence for even greater power for testing the GEI

component of a joint test.

Several limitations and possible extensions of this study exist. First, we do not consider non-

parametric tree-based [49] or Boolean combinatorial methods [50] or tests for additive interaction

[51]. Second, we examine the impact of exposure misclassification but do not propose any remedy.

Regression calibration and imputation methods accounting for measurement error are possible so-

lutions [35]. Most require estimation of the misclassification probabilities or existence of validation

data. One might incorporate exposure quality into the construction of weights in meta-analyses of

multiple studies. Third, there are many possible reasons beyond exposure misclassification that

GEWIS studies lack power to detect GEIs, including small sample size [52], misclassification of

the genetic markers [53], or more complex multi-marker interactions [9]. A key challenge for this

and previous similar simulation studies is to realistically generate the underlying genetic archi-

tecture of a trait and magnitude and number of non-null GEI. Some specific limitations include

between-marker independence, the generation of G-E associations from a mixture distribution, a

lack of null markers having only main genetic effects, and considering just one causal marker for

empirical power estimation (in the case of GEI). Using readily available single nucleotide poly-

morphism simulation routines that generate realistic linkage disequilibrium structure [54, 55] and

simulating effect size parameters randomly from published estimates of genetic effect size distri-

butions [56, 57] would make our simulation study more realistic, moving away from a fixed single

parameter null/causal scenario toward a continuum of plausible genetic effect sizes. This would

present challenges in terms of defining alternative metrics of average performance rather than

simple type 1 error and power. Incorporating these into simulation studies remains an important
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extension of our work.
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Table 1: Seven key log-ORs defined by the case-control probabilities, pdge, d, g, e ∈ {0, 1}, for a
given markera

log-OR Value Description
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βE log (p000p101/p001p100) D-E given G = 0 (main)
βGE log (p001p010p100p111/p000p011p101p110) Multiplicative GEI

Abbreviations: GEI, gene-environment interaction; OR, odds ratio
apdge ≡ Pr(G = g,E = e|D = d)

Table 2: Family-wise error rate (expected number of false positives) for the GEI testing procedures
as PE , pind, and misclassification of the exposure E in the cases and controls varya

Cases Controls Method
{SE,SP} {SE,SP} pind PE CC MA CO EB TS H2 EDGxE CT
{1,1} {1,1} 0.950 0.3 0.05(0.05) 0.55(0.80) 1.00(2234) 0.23(0.26) 0.05(0.05) 0.05(0.05) 0.05(0.05) 0.05(0.05)
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{0.6,0.6} {0.6,0.6} 0.995 0.1 0.05(0.05) 0.06(0.06) 0.07(0.08) 0.03(0.03) 0.05(0.05) 0.05(0.06) 0.05(0.06) 0.05(0.05)
{0.6,0.6} {0.6,0.6} 1.000 0.1 0.05(0.05) 0.05(0.05) 0.05(0.05) 0.02(0.02) 0.05(0.05) 0.05(0.05) 0.05(0.05) 0.04(0.04)
Abbreviations: CC, case-control; CO, case-only; CT, cocktail; EB, empirical bayes; EDGxE, joint
marginal/association screening; GEI, gene-environment interaction; H2, hybrid two-step; pind, proportion of
markers in which the genetic marker (G) and exposure (E) are independent; PE , probability that E = 1; SE,
sensitivity, or the probability that E is correctly classified when E = 1 in truth; SP, specificity, or the probability that
E is correctly classified when E = 0 in truth; TS, two-step gene-environment screening
a 5,000 datasets with n = 20, 000 each of cases and controls and M = 100, 000 genetic markers were simulated,
with exactly one having multiplicative GEI (βGE 6= 0). The family-wise error rate is the proportion of simulated
datasets with at least one significant (null) finding, with nominal value 0.05 and standard deviation due to simulation
variability of 0.003, and the expected number of false positives is the average number of significant findings per
simulated dataset. The marginal exposure log-OR was αE = log(1.5) (PE = 0.3) or log(1.75) (PE = 0.1). For
each null marker, the main genetic log-OR was βG = 0 and the carrier prevalence was PG = f2 + 2f(1− f), where
f ∼ Unif[0.1, 0.3] is the minor allele frequency. The extent of exposure misclassification increases as either SE or SP
decrease.
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Figure 1: Empirical power to detect gene-environment interaction in one marker for 7 GEI methods
(CC, case-control; CO, case-only; EB, empirical Bayes; TS, two-step gene-environment screening;
H2, hybrid two-step; EDGxE, joint marginal/association screening; CT, cocktail) and the marginal
(MA) method from 5,000 datasets with n = 20, 000 each of cases and controls andM = 100, 000−
1 null genetic markers. From top to bottom, each row corresponds to perfect classification, non-
differential misclassification (sensitivity and specificity of 0.8), and differential misclassification
(sensitivity of 1 and specificity of 0.8 for cases and sensitivity and specificity of 0.8 for controls)
of the exposure variable. From left to right, each column corresponds to θGE = log(0.8), θGE = 0,
and θGE = log(1.1). The exposure prevalence was PE = 0.3 and the marginal exposure log-OR
was αE = log(1.5). For the non-null marker, the main genetic log-OR was βG = log(1.2) and the
carrier prevalence was PG = 0.36. For each null marker, βG = 0 and PG = f 2+2f(1− f), where
f ∼ Unif[0.1, 0.3] is the minor allele frequency.
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Figure 2: Empirical power for discovery of one marker for the case-control method (CC) and 7
gene discovery methods (MA, marginal; JOINT(CC), 2-DF joint test; JOINT(EB), empirical Bayes
2-DF joint test; MA+CC, marginal + CC; MA+EB, marginal + empirical Bayes; CC(EXP), CC
applied to exposed subgroup; EB(EXP), empirical Bayes applied to exposed subgroup) from 5,000
datasets with n = 20, 000 each of cases and controls. From top to bottom, each row corresponds
to perfect classification, non-differential misclassification (sensitivity and specificity of 0.8), and
differential misclassification (sensitivity of 1 and specificity of 0.8 for cases and sensitivity and
specificity of 0.8 for controls) of the exposure variable. From left to right, each column corresponds
to θGE = log(0.8), θGE = 0, and θGE = log(1.1). The exposure prevalence was PE = 0.3 and
the marginal exposure log-OR was αE = log(1.5). The main genetic log-OR was βG = 0 and the
carrier prevalence was PG = 0.36.
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