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LEPSKI’S METHOD AND ADAPTIVE ESTIMATION OF
NONLINEAR INTEGRAL FUNCTIONALS OF DENSITY

By Rajarshi Mukherjee∗,?? Eric Tchetgen
Tchetgen†,?? and James Robins‡,??

We study the adaptive minimax estimation of non-linear integral
functionals of a density and extend the results obtained for linear and
quadratic functionals to general functionals. The typical rate optimal
non-adaptive minimax estimators of ”smooth” non-linear functionals
are higher order U-statistics. Since Lepski’s method requires tight
control of tails of such estimators, we bypass such calculations by a
modification of Lepski’s method which is applicable in such situa-
tions. As a necessary ingredient, we also provide a method to control
higher order moments of minimax estimator of cubic integral func-
tionals. Following a standard constrained risk inequality method, we
also show the optimality of our adaptation rates.

Introduction. Estimation of statistical functionals in nonparametric
problems has received considerable attention over the last few decades. Of
specific interest have been both linear and non-linear integral functionals of
an underlying density. For example, a large body of work has focused on
estimating the entropy of an underlying distribution. Beirlant et al. (1997)
provides an overview of results and related techniques. More recent works
include estimation of Rényi and Tsallis entropies (Leonenko and Seleznjev,
2010; Pál, Póczos and Szepesvári, 2010). For more references and exam-
ples one can refer to Kandasamy et al. (2014). We consider a framework
for estimating such integral functionals of a density. In particular, suppose
X1, . . . , Xn are i.i.d on [0, 1] with density f(x) with respect to Lebesgue
measure. We take f ∈ H(β,C) where H(β,C) is a Hölder ball of smooth-
ness β and radius C > 0. We are interested in estimation of φ(f) where
φ : F :→ R is a non-linear functional of density and F refers to the class
of all densities on [0, 1]. It is well known (Birgé and Massart, 1995) that if
φ(f) =

∫
T (f(x))dµ(x), and T is sufficiently smooth, then the minimax rate

of estimation over f ∈ H(β,C) in squared error norm is n
− 8β

1+4β when β < 1
4
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and n−1 for β ≥ 1
4 .

There exits extensive literature addressing minimax estimation of linear
and quadratic functionals in density, white noise or nonparametric regres-
sion models. Although definitely not exhaustive, a comprehensive snapshot
of this immense body of work can be found in Bickel and Ritov (1988); Cai
and Low (2003, 2004, 2005); Donoho, Liu and MacGibbon (1990); Donoho
and Nussbaum (1990); Fan (1991); Hall and Marron (1987); Kerkyacharian
et al. (1996); Laurent et al. (1996) and other references therein. Most es-
timators proposed in the literature above, which attain the minimax rate
of convergence over certain smoothness classes of the underlying function,
depend explicitly on the knowledge of the smoothness index of the class. In
particular, a standard technique in estimation of these functionals is expand-
ing the infinite dimensional function of interest in an suitable orthonormal
basis of L2[0, 1] and estimate an approximate functional created by trun-
cating the basis expansion at certain point. The point of truncation decides
the approximation error of the truncated functional as an surrogate for the
actual functional and depends on the smoothness of the function of interest
and approximation properties of the orthonormal basis used. This point of
truncation is then delicately balanced with the bias and variance of the re-
sulting estimator and therefore directly depends on the smoothness of the
function. Thus, it becomes of interest to understand the question of adap-
tive estimation i.e. the construction and analysis of estimators without prior
knowledge of the smoothness.

The question of adaptation of linear and quadratic functionals has been
studied in detail as well (Cai et al., 2005a,b; Cai and Low, 2006; Cai et al.,
2006, 2008; Efromovich and Low, 1994; Efromovich et al., 1996b; Efromovich
and Samarov, 2000; Giné and Nickl, 2008; Klemela and Tsybakov, 2001;
Laurent and Massart, 2000; Low, 1992) and references therein. However,
adaptive estimation of general non-linear functionals has not been addressed
in complete generality. In this paper we address the problem of adaptive
estimation of general smooth non-linear functionals of a density.

Robins et al. (2008) have developed a concrete theory for addressing mini-
max estimation of a class of non-linear functionals in certain non-parametric
and semi-parametric problems under low regularity smoothness conditions.
Following similar logic of construction Tchetgen et al. (2008) constructs a
minimax estimator of

∫
f3dµ for β < 1

4 . The specific minimax estimator is a
third order U-statistics and the construction of the kernel depends explicitly
on the knowledge of the underlying smoothness. Based on the technique of
Birgé and Massart (1995) one can show that the minimax estimator of a gen-
eral non-linear functional φ(f) =

∫
T (f)dµ for smooth T can be constructed
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by using ideas from linear, quadratic and cubic functionals of the density
and appealing to a standard Taylor expansion argument. While producing
adaptive estimators of non-linear functionals as well, a similar strategy can
be followed and it becomes crucial to understand the adaptive estimation of∫
f3dµ.
In our search for answers regarding

∫
f3dµ, we start with looking at

the general idea driving estimation of quadratic functionals of the density
i.e. φ(f) =

∫
f2dµ. Giné and Nickl (2008) provide adaptive estimators of

quadratic functional φ(f) where the estimators are based on certain types
of second order U-statistics with specific kernels. Our results provide a richer
class of estimators based on a compactly supported wavelet basis and is in
line with the theory established by Efromovich et al. (1996b); Giné and Nickl
(2008).

Unlike a quadratic functional, the minimax estimator for φ(f) =
∫
f rdµ is

in general a rth order U-statistic. In order to apply regular Lepski’s Method
we will need to obtain suitable exponential deviation inequalities for higher
order U-statistics. Although, such moment inequalities do exist (Adamczak
et al., 2006), the bounds include complicated quantities which needs to be
controlled in a problem specific manner. To bypass such complications, we
employ a modification of Lepski’s method where we test for the smoothness
using our previously obtained second order U-statistics and use the selected
smoothness to estimate the required functional.

In this paper we focus on adaptation over the non−
√
n regime i.e. β < 1

4 ;
although our proofs carries over easily for −

√
n range i.e. β ≥ 1

4 as well where
adaptation is possible without paying a price and it is possible to achieve
asymptotic efficiency for β > 1

4 . Moreover, the case of higher dimensions
of X i.e. d > 1 can also be achieved by arguments similar to those in this
paper. A brief discussion of these possible extensions is given in Section 8.

The main contributions of this paper are as followed. This work extends
previous results obtained for linear and quadratic functionals to new adap-
tation theory for non-linear integral functionals of the density. In order to do
so, we develop a suitable variant of Lepski’s method which bypasses estab-
lishing exponential tail bounds for estimators of general non-linear integral
functionals. In applying this modified Lepski’s method, the main challenge
lies in obtaining suitable bounds on higher order moments of suitable es-
timators of general non-linear integral functionals. This requires control of
moments of higher order U-statistics based on orthogonal projection kernels.
We crucially use the structure of the projection kernels based on compactly
supported wavelet basis. Following ideas from Robins et al. (2015), we im-
plement a binning argument to keep track of membership of sampled obser-
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vations in partitions of the sample space created by a particular resolution
level of the wavelet expansion, and this turns out to be crucial in controlling
the higher order moments of our estimator at the right level.

We would like to mention that our proofs for analyzing adaptive estimator
of general nonlinear integral functional of the density uses projection kernels
based on Haar Basis expansion. We provide proof for general compactly
supported wavelet based procedure when analyzing the quadratic functional.
However, for analysis regarding general nonlinear integral functional of the
density, the requirement of Haar Basis arises at one specific instance in
the proof. We expect that similar results continue to hold for more general
compactly supported wavelets using arguments developed herein. However
we do not further consider other wavelet bases here.

The paper is organized as follows. In Section 1, we discuss Lepski’s method
the main idea of the paper. In Section 2, we introduce basic notations, termi-
nology and some theory about compactly supported wavelets we will need in
the sequel. In Section 3, we study the estimation of the quadratic functional
and provide a general class of adaptive estimators when the kernels of the
U-statistics are based on a class of compactly supported wavelet bases. Sec-
tion 4 is devoted to the development of a modified Lepski’s method suitable
for analyzing higher order moments of the density. We then use this results
to develop an adaptive estimator of

∫
f3dµ in section 5. Section 6 is used

to understand how construction of an adaptive estimator of a general non-
linear functional

∫
T (f)dµ for smooth T can be derived from our analyses

in Section 5. A lower bound on the required price of adaptation is provided
in Section 7. Section 8 contains some discussions and future work. Finally
all proofs are collected in the Appendix.

1. Lepski’s Method and Heuristics of the Main Idea.
The purpose of this section is to heuristically explain the main idea behind
modifying Lepski’s Method suitably in our context. We do this at level of
abstraction and do not provide formal results. Sections 4 and 5 are devoted
to making the heuristics of this section more precise. We begin with a dis-
cussion of Lepski’s Method as a recipe for producing adaptive estimators
from a sequence of candidate estimators. Our discussion is inspired by the
wonderful article of Birgé (2001). As astutely observed by Birgé (2001), Lep-
ski’s Method can be succinctly described in a relatively abstract set up as
follows.

Using notations in essence similar to Birgé (2001), consider a family of
experiment spaces {(χ,B(χ), P ), P ∈ Sθ}θ∈Θ for measurable space χ, sigma
field B(χ) and probability measure P in one of the parameter sets {Sθ}θ∈Θ.
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With an i.i.d sample of size n from such an experiment, we consider uniform
rates of convergence for estimation of certain objects of interest over these
parameter sets. In particular, suppose s : P → Y is an object of interest
for the experiment of interest with Y being a pseudo-metric space equipped
with pseudo-metric d(·, ·). For a given estimator ŝ based on sample of size
n of a required object of interest s, define its rate of convergence over Sθ as
r(θ, ŝ) = sups∈Sθ E0 (dq(s, ŝ)), where q ≥ 1. An estimator ŝ is often called
(minimax) rate optimal over Sθ if r(θ, ŝ) � r(θ) := inf s̃ r(θ, s̃).

Now, starting from a family of rate optimal estimators {ŝθ}θ∈Θ, Lep-
ski’s Method provides a strategy for building a new estimator θ̂ which has
“good” performance simultaneously over all sets Sθ, θ ∈ Θ. Working under
the regime of estimating a whole function in the context of nonparametric
regression, Lepskii (1991, 1992, 1993) develop such a strategy. Later these
methods have been further used by Efromovich and Low (1994); Efromovich
et al. (1996b); Giné and Nickl (2008); Klemela and Tsybakov (2001) and
others for studying adaptation theory of linear and quadratic functionals in
nonparametric problems. The method can be summarized roughly in brief
as follows.

Suppose that Θ ⊂ R is a bounded subset such that Sθ is non-decreasing
with respect to θ, the risks and minimax rates r(θ, ŝθ), r(θ) are continuous
with respect to θ, and for each θ ∈ Θ, ∃ a rate optimal estimator ŝθ where
for large enough n, dq(s, ŝθ) is suitably concentrated around its expectation.
One then chooses, for each n, a suitable fine discretization θ1 < . . . < θK(n)

of Θ and finally for some large enough constant C define the candidate
estimator to be ŝθĵ where

ĵ := inf
{
j ≤ K(n) : dq(ŝθj , ŝθl) ≤ Cr(θl, ŝθl), ∀l ∈ (j,K(n))

}
.

Let us try to intuitively elaborate on the method described above. In its
heart, the definition of ĵ is devoted to choosing the “best” θ from a a point
of view of the risk of the estimator of interest. Often, the “best” θ is the one
corresponding to the unknown data generating mechanism and if ĵ selects
a value “close enough” to this θ with high probability, then owing to the
continuity property of the risk, one obtains desired adaptive performance of
the final estimator ŝθĵ . The required high probability selection of the desired

θ is driven by the concentration of dq(s, ŝθ) around its expectation.
Consider now a situation where suitable concentration of dq(s, ŝθ) around

its expectation is not easily achieved. This is often the case when the se-
quence of estimators {ŝθ}θ∈Θ is not sufficiently “nice” for application of
standard concentration inequalities. In such cases there can be two possi-
ble ways out. The first entails obtaining a sufficiently sharp concentration
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inequality for the sequence of estimators {ŝθ}θ∈Θ at hand. This is often an
important and difficult question in its own right, even outside the context
of the problem of adaptive estimation at hand. In certain cases however,
an alternative strategy might be available. This paper pursues the second
approach in the context of estimating a non-linear integral functional of a
density.

At a high level of abstraction, our method can be described as follows.
As mentioned earlier, the main challenge in applying Lepski’s Method is
obtaining a suitably sharp concentration of dq(s, ŝθ) around its expectation.
However, suppose that there exists another sequence of estimators of a dif-
ferent object of interest s̃ : P → Ỹ with Ỹ being a pseudo-metric space
equipped with pseudo-metric d̃(·, ·) and corresponding sequence of estima-
tors ˆ̃sθ with concentration of d̃q(s̃, ˆ̃sθ) around its expectation and a further
property that d̃q(ˆ̃sθ, ˆ̃sθ′) and r̃(θ, ˆ̃s) equals dq(ŝθ, ŝθ′) and r(θ, ŝ) up to mul-
tiplicative constants uniformly in (θ, θ′) ∈ Θ×Θ. Our idea is to define

˜̂j := inf
{
j ≤ K(n) : d̃q(ˆ̃sθj ,

ˆ̃sθl) ≤ Cr̃(θl, ˆ̃sθl), ∀l ∈ (j,K(n))
}
,

and using ŝθĵ as our candidate estimator. Under some conditions on the ac-
tual sequence of estimators ŝθ one then obtains desired adaptation properties
of the final estimator ŝθĵ . These conditions on ŝθ needs to be less demanding

than sharp concentration of dq(s, ŝθ) around its expectation, and this turns
out to be the case in our context.

To fix ideas, for our case the experiment space will be (χ,B(χ), P : P ∈
Sθ)θ = ([0, 1],B([0, 1]), P = fdµ : f ∈ H(β,C))β∈(0, 1

4
); i.e. parameter spaces

of interest are H(β,C) where β is identified with θ in the discussion above
and the object of interest is s =

∫
T (f)dµ based on i.i.d. observations

X1, . . . , Xn from density f ∈ H(β,C). As discussed earlier, the case of
quadratic functionals., i.e. T (x) = x2 has been studied in detail in the liter-
ature. In particular, one has suitable concentration of d̃2(

∫
f2dµ, ˜̂sβ) around

its expectation, where d̃(z1, z2) = |z1 − z2| for z1, z2 ∈ R and ˜̂sβ is rate
optimal estimator of the quadratic functional. Such an estimator is often
a second order U-statistic, for which the desired concentration type results
can be obtained in reference to Giné, Lata la and Zinn (2000); Houdré and
Reynaud-Bouret (2003). However, for estimating s =

∫
f3dµ, which is cru-

cial for understanding the general smooth non-linear functional problem, the
estimator sequence {sβ} is a third order U-statistic. In general, for estimat-
ing s =

∫
f rdµ, the estimator sequence {sβ} is a rth order U-statistic. In

order to apply the standard Lepski’s Method we will need to obtain suitable
exponential deviation inequalities for higher order U-statistics. Although,
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such moment inequalities exist (Adamczak et al., 2006), the bounds include
complicated quantities that must be controlled in a problem specific man-
ner. However, owing to Tchetgen et al. (2008), we observe that the biases
of the estimator sequence {sβ} are within multiplicative constants of that
of the estimator for quadratic functional i.e. {s̃β} and their variances re-
main of same order as well. Since we are interested in estimation in squared

error norm, this motivates us to use ˜̂j constructed using the estimator for
quadratic functional and analyzing sβ˜̂j as our final estimator.

In Sections 3 and 4 below, we elaborate on the ideas laid down above.
In particular, we provide a concrete example of the application of standard
Lepski’s Method while estimating quadratic functional of the density. Subse-
quently, we employ the modification of Lepski’s method as discussed above
to study adaptive estimation of more general non-linear integral functionals
of the density.

2. Notation. It is well known that without imposing restrictions on
function classes, consistent inference in non-parametric problems is not fea-
sible. Our results are stated in terms of certain regularity conditions on
the class of densities. We will place the following kind of bounds on their
roughness or complexity.

Definition 2.1. A function h(·) with domain [0, 1]d is said to belong to
a Hölder ball H(β,C), with Hölder exponent β > 0 and radius C > 0, if and
only if h (·) is uniformly bounded by C, all partial derivatives of h(·) up to
order bβc exist and are bounded, and all partial derivatives ∇bβc of order
bβc satisfy

sup
x,x+δx∈[0,1]d

∣∣∣∇bβch(x+ δx)−∇bβch(x)
∣∣∣ ≤ C||δx||β−bβc.

All our results are in terms of Hölder balls. However, they are easily ex-
tendable to Sobolev balls . With some abuse of notation we will denote by
H(β) the class of functions in H(β,C) such that ‖f‖∞ ≤M∗ and fmin ≥M∗
for known constants M∗ > M∗ > 0. Our results will be based on known
C,M∗,M∗ only to the extent that these quantities will determine multi-
plicative constants of convergence rates obtained throughout. Adaptation
w.r.t. these parameters may be of interest, however beyond the scope of this
paper.

A crucial ingredient for constructing our estimators is the use of orthogo-
nal projection kernels onto increasing finite dimensional subspaces of L2[0, 1].

Hosted by The Berkeley Electronic Press
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The construction of such kernels is based on a suitable choice of an orthonor-
mal basis of L2[0, 1]. With this in mind we provide a brief discussion on
orthogonal projection kernels and compactly supported wavelet bases.

The kernels (possibly dependent on n) are assumed to be measurable maps
Kn : [0, 1] × [0, 1] → R that are symmetric in their arguments and satisfy∫ ∫

K2
n(x1, x2)dx1dx2 < ∞ for all n. The corresponding kernel operator

(which we denote by the same symbol with an abuse of notation)

Knh(x) =

∫
h(v)Kn(x, v)dv

are continuous linear operators Kn : L2[0, 1]→ L2[0, 1]. Throughout we will
work with kernels whose operator norms ‖Kn‖ = sup{‖Knf‖2 : ‖f‖2 ≤ 1}
are uniformly bounded, i.e., supn ‖Kn‖ < ∞. The operator norm ‖Kn‖ is
however typically much smaller than the L2[0, 1]×L2[0, 1] norm of the kernel.
In our case this will typically be of the order of k given by the dimension of
the projected space.

Kernels Kn most commonly used in statistical applications are usually
projection kernels. A projection kernel operator satisfies Knh = h for all
h in its range space; that is for any function f in the range of the kernel,
f(x) =

∫
f(v)Kn(x, v)dv for a.e. x. For a given orthonormal basis e1, e2, . . .

of L2[0, 1], the orthogonal projection onto lin(e1, . . . , ek) is the map Kk :
f →

∑k
j=1〈f, ej〉ej . It is given by the kernel operator Kk : L2[0, 1]→ L2[0, 1]

with kernel

Kk(x1, x2) =

k∑
j=1

ej(x1)ej(x2).

It is easy to show by orthonormality properties that ‖Kk‖ = 1 and
∫ ∫

K2
k =

k.
We now provide examples of orthogonal projection kernels that will be

used extensively throughout.

2.1. Haar Basis. For “father” and “mother” functions φ(x) = I(0, 1](x)
and ψ(x) = I(0, 1/2](x)−I(1/2, 1](x), the Haar basis is the set of functions
{φ, ψi,j : i = 0, 1, . . . , j = 0, 1, . . . , 2i − 1}, for ψi,j(x) = 2i/2ψ(2ix − j),
i = 0, 1, . . . , j = 0, 1, . . . , 2i − 1. The Haar basis is a complete orthonormal
basis of L2[0, 1]. The linear span of the first k = 2I basis elements {φ, ψi,j :
i = 0, . . . , I − 1, j = 0, . . . , 2i − 1} is equal to the linear span of the scaled
and shifted father functions {ψI,j : j = 0, . . . , 2I − 1} given by the kernel

Kk(x1, x2) =

2I−1∑
j=0

φI,j(x1)φI,j(x2)

http://biostats.bepress.com/harvardbiostat/paper195
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= k
k∑
j=1

I

(
x1 ∈

(
j − 1

k
,
j

k

])
I

(
x2 ∈

(
j − 1

k
,
j

k

])
.

2.2. Wavelets. Consider expansions of functions h ∈ L2(R) on an or-
thonormal basis of compactly supported bounded wavelets of the form

h(x) =
∑
j∈Zd

∑
v∈{0,1}d

〈h, ψv0,j〉ψv0,j(x) +

∞∑
i=0

∑
j∈Zd

∑
v∈{0,1}d−{0}

〈h, ψvi,j〉ψvi,j(x),

(2.1)

where the base functions ψvi,j are orthogonal for different indices (i, j, v)

and are scaled and translated versions of the 2d base functions ψv0,0, i.e.,

ψvi,j(x) = 2id/2ψv0,0(2ix− j). Such a wavelet basis can be obtained as tensor

products ψv0,0 = φv1 × . . . × φvd of a given father wavelet φ0 and mother

wavelet φ1 in one dimension.
We are interested in functions f with support [0, 1]. In view of the compact

support of the wavelets, for each resolution level i and index v, only 2i base
elements ψvi,j are non-zero on [0, 1]; let us denote the corresponding set of
indices j by ji. Truncating the expansion at resolution level i = I then gives
an orthogonal projection on a subspace of dimension k of order 2I . Let

Kk(x1, x2) =
∑
j∈J0

∑
v∈{0,1}

ψv0,j(x1)ψv0,j(x2) +
I∑
i=0

∑
j∈Ji

ψ1
i,j(x1)ψ1

i,j(x2).

It is worth noting that we can re-express the wavelet expansion (2.1) to start
from a level I as

h(x) =
∑
j∈Z

∑
v∈{0,1}

〈h, ψvI,j〉ψvI,j(x) +
∞∑

i=I+1

∑
j∈Z
〈h, ψ1

i,j〉ψ1
i,j(x).

The projection kernel Kk sets the coefficients in the second sum equal to
zero and hence can also be expressed as

Kk(x1, x2) =
∑
j∈JI

∑
v∈{0,1}

ψvI,j(x1)ψvI,j(x2).

Owing to the discussion above, with some abuse of notation, we will work
with the definition of projection kernel as

Kk(x1, x2) =

k∑
j=1

ψk,j(x1)ψk,j(x2),
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which will correspond to the orthogonal projection operator onto the first
O(log2 k) wavelet basis. Owing to compactness of the support of wavelet
bases only a fixed O(k) many ψk,j ’s will intersect [0, 1]. We have then con-
veniently renamed them as 1, . . . , k. This simplifies notation without loss
of generality. In particular, this is exact for Haar kernel since as previously
noted, we then have that

Kk(x, y) =
k∑
l=1

ψk,j(x)ψk,j(y)

where ψk,j(x) =
√
kI(x ∈ ( j−1

k , jk )], j = 1, . . . , k is the log2 k level Haar
basis of L2[0, 1]. Also, for larger expressions involved in some proofs, we
often write ψk,l = ψkl for convenience.

With these conventions, let us now discuss some approximation properties
of these projection kernels. Letting ψ := lin{ψk,j : j = 1, . . . , k}, define

fk(x) := ΠLebesgue

(
f |ψ
)

:=

∫
f(y)Kk(x, y)dy.

For convenience of notation, define

αk,j =

∫
ψk,jf.

It is well known that (Härdle et al., 1998), choosing ψk,l’s to be the log2 k
level compactly supported wavelet basis with suitable vanishing moment
conditions on the mother wavelet, one has that

sup
h∈H(β,C)

‖h− hk‖2 . k−β.

The results in this paper are mostly asymptotic in nature and thus re-
quires some standard asymptotic notations. If an and bn are two sequences
of real numbers then an � bn (and an � bn) implies that an/bn → ∞
(and an/bn → 0) as n → ∞, respectively. Similarly an & bn (and an . bn)
implies that lim inf an/bn = C for some C ∈ (0,∞] (and lim sup an/bn = C
for some C ∈ [0,∞)). Alternatively, an = o(bn) will also imply an � bn
and an = O(bn) will imply that lim sup an/bn = C for some C ∈ [0,∞)). Fi-
nally we comment briefly on the various constants appearing throughout the
text and proofs. Given that our primary results concern convergence rates
of various estimators, we will not emphasize the role of constants through-
out and rely on fairly generic notation throughout for such constants. Some
conventions we follow whenever required is a follows. Throughout the paper
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we denote by C(ψ0, ‖f‖∞) a non-negative constant that depends on a fixed
ψ0 (a function that can be taken as a majorant of both father and mother
wavelets in absolute value) and ‖f‖∞. Often, Cψ0 will denote a number
which depends only on ψ0. Hence if ‖f‖∞ is known to us, such constants are
deterministic and eventually can all be replaced by an universal constant
by taking suitable care of all possible constants appearing in this paper. Fi-
nally, we will also use C(ψ0, ‖f‖∞, fmin) to denote numbers which depends
on ψ0, ‖f‖∞, fmin only.

3. Lepski’s Method and Minimax Adaptive Estimation of φ(f) =∫
f2dµ.

By way of introduction, this section we will provide a concrete exam-
ple where Lepski’s Method applies in its standard form. For the sake of
simplicity, we will restrict ourselves to the adaptation over two parameter
spaces indexed by two smoothness classes β1 < β0 <

1
4 . The more general

case can be addressed from our results in Section 3. However, before going
into further details, we need additional notation and a basic result which
drives the main idea behind Lepski’s Method. For our candidate sequence
of estimators, define

U (k)
n =

1

n(n− 1)

∑
i1 6=i2

Kk(Xi1 , Xi2),

k(β) = dn
2

1+4β e,

Un,j := U
(kj)
n , kj = k(βj) := dn

2
1+4βj e,

U
(k∗j )
n , k∗j = k∗(βj) = d

(
n2

log n

) 1
1+4βj

e.

It is easy to show that, knowing the exact smoothness βj one can readily
use Un,j as a minimax rate optimal estimator of φ(f). Asymptotic normal-
ity of the estimators, as stated by Lemma C.3, drives Lepski’s Method as
described in Section 2. Let,

Un,0 := U (k0)
n , k0 = dn

2
1+4β0 e,

Un,1 := U (k1)
n , k1 = dn

2
1+4β1 e,

Un,∗ := U (k∗)
n , k∗ = d

(
n2

log n

) 1
1+4β1

e.
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The method we now describe, is along the lines of Efromovich et al.
(1996b) suitably adapted to deal with our situation. Our goal is to choose a

data dependent k̂ ∈ {k0, k1} so that if we base our estimation on U
(k̂)
n , the

mean squared error of estimation will be suitably controlled. In particular,

sup
f
E
[
Un,̂j − ψ (f)

]2

≤
1∑

k=0

sup
f
E

{
I
{
ĵ = k

}[
Un,̂j − ψ (f)

]2
}

≡ sup
f
R0(βf ) + sup

f
R1(βf )

We divide our study into two cases having two sub-cases each.
First, consider the case β = β0. Then, R0(β0) achieves the minimax rate

since the truth is β0 and we are choosing β0. Next we need to bound R1(β0)

by n
− 8β0

1+4β0 up to a potentially logarithmic factor. It is worth noting, that
along the lines of Efromovich et al. (1996b), since β0 corresponds to higher
smoothness regime, we do not need to pay the logarithmic price. The term
R1(β0) corresponds to the scenario where the truth is β0 but the procedure
wrongly chooses β1 as the underlying smoothness. If this happens too often,
then the mean squared error will be sub-optimal. Therefore, our testing pro-
cedure should guarantee that type of error, i.e., choosing a lower smoothness
when the truth is a higher smoothness, does not happen too often. Since,
the probability of making such an error must reduce the mean squared error

n
− 8β1

1+4β1 down to n
− 8β0

1+4β0 for any β1, it must be of O( 1
n). So the problem

boils down to designing a selection procedure so that probability of select-
ing the lower smoothness is O( 1

n). If one can find a sequence of statistics Tn
such that Tn converges weakly to N(0,1) ”fast enough” under β0 and |Tn|
diverges polynomially in n under β1, then a simple test for selecting the
lower smoothness with required error rate is given by I(Tn >

√
2 log n). To

see this, note that, the probability of selecting the lower smoothness under
β0 is approximately Pr(|N(0, 1)| >

√
2 log n) = O( 1

n). Provided the approx-
imation in the CLT is also of the order of 1

n we have achieved our goal for
this first case.

Considering the complementary case of β = β1, we will need the error
probability of selecting the wrong smoothness Pr(|Tn| ≤

√
2 log n) to con-

verge to 0 “polynomially fast”. As we establish below, this can be achieved
with the right choice of test statistic. Finally, by Lemma C.3, a candidate

http://biostats.bepress.com/harvardbiostat/paper195
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Tn which satisfies the above mentioned properties is given by

Un,∗ − Un,0√
V arf (Un,∗)

.

We now provide the exact technical details that justify the argument laid
down so far.

We start with a few further notations. Define

I(k1, k2) := φ(fk2)− φ(fk1) k1 ≤ k2,

corresponding to the difference in truncation bias at k1 versus k2. With this

notation, it is easy to see that I(k0, k∗) = O(k
−2βf
0 ) when the truth is βf . A

suitable estimator of I(k0, k∗) is indeed

Î(k0, k∗) = Un,∗ − Un,0.

We then have the following theorem.

Theorem 3.1. For a deterministic constant C depending on the parent
wavelets, we have the following result. Let

ĵ = I
(
Î(k0, k∗) > C

√
log n

√
k∗
n

)
and let

φ̂ = Un,ĵ .

Then

sup
f∈H(β0)

Ef
[
φ̂− φ(f)

]2
. n

− 8β0
1+4β0 ,

sup
f∈H(β1)

Ef
[
φ̂− φ(f)

]2
. (log n)

4β1
1+4β1 n

− 8β1
1+4β1 .

The proof can be found in the appendix. However, it is worth mentioning
that the two crucial ingredients of the proof is control of the error of testing
at a suitably vanishing level and bounding higher order central moments of
the non-adaptive minimax estimators dependent on non-random truncation
level k. These properties are both derived from exponential tail inequalities
for second order U-statistics using results of Giné, Lata la and Zinn (2000);
Houdré and Reynaud-Bouret (2003). In particular, this is a typical structure
for most applications of Lepski’s method i.e. the treatment crucially relies
on some exponential inequalities for the deviations of the sequence of non-
adaptive minimax estimators (Birgé, 2001). For estimation of general non-
linear functionals this poses a challenge. The next section is devoted in
understanding a possible way out.
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4. A General Result by a Modification of Lepski’s Method.
The results of the previous section strictly hold only for the quadratic func-
tional φ(f) =

∫
f2dµ so far. This is because, we have crucially used a devi-

ation inequality which only holds for degenerate second order U-statistics.
The minimax estimator for φ(f) =

∫
f rdµ is in general a rth order U-

statistic. In order to apply standard Lepski’s Method we will need to obtain
suitable exponential deviation inequalities for higher order U-statistics. Al-
though, such moment inequalities do exist (Adamczak et al., 2006), the
bounds include complicated quantities which needs to be controlled in a
problem specific manner. However, owing to Tchetgen et al. (2008), we
observe that the biases of candidate estimators are within multiplicative
constants of that of the estimator for quadratic functional and the vari-
ances remain of same order as well. Since we are interested in estimation in
squared error norm, this motivates us to use the idea discussed in Section 2
to construct our final estimator. We now explain this below.

For a given choice of d > 1, let N be the largest integer such that dN−1 ≤
n

1− 2
log logn . Set kj−1 = dj−1n for j = 1, . . . , N . This holds if and only if, (N−

1) ≤ logn
log d

(
1− 2

log logn

)
and also that kN

n2 = o( 1
n). Now, for j = 0, . . . , N − 1,

define βj to be the solution of kj = n
2

1+4βj . This implies that 1 + 4βj =
2 logn

(j−1) log d+logn , j = 0, . . . , N − 1. Also, note that by construction, k0 ≤
k1 ≤ . . . ≤ kN−1 and therefore, β0 ≥ β1 ≥ . . . ≥ βN−1. Also, a simple
calculation shows that, βN−1 ≥ 1

4 log logn−1 . Therefore, 1
4 ≥ β0 ≥ β1 ≥ . . . ≥

βN−1 ≥ 1
4 log logn−1 . Further, note that for all 0 ≤ l1 ≤ l2 ≤ N − 1, there

exists constants c1, c2 such that βl1 −βl2 ∈
[
c1
l2−l1
logn , c2

l2−l1
logn

]
. Further, define

k∗j =
kj

logn
1

1+4βj

=
(

n2

logn

) 1
1+4βj and R(k∗j ) =

k∗j
n2 . This definition implies that

for l1 > l2,
k∗l1
k∗l2

=
(

n2

logn

) 4βl2
−4βl1

(1+4βl1
)(1+4βl2

) → ∞. However, note that
k∗l1
kl2

might

not enjoy similar properties for certain ranges of l1 > l2. Especially, for β
values within 1

logn rate of each other, the corresponding k values do not
enjoy the above mentioned property. Let s∗ = s∗(n) be the smallest integer
such that, k(βs∗)

∗ ≥ n. Finally, define

ĵ := min
{
j : Î2(k∗j , k

∗
l ) ≤ C2

opt log nR(k∗l ) ∀ l ≥ j, s∗ ≥ j ≤ N − 1
}
.

where Copt is a deterministic constant to be specified later and similar to
Section 3, Î(kj , kl) = Ukl − Ukj for kj < kl.
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Theorem 4.1. Suppose an estimator Un,k of φ(f) satisfies the following
properties.

1. For sufficiently large k, n and fixed choice of q > 1,

max

{
sup

f∈H(β)
E

1
q

f

[
(Un,k − Ef (Un,k))

2q
]
, sup
f∈H(β)

|Ef (Un,k)− φ(f)|2
}
≤ Cq

k

n2

2. There exists fixed constants C1, C2 such that for any f ∈ H(β,C),

C1I(k1, k2) ≤ Ic(k1, k2) ≤ C2I(k1, k2),

for sufficiently large k1 < k2 where Ic(k1, k2) = Ef (Un,k2)− Ef (Un,k1)
and by our previous convention I(k1, k2) =

∫
f2
k2
−
∫
f2
k1

.

Then for any β ∈ (0, 1
4), we have that

sup
f∈H(β,C)

Ef
[(
Un,k∗

ĵ
− φ(f)

)2
]
. n

− 8β
1+4β log n

4β
1+4β .

Some remarks are in order about the implications of the theorem above. It
says that if a sequence of estimators, having common index with the minimax
estimator of the quadratic functional, has bias and higher order moments
of the same order of magnitude as the quadratic functional estimator, then
following the discussion in Section 1, the new sequence of estimators also
shares the same rate of convergence towards its corresponding functional
simultaneously over the functional spaces which dictates the adaptation of
the quadratic functional. Establishing an equivalence in the order of the bias
for these functionals requires fairly standard arguments. The main challenge
lies in obtaining suitable bounds on higher order moments of these estima-
tors. This requires control of moments of higher order U-statistics based on
orthogonal projection kernels. We crucially use the structure of the projec-
tion kernels based on compactly supported wavelet basis. Following ideas
from Robins et al. (2015), we implement a binning argument to keep track
of membership of sampled observations in partitions of the sample space cre-
ated by a particular resolution level of the wavelet expansion, and this turns
out to be crucial in controlling the higher order moments of our estimator
at the right level.

5. Minimax Adaptive Estimation of
∫
f3dµ.

As mentioned earlier, based on the technique of Birgé and Massart (1995)
one can show that the minimax estimator of a general non-linear functional
φ(f) =

∫
T (f)dµ for smooth T can be constructed by using ideas from linear,
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quadratic and cubic functionals of the density and appealing to a standard
Taylor expansion argument. While producing adaptive estimators of non-
linear functionals as well, a similar strategy can be followed and it becomes
crucial to understand the adaptive estimation of

∫
f3dµ. In particular, a

non-adaptive minimax rate optimal estimator of φ (f) =
∫
f3dµ is given by

φ̂k1,k2,k3 = Vn
[
K̃k1,k2,k3 (Xi1 , Xi2 , Xi3)

]
= Vn

[∫
Kk1 (x,Xi1)Kk1 (x,Xi2)Kk1 (x,Xi3) dx

]
+ 3Vn

[∫
Kk1 (x,Xi1) (Kk3 (x,Xi2)−Kk1 (x,Xi2))Kk1 (x,Xi3) dx

]
+ 3Vn

[∫
Kk1 (x,Xi1) (Kk3 (x,Xi2)−Kk1 (x,Xi2)) (Kk3 (x,Xi3)−Kk1 (x,Xi3)) dx

]
+ 3Vn

[∫ (
(Kk2 (x,Xi1)−Kk1 (x,Xi1)) (Kk2 (x,Xi2)−Kk1 (x,Xi2))

(Kk3 (x,Xi3)−Kk2 (x,Xi3))

)
dx

]
+ Vn

[∫ (
(Kk2 (x,Xi1)−Kk1 (x,Xi1)) (Kk2 (x,Xi2)−Kk1 (x,Xi2))

(Kk2 (x,Xi3)−Kk1 (x,Xi3))

)
dx

]
,

where k1 = k1 (β) ∼ n, n(3/2−2β)/(1+4β) ≤ k2 = k2 (β) ≤ n(3/2+2β)/(1+4β)

and k3 = k3 (β) ∼ n2/(1+4β) and Vn (h(Xi1 , Xi2 , Xi3)) corresponds to to the
U-statistic based on h i.e. Vn (h(Xi1 , Xi2 , Xi3)) = 1

n(n−1)(n−2)

∑
i1 6=i2 6=i3

h(Xi1 , Xi2 , Xi3);

see Tchetgen et al. (2008) for more details. By Tchetgen et al. (2008), the
bias of this estimator is given by

Ef
(
φ̂k1(β),k2(β),k3(β)

)
− φ(f)

=

∫
(fk3 − fk2)3 + 3

∫
(fk3 − fk2)2 (fk2 − fk1) +

∫ (
f3 − f3

k3

)
(5.1)

which is dominated by ∫ (
f3 − f3

k3

)
∼ k−2β

3 ≤ C k3

n2
.

Now note that,

sup
f∈H(β,C)

|Ef (φ̂
k
(2)
1 ,k

(2)
2 ,k

(2)
3

− Ef (φ̂
k
(1)
1 ,k

(1)
2 ,k

(1)
3

| ∼
(
k

(1)
3

)−2β
, (5.2)
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whenever k(1) =
(
k

(1)
1 , k

(1)
2 , k

(1)
3

)
≤ k(2) =

(
k

(2)
1 , k

(2)
2 , k

(2)
3

)
where we say

v1 ≤ v2 for two vectors v1, v2 ∈ Rs+ whenever max v1 ≤ max v2. As shown

by Tchetgen et al. (2008), the variance is also dominated by k3
n2 . Therefore,

similar to the discussion in Section 2, the bias and variance of the candidate
estimator is similar to that of the estimator of the quadratic functional of
the density. We will use this fact to produce an adaptive estimator. The next
result is the main result of this section and helps us apply Theorem 4.1 to
construct an adaptive estimator of φ(f) =

∫
f3dµ.

Theorem 5.1. For any k1 ≤ k2 ≤ k3 as above, one has for all suffi-
ciently large n,

Ef
(
φ̂k1,k2,k3 − Ef

(
φ̂k1,k2,k3

))2q
≤ C(‖ψ0‖∞, ‖f‖∞, fmin)

(
k3

n2

)q
,

whenever the projection kernels in the construction are based on the Haar
Basis.

Now combining (5.1), (5.2), Theorem 5.1 with Theorem 4.1, we can con-
struct an adaptive estimator of cubic integral functional as follows.

We use the ideas laid down heuristically in Section 2 and detailed in
Section 4. In particular, fix a d > 1. Let N be the largest integer such

that dN−1 ≤ n
1− 2

log logn . Set lj−1 = dj−1n for j = 1, . . . , N . Now, for j =

0, . . . , N − 1, define βj to be the solution of lj = n
2

1+4βj . Further, define

l∗j =
lj

logn
1

1+4βj

=
(

n2

logn

) 1
1+4βj and R(l∗j ) =

l∗j
n2 . Let s∗ = s∗(n) be the smallest

integer such that, l(βs∗)
∗ ≥ n. Finally, define

ĵ := min
{
j : Î2(l∗j , l

∗
m) ≤ C2

opt log nR(k∗m) ∀ m ≥ j, s∗ ≥ j ≤ N − 1
}
.

where Copt will be a deterministic constant and similar to Section 3, Î(lj , lm) =
Ulm − Ulj for lj < lm. Now let

φ̂ = φ̂k̂1,k̂2,k̂3 ,

where k̂1 ∼ n, k̂2 ∼ n
3
2+2β

ĵ
1+4β

ĵ and k̂3 ∼ l∗ĵ .
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Theorem 5.2. Consider projection kernels based on Haar wavelets. The
estimator φ̂ of φ(f) =

∫
f3 satisfies for any β ∈ (0, 1

4),

sup
f∈H(β,C)

Ef
[(
φ̂− φ(f)

)2
]
. n

− 8β
1+4β log n

4β
1+4β ,

for some deterministic Copt (depending only on parent wavelets and ‖f‖∞).

Remark 5.3. For the proof of Theorem 5.1, the requirement of Haar
wavelet arises at one specific instance in the proof. We expect that similar
results continue to hold for more general compactly supported wavelets us-
ing arguments developed herein. However we do not further consider other
wavelet bases.

6. Minimax Adaptive Estimation of
∫
T (f)dµ.

We now discuss adaptive estimation of a more general integral functional
of the density. As mentioned earlier that such functionals arise naturally
in information theory. In particular, a large body of work has focused on
estimating the Shannon entropy (Beirlant et al., 1997) and more recent works
include estimation of Renyi and Tsallis entropies (Leonenko and Seleznjev,
2010; Pál, Póczos and Szepesvári, 2010). As mentioned, we will use ideas
developed so far for adaptive estimation of up to cubic functionals to come
up with an adaptive estimator of smooth non-linear functionals. We only
sketch the idea here and omit technical details. In particular, suppose that
T (f) admits an expansion around f0 such that

T (f) (x) = T (f0) (x) + T (1) (f0) (x) (f (x)− f0 (x)) + T (2) (f0) (f (x)− f0 (x))2

+ T (3) (f0) (f (x)− f0 (x))3 +O
(

(f (x)− f0 (x))4
)

as f (x) → f0 (x) . The idea now is to sample split and obtain an adaptive

estimator f̂ (x) of f (x) so that
(
f̂ (x)− f (x)

)
= Op

(
n−2β/(1+2β)

)
. Next,

φ (f) =

∫
T
(
f̂
)

(x) +

∫
T (1)

(
f̂
)

(x)
(
f (x)− f̂ (x)

)
+

∫
T (2)

(
f̂
)(

f (x)− f̂ (x)
)2

+

∫
T (3)

(
f̂
)(

f (x)− f̂ (x)
)3

+O

(∫ (
f (x)− f̂ (x)

)4
)
.

Note that,
∫ (

f (x)− f̂ (x)
)4

= OP
(
n−8β/(1+2β)

)
= op

(
n−8β/(1+4β)

)
. There-

fore, we need only learn how to adapt to functionals of the form
∫
g1

(
f̂
)
f (x)+∫

g2

(
f̂
)
f (x)2 +

∫
g3

(
f̂
)
f (x)3 . The linear functional estimation theory is
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well understood and the quadratic or cubic terms are rather straightforward
generalizations of our statistics. For the quadratic term for instance, use

Vn
[∫

g2

(
f̂
)

(x)Kk (x,Xi1)Kk (x,Xi2) dx
]

instead of the one used earlier.

7. Adaptation Lower bound for Estimation of
∫
T (f)dµ.

In this section, we implement ideas similar to Efromovich et al. (1996a) to
provide a lower bound on the required price to be paid for adaptation over
β < 1

4 . Efromovich et al. (1996a) proved that, while estimating a quadratic
functional of the density, if an estimator achieves a parametric rate for β ≥ 1

4

then it must incur a heavier penalty than (log n)
4β

1+4β for β < 1
4 . Here we

provide a result of similar flavor regarding constraints on estimation rates
at two points β1, β2 <

1
4 .

We begin by describing the main tool in our proof, which is a general
version of constrained risk inequality due to Cai et al. (2011), obtained as
an extension of Brown et al. (1996). For the sake of completeness, begin with
a Summary of these results. Suppose Z has distribution Pθ where θ belongs
to some parameter space Θ. Let Q̂ = Q̂(Z) be an estimator of a function
Q(θ) based on Z with bias B(θ) := Eθ(Q̂)−Q(θ). Now suppose that Θ0 and
Θ1 form a disjoint partition of Θ with priors π0 and π1 supported on them
respectively. Also, let µi =

∫
Q(θ)dπi and σ2

i =
∫

(Q(θ)−µi)2dπi, i = 0, 1 be
the mean and variance of Q(θ) under the two priors π0 and π1. Letting γi be
the marginal density with respect to some common dominating measure of
Z under πi, i = 0, 1, let us denote by Eγ0(g(Z)) the expectation of g(Z) with
respect to the marginal density of Z under prior π0 and distinguish it from
Eθ(g(Z)), which is the expectation under Pθ. Lastly, denote the chi-square

divergence between γ0 and γ1 by χ =

{
Eγ0

(
γ1
γ0
− 1
)2
} 1

2

. Then we have the

following result.

Proposition 7.1 (Cai et al. (2011)). If
∫
Eθ
(
Q̂(Z)−Q(θ)

)2
dπ0(θ) ≤

ε2, then

|
∫
B(θ)dπ1(θ)−

∫
B(θ)dπ0(θ)| ≥ |µ1 − µ0| − (ε+ σ0)χ.

Since the maximum risk is always at least as large as the average risk,
this immediately yields a lower bound on the minimax risk. In order to use
this result, we will need to produce suitable priors on appropriate parameter
spaces, so that we capture the price needed for adaptation. Since the uniform
density f0 ≡ I(0, 1) is in all the smoothness classes we consider here, we take
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Θ0 = {f (n)
0 } and the prior π0 = δ

f
(n)
0

, the dirac mass at the uniform density.

Here and below f (n) refers to the joint density of X1, . . . , Xn which are i.i.d
with density f . Now let us construct the alternative parameter space along
the lines of Efromovich et al. (1996a), which in turn relies on Ingster (1987).
Take h to be a function supported on [0, 1] such that

∫
h = 0,

∫
h2 = c

for some c > 0 to be specified later, h ∈ H(1, C), and 1 + h ≥ 0. Let
vn be an increasing sequence of positive integers, to be specified later up
to multiplicative constants, and denote by a the vector (a0, . . . , avn−1) ∈
{−1,+1}vn . Now define

fa = f0 +

vn−1∑
i=0

aiv
−β
n h(vnx− i),

and let Θ1 = {f (n)
a : a ∈ {−1,+1}vn}. First,note that by construction one

always has fa ∈ H(β,C). Finally let π1 be the uniform prior putting 1
2vn

mass at each point of Θ1. In order to apply Proposition 7.1, we evaluate the
following quantities. Using the notation introduced earlier,

µ0 =

∫
T (f0(x))dx = T (1)

and σ0 = 0. Also,

µ1 =
1

2vn

∑
a∈{−1,+1}vn

∫
T

(
f0(x) +

vn−1∑
i=0

aiv
−β
n h(vnx− i)

)
dx.

Therefore

|µ1 − µ0| =
1

2vn

∑
a∈{−1,+1}vn

∫ [
T

(
1 +

vn−1∑
i=0

aiv
−β
n h(vnx− i)

)
− T (1)

]
dx.

Now by Taylor expansion, for each a,∫ [
T

(
1 +

vn−1∑
i=0

aiv
−β
n h(vnx− i)

)
− T (1)

]

= T ′(1)

vn−1∑
i=0

aiv
−β
n

∫
h(vnx− i)dx+ T ′′(1)

∫ [vn−1∑
i=0

aiv
−β
n h(vnx− i)

]2

dx

+

∫
T ′′′(ξ(x))

[
vn−1∑
i=0

aiv
−β
n h(vnx− i)

]3

dx where ‖ξ − 1‖∞ ≤ 1
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≥ CT v−2β
n

for some constant CT > 0 depending only on T . The above calculations
follow by the inclusion of the support of h in [0, 1], boundedness of h and

standard change of variables. Therefore, |µ1 − µ0| ≥ Cv−2β
n as well, where

we have dropped the subscript T for notational convenience. Now suppose

that the bias at f0 is smaller than εn .
(

n√
logn

)− 4β∗
4β∗+1

for some β∗ < 1
4 .

Then for any for any β < β∗, we have by proportion 7.1 that
∫
B(θ)dπ1(θ) ≥

Cv−2β
n − εnχ. Therefore, if we can show that for vn =

(
n√
c logn

) 2
1+4β

one has

χ� nc, then one gets the desired rate for the incurred penalty by choosing c
small enough. This can be derived following the arguments in Ingster (1987).
Therefore, we have sketched the proof of the following theorem.

Theorem 7.2. Suppose one has

sup
f∈H(β∗)

Ef
(
φ̂− φ(f)

)2
.

(
n2

log n

)− 4β∗
1+4β∗

,

for an estimator φ̂ of φ(f) =
∫
T (f)dµ with T having bounded third deriva-

tive. Then for any β > β∗,

sup
f∈H(β)

Ef
(
φ̂− φ(f)

)2
&

(
n2

log n

)− 4β
1+4β

.

8. Discussions. Our results are all provided for one dimension d = 1
corresponding to a low smoothness regime β < d

4 . Although we do not
provide explicit details, our proofs can be easily extended to incorporate the
case of d > 1 and to consider

√
n rate of convergence of the constructed

estimators for β > d
4 . The case of β = d

4 is a little more subtle; however
this also can be done by adding one more level of discretization near the
truncation level k = n. Since, the crux of the arguments remain the same,
we do not elaborate on such proofs here.

Following the idea of possibly modifying Lepski’s method to include a
larger class of mechanisms to choose a tuning parameter for adaptive es-
timation, another potentially interesting question is to investigate which
method provides a better performance- either in a finite sample sense or
regarding constants of asymptotic mean squared error. Finally, the study of
adaptive non-parametric divergence and entropy based on more than one
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densities is also of interest. Since, the quadratic functional estimator is a U-
statistics is based on a bounded kernel, the results of Houdré and Reynaud-
Bouret (2003) were readily applicable for deriving a suitable exponential tail
bound. It is worth exploring how to modify such arguments for second or-
der U-statistics estimators that arise in context of non-parametric regression
problems and fail to be bounded in case of unbounded error distributions.
We keep the study of such questions for possible future research.

APPENDIX A: PROOF OF THEOREMS

Proof of Theorem 3.1.

Proof. Recall that,

sup
f
E
[
Un,̂j − φ (f)

]2

≤
1∑

k=0

sup
f
E

{
I
{
ĵ = k

}[
Un,̂j − φ (f)

]2
}

≡ sup
f
R0(βf ) + sup

f
R1(βf )

Higher Smoothness (βf = β0).
(i) First let us consider,

sup
f
R0(β0) = sup

f∈H(β0)
Ef
[
I(ĵ = 0) (Un,0 − φ(f))2

]
≤ sup

f∈H(β0)
Ef
[
(Un,0 − φ(f))2

]
. n

− 8β0
1+4β0

by our choice of Un,0.
(ii) Next we consider supf∈H(β0)R1(β0). For this part, we will bound

R1(β0) from above uniformly in all f ∈ H(β0). First note that by Holder’s
Inequality, for any conjugate pair (p, q) we have

R1(β0) = Ef
[
I(ĵ = 1) (Un,1 − φ(f))2

]
≤
{
Pf
(
I(ĵ = 1)

)} 1
p
{
Ef
[
(Un,1 − φ(f))2q

]} 1
q

The proof of supf∈H(β0)R1(β0) . n
− 8β0

1+4β0 now follows by the following two
lemmas.
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Lemma A.1. For kernels based on compactly supported wavelet bases,

sup
f∈H(β0)

Pf
(
I(ĵ = 1)

)
.

1

n

.

Lemma A.2. For kernels based on compactly supported wavelet bases,

sup
f∈H(β0)

{
Ef
[
(Un,1 − φ(f))2q

]} 1
q
.
k1

n2

.

Lower Smoothness (βf = β1).

(i) First note that,

sup
f
R1(β1) = sup

f∈H(β1)
Ef
[
I(ĵ = 1) (Un,1 − φ(f))2

]
≤ sup

f∈H(β1)
Ef
[
(Un,1 − φ(f))2

]
. n

− 8β1
1+4β1

by our choice of Un,1.

(ii) Now,

R0(β1) = Ef
(

1

{
Î2 (k0, k

∗
1) < C ln (n)

k∗1
n2

}
[Un,0 − φ (f)]2

)
.

We consider three cases as below with νn = ln(n)−1/(8β1+2). In the calcula-
tions below C,C

′
, C
′′
, C
′′′

are arbitrary constants which can be chosen for
the calculations to be valid and can change from place to place. Also for
controlling higher order moments of related second order U-statistics below,
we use results along the lines of Lemma A.2 with obvious modifications to
the proof.

Case 1: I2 (k0,k
∗
1) > C

′
(1 + νn) ln (n)

k∗1
n2

In this case we have,

R0(β)

= Ef
(

1

{
Î2 (k0, k

∗
1) < C ln (n)

k∗1
n2

}
1

{
I2 (k0, k

∗
1) > C

′
(1 + νn) ln (n)

k∗1
n2

}
[Un,0 − φ (f)]2

)
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≤ Ef
((

1
{
I (k0, k

∗
1)− Î (k0, k

∗
1) >

(
C
′′
νn

)
I (k0, k

∗
1)
}

[Un,0 − φ (f)]2
))

≤ C ′′′ (νnI (k0, k
∗
1))−2 Ef

((
I (k0, k

∗
1)− Î (k0, k

∗
1)
)2

[Un,0 − φ (f)]2
)

≤ C ′′′ (νnI (k0, k
∗
1))−2 E1/2

f

((
I (k0, k

∗
1)− Î (k0, k

∗
1)
)4
)
E1/2
f

(
[Un,0 − φ (f)]4

)
≤ C ′′′ (νnI (k0, k

∗
1))−2 (n−2k∗1

) (
I (k0, k

∗
1) + (k∗1)−2β1

)2
≤ C ′′′ (νn)−2 (n−2k∗1

)
= C

′′′
ln(n)1/(4β1+1)

(
n2

ln (n)

)1/(1+4β1)

n−2 = C
′′′
n2/(1+4β1)n−2 = C

′′′
n
− 8β1

1+4β1

Case 2: I2 (k0,k
∗
1) ≤ Ck1

n2

In this case,

Ef
(

[Un,0 − φ (f)]2
)

= k−4β1
0 +

k0

n2
� I2 (k0, k1) +

k0

n2
≤ C ′n−

8β1
1+4β1 .

Case 3: I2 (k0,k
∗
1) ≤ C (1 + νn) ln (n)

k∗1
n2 and I2 (k0,k

∗
1) ≤ Ck1

n2

In this case, I2 (k0, k
∗
1) < (1 + νn) ln (n)

k∗1
n2 and I2 (k0, k1) >

k∗1
n2 , so that

Ef
(

[Un,0 − φ (f)]2
)
≤ C ′

(
I2 (k0, k

∗
1) + (k∗1)−4β1 +

k0

n2

)
C
′′
(
I2 (k0, k

∗
1) + (k∗1)−4β1 +

k0

n2

)
≤ C ′′′ ln (n)1−1/(1+4β1) n−8β1/(1+4β1) = C

′′′
n−8β1/(1+4β1) ln (n)4β1/(1+4β1) .

Proof of Theorem 4.1.

Proof. Suppose βf ∈ (βj+1, βj ]. Let lc(C
∗) be the largest l such that

I2(k∗l , k
∗
j ) > C∗ log nR(k∗j ). Let us explain the reason for existence of such

an lc(C
∗). Note that it is enough to show that the ratio

I2(k∗l ,k
∗
j )

C∗ lognR(k∗j ) is upper

bounded by a quantity that l increases through positive integers. By our

choice of βf ∈ (βj+1, βj ], we have that
I2(k∗l ,k

∗
j )

C∗ lognR(k∗j ) is at most a constant

times
(k∗l )−4βj+1

k∗
j

n2

. The power of n in this ration is
8βj

1+4βj
− 8βj+1

1+4βl
which indeed

decreases as l increases. Also, note that trivially lc(C
∗) < j. Also, by defini-

tion of lc(C
∗), for any l ≤ lc, I

2(k∗l , k
∗
j ) > C∗ log nR(k∗j ) and for l > lc(C

∗),

I2(k∗l , k
∗
j ) ≤ C∗ log nR(k∗j ). Our proof relies on the fact that the testing pro-

cedure does not select an index l ≤ lc(C∗) or l > j+1 with high probability.
This is captured by the following two lemmas.
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Lemma A.3. For kernels based on compactly supported wavelet bases,

sup
f∈H(β)

Pf
(
ĵ = l

)
≤
Cψ0

n
,

for any l ≤ lc(C∗) whenever C∗ > 4C2
opt.

Lemma A.4. For kernels based on compactly supported wavelet bases,

sup
f∈H(β)

Pf
(
ĵ ≥ j + 2

)
≤
Cψ0

n
,

whenever C∗ > 4C2
opt.

Let us first complete the proof of Theorem 4.1 assuming the validity of
Lemmas A.3 and A.4. Note that,

Ef
[(
Un,k∗

ĵ
− φ(f)

)2
]

=
N−1∑
l=s∗

Ef
[
I(ĵ = l)

(
Un,k∗l − φ(f)

)2
]

= T1 + T2 + T3, (A.1)

where T1 =
lc(C∗)∑
l=s∗

Ef
[
I(ĵ = l)

(
Un,k∗l − φ(f)

)2
]
, T2 =

j+1∑
l=lc(C∗)+1

Ef
[
I(ĵ = l)

(
Un,k∗l − φ(f)

)2
]

and T3 =
N−1∑
l=j+2

Ef
[
I(ĵ = l)

(
Un,k∗l − φ(f)

)2
]
. In the following we control

the terms Th, h = 1, 2, 3 individually at n
−

8βf
1+4βf log n

4βf
1+4βf to show the de-

sired result modulo the proofs of the above two lemmas. We then finish the
proof by proving the lemmas. For the following let (p, q) denote a pair of
positive real numbers such that 1

p + 1
q = 1. The specific choices of the pair

will be clear from the proof. In particular, we will always choose q to be an
integer and p will be sufficiently close to 1.

Control of T1.

T1 =

lc(C∗)∑
l=s∗

Ef
[
I(ĵ = l)

(
Un,k∗l − φ(f)

)2
]

≤
lc(C∗)∑
l=s∗

P
1
p

f

(
ĵ = l

)
E

1
q

f

[(
Un,k∗l − φ(f)

)2q
]
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≤
lc(C∗)∑
l=s∗

(
Cψ0

n

) 1
p
[
k∗l
n2

+ (k∗l )
−2βf

]
≤ log n

(
Cψ0

n

) 1
p

where the second last inequality above follows from Lemma A.3 and con-
dition 2 of the theorem, and the last inequality follows from the choice of
N . log n. Therefore for p sufficiently close to 1, we have desired control
over T1.

Control of T2.

T2 =

j+1∑
l=lc(C∗)+1

Ef
[
I(ĵ = l)

(
Un,k∗l − φ(f)

)2
]
≤

j+1∑
l=lc(C∗)+1

P
1
p

f

(
ĵ = l

)
E

1
q

f

[(
Un,k∗l − φ(f)

)2q
]

≤ Cq
j+1∑

l=lc(C∗)+1

P
1
p

f

(
ĵ = l

)
E

1
q

f

[(
Un,k∗l − Ef

(
Un,k∗l

))2q
]

+E
1
q

f

[(
Ef
(
Un,k∗l

)
− Ef

(
Un,k∗j

))2q
]

+ E
1
q

f

[(
Un,k∗j − φ(f)

)2q
]


≤ Cq
j+1∑

l=lc(C∗)+1

P
1
p

f

(
ĵ = l

){k∗l
n2

+ I2
c (k∗j , k

∗
l ) +

k∗j
n2

+ (k∗j )
−2βf

}

≤ Cq
j+1∑

l=lc(C∗)+1

P
1
p

f

(
ĵ = l

){k∗l
n2

+ I2(k∗j , k
∗
l ) +

k∗j
n2

}

≤ CqC∗ log nR(k∗j )

j+1∑
l=lc(C∗)+1

P
1
p

f

(
ĵ = l

)
≤ CqC∗ log nR(k∗j ).

Above, the fourth last inequality follows from condition 1 of the theorem,
the third last inequality follows condition 2 of the theorem and using the fact

that βj+1 < βf ≤ βj (which implies that (k∗j )
−2βf ≤ (k∗j )

−2βj
(

n2

logn

) 2βj−2βj+1
1+4βj ≤

C
k∗j
n2n

C
logn ≤ C ′

k∗j
n2 ). The second last inequality follows from our choice of

lc(C
∗). The last inequality follows since

j+1∑
l=lc(C∗)+1

Pf
(
ĵ = l

)
≤ 1, we have

that for p sufficiently close to 1, one also must have that
j+1∑

l=lc(C∗)+1

P
1
p

f

(
ĵ = l

)
≤

1. Finally noting that CqC
∗ log nR(k∗j ) . n

−
8βf

1+4βf log n
4βf

1+4βf completes the
required control T2.
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Control of T3.

T3 =
N−1∑
l=j+2

Ef
[
I(ĵ = l)

(
Un,k∗l − φ(f)

)2
]

≤
N−1∑
l=j+2

P
1
p

f

(
ĵ = l

)
E

1
q

f

[(
Un,k∗l − φ(f)

)2q
]

≤
N−1∑
l=j+2

(
Cψ0

n

) 1
p
[
k∗l
n2

+ (k∗l )
−2βf

]
≤ log n

(
Cψ0

n

) 1
p

where the second last inequality above follows from Lemma A.4 and con-
dition 2 of the theorem, and the last inequality follows from the choice of
N . log n. Therefore for p sufficiently close to 1, we have desired control
over T1.

Proof of Theorem 5.1.

Proof. The idea of proof is similar to the second proof of A.2. However,
the computations are much more cumbersome since ow we control moments
of a third order U-statistics.

We decompose Un,1 as,

ψ̂k1,k2,k3 = Vn,1 +Rn,1,

where

Vn,1 =
1

n(n− 1)(n− 2)

∑
i6=j 6=s

{
K̃(Xi, Xj , Xs)I((Xi, Xj , Xs) ∈

Mn⋃
m=1

χn,m × χn,m × χn,m)

}
and

Rn,1 = ψ̂k1,k2,k3 − Vn,1.
The sets χn,m,m = 1, . . . ,Mn are constructed according to Robins et al.
(2015). Therefore, for Haar basis in one dimension, we can take Mn = n and
χn,m = [m−1

n , mn ) for m = 1, . . . ,Mn. Therefore,

Ef
[(
ψ̂k1,k2,k3 − Ef (ψ̂k1,k2,k3)

)2q
]
≤ Cq

{
Ef
[
(Vn,1 − Ef (Vn,1))2q

]
+ Ef

[
(Rn,1 − Ef (Rn,1))2q

]}
Below, we only control the first summand i.e. Ef

[
(Vn,1 − Ef (Vn,1))2q

]
which

suffices for Haar basis. However, for non-Haar bases this is not sufficient. We
believe, that for non-Haar bases one can show that the second summand has
sub-optimal rate.
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Control of Ef

[
(Vn,1 − Ef (Vn,1))2q

]
.

Write Vn,1 =
∑Mn

m=1 Vn,m with

Vn,m =
1

n(n− 1)(n− 2)

∑
i6=j 6=s

K̃(Xi, Xj , Xs)I((Xi, Xj , Xs) ∈ χn,m×χn,m×χn,m).

Following Robins et al. (2015), we define the following membership based
quantities. Let,

In,r := m if Xr ∈ χn,m, r = 1, . . . , n, m = 1, . . . ,Mn,

Nn,m := # (r : In,r = m) .

Then, (Nn,m, 1 ≤ m ≤Mn) ∼ Multinomial(pnm, 1 ≤ m ≤Mn), where

pn,m =

∫
χn,m

f(x)dx.

Note that pn,m ∈ [fmin
n , ‖f‖∞n ] where fmin = min f(x). Given the vector

In = (In,1, . . . , In,Mn), the observations X1, . . . , Xn are independent with

distribution of Xr|In,r = m being
Iχn,mdF

pn,m
. Now,

Ef
[
(Vn,1 − Ef (Vn,1))2q

]
≤ Cq

 Ef
[
(Vn,1 − Ef (Vn,1|In))2q

]
+Ef

[
(Ef (Vn,1|In)− Ef (Vn,1))2q

] 
Control of Ef

[
(Ef (Vn,1|In)− Ef (Vn,1))2q

]
.

Now, note that,

Ef (Vn,1|In)− Ef (Vn,1) =

Mn∑
m=1

(
Nn,m(Nn,m − 1)(Nn,m − 2)

n(n− 1)(n− 2)p3
n,m

− 1

)
αn,m,

where αn,m =
∫ ∫

K̃(x1, x2, x3)I((x1, x2, x3) ∈ χn,m×χn,m×χn,m)d(F (x1))d(F (x2))d(F (x3)).
The next lemma provides control of the terms αn,m.

Lemma A.5. For compactly supported wavelet bases one has

max
m
|αn,m| ≤

C(ψ0, ‖f‖∞)

Mn
.

http://biostats.bepress.com/harvardbiostat/paper195



29

Therefore, we have
∑Mn

m=1 |αn,m| ≤ Cψ0 . Now, since Nn,m’s are negatively
associated (see definition in Joag-Dev and Proschan (1983)), we have by
Theorem 2 of Shao (2000) followed by Marcinkiewicz Zygmund inequality
that,

Ef
[
(Ef (Vn,1|In)− Ef (Vn,1))2q

]
= Ef

( 1

Mn

Mn∑
m=1

{
Nn,m(Nn,m − 1)(Nn,m − 2)

n(n− 1)(n− 2)p3
n,m

− 1

}
αn,m

)2q
M2q

n

≤ CqM2q
n M

− 2q
2

n
1

Mn

Mn∑
m=1

Ef

[(
Nm(Nm − 1)(Nn,m − 2)

n(n− 1)(n− 2)p3
n,m

− 1

)2q
]
α2q
n,m

≤ C∗qM q−1
n

Mn∑
m=1

|αn,m|2q (A.2)

≤ C∗qM q−1
n {max(αn,m)}2q−1

Mn∑
m=1

|αn,m| ≤ Cqψ0
M q−1
n {max(αn,m)}2q−1

In the above display, equation A.2 follows from Lemma 5.6 of Robins et al.

(2015). Now, by Lemma A.5, {max(αn,m)}2q−1 ≤ (C(ψ0, ‖f‖∞))2q−1
(

1
Mn

)2q−1
.

Therefore, Ef
[
(Ef (Vn,1|In)− Ef (Vn,1))2q

]
≤ (Cψ0‖f‖∞)2q−1

(
1
Mn

)q
≤ (Cψ0‖f‖∞)2q−1

(
k3
n2

)q
for our choice of Mn � n.

Control of Ef

[
(Vn,1 − Ef (Vn,1|In))2q

]
.

Suppose, Vn,m = V
(1)
n,m + V

(2)
n,m + V

(3)
n,mEf (Vn,m|In) denote the Hoeffding de-

composition of Vn,m w.r.t the conditional distribution given In. Therefore,

Ef
[
(Vn,1 − Ef (Vn,1|In))2q

]
= Ef

( Mn∑
m=1

{
V (1)
n,m + V (2)

n,m + V (3)
n,m

})2q


Note that Ef
(
V

(1)
n,m|In

)
= 0, Ef

(
V

(2)
n,m|In

)
= 0, Ef

(
V

(3)
n,m|In

)
= 0 and they

are independent over m conditional on In. Hence by a conditional version
of Rosenthal’s Inequality (noting that the constants of the inequality does
not depend on the underlying distribution), we have

Ef

( Mn∑
m=1

{
V (1)
n,m + V (2)

n,m + V (3)
n,m

})2q
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≤ CqEf

 Mn∑
m=1

Ef
(
|V (1)
n,m + V (2)

n,m + V (3)
n,m|2q|In

)
+

{
Mn∑
m=1

Ef
(
|V (1)
n,m + V (2)

n,m + V (3)
n,m|2In

)} 2q
2


= Cq

 Mn∑
m=1

Ef
(
|V (1)
n,m + V (2)

n,m + V (3)
n,m|2q

)
+ Ef

{
Mn∑
m=1

Ef
(
|V (1)
n,m + V (2)

n,m + V (3)
n,m|2|In

)} 2q
2


(A.3)

Below we control

Mn∑
m=1

Ef
(
|V (1)
n,m + V (2)

n,m + V (3)
n,m|2q

)
and Ef

{
Mn∑
m=1

Ef
(
|V (1)
n,m + V (2)

n,m + V (3)
n,m|2|In

)} 2q
2

separately, at the required rate.

Control of
∑Mn

m=1 Ef

(
|V(1)

n,m + V
(2)
n,m + V

(3)
n,m|2q

)
.

We now provide a general control over terms like Ef
(
|V (1)
n,m + V

(2)
n,m + V

(3)
n,m|2q

)
.

To this end, note that, it is enough to control Ef
(

(V
(1)
n,m)2q

)
, Ef

(
(V

(2)
n,m)2q

)
,

and Ef
(

(V
(3)
n,m)2q

)
separately. We have dropped the absolute value sign as-

suming without loss of generality that q is a sufficiently large integer.

Control of Ef

(
(V

(1)
n,m)2q

)
.

Note that, by Hoeffding decomposition of U-statistics with asymmetric
kernel, we have

V (1)
n,m =

Nn,m(Nn,m − 1)(Nn,m − 2)

n(n− 1)(n− 2)
×

1

Nn,m

Nn,m∑
i=1



EfXj ,fXs
[
K̃ (Xi, Xj , Xs) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
+EfXj ,fXs

[
K̃ (Xi, Xs, Xj) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
+EfXj ,fXs

[
K̃ (Xj , Xi, Xs) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
+EfXj ,fXs

[
K̃ (Xs, Xi, Xj) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
+EfXj ,fXs

[
K̃ (Xj , Xs, Xi) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
+EfXj ,fXs

[
K̃ (Xs, Xj , Xi) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
−6Ef

[
K̃ (Xi, Xj , Xs) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
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By an application of conditional version of Marcinkiewicz Zygmund In-
equality (noting that the constants of the inequality does not depend on the
underlying distribution) we have that

Ef
(

(V (1)
n,m)2q|In

)
≤ Cq

N2q
n,m(Nn,m − 1)2q(Nn,m − 2)2q

n2q(n− 1)2q(n− 2)2q

N
− 2q

2
n,m

Nn,m
×

Nn,m∑
i=1

Ef





EfXj ,fXs
[
K̃ (Xi, Xj , Xs) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
+EfXj ,fXs

[
K̃ (Xi, Xs, Xj) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
+EfXj ,fXs

[
K̃ (Xj , Xi, Xs) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
+EfXj ,fXs

[
K̃ (Xs, Xi, Xj) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
+EfXj ,fXs

[
K̃ (Xj , Xs, Xi) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
+EfXj ,fXs

[
K̃ (Xs, Xj , Xi) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]
−6Ef

[
K̃ (Xi, Xj , Xs) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]



2q

| In


≤ Cq

N2q
n,m(Nn,m − 1)2q(Nn,m − 2)2q

n2q(n− 1)2q(n− 2)2q

N
− 2q

2
n,m

Nn,m
×

Nn,m∑
i=1



Ef
({

EfXj ,fXs
[
K̃ (Xi, Xj , Xs) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]}2q
|In
)

+Ef
({

EfXj ,fXs
[
K̃ (Xi, Xs, Xj) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]}2q
|In
)

+Ef
({

EfXj ,fXs
[
K̃ (Xj , Xi, Xs) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]}2q
|In
)

+Ef
({

EfXj ,fXs
[
K̃ (Xs, Xi, Xj) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]}2q
|In
)

+Ef
({

EfXj ,fXs
[
K̃ (Xj , Xs, Xi) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]}2q
|In
)

+Ef
({

EfXj ,fXs
[
K̃ (Xs, Xj , Xi) I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In

]}2q
|In
)


(A.4)

Above, the last inequality follows from conditional Jensen’s Inequality. A
typical term in the above summand looks like

1

p4q+1
n,m

∫
χn,m

∫
χn,m

∫
χn,m

∫ ∑
l1

∑
l2

∑
l3

(
ψk1l1 (x)ψk1l1 (x1)ψk2l2 (x)ψk2l2 (x2)

ψk3l3 (x)ψk3l3 (x3)f(x2)f(x3)

)
dxdx2dx3

2q

f(x1)dx1
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(A.5)

for some tuple k1, k2, k3. To evaluate each of the above, we consider three
different ordering of k1, k2, k3. Let us consider the the integrals in the square
bracket first. Since here x1 is fixed, we look for the subinterval of resolution
k1 where x1 lies. In each of the cases we look at the specific subinterval
containing x1 for every fixed x1. Further this subinterval needs to intersect
χn,m. Say, we index that by k1. Call this subinterval Sk1(x1). Taking the in-
tegral inside the sum over location parameters, we have that each summand
is bounded by C(ψ0, ‖f‖∞) k1k2k3

(max(k1,k2,k3))3
. For each fixed x1, the number

of summands contributing will be bounded by Cψ0

max(k1,k2,k3)
k1

. Therefore,
whichever interval x must lie it should intersect that containing xi. There-
fore, the term in the square bracket is bounded by Cψ0 for each fixed x1.
Raising to the power of 2q and integrating with respect to f over χn,m yields
the outer integral to be bounded by C(ψ0, ‖f‖∞)pn,m. Therefore, (A.5) is

always bounded by C(ψ0,‖f‖∞)

p4qn,m
. Therefore, by (A.4) we have that almost

surely,

Ef
(

(V (1)
n,m)2q|In

)
≤ CqC(ψ0, ‖f‖∞)

N2q
n,m(Nn,m − 1)2q(Nn,m − 2)2q

n2q(n− 1)2q(n− 2)2q

N
− 2q

2
n,m

Nn,m
× Nn,m

p2q
n,m

(A.6)

Now, noting that pn,m ≥ fmin
n and using Lemma 5.6 of Robins et al. (2015),

we have that

EfEf
(

(V (1)
n,m)2q|In

)
≤ Cq(‖ψ0‖∞, ‖f‖∞, fmin)

n2q
, (A.7)

which is at the desired rate of control.

Control of Ef

(
(V

(2)
n,m)2q

)
.

For the second term of the U-statistics it is enough to control for the expec-
tation of

I
(m)
21 =

(Nn,m(Nn,m − 1)(Nn,m − 1))2q

n2q(n− 1)2q(n− 2)2q

×

 1

Nn,m

(∫
χn,m

∫
χn,m

(EfXi (K̃(Xi, Xj , Xs)I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In))2 f(xj)f(xs)

p2
n,m

dxjdxs

) 2q
2


and
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I
(m)
22 =

(Nn,m(Nn,m − 1)(Nn,m − 1))2q

n2q(n− 1)2q(n− 2)2q

×

[
1

Nn,m

(∫
χn,m

∫
χn,m

(EfXi (K̃(Xi, Xj , Xs)I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In))2q f(xj)f(xs)

p2
n,m

dxjdxs

)]

Control of I
(m)
21 .

First note that one can argue by simply looking at orders of truncation that,

EfXi (K̃(Xi, Xj , Xs)I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)|In)

� 1

pn,m

[ ∑
l1

∑
l2

∑
l3

∫
χn,m

∫
ψk1l1 (x)ψk1l1 (xi)ψ

k3
l2

(x)ψk3l2 (xj)ψ
k3
l3

(x)ψk3l3 (xs)f(x1)dxdx1

+
∑

l1

∑
l2

∑
l3

∫
χn,m

∫
ψk3l1 (x)ψk3l1 (xi)ψ

k1
l2

(x)ψk1l2 (xj)ψ
k3
l3

(x)ψk3l3 (xs)f(x1)dxdx1

]

Let us control the first term in the square bracket first. For each fixed value
of (xj , xs), find the boxes of length 1

k3
which contains xj and xs. If these

boxes are disjoint then they contribute to the summand of the first term.
Therefore, only way of getting a contribution in the first term is when xj
and xs are in the same box of resolution k3. Therefore, x must also belong to
the same box of resolution k3 to contribute to the summand. Therefore, the

first term inside the square bracket is always bounded by C(ψ0, ‖f‖∞)
k1k23
k3Mn

for every choice (xj , xs) lying in the same k3 resolution box and 0 other-
wise. Therefore, the integral of the square of the first term over (xj , xs) ∈

χn,m×χn,m is bounded by C(ψ0, ‖f‖∞)
(
k1k23
k3Mn

)2
1
k23

k3
Mn

= C(ψ0, ‖f‖∞)
k21k3
M3
n

.

Now, let us look at the second term of the square bracket. Once again fix
a (xj , xs) ∈ χn,m × χn,m and find the k3 resolution box that xs belongs to.
Now note that xi, x must belong to the same k3 resolution box and hence
the number of summands contributing to the sum in second term of the
square bracket is again bounded by Cψ0 . Therefore, the second term inside

the square bracket is always bounded by C(ψ0, ‖f‖∞)
k1k23
k23

for every choice

(xj , xs) with xs lying in the some k3 resolution box and 0 otherwise. There-
fore, the integral of the square of the second term over (xj , xs) ∈ χn,m×χn,m
is bounded by C(ψ0, ‖f‖∞)

(
k1k23
k23

)2
k3
Mn

1
k3

1
Mn

= C(ψ0, ‖f‖∞)
k21
M2
n

. Since, by

our choice, k3 � Mn, the first term of the square bracket dominates af-
ter squaring and integrating over over (xj , xs) ∈ χn,m × χn,m. Taking into

account the division by pn,m’s, the final contribution to I
(m)
21 is bounded
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C(ψ0, ‖f‖∞)

k21k3
M3
n

)q
1

p4qn,m
. Therefore,

I
(m)
21 ≤ C(‖ψ0‖∞, ‖f‖∞, fmin) (Nn,m(Nn,m − 1)(Nn,m − 1))2q

(
k2

1k3

M3
n

)q
1

n2q

≤ C(‖ψ0‖∞, ‖f‖∞, fmin) (Nn,m(Nn,m − 1)(Nn,m − 1))2q

(
k3

n3

)q
.

(A.8)

Taking expectations by using Lemma 5.6 of Robins et al. (2015) yields the
desired control.

Control of I
(m)
22 .

The calculation technique of this term is similar to that of I
(m)
21 . The only

difference is that instead of taking square of the square bracket term we take
the 2qth power. Hence, the integral over (xj , xs) ∈ χn,m × χn,m is bounded
by

C(ψ0, ‖f‖∞)

[(
k1k

2
3

k3Mn

)2q
1

k2
3

k3

Mn
+

(
k1k

2
3

k2
3

)2q
k3

Mn

1

k3

1

Mn

]
.

Taking into account the division by pn,m’s, the final contribution to I
(m)
22 is

bounded

C(ψ0, ‖f‖∞)

[(
k1k

2
3

k3Mn

)2q
1

k2
3

k3

Mn
+

(
k1k

2
3

k2
3

)2q
k3

Mn

1

k3

1

Mn

]
1

p2q+2
n,m

.

Therefore,

I
(m)
21 ≤ C(‖ψ0‖∞, ‖f‖∞, fmin) (Nn,m(Nn,m − 1)(Nn,m − 2))2q

[(
k1k

2
3

k3Mn

)2q
1

k2
3

k3

Mn
+

(
k1k

2
3

k2
3

)2q
k3

Mn

1

k3

1

Mn

]
1

n4q−2

≤ C(‖ψ0‖∞, ‖f‖∞, fmin) (Nn,m(Nn,m − 1)(Nn,m − 2))2q 1

Mn

(
k3

n2

)2q−1

.

(A.9)

Taking expectations by using Lemma 5.6 of Robins et al. (2015) yields the
desired control.

Combining Controls of I
(m)
21 and I

(m)
22 for control of Ef

(
(V

(2)
n,m)2q

)
.

We get

Ef

(
(V

(2)
n,m)2q

)
≤ C(‖ψ0‖∞, ‖f‖∞, fmin)

[
1

Mn

(
k3

n2

)2q−1

+

(
k3

n3

)q]
.(A.10)
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Control of Ef

(
(V

(3)
n,m)2q

)
.

For this part we will need a moment bound for third order U-statistics. We
do that in the following Lemma.

Lemma A.6. For any q > 2, there exists a constant Cq such that for any
i.i.d random variables X1, X2, ..., Xm and degenerate symmetric kernel K.

E

∣∣∣∣∣∣ 1

m (m− 1) (m− 2)

∑
i1 6=i2 6=i3

K (Xi1 , Xi2 , Xi3)

∣∣∣∣∣∣
q

≤ Cqm
−qE |K (Xi1 , Xi2 , Xi3)|q

We will now apply Lemma A.6 to control moments of the degenerate part
of the kernelK(Xi, Xj , Xs) =

∫
Kk1(x,Xi)Kk3(x,Xj)Kk3(x,Xs)I((Xi, Xj , Xs) ∈

χn,m×χn,m×χn,m)dx. Standard arguments show that this is the term with

the highest contribution among all the different terms of V
(3)
n,m. Denoting the

degenerate part of this kernel by K
(m)
d we can show by Lemma A.6 and a

standard contraction of norm under conditional expectation argument that

Ef
(

(V (3)
n,m)2q | In

)
≤ C(ψ0, ‖f‖∞)q (Nn,m(Nn,m − 1)(Nn,m − 2))2q

n2q(n− 1)2q(n− 2)2q

×
E
∣∣∣K(m)

d (X1, X2, X3)
∣∣∣2q

N2q
n,m

≤ C(ψ0, ‖f‖∞)q (Nn,m(Nn,m − 1)(Nn,m − 2))2q

n2q(n− 1)2q(n− 2)2q

×
E
∣∣∫ Kk1(x,X1)Kk3(x,X2)Kk3(x,X3)I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)dx

∣∣2q
N2q
n,m

=
C(ψ0, ‖f‖∞)q ((Nn,m − 1)(Nn,m − 2))2q

n2q(n− 1)2q(n− 2)2q

× E
∣∣∣∣∫ Kk1(x,X1)Kk3(x,X2)Kk3(x,X3)I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)dx

∣∣∣∣2q
(A.11)

Therefore it is enough to control

E

∣∣∣∣∫ Kk1(x,X1)Kk3(x,X2)Kk3(x,X3)I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)dx

∣∣∣∣2q
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at a level so that the expectation of the right hand side of (A.11) is controlled

at the desired level of
(
k3
n2

)q
. We do this below.

Control of E
∣∣∫ Kk1(x,X1)Kk3(x,X2)Kk3(x,X3)I((Xi,Xj,Xs) ∈ χn,m × χn,m × χn,m)dx

∣∣2q.

E

∣∣∣∣∫ Kk1(x,X1)Kk3(x,X2)Kk3(x,X3)I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)dx

∣∣∣∣2q

≤
∫
χn,m

∫
χn,m

∫
χn,m

∑
l1

∑
l2

∑
l3

∫ ∣∣∣∣∣ ψk1l1 (x)ψk1l1 (x1)ψk3l2 (x)

ψk3l2 (x2)ψk3l3 (x)ψk3l3 (x3)

∣∣∣∣∣ dx
2q

f(x)f(x1)f(x2)f(x3)

p3
n,m

dx1dx2dx3

Now, for each fixed value of (x1, x2, x3), find the boxes of length 1
k3

which
contains x2 and x3. Therefore, only way of getting a contribution is when x2

and x3 are in the same box of resolution k3. Therefore, x must also belong
to the same box of resolution k3 to contribute to the summand. There-

fore, the term inside the square bracket is always bounded by
(
Cψ0

k1k23
k3

)2q

for every choice (x2, x3) lying in the same k3 resolution box and 0 other-
wise. Therefore, the final integral with respect to (x1, x2, x3) is bounded by

C(ψ0, ‖f‖∞)q

(
k1k

2
3

k3

)2q

p3n,m

1
Mn

1
k23

k3
n = Cq(‖ψ0‖∞, ‖f‖∞, fmin)k2q−1

3 n2q+1.

Combining with (A.11). Therefore, from (A.11), we have that almost
surely,

Ef
(

(V (3)
n,m)2q | In

)
≤ C(ψ0, ‖f‖∞)q ((Nn,m − 1)(Nn,m − 2))2q

n2q(n− 1)2q(n− 2)2q

× E
∣∣∣∣∫ Kk1(x,X1)Kk3(x,X2)Kk3(x,X3)I((Xi, Xj , Xs) ∈ χn,m × χn,m × χn,m)dx

∣∣∣∣2q
≤ Cq(‖ψ0‖∞, ‖f‖∞, fmin)

((Nn,m − 1)(Nn,m − 2))2q

n2q(n− 1)2q(n− 2)2q
k2q−1

3 n2q+1

≤ Cq(‖ψ0‖∞, ‖f‖∞, fmin) ((Nn,m − 1)(Nn,m − 2))2q k
2q−1
3

n4q−1

(A.12)
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Therefore, by Lemma 5.6 of Robins et al. (2015) we have that,

Ef
(

(V (3)
n,m)2q

)
≤ Cq(‖ψ0‖∞, ‖f‖∞, fmin)

k2q−1
3

n4q−1
= Cq(‖ψ0‖∞, ‖f‖∞, fmin)

(
k3

n2

)2q−1 1

n

(A.13)

Combining (A.7), (A.10) and (A.13) and summing over Mn = O(n) par-
titions we get the desired bound that

Mn∑
m=1

Ef
(
|V (1)
n,m + V (2)

n,m + V (3)
n,m|2q

)
≤ Cq(‖ψ0‖∞, ‖f‖∞, fmin)

(
k3

n2

)2q−1

.

Control of Ef

{∑Mn
m=1 Ef

(
|V(1)

n,m + V
(2)
n,m + V

(3)
n,m|2|In

)}2q
2

.

Unlike the previous case, here we will will employ a conditional version of
Gine-Latala inequality for moments of U-statistics along with the observa-
tion that the constants of the inequality does not depend on the underlying
distribution. The only difference will be that we will have to do an extra
step of taking the expectation of the moment of sum of functions of multino-
mial coordinate statistics. To deal with this we again use the Marcinkiewicz
Zygmund Inequality following an use of Theorem 2 of Shao (2000). First,

note that it is enough to control Ef
{∑Mn

m=1 Ef
(

(V
(1)
n,m)2|In

)} 2q
2

,

Ef
{∑Mn

m=1 Ef
(

(V
(2)
n,m)2|In

)} 2q
2

, Ef
{∑Mn

m=1 Ef
(

(V
(3)
n,m)2|In

)} 2q
2

separately at

the desired rate.

Control of Ef

{∑Mn
m=1 Ef

(
(V

(1)
n,m)2|In

)}2q
2

.

Note that by (A.6),

Ef
(

(V (1)
n,m)2q|In

)
≤ C(ψ0, ‖f‖∞)q

N q
n,m(Nn,m − 1)2q(Nn,m − 2)2q

p2q
n,mn2q(n− 1)2q(n− 2)2q

≤ Cq(‖ψ0‖∞, ‖f‖∞, fmin)
N q
n,m(Nn,m − 1)2q(Nn,m − 2)2q

(n− 1)2q(n− 2)2q

Therefore,

Ef
(

(V (1)
n,m)2|In

)
≤ C2(‖ψ0‖∞, ‖f‖∞, fmin)

Nn,m(Nn,m − 1)2(Nn,m − 2)2

(n− 1)2(n− 2)2

Therefore, by Theorem 2 of Shao (2000),

Ef

{
Mn∑
m=1

Ef
(

(V (1)
n,m)2|In

)} 2q
2

≤ C∗2Ef

{
Mn∑
m=1

N ′n,m(N ′n,m − 1)2(N ′n,m − 2)2

n4

} 2q
2
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where N ′n,m, m = 1, . . . ,Mn are independent with the same marginals as
Nn,m, m = 1, . . . ,Mn. Now,

Ef

{
Mn∑
m=1

N ′n,m(N ′n,m − 1)2(N ′n,m − 2)2

n4

} 2q
2

≤ Cq

 Ef
{∑Mn

m=1

(
N ′n,m(N ′n,m−1)2(N ′n,m−2)2

n4 − Ef
(
N ′n,m(N ′n,m−1)2(N ′n,m−2)2

n4

))}q
+
{∑Mn

m=1 Ef
(
N ′n,m(N ′n,m−1)2(N ′n,m−2)2

n4

)}q


(A.14)

The first term in the above summand can be controlled by Marcinkiewicz
Zygmund Inequality as follows,

Ef

{
Mn∑
m=1

(
N ′n,m(N ′n,m − 1)2(N ′n,m − 2)2

n4
− Ef

(
N ′n,m(N ′n,m − 1)2(N ′n,m − 2)2

n4

))}q

≤ CqM q
nM

− q
2

n
1

Mn

Mn∑
m=1

Ef

(
N ′n,m(N ′n,m − 1)2(N ′n,m − 2)2

n4
− Ef

(
N ′n,m(N ′n,m − 1)2(N ′n,m − 2)2

n4

))q

≤ C ′qM
q
2
−1

n

Mn∑
m=1

Ef

{(
N ′n,m(N ′n,m − 1)2(N ′n,m − 2)2

n4

)}q
(A.15)

Therefore, it is enough to control Ef
{(

N ′n,m(N ′n,m−1)2(N ′n,m−2)2

n4

)}q
for this

part of the proof. But, by Lemma 5.6 of Robins et al. (2015), we have that
there exists a constant Cq(‖f‖∞, ψ0) such that

Ef

{(
N ′n,m(N ′n,m − 1)2(N ′n,m − 2)2

n4

)}q
≤ Cq(‖f‖∞, ψ0)

n4q
. (A.16)

By a similar argument,

Ef

(
N ′n,m(N ′n,m − 1)2(N ′n,m − 2)2

n4

)
≤ Cq(‖f‖∞, ψ0)

n4
(A.17)

Combining (A.14) with (A.15), (A.16) and (A.17), we have,

Ef

{
Mn∑
m=1

N ′n,m(N ′n,m − 1)2(N ′n,m − 2)2

n4

} 2q
2

≤ Cq
[
M

q
2
−1

n Mn
Cq(‖f‖∞, ψ0)

n4q
+

(
Mn

Cq(‖f‖∞, ψ0)

n4

)q]
≤ C ′q(‖f‖∞, ψ0)

k3

n2
.

This completes the control of Ef
{∑Mn

m=1 Ef
(

(V
(1)
n,m)2|In

)} 2q
2

.
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Control of Ef

{∑Mn
m=1 Ef

(
(V

(2)
n,m)2|In

)}2q
2

.

Note that by (A.8) and (A.9),

Ef

{
Mn∑
m=1

Ef
(

(V (2)
n,m)2|In

)} 2q
2

≤ Cq(‖ψ0‖∞, ‖f‖∞, fmin)Ef

 (
k3
n3

)∑Mn
m=1 (Nn,m(Nn,m − 1)(Nn,m − 2))2

+
(
k3
n2

)
1
Mn

∑Mn
m=1 (Nn,m(Nn,m − 1)(Nn,m − 2))2

q

≤ Cq(‖ψ0‖∞, ‖f‖∞, fmin)Ef

 (
k3
n3

)∑Mn
m=1

(
N ′n,m(N ′n,m − 1)(N ′n,m − 2)

)2
+
(
k3
n2

)
1
Mn

∑Mn
m=1

(
N ′n,m(N ′n,m − 1)(N ′n,m − 2)

)2
q

(A.18)

where the last inequality in the above display is again by Theorem 2 of Shao
(2000), with N ′n,m, m = 1, . . . ,Mn are independent with the same marginals
as Nn,m, m = 1, . . . ,Mn. Proceeding as the last section, we can apply the
Marcinkiewicz Zygmund Inequality to a centered version of the right hand
side of above and obtain that

Ef

{
Mn∑
m=1

Ef
(

(V (2)
n,m)2|In

)} 2q
2

≤ Cq(‖ψ0‖∞, ‖f‖∞, fmin)Ef

 (
k3
n3

)∑Mn
m=1

(
N ′n,m(N ′n,m − 1)(N ′n,m − 2)

)2
+
(
k3
n2

)
1
Mn

∑Mn
m=1

(
N ′n,m(N ′n,m − 1)(N ′n,m − 2)

)2
q

≤ Cq(‖ψ0‖∞, ‖f‖∞, fmin)

 ( k3n3

)q {
M q
nM

− q
2
−1

n +M q
n

}
+
(
k3
n2

)q {
M
− q

2
−1

n + 1
} 

≤ Cq(‖ψ0‖∞, ‖f‖∞, fmin)

(
k3

n2

)q

Control of Ef

{∑Mn
m=1 Ef

(
(V

(3)
n,m)2|In

)}2q
2

.

Note that by (A.12),

Ef
(

(V (3)
n,m)2 | In

)
≤ C2(‖ψ0‖∞, ‖f‖∞, fmin) ((Nn,m − 1)(Nn,m − 2))2q k3

n3

which is similar to the first term of (A.18) which we controlled earlier.
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Proof of Theorem 5.2.

Proof. The proof is a simple application of Theorem 4.1 with slight mod-
ification to account for the fact that the estimator depends on three trunca-
tion points (k1, k2, k3) instead of single level of truncation parametrization
considered in Theorem 4.1. However, as noted in equations (5.1), 5.2, and
Theorem 5.1, the required problem can be equivalently parametrized by the
highest order of truncation i.e. k3. Since, k3 decides a corresponding smooth-

ness index β as the solution of k3 = n
1

1+4β , this also decides the other two
levels of truncation. As a result, the proof of Theorem 4.1 goes through in a
similar fashion. We do not provide the details here for the sake of brevity.

APPENDIX B: PROOF OF LEMMAS

Proof of Lemma A.1.

Proof.

Pf
(
I(ĵ = 1)

)
≤ Pf

[
|Î(k0, k∗)− I(k0, k∗)| ≥ C

√
log n

√
k∗
n

]
since there exists a constant Cψ such that I(k0, k∗) ≤ Cψk−2β0 �

√
k∗
n . Now,

by Hoeffding decomposition, we have

Î(k0, k∗)− I(k0, k∗)

= Un,∗ − Un,0 − Ef (Un,∗ − Un,0)

=
1

n(n− 1)

∑
i6=j

[K∗(Xi, Xj)−K0(Xi, Xj)− Ef (K∗(Xi, Xj)−K0(Xi, Xj))]

=
2

n

n∑
i=1

[
EXj (K∗(Xi, Xj)−K0(Xi, Xj))− Ef (K∗(Xi, Xj)−K0(Xi, Xj))

]
+

1

n(n− 1)

∑
i6=j

[
K∗(Xi, Xj)−K0(Xi, Xj)− EXj (K∗(Xi, Xj)−K0(Xi, Xj))

−EXi(K∗(Xi, Xj)−K0(Xi, Xj)) + Ef (K∗(Xi, Xj)−K0(Xi, Xj))

]
:= T1 + T2

Therefore,

Pf
[
|Î(k0, k∗)− I(k0, k∗)| ≥ C

√
log n

√
k∗
n

]
= Pf

[
|T1 + T2| ≥ C

√
log n

√
k∗
n

]
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≤ Pf
[
|T1| ≥ Cδn

√
log n

√
k∗
n

]
+ Pf

[
|T2| ≥ C(1− δn)

√
log n

√
k∗
n

]
for some sequence δn ≥ 0 to be specified later.

Control of Pf
[
|T1| ≥ Cδn

√
log n

√
k∗
n

]
.

Pf
[
|T1| ≥ Cδn

√
log n

√
k∗
n

]
= Pf

[
| 2
n

n∑
i=1

[
EXj (K∗(Xi, Xj)−K0(Xi, Xj))− Ef (K∗(Xi, Xj)−K0(Xi, Xj))

]
| ≥ Cδn

√
log n

√
k∗
n

]
Let Ri = EXj (K∗(Xi, Xj) − K0(Xi, Xj)). Then the above display can be
bounded from above by Markov’s Inequality as follows,

Pf

[
2

n
|
n∑
i=1

(Ri − Ef (Ri)) | ≥ cδn
√

log n

√
k∗
n

]

≤
Ef [

∑n
i=1 |Ri − Ef (Ri)|]2r(

cδn
√

log n
√
k∗
n n

)2r

≤ Crn2r 1

nr

n∑
i=1

Ef
[
|Ri − Ef (Ri)|2r

] 1(
cδn
√

log n
√
k∗
n n

)2r

≤ Crn2r n

nr
Ef
[
|Ri|2r

] 1(
cδn
√

log n
√
k∗
n n

)2r

(B.1)

where the last two lines is by applications of Marcinkiewicz Zygmund In-
equality followed by Jensen’s Inequality. Next, we evaluate Ef (|R|2r).

Ef (|R|2r) = EfX1

[{
EfX2

(K∗(X1, X2)−K0(X1, X2))
}2r
]

≤ 22r−1

[
EfX1

{
EfX2

(K∗(X1, X2))
}2r

+ EfX1

{
EfX2

(K0(X1, X2))
}2r
]

Let us evaluate EfX1

{
EfX2

(Kk(X1, X2))
}2r

for a general k. We first con-

sider,

EfX2
(Kk(X1, X2)) =

k∑
l=1

ψk,l(X1)EfX2
(ψk,l(X2))
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=
k∑
l=1

ψk,l(X1)αk,l ≤ (sup
l
αk,l)

k∑
l=1

|ψk,l(X1)|

≤ Cψ0‖f‖2∞

where the last line follows by Lemma C.2. Therefore, for some constant
Cψ0 > 0,

EfX1

{
EfX2

(Kk(X1, X2))
}2r
≤ Crψ0

‖f‖2∞.

Therefore from equation B.1, we have

Pf

[
2

n
|
n∑
i=1

(Ri − Ef (Ri)) | ≥ cδn
√

log n

√
k∗
n

]

≤ Crn2r n

nr
Ef
[
|R|2r

] 1(
cδn
√

log n
√
k∗
n n

)2r

≤ Crψ0
‖f‖2∞

nr+1(
cδn
√

log n
√
k∗
)2r ≤ Crψ0

‖f‖2∞
n

by choosing r large enough and δn > 0 at most a sub-algebraic sequence

going to 0. To see this note that nr+1

(δn
√

logn
√
k∗)

2r = 1

(δn
√

logn)
2r

(logn)
r

1+4β1

n
−(r+1)+ 2r

1+4β1

.

Choosing r ≥ 2
1−4β1

yields the desire result.

Control of Pf

[
|T2| ≥ C(1− δn)

√
log n

√
k∗
n

]
. Lemma C.4 and Lemma

C.5 imply that for some deterministic constant Cψ0 and all t > 0,

Pf

| 1

n(n− 1)

∑
i6=j

H(Xi, Xj)| >
Cψ0

n− 1

(√
k∗t+ t+

√
k∗
n
t
3
2 +

k∗
n
t2

) ≤ 6e−t

Using, 2t
3
2 ≤ t+ t2 we have,

Pf

[
|T2| >

Cψ0

n− 1

(√
k∗t+ t+

√
k∗
4n

(t+ t2) +
k∗
n
t2

)]
≤ 6e−t

Setting t = log n we have,

Pf

[
|T2| >

Cψ0

n− 1

(√
k∗ log n+ log n+

√
k∗
4n

(log n+ (log n)2) +
k∗
n

(log n)2

)]
≤ 6

n
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Now, since
√
k∗ logn
n−1 ≥ max

{
logn
n−1 ,

1
n−1

√
k∗
4n(log n+ (log n)2), k∗

n(n−1)(log n)2

}
and 1

n−1 >
1

2n for sufficiently large n, we have,

Pf
[
|T2| > 2Cψ0

√
k∗ log n

n

]
≤ 6

n

This is enough to prove the desired result and ends the proof of Lemma
A.1.

Proof of Lemma A.2.

Ef
[
(Un,1 − φ(f))2q

]
≤ 22q−1Ef

[
(Un,1 − Ef (Un,1))2q

]
+ 22q−1Ef

[
(Ef (Un,1 − φ(f)))2q

]
≤ 22q−1Ef

[
(Un,1 − Ef (Un,1))2q

]
+ C2q

ψ0
‖f‖2q∞k

−2qβ0
1

≤ 22q−1Ef
[
(Un,1 − Ef (Un,1))2q

]
+ C2q

ψ0
‖f‖2q∞

(
k1

n2

)q
where the second last inequality follows from Lemma C.1. Therefore, it is
enough to show that

sup
f∈H(β0)

Ef
[
(Un,1 − Ef (Un,1))2q

]
≤ Cqψ0

‖f‖Cq∞
(
k1

n2

)q
(B.2)

We will give two proofs of inequality B.2. The first will be valid for any
kernels based on compactly supported wavelet bases. The second will be
valid only for Haar wavelets.

First Proof of Inequality B.2.

Ef
[(
Un,1 − Ef (Un,1)2q

)]

≤ Cq


Ef
[(

2
n

∑n
i=1

{
EfXj (K1(Xi, Xj))− Ef (K1(Xi, Xj))

})2q
]

+Ef
[(

1
n(n−1)

∑
i6=j H1(Xi, Xj)

)2q
]


= Cq(I1 + I2)

where H1(Xi, Xj) = K1(Xi, Xj) − EfXi (K1(Xi, Xj)) − EfXj (K1(Xi, Xj)) +

Ef (K1(Xi, Xj)). We first bound I1 by Marcinkiewicz Zygmund Inequality.
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To this end, first write Ri = EfXj (K1(Xi, Xj)). Therefore, by Marcinkiewicz

Zygmund Inequality and Jensen’s Inequality, we have,

I1 = 22qEf

( 1

n

n∑
i=1

{Ri − Ef (Ri)}

)2q


≤ Cqn−2q/2 1

n

n∑
i=1

Ef
[
(R− i− Ef (Ri))

2q
]

≤ 2Cqn
−qEf (|R1|2q)

Therefore, it is enough to control Ef (|Ri|2q) = EfXi
[
| Ej {K1(Xi, Xj)} |2q

]
.

| Ej {K1(Xi, Xj)} | =|
k∑
l=1

ψl,k(Xi)EfXj (ψl,k(X − j)) |

=|
k∑
l=1

αl,kψl,k(Xi) |≤ sup(|αl,k|)
k∑
l=1

|ψl,k(Xi)|

≤ Cψ0‖f‖∞
1√
k1
Cψ0‖f‖∞

√
k1 = C2

ψ0
‖f‖2∞

by Lemma C.2. Therefore,

Ef (|Ri|2q) ≤ C2
ψ0
‖f‖2∞

as well. This in turn implies

I1 ≤ 2Cqn
−qEf (|R1|2q) ≤ 2CqC

2
ψ0
‖f‖2∞n−q ≤ 2CqC

2
ψ0
‖f‖2∞

(
k1

n2

)q
as required. Therefore, it is enough to show that

I2 ≤ Cqψ0
‖f‖Cq∞

(
k1

n2

)q
i.e. we need to control Ef

(
1

n(n−1)

∑
i6=j H1(Xi, Xj)

)2q
where H1(Xi, Xj) =

K1(Xi, Xj)− EfXj (K1(Xi, Xj))− EfXi (K1(Xi, Xj)) + Ef (K1(Xi, Xj)). Fol-

lowing the arguments of Lemma C.4 and Lemma C.5, we can also show that
for all t > 0,

Pf

| 1

n(n− 1)

∑
i6=j

H1(Xi, Xj)| >
Cψ0

n− 1

(√
k1t+ t+

√
k1

n
t
3
2 +

k1

n2
t2

) ≤ 6e−t.
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Using 2t
3
2 ≤ t2 + t, we have,

Pf

| 1

n(n− 1)

∑
i6=j

H1(Xi, Xj)| >
Cψ0

n− 1

(√
k1t+ t

(√
k1

4n
+ 1

)
+

(√
k1

4n
+
k1

n2

)
t2

) ≤ 6e−t.

Calling, 1
n(n−1)

∑
i6=j H1(Xi, Xj) = Z, we have an exponential inequality of

the form,

Pf
[
|Z| > a1

√
t+ a2t+ a3t

2
]
≤ 6e−t,

with a1 =
Cψ0
n−1

√
k1, a2 =

Cψ0
n−1

(√
k1
4n + 1

)
, a3 =

Cψ0
n−1

(√
k1
4n + k1

n2

)
. From

this we need to estimate,

Ef (|Z|2q) = 2q

∫ ∞
0

x2q−1Pf (|Z| ≥ x)dx.

We do this as follows. Suppose, t(x) solve for a1

√
t(x)+a2t(x)+a3t

2(x) = x.
Now, trivially a1

√
t+a2t+a3t

2 is an increasing function of t ∈ R+. Therefore,
if we can find a function h(x) ≥ 0 such that a1

√
h(x)+a2h(x)+a3h

2(x) ≤ x
for all x ≥ 0, then h(x) ≤ t(x) for all x ≥ 0.It is not too difficult to
see that one such h(x) is given by h(x) = b1x

2 ∧ b2x ∧ b3
√
x where for

b1 = c1
a21
, b2 = c2

a2
, b3 = c3√

a3
for fixed constants c1, c2, c3 > 0. Therefore,

Ef (|Z|2q) = 2q

∫ ∞
0

x2q−1Pf (|Z| ≥ x)dx

≤ 2q

∫ ∞
0

x2q−1Pf (|Z| ≥ a1

√
h(x) + a2h(x) + a3h

2(x))dx

≤ 12q

∫ ∞
0

x2q−1e−h(x)dx

= 12q

∫ ∞
0

x2q−1e−{b1x2∧b2x∧b3
√
x}dx

≤ 12q

[∫ ∞
0

x2q−1e−b1x
2
dx+

∫ ∞
0

x2q−1e−b2xdx+

∫ ∞
0

x2q−1e−b3
√
xdx

]
= 12q

(
Γ(q)

2bq1
+

Γ(2q)

b2q2
+

2Γ(4q)

b4q3

)
≤ Cqψ0

(
k1

n2

)q
by our choices of b1, b2, b3. This completes the first proof.

Proof of Lemma A.3. Pick any l ≤ lc(C∗). Then

Pf (ĵ = l) ≤ Pf (Î2(k∗l , k
∗
j ) ≤ C2

opt log nR(k∗j ))
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= Pf
(
Î(k∗l , k

∗
j )− I(k∗l , k

∗
j ) ≤ Copt

√
log n

√
R(k∗j )− I(k∗l , k

∗
j )
)

− Pf
(
Î(k∗l , k

∗
j )− I(k∗l , k

∗
j ) < −Copt

√
log n

√
R(k∗j )− I(k∗l , k

∗
j )
)

(B.3)

Recall that by l ≤ lc(C
∗), we have that I2(k∗l , k

∗
j ) > C∗ log nR(k∗j ). We

consider two cases.

Case 1: I(k∗l ,k
∗
j ) >

√
C∗ log nR(k∗j ).

In this case we have that the right hand side of (B.3) is bounded by

Pf
(
Î(k∗l , k

∗
j )− I(k∗l , k

∗
j ) ≤ Copt

√
log n

√
R(k∗j )−

√
C∗ log nR(k∗j )

)
+ Pf

(
Î(k∗l , k

∗
j )− I(k∗l , k

∗
j ) < −Copt

√
log n

√
R(k∗j )−

√
C∗ log nR(k∗j )

)
≤
Cψ0

n
,

where the last line follows from the proof of Lemma A.1 along the lines of
Lemma C.4 and C.5, provided Copt is according to the constant specified in
Theorem 3.1 and C∗ > 4C2

opt.

Case 2: I(k∗l ,k
∗
j ) < −

√
C∗ log nR(k∗j ).

In this case we have that the right hand side of (B.3) equals,

1− Pf
(
Î(k∗l , k

∗
j )− I(k∗l , k

∗
j ) > Copt

√
log n

√
R(k∗j )−

√
C∗ log nR(k∗j )

)
− 1 + Pf

(
Î(k∗l , k

∗
j )− I(k∗l , k

∗
j ) ≥ −Copt

√
log n

√
R(k∗j )−

√
C∗ log nR(k∗j )

)
≤
Cψ0

n
,

where the last line once again follows from the proof of Lemma A.1 along
the lines of Lemma C.4 and C.5, provided Copt is according to the constant
specified in Theorem 3.1 and C∗ > 4C2

opt.

Proof of Lemma A.4.

Proof.

Pf (ĵ ≥ j + 2) ≤ Pf
(
∃l > j : Î2(k∗j+1, k

∗
l ) > C2

opt log nR(k∗l )
)

≤
N−1∑
l=j+2

Pf
(
Î2(k∗j+1, k

∗
l ) > C2

opt log nR(k∗l )
)
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Now, for any l ≥ j + 2,

Pf
(
Î2(k∗j+1, k

∗
l ) > C2

opt log nR(k∗l )
)

= Pf
(
Î(k∗j+1, k

∗
l )− I(k∗j+1, k

∗
l ) > Copt

√
log n

√
R(k∗l )− I(k∗j+1, k

∗
l )
)

+Pf
(
Î(k∗j+1, k

∗
l )− I(k∗j+1, k

∗
l ) < −Copt

√
log n

√
R(k∗l )− I(k∗j+1, k

∗
l )
)
.

Thereafter, note that
I2(k∗j+1,k

∗
l )

R(k∗l ) ≤ Cψ0

(k∗j+1)
−4βf

k∗
l
n2

, which has a power of n

equal to 8βl
1+4βl

− 8βf
1+4βj+1

≤ 0 since βl < βj+1 ≤ βf . Hence arguing as

in proof of Lemma A.1 along the lines of Lemma C.4 and C.5, we have
the desired result provided Copt is according to the constant specified in
Theorem 3.1.

Proof of Lemma A.5.

Proof. We begin by noting that it is enough to control∫
χn,m

∫
χn,m

∫
χn,m

∫
Kk1(x, x1)Kk2(x, x2)Kk3(x, x3)f(x1)f(x2)f(x3)dxdx1dx2dx3

for arbitrary Mn ≤ k1 ≤ k2 ≤ k3. We assume that k1 divides k2, k2 divides k3

andMn divides k1. The proof for a general tuple follows by similar arguments
with suitable obvious modifications. The above integral equals,∫

χn,m

∫
χn,m

∫
χn,m

∫ ∑
l1

∑
l2

∑
l3

{
ψk1l1 (x)ψk1l1 (x1)ψk2l2 (x)

ψk2l2 (x2)ψk3l3 (x)ψk3l3 (x3)

}
3∏
i=1

f(xi)dxi

where ψkl (x) is k dilated an l shifted wavelet bases. Taking the integral inside
the summation, any of the summand equals at most C(ψ0, ‖f‖∞) 1

k3
k1k2k3

1
k1k2k3

=
C(ψ0,‖f‖∞)

k3
. The reason being, each of the summand corresponds to an inte-

gral of x1, x2, x3 over intervals of length 1
k1

, 1
k2

, and 1
k3

respectively. More-
over, since k3 is the finest refinement, the integral over x is simply over an
interval of length 1

k3
. The bound on the summand then follows. Therefore,

we now need to count the number of summands that contribute to the sum
above. This can be argued as follows. For every given subinterval χn,m there

are less than Cψ0
k1
Mn

subintervals of length
Cψ0
k1

with support intersecting

that of some ψk1l1 . For each given subinterval of length
Cψ0
k1

with support in-

tersecting that of some ψk1l1 , there are less than Cψ0
k2
k1

subintervals of length
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Cψ0
k2

with support intersecting that of some ψk2l2 . Finally, for each given subin-

terval of length
Cψ0
k2

with support intersecting that of some ψk2l2 , there are

less than Cψ0
k3
k2

subintervals of length
Cψ0
k3

with support intersecting that of

some ψk3l3 . Therefore, total number of terms contributing to the sum above

is at most Cψ0
k1
Mn

k2
k1
k3
k2

= Cψ0
k3
Mn

. This implies that in absolute value, each

αn,m is at most C(ψ0, ‖f‖∞) 1
k3

k3
Mn

= C(ψ0, ‖f‖∞) 1
Mn

, as promised.

Proof of Lemma A.6.

Proof. We evoke Proposition 2.4 of Giné, Lata la and Zinn (2000) (page
9) which implies that for a universal constant depending on q

E

∣∣∣∣∣∣ 1

m (m− 1) (m− 2)

∑
i1 6=i2 6=i3

K (Xi1 , Xi2 , Xi3)

∣∣∣∣∣∣
q

. (m (m− 1) (m− 2))−q Cq


m3q/2E

[∣∣E (K2 (Xi1 , Xi2 , Xi3) |Xi3

)∣∣q/2]
+mqE

[
maxi3

∣∣E (K2 (Xi1 , Xi2 , Xi3) |Xi3

)∣∣q/2]
+mq/2E

[
maxi3,i2

∣∣E (K2 (Xi1 , Xi2 , Xi3) |Xi3 , Xi2

)∣∣q/2]
+E [maxi3,i2,i1 |(K (Xi1 , Xi2 , Xi3))|q]


(B.4)

Now, we have that for Z1, ..., Zm > 0 identically distributed, possibly de-

pendent with E
(
Z(m)

)
≤ mE (Z1) = E

(∑
i
Zi

)
where Z(m) = maxi∈{1,...,m} Zi.

So that B.4 is bounded above by

Cq (m (m− 1) (m− 2))−q Cq


m3q/2E [|K (Xi1 , Xi2 , Xi3)|q]

+mq+1E [|K (Xi1 , Xi2 , Xi3)|q]
+mq/2+2E [|K (Xi1 , Xi2 , Xi3)|q]

+m3E [|K (Xi1 , Xi2 , Xi3)|q]


. Cqm

−qE [|K (Xi1 , Xi2 , Xi3)|q]

APPENDIX C: TECHNICAL LEMMAS

The following lemma regarding the bias of Ukn will be used regularly.
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Lemma C.1. Suppose f ∈ H(β). Then for compactly supported wavelet
bases

sup
f
| Ef (Ukn)− φ(f) |≤ Cψ0‖f‖∞k−2βf .

Proof. The proof involves simple algebra and properties of compactly
supported wavelet bases (Härdle et al., 1998) and hence is omitted.

We will be using the following lemma about properties of compactly sup-
ported wavelets.

Lemma C.2. For kernels based on compactly supported wavelets, as de-
fined by Equation (2.1), the following hold.

1. ‖fk‖∞ ≤ Cψ0‖f‖∞.
2. supl |αk,l| ≤

Cψ0‖f‖∞
k .

3. supx
∑k

l=1 |ψk,l(x)| ≤ Cψ0 .k

Proof. Once again, the proofs follow from simple algebra and properties
of compactly supported wavelet bases (Härdle et al., 1998).

We will also need the following asymptotic normality of the quadratic
estimators (Robins et al., 2015).

Lemma C.3. For f ∈ H(β, c) we have
U
k(β)
n −Ef

(
U
k(β)
n

)
√
V arf

(
U
k(β)
n

) ⇒ N(0, 1) where

V arf

(
U
k(β)
n

)
∼ k(β)

n2 .

We will need the following lemma about tails of second order U-statistics.

Lemma C.4. Let,

H(X,Y ) = K∗(X,Y )−K0(X,Y )− EY (K∗(X,Y )−K0(X,Y ))

− EX(K∗(X,Y )−K0(X,Y )) + Ef (K∗(X,Y )−K0(X,Y ))

. Then the following exponential inequality holds for every t > 0 and a
deterministic constant C > 0.

Pf

|∑
i6=j

H(Xi, Xj)| ≥ C(A1

√
t+A2t

2 +A3t
3
2 +A4t

2)

 ≤ 5.6e−t,
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where
A2

1 = n(n− 1)Ef [H2(X1, X2)],

A2 = sup

 |Ef
[∑n

i=1

∑i−1
j=1H(X1, X2)ai(X1)bj(X2)

]
| :

Ef
(∑n

i=1 a
2
i (X1)

)
≤ 1,Ef

(∑n
j=1 b

2
j (X2)

)
≤ 1

 ,

A2
3 = n sup

x
{EfX2

(H2(x,X2))},

A4 = sup
x,y
|H(x, y)|.

Proof. This follows directly from Theorem 3.4 of Houdré and Reynaud-
Bouret (2003).

We now estimate the terms A1, A2, A3, A4 in the following lemma.

Lemma C.5. For kernels based on compactly supported wavelet bases,
there exists deterministic constant Cψ0 (depending on ψ0 and ‖f‖∞) such
that,

A2
1 ≤ C2

ψ0
n(n−1)(k∗+k0), A2 ≤ Cψ0n,A

2
3 ≤ Cψ0n(k∗+k0), A4 ≤ Cψ0(k∗+k0).

Proof. The proof follows along the same line of arguments as those laid
down in Proposition 2 of Bull and Nickl (2013).
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