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ABSTRACT 

Introduction: Recent cohort studies use exposure prediction models to estimate the 

association between long-term residential concentrations of PM2.5 and health. Because these 

prediction models rely on PM2.5 monitoring data, predictions for times before extensive 

spatial monitoring present a challenge to understanding long-term exposure effects. The 

Environmental Protection Agency (EPA) Federal Reference Method (FRM) network for 

PM2.5 was established in 1999. We evaluated a novel statistical approach to produce high 

quality exposure predictions from 1980-2010 for epidemiological applications. 

Methods: We developed spatio-temporal prediction models using geographic predictors and 

annual average PM2.5 data from 1999 through 2010 from the FRM and the Interagency 

Monitoring of Protected Visual Environments (IMPROVE) networks. The model consists of 

a spatially-varying long-term mean, a spatially-varying temporal trend, and spatially-varying 

and temporally-independent spatio-temporal residuals structured using a universal kriging 

framework. Temporal trends in annual averages of PM2.5 before 1999 were estimated by 

using a) extrapolation based on PM2.5 data for 1999-2010 in FRM/IMPROVE, b) PM2.5 

sulfate data for 1987-2010 in the Clean Air Status and Trends Network, and c) visibility data 

for 1980-2010 across the Weather-Bureau-Army-Navy network. We validated the resulting 

models using PM2.5 data collected before 1999 from IMPROVE, California Air Resources 

Board dichotomous sampler monitoring (CARB dichot), the Southern California Children’s 

Health Study (CHS), and the Inhalable Particulate Network (IPN). 

Results: The PM2.5 prediction model performed well across three trend estimation 

approaches when validated using IMPROVE and CHS data (R2= 0.84–0.91). Model 

performance using CARB dichot and IPN data was worse than those in IMPROVE most 

likely due to inconsistent sampling methods and smaller numbers of monitoring sites. 

3 

 

Hosted by The Berkeley Electronic Press



Discussion: Our prediction modeling approach will allow health effects estimation associated 

with long-term exposures to PM2.5 over extended time periods of up to 30 years. 
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INTRODUCTION 

 Many cohort studies of the long-term effects of fine particulate matter (PM2.5) air 

pollution on health have used exposure prediction models to estimate individual-level long-

term concentrations at cohort residences (e.g., Eeften et al. 2012; Paciorek et al. 2009; Puett 

et al. 2009; Beelen et al. 2014; Sampson et al. 2013; Young et al. 2014). These exposure 

prediction models rely on PM2.5 monitoring data collected from a spatially-distributed 

monitoring networks. PM2.5 predictions are generally infeasible for times before 

comprehensive spatial monitoring began in the late 1990s or 2000s depending on the county. 

However, many cohorts were enrolled before these extensive monitoring networks began 

operating. Many studies thus use PM2.5 estimates based on monitoring data from later time 

periods than cohort follow-up for their health analyses (e.g., Beelen et al. 2008; Cesaroni et 

al. 2013; Weichenthal et al. 2014). This temporal misalignment of PM2.5 predictions with 

health data could affect study results.  

Other studies have developed historical prediction models to temporally align 

exposure estimates with health outcomes. They used back-extrapolation, historically 

available large particle data, or physical or chemical models complemented by visibility, 

emission, meteorology, and satellite data (Beelen et al. 2014; Brauer et al. 2012; Lall et al. 

2004; Molnar et al. 2015; Paciorek et al. 2009; Yanosky et al. 2009; Hogrefe et al. 2009; 

Ozkanak et al. 1985). However, most these studies estimated historical PM2.5 concentrations 

in limited areas and/or for relatively short time periods. Furthermore, the model evaluation 

for the period prior to extensive monitoring was restricted to small datasets or poorly 

reported. 

In the U.S., many populations of great value for assessment of PM2.5 health effects 

collected data well before 1999, when reliable long-term regulatory monitoring data for PM2.5 
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began to be available. We aimed to develop a national prediction model to estimate annual 

average concentrations of PM2.5 in the continental U.S. for the entire time period between 

1980 through 2010. We evaluated our historical predictions from 1980 through 1998 using 

available external validation datasets and investigated residential historical predictions using 

a multi-city cohort. 

METHODS 

PM2.5 data 

We obtained daily PM2.5 concentrations collected in the two national PM2.5 

monitoring networks: Environmental Protection Agency (EPA) Federal Reference Method 

(FRM) and Interagency Monitoring of Protected Visual Environment (IMPROVE) networks. 

Whereas FRM sites were located mostly in urban areas to monitor population-level of PM2.5 

concentrations, IMPROVE sites were established to monitor visibility and located mostly in 

wilderness areas and national parks (U.S. EPA 2004; Hand 2011). We downloaded the data 

from all FRM sites from 1999 through 2010 and IMPROVE sites from 1990 through 2010 

from the EPA Air Quality database (U.S. EPA 2014). We computed annual averages of PM2.5 

for each site that met minimum inclusion criteria of at least two-thirds complete data points 

for a year (with exact numbers dependent on the sampling schedule) and less than 45 

consecutive missing days of sampling. We used the PM2.5 data collected in FRM and 

IMPROVE for 1999-2010 for model development including trend estimation, whereas we 

reserved the IMPROVE data from 1990-1998 for model validation. We identified all 

monitoring sites in three regions: the East, Mountain West, and West Coast regions (Figure 

1). 

In order to estimate temporal trends for the entire 1980 through 2010 time period, 

including all years without FRM PM2.5 measurements, we obtained two additional sources of 
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data: annual average concentrations of PM2.5 sulfate measured in the Clean Air Status and 

Trends Network (CASTNet) from 1987 through 2010 (U.S. EPA 2013) and daily noon-time 

visual ranges, as a measure of visibility, monitored in the Weather-Bureau-Army-Navy 

(WBAN) network from 1980 through 2010. Because most visibility measurements collected 

by optical instruments had maximum of 16.093 km (10 miles) and these instruments replaced 

measurements taken by the human eye in 1990s, we truncated all measurements to a 

maximum 16.093 km distance. We computed annual averages of visibility after excluding 

days with heavy fog, dust, and precipitation, and after applying the same inclusion criteria as 

for PM2.5 data.  

For the model evaluation prior to 1999, we obtained PM2.5 data from three different 

networks in addition to IMPROVE: the Southern California Children’s Health Study (CHS) 

for 1988-2001 (Peters et al. 2004), the California Air Resources Board dichotomous sampler 

monitoring (CARB dichot) for 1994-2003 in California (Blanchard et al. 2011), and the 

Inhalable Particulate Network (IPN) for 1980-1981 over the continental U.S (U.S. EPA 

1985). CHS PM2.5 data collected using two-week samplers were converted to FRM-

equivalent PM2.5 for computing annual averages (Peters et al. 2004). Likewise, for the CARB 

dichot data we adopted a published conversion equation to estimate FRM-equivalent PM2.5 

(Blanchard et al. 2011). 

Geographic variables and geocoding 

We considered more than 800 variables representing geographic characteristics 

including traffic, land use, emission, elevation, and vegetation index (Supplemental Material, 

Table S1). Computation of these variables at each of all PM2.5 monitoring sites was 

implemented in ArcGIS 10.2. For land use characteristics, we used data collected in different 

time periods to incorporate time-varying spatial features into the model: land cover data from 
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the 1970s and 1980s, and satellite data generated in 2006. Our final list of geographic 

variables was pruned to about 300 variables after we eliminated the less informative variables 

with little variability. To illustrate our predictions over time, we geocoded residential 

addresses of 7,552 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) and 

associated MESA Air project who consented to use of their addresses and provided historical 

residential addresses dating back to 1980, as well as 12,501 coordinates of points on a 25 

kilometer grid in the continental U.S according to standardized procedures. 

Development of the PM2.5 model for 1980-2010 

The PM2.5 model for the period of 1980-2010 was developed based on the framework 

of the PM2.5 spatio-temporal prediction model in MESA Air (Keller et al. 2015; Lindstrom et 

al. 2014; Sampson et al. 2011; Szpiro et al. 2010). We modeled the log annual average PM2.5 

concentrations from 1999 through 2010 as a function of a spatially varying long-term mean, a 

spatially varying temporal trend, and spatio-temporal residuals. The spatially varying 

temporal trend is composed of a spatially-varying trend coefficient and a trend basis function. 

The trend basis function is estimated from singular vector decomposition of the data (Fuentes 

et al. 2006). We restricted these data to sites with more than six years of monitoring out of the 

twelve possible years. We estimated the spatially-varying long-term mean and trend 

coefficient using universal kriging, which integrates geographic predictors and spatial 

smoothing (Banerjee et al. 2003). We used partial least squares (PLS) to reduce the 

dimension of the hundreds of geographic variables to two derived predictors that are the 

linear combinations that maximize their covariance with PM2.5. The spatial dependence 

structure in the kriging model for the long-term mean was assumed to be exponential and was 

indexed by the range, partial sill, and nugget parameters. To avoid unnecessary complexity in 

the model, we did not allow a spatial structure for the trend coefficient (zero range and partial 
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sill). We also used kriging to model the spatially-dependent and temporally-independent 

spatio-temporal residuals. We examined alternative modeling choices including a spatial 

structure for the trend coefficient and interaction terms by three regions. 

 We explored various approaches to estimate the temporal trend before 1999. These 

included the backward extrapolation of the temporal trend basis function estimated from the 

1999-2010 FRM PM2.5 data, and estimation of the temporal trend using other sources of data 

such as emission, meteorological variables, visibility, and PM2.5 sulfate; all these other 

measurements have been shown to be associated with PM2.5 in previous studies (Hand et al. 

2014; Malm et al. 2002; Ozkanak et al. 1985). Ultimately we selected three approaches for 

in-depth evaluation of the historical trend estimation: 1) extrapolation of the linear trend 

estimated based on the PM2.5 data in FRM and IMPROVE for 1999-2010, 2) estimation of 

the trend using the PM2.5 sulfate data in CASTNet for 1987-2010 and extrapolation for 1980-

1986, and 3) estimation of the trend using the visibility data in WBAN for 1980-2010. We 

also examined alternative approaches, including combining two data sources into one 

temporal trend, estimating two temporal trends, and replacing the trend by meteorological 

variables as spatio-temporal covariates. 

To evaluate our model for 1999-2010, we performed 5-fold cross-validation and 

computed mean square error (MSE) and MSE-based R-square (R2) statistics for annual 

averages (Keller et al. 2015). We presented cross-validation statistics yearly for these twelve 

years, in all regions for each year as well as all years combined and in each of the three 

regions for all years combined.  

Model evaluation for the pre-1999 period 

 We externally validated the model using four distinct PM2.5 datasets, all sampled 

before 1999: 1) IMPROVE data for 1990-1998, 2) CARB dichot data for 1988-2001, 3) CHS 
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data for 1994-2003, and 4) IPN data for 1980-1981 (Table 1). We predicted annual averages 

of PM2.5 concentrations at monitoring sites in each of the four monitoring networks and 

computed out-of-sample MSEs and MSE-based R2s using these external data sources for all 

years and regions as well as by year and region. 

Predictions  

We created maps of PM2.5 predictions on a 25 km grid over the contiguous U.S. in 

1980, 1990, 2000, and 2010 to examine spatially-varying changes of PM2.5 concentrations 

over time. We also selected 10 grid coordinates with the highest populations in each of the 

three regions and explored the trends of predictions over 31 years.  

We also conducted some analyses to provide information on the degree to which 

exposure estimation based on data from the year 2000 reflects concentrations predicted by 

our approach in the earlier period. In order to investigate the sensitivity of temporally- and 

spatially-varying individual exposures that incorporate changes in people’s residences over 

time, we predicted PM2.5 concentrations at all home addresses from 1980 through 2000, the 

year of the baseline exam, among members of the MESA Air cohort and computed a 21-year 

average weighted by residence times across historical addresses for each participant. These 

predictions were compared to annual averages estimated for the same participants in 2000, 

the year of the baseline exam. We stratified this comparison by the 5,086 who did not move 

during 1980-2000 (“non-movers”) and 2,466 people who moved at least once. 

RESULTS 

 Means of PM2.5 annual averages for 1999-2010 in FRM and IMPROVE were 12.03 

(SD=3.23) and 5.44 (2.94) µg/m3, respectively (Table 1). The number of monitoring sites was 

small in 1999 compared to 2000-2010 and most sites were located in the East region (Figure 

1, Supplemental Material, Figure S1). Annual average concentrations of PM2.5 decreased over 
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time from 1999 through 2010, particularly in the East and West Coast regions (Supplemental 

Material, Figure S2). Figure 2 displays the estimated temporal trends from 1980 through 

2010 using the three trend estimation approaches. Whereas the extrapolated trend based on 

the PM2.5 data was linear, the trends estimated using PM2.5 sulfate and visibility 

measurements were only generally linear and had different rates of decrease in different time 

periods.  

In the model evaluation for 1999-2010, cross-validated R2s for all twelve years 

combined and each single year were high, varying between 0.77 and 0.87 across the three 

trend estimation approaches (Table 2). The East and West Coast regions gave higher R2s 

(0.80-0.86) than those in the Mountain West region (0.59-0.60). Supplemental Material, 

Figure S3 shows estimated regression and variance parameters for the long-term mean, the 

temporal trend coefficient, and spatio-temporal residuals. Regression coefficients of two PLS 

predictors for both the long-term mean and trend coefficient were statistically significantly 

different from 0, reflecting the large contributions of PLS predictors to these two 

components. Significant range and partial sill parameters for the long-term mean show an 

additional important contribution of the spatial correlation structure to the long-term mean. 

The cross-validation statistics of alternative modeling approaches in the sensitivity analyses 

were consistent with (and no better than) or poorer than those of our primary approach shown 

in Table 2 (data not shown). 

Tables 3 and 4 show the external validation statistics for the pre-1999 period using 

IMPROVE data and the CHS, CARB dichot, and IPN data, respectively. Using IMPROVE 

data, the R2s were consistently high for all years and each year separately (0.70-0.91) across 

the three trend estimation approaches (Table 2, Figure 3). The R2s were slightly higher for the 

model using the extrapolated linear trend based on PM2.5 data than estimated trends from 
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PM2.5 sulfate and visibility data. In addition, the earliest years (1990 and 1991) gave lower 

R2s (0.70-0.85) than the other years (0.83-0.93). The East region produced higher R2s (0.67-

0.88) than the Mountain West region. When the model was validated using the CHS data, the 

R2s were also generally high (0.71-0.90). CARB dichot data gave high R2s over 0.5 except 

for some years whereas IPN data consistently showed low R2s.  

Figure 4 shows predicted PM2.5 concentrations dramatically decreased over 31 years 

with only a few areas that remained consistently high in the continental U.S. over the entire 

time period. The decreasing trend over time was also clear across the 10 most populated grid 

coordinates in each region (data not shown). Thirty-one year residence-weighted average 

PM2.5 predictions for MESA Air participants were generally higher than the corresponding 

annual averages at their residence in 2000 (Figure 5). The two sets of predictions showed 

more inconsistency for movers with slightly lower correlation than for non-movers. 

DISCUSSION 

 We developed a 31-year prediction model to estimate fine-scale ambient PM2.5 

concentrations in the continental U.S., including the time period prior to 1999 when extensive 

monitoring data became available. Key aspects of our approach to historical (pre-1999) 

prediction were our consideration of various trend estimation approaches and our model 

validation with multiple external validation datasets. The prediction model performed well 

for 1999-2010 as assessed by cross-validation. The pre-1999 predictions also generally 

performed well across three trend estimation approaches when validated based on external 

PM2.5 monitoring network data, particularly IMPROVE and CHS data. The model 

performance was better in the more highly populated East region. Twenty one-year average 

PM2.5 concentrations for 1980-2000 at MESA Air participant residences tended to be higher 
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than and somewhat inconsistent with annual averages in 2000, though the correlation was 

higher among those with stable residence locations.  

 Developing a prediction model for estimating long-term PM2.5 concentrations for the 

time period when there is little available PM2.5 monitoring data requires using external 

information to estimate a temporal trend. Our three approaches for trend estimation gave 

consistently good model performance as assessed by R2s, with a slight edge to the linearly 

extrapolated trend for predictions before 1990. This could be because the three trends we 

considered, while based on three different data sources, all showed similarly decreasing 

patterns with only slightly different shapes. We considered PM2.5 sulfate data useful for trend 

estimation as a large reduction of PM2.5 in 1990s and early 2000s was likely to be due to a 

large reduction of sulfate, particularly in the East region (Malm et al. 2002; US EPA 2003). 

The non-linear decrease of the estimated trend from PM2.5 sulfate data could be due to the 

timing of implementation of policies regulating sulfur dioxide emissions. The CASTNet sites 

were located mostly in rural areas which may not represent PM2.5 concentrations from urban 

sources or affecting population centers. However, as sulfate is an important regional pollutant 

that exhibits homogenous concentrations on a large spatial scale due to long-range transport, 

the rural sites still allow us to assess large regional trends over time as intended by the 

CASTNet monitoring design. The trend estimated based on the visibility data showed a 

somewhat different shape from that of the PM2.5 sulfate trend. In addition to a non-linear 

relationship between PM2.5 concentrations and visibility, the change of sampling methods for 

visibility from human eye to optical instruments in late 1990s may impact interpretation of 

the pattern (Hyslop et al. 2009; US EPA 2003).  

Our historical model was based on a spatio-temporal framework using annual 

averages of PM2.5 concentrations for multiple years. Other studies in Europe and Canada 

13 

 

Hosted by The Berkeley Electronic Press



predicted annual averages of NO2, NOX, and PM2.5 by back-extrapolation (Beelen et al. 2014; 

Chen et al. 2010; Gulliver et al. 2013; Meng et al. 2015). The back-extrapolation approach 

computed the difference of spatial averages between the two time periods or the ratio of a 

short-term average to an annual average based on a few fixed site measurements and then 

added to or multiplied by predictions in recent years in order to obtain estimates in early 

years. In contrast with the back-extrapolation approach, our spatio-temporal approach allows 

prediction for an extended time period when there are no measurements.  

Like other authors, we considered various alternative approaches to historical 

prediction. Most previous studies used ratios of PM2.5 to PM10 to leverage PM10 data 

collected before PM2.5 monitoring began, as opposed to our approach directly using PM2.5 

along with an estimated temporal trend. Some U.S. studies developed ratio models that 

predict monthly averages of PM2.5 concentrations for 1988-1998 by multiplying by PM10 for 

Nurse’s Health Study participants residing in Northeastern and Midwestern regions (Paciorek 

et al. 2009; Yanosky et al. 2009) and expanded to the continental U.S. (Yanosky et al. 2014). 

In Taipei, Taiwan, another study developed a ratio model for predicting historical monthly 

averages of PM2.5 (Yu et al. 2010). In separate analyses to mimic this approach, we also 

applied our model to annual average ratios. Our cross-validated R2s were high between 1999 

and 2010 (R2=0.84-0.90) consistent with those in our original model. However, R2s in the 

out-of-sample validation using IMPROVE data were lower, particularly in early years such as 

1990 and 1991 (R2=0.13 and 0). This poor model performance could be due to relatively poor 

prediction performance of PM10 rather than PM2.5. A spatio-temporal prediction model for 

PM10 annual averages in the continental U.S. achieved a cross-validated R2 of 0.55 (Hart et 

al. 2009), much lower than the cross-validated R2 of 0.88 in a spatial prediction model for 
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PM2.5 annual averages in 2000 (Sampson et al. 2013). It is also possible that temporal and 

spatial patterns of PM10 vary rather differently from those of PM2.5.  

In addition to ratios, we also explored modeling approaches that incorporated 

visibility or meteorology to predict historical PM2.5 concentrations. A group of studies used 

the extinction coefficient, the inverse visual range multiplied by a constant, solely or jointly 

with PM2.5 and PM10 data based on their high correlation with PM2.5 concentrations (Ozkanak 

et al. 1985; Paciorek et al. 2009; Yanosky et al. 2009). The good model performance using 

the visibility trend in our model confirms the usefulness of visibility data for predicting 

PM2.5. However, our results showed slightly better model performance using PM2.5 data than 

visibility data when validated on the national scale using IMPROVE data. We examined our 

models after adding meteorological measurements as spatio-temporal covariates and found 

worse model performance than our preferred approach.  

We evaluated our historical prediction model using four available external validation 

datasets; together these covered 13 years of the 19 year period for 1980-1998 in much of the 

United States. Previous studies for historical PM2.5 prediction models either presented cross-

validated results using data before 1999 but without any external validation datasets 

(Paciorek et al. 2009; Yanosky et al. 2009; Yanosky et al. 2014), or reported external 

validation results based on a limited dataset for a short time period (Hogrefe et al. 2009; Lall 

et al. 2004; Ozkaynak et al. 1985; Yu et al. 2010). Our model performed particularly well 

when evaluated against IMPROVE and CHS data. The IMPROVE data, as a national 

network with a strength as a validation dataset, gave the highest R2s among all external 

validation datasets, possibly due to the advantage of validating for the 1990-1998 time period 

when the estimated trend is less uncertain.  

15 

 

Hosted by The Berkeley Electronic Press



We also observed consistently high R2s when validating against the data in CHS 

which deployed monitoring sites in urban and residential areas. All CHS monitoring sites 

were in Southern California and thus may not be generalizable across the U.S.. The CARB 

dichot data, also restricted to California locations, however gave lower R2s, including values 

less than 0.5 for some years. One possible reason for this poor performance is that the CARB 

dichot network used a different sampling protocol than FRM. Our simplified data-driven 

calibration method may not have performed well compared to an approach incorporating site-

specific meteorological conditions (Blanchard et al. 2011). Model performance could have 

also been impacted by a set of CARB dichot sites in the highest PM2.5 concentration areas 

(Figure 4). The IPN data gave the lowest R2s overall. In addition to the inconsistency of the 

IPN sampling protocol with that of FRM, the limited amount of IPN data might have been 

influential. With 6 and 12 sites for 1980 and 1981, respectively, a few sites with poor 

predictions had a large impact on the R2 estimates (data not shown). Furthermore, the IPN 

years of 1980-1981 are the earliest years of our prediction period and may reflect the most 

uncertainty in trend estimation.  

 One limitation of this study is our use of time-constant geographic variables which 

do not account for changes in spatial characteristics over time. However, our estimated PLS 

predictors from the geographic variables included two sources of land use data: land cover 

data created in 1970s and satellite data generated in 2007. These two data representing spatial 

differences on two different time periods about 30 years apart, and our explicit modeling of 

the temporal trend with these covariates incorporated gave us the ability to capture changes of 

land use features over time in our model. In addition, a study in Vancouver, Canada, found 

the model performance for predicting NO and NO2 in 2003 was consistent with geographic 

variables between 2003 and 2010 (Wang et al. 2013). Although this time period is only 7 
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years and much shorter than our 31 years, these findings suggest that spatial patterns in urban 

areas with stable physical environments can be characterized by geographic variables from 

one of many time periods. 

Our results suggest the importance of incorporating a temporal trend of air pollution 

concentrations changing over time and varying over space in cohort studies. Using exposure 

predictions from a later period of follow-up in epidemiological study, as commonly used in 

studies (Beelen et al. 2008; Cesaroni et al. 2013), may not precisely represent long-term 

exposures and might impact health effect findings even for people who never moved.  

CONCLUSIONS 

Our 31-year national PM2.5 prediction model can be widely applicable to 

epidemiological studies, particularly for assessing the association of long-term air pollution 

exposure and health outcomes in cohort studies. While there remains unavoidable uncertainty 

about the quality of the predictions for the earliest time periods, the overall strong 

performance of our model assures that we can provide good PM2.5 estimates that are 

temporally well aligned with health data, including health outcomes collected before 

extensive monitoring data exist. In addition, application of this model will allow estimation 

of individual-level concentrations across historical addresses over time and thus will improve 

assessment of the impact of air pollution on progression of disease conditions over the life 

course. Our findings also suggest that long-term average PM2.5 estimates obtained from 

single addresses or restricted time periods after health observation may not always accurately 

represent long-term average estimates, and could impact subsequent health analyses.  
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Table 1. Summary of PM2.5 monitoring data used for PM2.5 historical model development and validation 
Networka Spatial coverage Regulatory  Number  Number of Sampling Annual average of PM2.5 (µg/m3) 

  monitoring network of sitesb observationsb periodb Mean SD 

FRM National  
(urban) Yes 1,282 9,233 1999-2010 12.03 3.23 

IMPROVE National 
(rural) Yes 

178 1,567 1999-2010 5.44 2.94 

72 423 1990-1998 6.05 3.75 

CASTNet National  
(rural) Yes 108 1,485 1987-2010 3.15 1.91 

IPN National  
(urban/rural) Yes 16 18 1980-1981 21.31 6.69 

CARB dichot California  
(urban/rural) Yes 33 247 1988-2001 19.35 7.78 

CHS Southern California  
(urban) No 13 120 1994-2003 16.12 8.17 

a. FRM = Federal Reference Method; IMPROVE = Interagency Monitoring of Protected Visual Environment; CASTNet = Clean Air Status 
and Trends Network; IPN = Inhalable Particulate Network; CARB dichot = California Air Resources Board dichotomous sampler monitoring; 
CHS = Children’s Health Study 
b. Number of sites and observations, and sampling period for the monitoring sites that meet the minimum inclusion criteria for computing 
representative annual averages 
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Table 2. Cross-validation statistics of the historical PM2.5 models for 1999-2010 by year and region  
Estimated trend Linear trend from Generally-linear trend from Generally-linear trend from 
 FRM/IMPROVEa PM2.5 CASTNeta PM2.5 sulfate WBANa visibility 
Cross-validation statistics R2 MSE R2 MSE R2 MSE 

Year/region Nb             
Allc 1,460 (10,800) 0.87 2.08 0.86 2.15 0.86 2.25 
1999 523 0.86 3.29 0.86 3.29 0.85 3.46 
2000 865 0.85 2.38 0.85 2.39 0.85 2.44 
2001 988 0.86 2.32 0.86 2.32 0.86 2.35 
2002 1,054 0.84 2.39 0.84 2.44 0.84 2.47 
2003 969 0.85 2.13 0.84 2.20 0.84 2.26 
2004 980 0.86 1.99 0.85 2.06 0.85 2.12 
2005 940 0.88 2.08 0.88 2.14 0.87 2.24 
2006 898 0.86 1.87 0.85 1.93 0.84 2.05 
2007 937 0.86 1.85 0.86 1.94 0.85 2.07 
2008 902 0.82 1.82 0.81 1.90 0.79 2.10 
2009 884 0.80 1.61 0.79 1.73 0.77 1.89 
2010 860 0.83 1.63 0.81 1.82 0.80 1.97 
Eastc 1,056 (7,956) 0.86 1.19 0.86 1.26 0.86 1.26 

Mountain Westc 239 (1,594) 0.59 3.84 0.59 3.91 0.60 3.77 
West Coastc 165 (1,250) 0.84 5.50 0.84 5.52 0.80 6.61 

a. FRM = Federal Reference Method; IMPROVE = Interagency Monitoring of Protected Visual Environment; CASTNet = Clean Air Status 
and Trends Network; WBAN = Weather-Bureau-Army-Navy 
b. Number of sites (Number of observations when different from the number of sites) 
c. Annual averages from 1999 through 2010 
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Table 3. External validation statistics of the historical PM2.5 models using PM2.5 IMPROVE data for 1990-1998 by year and region 
Estimated trend Linear trend from Generally-linear trend from Generally-linear trend from 
 FRM/IMPROVEa PM2.5 CASTNeta PM2.5 sulfate WBANa visibility 
Validation statistics R2 MSE R2 MSE R2 MSE 

Year/region Nb             
Allc 72 (423) 0.91 1.29 0.84 2.23 0.86 1.98 
1990 30 0.85 1.07 0.78 1.59 0.70 2.20 
1991 36 0.83 1.96 0.78 2.43 0.70 3.40 
1992 37 0.91 1.42 0.84 2.52 0.85 2.47 
1993 45 0.92 1.44 0.83 3.08 0.87 2.33 
1994 50 0.92 1.07 0.84 2.09 0.89 1.44 
1995 58 0.91 1.32 0.86 1.97 0.86 1.96 
1996 56 0.93 0.87 0.88 1.58 0.91 1.21 
1997 57 0.93 1.03 0.86 2.01 0.90 1.47 
1998 54 0.90 1.64 0.83 2.88 0.87 2.13 
Eastc 21 (120) 0.88 1.60 0.67 4.42 0.84 2.10 

Mountain Westc 34 (202) 0.25 0.87 0.04 1.11 0.00 1.94 
West Coastc 17 (101) 0.69 1.76 0.67 1.88 0.66 1.93 

a. FRM = Federal Reference Method; IMPROVE = Interagency Monitoring of Protected Visual Environment; CASTNet = Clean Air Status 
and Trends Network; WBAN = Weather-Bureau-Army-Navy 
b. Number of sites (Number of observations when different from the number of sites) 
c. Annual averages from 1990 through 1998 
 

  

24 

 

http://biostats.bepress.com/uwbiostat/paper408



Table 4. External validation statistics of the historical PM2.5 models using CHS, CARB dichot, and IPN data by year 

  
Estimated trend 

 
Linear trend from 

FRM/IMPROVEa PM2.5 
Generally-linear trend from 

CASTNeta PM2.5 sulfate 
Generally-linear trend from 

WBANa visibility 
 Validation statistics R2 MSE R2 MSE R2 MSE 

Validation dataa Year Nb             
CHS Allc 13 (120) 0.76 16.04 0.76 15.87 0.81 12.91 

 1994 12 0.71 26.90 0.69 28.55 0.80 18.79 
 1995 12 0.66 35.60 0.63 39.78 0.75 26.76 
 1996 12 0.77 19.33 0.75 20.82 0.82 14.94 
 1997 12 0.83 9.71 0.84 9.04 0.88 6.96 
 1998 12 0.83 8.26 0.87 6.48 0.87 6.44 
 1999 12 0.73 18.48 0.75 17.07 0.74 17.31 
 2000 12 0.80 11.77 0.82 10.51 0.82 10.95 
 2001 12 0.82 14.38 0.85 11.84 0.86 10.70 
 2002 12 0.81 10.27 0.82 9.73 0.79 10.96 
 2003 12 0.88 5.69 0.90 4.92 0.89 5.28 

CARB dichot Allc 33 (162) 0.55 30.69 0.48 35.75 0.61 26.75 
 1988 8 0.09 94.11 0.00 110.73 0.15 88.36 

 1989 12 0.25 82.20 0.10 98.75 0.33 73.11 
 1990 11 0.68 22.74 0.53 32.95 0.76 16.64 
 1991 12 0.31 85.45 0.16 103.26 0.43 69.74 
 1992 14 0.51 28.60 0.40 34.92 0.63 21.90 
 1993 15 0.54 15.06 0.33 21.85 0.66 10.92 
 1994 13 0.77 16.66 0.69 22.24 0.84 11.37 
 1995 12 0.71 11.99 0.63 15.30 0.70 12.50 
 1996 15 0.52 16.03 0.66 11.36 0.57 14.54 
 1997 15 0.41 10.14 0.59 7.07 0.45 9.51 
 1998 16 0.31 16.91 0.37 15.52 0.30 17.10 
 1999 12 0.85 5.72 0.84 6.26 0.82 6.98 
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 2000 6 0.53 5.81 0.46 6.69 0.41 7.25 
  2001 3 0.00 88.49 0.00 87.15 0.00 84.42 

IPN Allc 16 (18) 0.16 37.82 0.02 44.00 0.00 54.80 
 1980 6 0.40 26.12 0.27 31.57 0.00 48.45 
  1981 12 0.11 43.68 0.00 50.21 0.00 57.97 

a. FRM = Federal Reference Method; IMPROVE = Interagency Monitoring of Protected Visual Environment; CASTNet = Clean Air Status 
and Trends Network; WBAN = Weather-Bureau-Army-Navy; CHS = Children’s Health Study; CARB dichot = California Air Resources 
Board dichotomous sampler monitoring; IPN = Inhalable Particulate Network 
b. Number of sites (Number of observations when different from the number of sites) 
c. Annual averages from 1990 through 1998 
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FIGURE LEGENDS 

 

Figure 1. Maps of A) FRM and IMPROVE sites for 1999-2010 used in model development and trend estimation, B) CASTNet and WBAN 

sites used for trend estimation, and C) IMPROVE sites for 1990-1998, CHS, CARB dichot, and IPN sites used in model evaluation 

 

Figure 2. Estimated temporal trends based on PM2.5 annual averages in FRM and IMPROVE, PM2.5 sulfate annual averages in CASTNet, and 

visibility annual averages in WBAN 

 

Figure 3. Scatter plots of observed and predicted PM2.5 annual averages from the PM2.5 historical model using the FRM/IMPROVE PM2.5 trend 

across IMPROVE sites for 1990-1998 

 

Figure 4. Predicted PM2.5 annual averages in 1980, 1990, 2000, and 2010 from the 31-year PM2.5 model using the extrapolated temporal trend 

based on PM2.5 data for 1999-2010 
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Figure 5. Scatter plots of predicted PM2.5 annual averages from the 31-year PM2.5 model using the extrapolated temporal trend based on PM2.5 

data for 1999-2010 for 2000 vs. long-term averages for 1980-2000 weighted by times of residences across home addresses of 2,466 participants 

who never moved for 1980-2000 and 5,086 MESA/MESA Air participants who moved at least once in each of the six MESA city areas   
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A) Model development/      B) Trend estimation      C) Model evaluation   
   Trend estimation  

 
 
Figure 1. Maps of A) FRM and IMPROVE sites for 1999-2010 used in model development and trend estimation, B) CASTNet and WBAN 
sites used for trend estimation, and C) IMPROVE sites for 1990-1998, CHS, CARB dichot, and IPN sites used in model evaluation 
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Figure 2. Estimated temporal trends based on PM2.5 annual averages in FRM and IMPROVE, PM2.5 sulfate annual averages in CASTNet, and 
visibility annual averages in WBAN 
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Figure 3. Scatter plots of observed and predicted PM2.5 annual averages from the PM2.5 historical model using the FRM/IMPROVE PM2.5 trend 
across IMPROVE sites for 1990-1998 
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1980          1990 

 
2000          2010 

Figure 4. Predicted PM2.5 annual averages in 1980, 1990, 2000, and 2010 from the 31-year PM2.5 model using the extrapolated temporal trend 
based on PM2.5 data for 1999-2010 
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Figure 5. Scatter plots of predicted PM2.5 annual averages from the 31-year PM2.5 model using the extrapolated temporal trend based on PM2.5 
data for 1999-2010 for 2000 vs. long-term averages for 1980-2000 weighted by times of residences across home addresses of 2,466 
participants who never moved for 1980-2000 and 5,086 MESA Air participants who moved at least once   
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Supplemental Material 
 
 
Table S1. List of geographic variables 

Category Measure Variable description 
Traffic Distance to the nearest road Any road, A1, intersection 
 Sum within buffers of 0.05-15 km  A1, A2+A3, truck route, intersections 
Population Sum within buffers of 0.5-3 km  Population in block groups  
Land use (Urban) Percent within buffers of 0.05-15 km  Urban or Built-Up land 
  (residential, commercial, industrial, transportation, urban) 
  Developed low, medium, and high density 
  Developed open space 
Land use (Rural) Percent within buffers of 0.05-15 km  Agricultural land (cropland, groves, feeding) 
  Rangeland (herbaceous, shrub) 
  Forest land (deciduous, evergreen, mixed) 
  Water (streams, lakes, reservoirs, bays) 
  Wetland 
  Barren land (beaches, dry salt flats, sand, mines, rock) 
  Tundra 
  Perennial snow or Ice 
Position Coordinates Longitude, latitude 
Source Distance to the nearest source Coastline, Coastline (rough) 
  Commercial area 
  Railroad, Railyard 
  Airport 
  Major airport 
  Large port 
  City hall 
Emission Sum within buffers of 3-30 km  PM2.5  
  PM10  
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   CO 
  SO2 
  NOx 
Vegetation Quantiles within buffers of 0.5-10 km Normalized Difference Vegetation Index (NDVI) 
Imperviousness Percent within buffers of 0.05-5 km Impervious surface value 
Elevation Elevation above sea levels Elevation value 

  
Counts of points above or below  
  a threshold within buffers of 1-5 km   

Residual oil Distance to the nearest boiler Residual oil grade 4 or 6 
  Sum within buffers of 0.1-3 km Total residual oil active heating capacity 
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Figure S1. Number of monitoring sites for PM2.5 in FRM and IMPROVE from 1999 through 2010 
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Figure S2. Time-series plots of annual averages for PM2.5 across FRM and IMPROVE sites for 1999-2010 by region 
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Figure S3. Estimated regression and variance parameters of the PM2.5 prediction model for 1980-2010 
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