
Harvard University
Harvard University Biostatistics Working Paper Series

Year  Paper 

On Simple Relations Between
Difference-in-differences and Negative

Outcome Control of Unobserved Confounding

Tamar Sofer∗ David B. Richardson† Elena Colincino‡

Joel Schwartz∗∗ Eric J. Tchetgen Tchetgen††

∗University of Washington, tsofer@uw.edu
†University of North Carolina at Chapel Hill, david.richardson@unc.edu
‡Harvard T.H. Chan School of Public Health, ecolicin@hsph.harvard.edu
∗∗Harvard T.H. Chan School of Public Health, jschwrtz@hsph.harvard.edu
††Harvard T.H. Chan School of Public Health, etchetge@hsph.harvard.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/harvardbiostat/paper194

Copyright c©2015 by the authors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Collection Of Biostatistics Research Archive

https://core.ac.uk/display/61322392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(2015), 0, 0, pp. 1–29
doi:awesomedoi/20150801˙TSofer˙DID

On simple relations between

difference-in-differences and negative outcome

control of unobserved confounding

TAMAR SOFER1, DAVID RICHARDSON2, ELENA COLICINO3, JOEL SCHWARTZ3, ERIC

J. TCHETGEN TCHETGEN4∗

1Department of Biostatistics, University of Washington, UW Tower, 15th Floor, 4333 Brooklyn
Ave. NE, Seattle, WA 98105, USA

2Department of Epidemiology, Gilling School of Global Public Health, 2102b Mcgavran-Greenberg
135 Dauer Drive, Chapel Hill, NC, 27599, USA

3Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677
Huntington Ave, Boston, MA 02115, USA

4Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave,

Boston, MA 02115, USA

etchetge@hsph.harvard.edu

Summary

The difference-in-differences (DID) approach is a well known strategy for estimating the effect of

an exposure in the presence of unobserved confounding. The approach is most commonly used

when pre- and post-exposure outcome measurements are available, and one can assume that the

association of the unobserved confounder with the outcome is equal in the two exposure groups, and

constant over time. Then, one recovers the treatment effect by regressing the change in outcome

over time on the exposure. In this paper, we interpret the difference-in-differences as a negative

outcome control (NOC) approach. We show that the pre-exposure outcome is a negative control
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2 T. Sofer and others

outcome, as it cannot be influenced by the subsequent exposure, and it is affected by both observed

and unobserved confounders of the exposure-outcome association of interest. The relation between

DID and NOC provides simple conditions under which negative control outcomes can be used to

detect and correct for confounding bias. However, for general negative control outcomes, the DID-

like assumption may be overly restrictive and rarely credible, because it requires that both the

outcome of interest and the control outcome are measured on the same scale. Thus, we present a

scale-invariant generalization of the DID that may be used in broader NOC contexts. The proposed

approach is demonstrated on a Normative Aging Study data set, in which Body Mass Index is used

for NOC of the relationship between air pollution and inflammatory outcomes.

Key words: Location-scale models; Quantile-quantile transformation; Air pollution; Inflammation.

1. Introduction

Unmeasured confounding can seldom be ruled out in nonexperimental studies. Over the years, a

number of analytic techniques were developed in epidemiology and the social sciences to detect

and ideally, adjust for, bias due to unobserved confounding. One common approach is so-called

“difference-in-differences” (DID) estimation (Meyer, 1995; Angrist and Krueger, 1999; Blundell

and MaCurdy, 2000), which is typically used when

(i) One has observed the outcome pre- and post-exposure for each person, and

(ii) the association of the unobserved confounder with the outcome is assumed equal across expo-

sure groups and constant over time.

Then, the approach entails estimating the effect of exposure by taking a difference between exposure

groups of the average change in outcome over time.
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Negative outcome control 3

Another approach for evaluating the presence of confounding bias, sometimes used in epidemi-

ologic practice, consists of estimating an association between the exposure and a so-called negative

control outcome. That is, an observed outcome not causally related to the treatment, and influenced

by unmeasured confounders of the exposure-outcome relationship of primary interest (Lipsitch and

others, 2010; Tchetgen Tchetgen, 2014; Flanders and others, 2011). Thus, evidence of an associa-

tion between the exposure and the negative control outcome conditional on observed confounders

is indicative of confounding by unmeasured factors. It is of interest to identify conditions under

which the exposure-negative control outcome association gives a valid estimate of unmeasured con-

founding bias that can simply be removed (e.g. subtracted) from the estimated exposure-outcome

association to give a valid causal effect estimate.

In this paper, we interpret the DID as a negative outcome control (NOC) approach to adjust for

unobserved confounding. The equivalence follows from noting that the pre-exposure outcome in DID

is an ideal negative control outcome, since it cannot be influenced by the subsequent exposure, and

it is likely affected by both measured and unobserved risk factors for the post-exposure outcome.

We then show that assumption (ii) is equivalent to an “additive equi-confounding” assumption

that the magnitude of confounding bias for the primary outcome is equal on the additive scale to

the confounding bias for the negative control outcome. Assumptions (i) and (ii) are equivalent to

conditions under which one can use negative controls to detect − and also sometimes to correct for

− confounding bias. However, the additive equi-confounding assumption may be overly restrictive

outside of the context of pre- and post-outcome measurements, because it requires that both the

primary and negative control outcomes are measured on the same scale. As a remedy, we consider

a generalization of DID via a scale invariant approach largely motivated by the Change-in-changes

approach of Athey and Imbens (2006), that may be more broadly applicable. Our approach however

goes beyond Athey and Imbens (2006) in that we give weaker identification conditions and develop
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4 T. Sofer and others

a flexible framework for estimation and inference using a familiar location-scale model specification

which allows one to easily incorporate a possibly large number of observed confounders. Both the

scale-invariance property of the more general approach and its ability to incorporate covariates

make our methods particularly well-suited for NOC. Importantly, while Athey and Imbens (2006)

briefly consider covariate adjustment, they rely on an assumption that the unobserved confounder

is independent of observed covariates conditional on the exposure. However, due to collider bias

stratification (Pearl, 2009; Hernán and others, 2004), this latter assumption cannot hold if both

observed and unobserved covariates either cause or share a common cause with the exposure,

thus invalidating their proposed covariate adjustment approach when the observed covariates are

confounders. Our proposed approach also offers an alternative to the control outcome calibration

approach (COCA) of Tchetgen Tchetgen (2014) by avoiding the rank preservation assumption it

relies on, and replacing it with milder assumptions regarding a negative control outcome.

The paper is organized as follows. In Section 2 we present the NOC framework and relate it to

the DID. In Section 3 we show how negative outcomes potentially can be used in broader settings

than the classical DID, and develop a general NOC approach to indirectly account for unobserved

confounding, together with a framework for inference under a location-scale model. In Section 4 we

provide a simulation study of the proposed methods, and in Section 5 we illustrate the method by

estimating the short term effect of air pollution on blood inflammation markers, with Body Mass

Index (BMI) used as a negative outcome.

2. Notation, definitions and additive equi-confounding

Let A denote the exposure received by an individual, let Y denote a post-exposure outcome, and

let C denote a set of observed confounding variables of the effect of A on Y . Let U denote unmea-

sured confounders of the effect of A on Y . Let N denote a negative control outcome variable. The

http://biostats.bepress.com/harvardbiostat/paper194



Negative outcome control 5

relationships between these variable may be depicted by the causal diagram in Figure 1.

As shown in the figure, N is a negative control outcome because it is not directly influenced by

exposure, but it is influenced by the unobserved confounders of the exposure-outcome association

(Lipsitch and others, 2010). To provide identifiability conditions for the causal effect of A on Y ,

we now consider counterfactuals or potential outcomes under possible interventions. Let Ya denote

an individual’s outcome if exposure A were set, possibly contrary to fact, to a. Similarly, let Na

denote an individual’s counterfactual value for N if A were set to a. The following assumptions

state that the negative outcome is not affected by the exposure, and that the observed exposure

outcome corresponds to the counterfactual outcome for the observed exposure value (i.e. the so-

called consistency assumption).

Assumption 1. Na = N, a = 0, 1, and Ya = Y if A = a.

The assumption that (C,U) suffice to adjust for confounding for the effect of A on Y implies

that:

E {Y0|A = 1, c, u} − E {Y0|A = 0, c, u} = 0 (2.1)

for all (c, u) , however C alone may not completely account for exposure-outcome confounding, that

is

E {Y0|A = 1, c} − E {Y0|A = 0, c} 6= 0 (2.2)

for some c, and likewise for N0 replacing Y0.

2.1 Difference-in-differences as an additive negative outcome control approach

Next, consider the longitudinal study represented in Figure 2 in which the outcome process Z(t) is

measured at 2 occasions, t = 0, 1, with Z(0) and Z(1) pre- and post-exposure variables, respectively.

According to this graph, although A is a cause of Z(1), it does not cause Z(0) (although the reverse
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6 T. Sofer and others

may hold), and the unobserved confounder of the effect of A on Z(1), U , is also a cause of Z(0). This

causal diagram represents a typical situation under which difference-in-differences may potentially

be used to account for unobserved confounding by U . However an additional assumption about

the underlying structure of confounding is required to justify the standard DID approach, and is

described below. The similarity of the causal structure encoded in both Figures 1 and 2 is quite

striking, as Figure 1 can be obtained from Figure 2 by relabeling Z(0) as N and Z(1) as Y , thus

establishing a direct correspondence between the NOC causal framework and the DID framework.

As noted above, identification of the effect of A on Y using DID, relies on further elaboration of

the data generating mechanism under Figure 1. A simple causal model supposes that Z(t) follows

the simple linear model (where individual observations are suppressed in the notation)

E {Z(t)|U,A,C} = b(U) +m (t) + βtA+ γ (t)
T
C (2.3)

such that m (t) indexes a time specific intercept, γ (t) indexes a time specific association between

C and Z(t), b(U) indexes the effect of U on Z(t) which is assumed independent of t, A and C, and

β encodes the causal effect of A on Z(1). Let Za(t) denote the counterfactual outcome at t under

exposure a, and note that the key assumption encoded in equation (2.3) is that

E {Z(1)− Z(0)|U,A = a,C} = E {Z(1)− Z(0)|A = a,C} , a = 0, 1 (2.4)

which implies that C suffices to adjust for confounding between A and Z(1)− Z(0), and thus

E {Z0(1)− Z0(0)|A = 1, C} = E {Z0(1)− Z0(0)|A = 0, C} . (2.5)

Since treatment is assumed to start only after time 0, so that E[Z1(0)|A = 1, C] = E[Z0(0)|A =

1, C], and using equation 2.5, we obtain the following equality:

E {Z1(1)− Z1(0)|A = 1, C} − E {Z0(1)− Z0(0)|A = 0, C} = β (2.6)

= E(Z1(1)− Z0(1)|A = 1, C) (2.7)

http://biostats.bepress.com/harvardbiostat/paper194



Negative outcome control 7

The effect identified in (2.6) defines the DID estimand under equation (2.3), and therefore under

assumption (2.4) is equal to the causal effect E {Z1(1)− Z0(1)|A = 1}, the so-called causal effect of

treatment on the treated. Interestingly, rather than assuming equation (2.3) , one may take equation

(2.5) as a primitive condition, which may hold without necessarily assuming the model given by

equation (2.3) holds exactly. Only assuming that (2.5) holds has previously been shown to suffice

for nonparametric identification of the marginal exposure effect on the exposed even when the linear

model (2.3) does not necessarily hold (Abadie, 2005). Thus, assuming no heterogeneity in the effect

of A across strata of C and U as encoded in model (2.3) is not strictly necessary to estimate the

causal effect of treatment on the treated.

2.2 Additive equi-confounding bias

Here, we are particularly interested in the following, alternative, formulation of (2.5):

E {Z0(1)|A = 1, C} − E {Z0(1) |A = 0, C} = E {Z(0)|A = 1, C} − E {Z(0)|A = 0, C}

which, upon substituting Y0 for Z0(1) and N for Z(0), is equivalently expressed:

E {Y0|A = 1, C} − E {Y0|A = 0, C} = E {N |A = 1, C} − E {N |A = 0, C} , (2.8)

where the left hand-side of (2.8) encodes the degree of confounding bias (2.2) for the effect of A

on Y , and the right hand-side of (2.8) likewise represents confounding bias for the (null) effect

of A on N . Equation (2.8) provides the “additive equi-confounding” assumption, which connects

identification in the DID approach to identification in the NOC framework.

The additive equi-confounding assumption 2.8 thus states that the magnitude of confounding

bias for estimating the effect of A on Y and that of A on N are exactly equal. Thus, we may

conclude that under additive equi-confounding, a DID type approach may be used to estimate,

in the presence of unobserved confounding and if one has access to a negative outcome control
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8 T. Sofer and others

variable N (which may differ from a pre-exposure realization of the outcome), the conditional effect

of treatment on the treated:

α (C) = E {Y1 − Y0|A = 1, C}

or the marginal average effect of treatment on the treated:

α = E {Y1 − Y0|A = 1}

Therefore, the additive equi-confounding assumption formalizes the relation between DID and

NOC, making connection to a fairly rich literature on DID for inference under a NOC framework.

The DID literature includes several variants of the parametric strategy described above, as well

as more flexible semiparametric methods (see Abadie, 2005, and references therein). However, the

additive equi-confounding assumption may only be credible in settings where the primary and the

negative control outcomes are measured on the same scale, say as distinct realizations of the same

underlying process as in the difference-in-differences context. This restriction is well illustrated by

the linear model (2.3) in which the invariance of b(U) with respect to time encodes the equivalent

assumption for a negative outcome control, that the association between U and the primary outcome

is the same as that between U and the negative control outcome. Such an assumption may be

inappropriate even if one has available a valid negative control outcome which satisfies Figure 1.

In the next section, we consider a weaker form of equi-confounding which may be more useful in

practice for NOC.

3. Distributional equi-confounding and indirect NOC confounding adjustment

In this section, we consider a more general framework for NOC adjustment of unobserved confound-

ing under assumptions considerably less restrictive than additive equi-confounding.

http://biostats.bepress.com/harvardbiostat/paper194



Negative outcome control 9

3.1 General NOC identification conditions

We relax the previous structure of unobserved confounding for Y and N , by allowing the unobserved

confounder for the effect of A on Y denoted by U , to be distinct from the unobserved confounder of

the effect of A on N , denoted W . This may be because Y and N are measured on different scales, or

because the magnitude of the effect of the unobserved confounder on N differs from the magnitude

of the effect of that confounder on Y .

Assumption 2. Aq Y0|C,U , however A 6 qY0|C, and

AqN |C,W , however A 6 qN |C.

This more general framework is depicted in Figure 3. In addition to this causal diagram, in order to

appropriately account for possible non-linearity and scale differences between the outcome and the

negative control outcome, we introduce a more general nonparametric structural equations model:

Assumption 3. Y0 and N are related to U,W and C according to

Y0 = hy (U,C) (3.9a)

N = hn (W,C) (3.9b)

where

hy (u, c) is monotone increasing in u for each c, (3.10a)

and

hn (w, c) is monotone increasing in w for each c. (3.10b)

This set of equations encodes the fact that consistent with Figure 3, U and C are parents of

Y0, and therefore are parents of Y, and likewise that W and C are parents of N . The direction of

monotonicity in equations (3.10a,3.10b) can be changed without any real consequence.

Hosted by The Berkeley Electronic Press



10 T. Sofer and others

We now consider quantile-quantile and distributional equi-confounding as a less restrictive iden-

tifying assumptions for NOC than additive equi-confounding. To proceed, we introduce the quantile-

quantile transformation, as a measure of association between two variables, which we will use to

encode confounding bias. Specifically, the quantile-quantile association between U and A conditional

on C :

q0(v|c) = FU |A=0,C=c ◦ F−1U |A=1,C=c (v) ,

v ∈ [0, 1], where FU |A,C denotes the cumulative distribution function of U conditional on A,C,

F−1U |A,C is its inverse map, and f ◦ g (x) = f(g(x)) denotes composition of functions f and g. Under

independence of U and A given C (i.e. no confounding bias), we have that q0(v|c) = v, while any

departure from the identity function encodes unobserved confounding, i.e. q0(v|c)− v 6= 0 for some

value c. Likewise let

q1(v|c) = FW |A=0,C=c ◦ F−1W |A=1,C=c (v) .

The quantile-quantile equi-confounding bias is given below.

Assumption 4. Quantile-quantile equi-confounding.

q0(v|c) = q1(v|c), v ∈ [0, 1]. (3.11)

This assumption implies that the association (on the quantile-quantile scale) between U and A

is the same as between W and A conditional on C. Quantile-quantile equi-confounding is implied

by the following somewhat stronger distributional equi-confounding bias assumption, although the

latter is still considerably weaker than additive equi-confounding:

Assumption 5. Distributional equi-confounding.

U |A,C ∼W |A,C. (3.12)

The assumption states that the conditional distribution of the unobserved confounder for Y is

the same as that for the unobserved confounder for N given A and C. Note that both assumption

http://biostats.bepress.com/harvardbiostat/paper194
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(3.11) and (3.12) are trivially satisfied, if as previously assumed, the unobserved confounder of Y

and N is the same, i.e. U = W . Note also that both assumptions are considerably weaker than

the previous additive equi-confounding assumption (2.8) because they place no restriction on the

relationship between U and Y0, and likewise for the relationship between W and N . Crucially, they

are both invariant in a monotone transformation of the outcome, and therefore, do not suffer from

the scale restriction of additive equi-confounding.

The following Theorem 1 establishes nonparametric identification of the marginal effect of treat-

ment on the treated α under quantile-quantile equi-confounding, and therefore also under distribu-

tional equi-confounding. It requires an additional regularity condition:

Assumption 6. Positivity.

If 0 < f(N∗|A = 1, C), then 0 < FN |A=0,C(N∗) < 1 (3.13)

This condition ensures that values of the negative outcome in the exposed are in the support of

the distribution of the negative outcome in the unexposed, and the probability FN |A=C(N∗) will

not be identically 1 or 0 for some set of plausible values of N∗ ∼ N |A = 1, C.

Theorem 1 : Let N∗ ∼ N |A = 1, C. Under assumptions 1-4 and 6, we have that

α = E {Y1 − Y0|A = 1}

= E {Y |A = 1} − E
{
Ỹ
}

where

Ỹ ∼ F−1Y |A=0,C ◦ FN |A=0,C (N∗)

By consistency, we have that E(Y1|A = 1) = E(Y |A = 1); therefore the main result of the the-

orem is to establish identification of the conditional counterfactual mean E(Y0|A = 1) under our

assumptions about the nature of confounding and the availability of a negative control outcome.

Hosted by The Berkeley Electronic Press
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The theorem is a negative control analog of a similar identification result in the change-in-changes

approach of Athey and Imbens (2006), which they obtain under a more stringent assumption anal-

ogous to distributional equi-confounding. Whereas Athey and Imbens (2006)’s primary goal was to

account for possible non-linearity in a DID context, our primary concern has been to account for

possible differential scaling in a NOC context, and to demonstrate the close relationship between

these contexts as established by the above result. The isomorphism between the two frameworks

further provides a principled framework for NOC of unobserved confounding, possibly using a post-

exposure outcome to achieve such control. The result also offers a useful alternative to COCA of

Tchetgen Tchetgen (2014) which requires rank preservation of the primary outcome, i.e. that the

rank of Ya is preserved under treatment versus control conditions.

3.2 Indirect NOC adjustment in the location-scale model

For inference, we discuss indirect adjustment under a location-scale semiparametric model. Specifi-

cally, suppose that both Y and N follow a location-scale model conditional on C in the unexposed,

with A = 0. Let

E (N |A = 0, C) = µn (C)

V ar (N |A = 0, C) = s2n (C) ,

and εN =
N − µn (C)

sn (C)
,

and likewise, let

E (Y |A = 0, C) = µy (C)

V ar (Y |A = 0, C) = s2y (C)

and εY =
Y − µy (C)

sy (C)
.

Then the location-scale models for Y and N states that

http://biostats.bepress.com/harvardbiostat/paper194
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εN |A = 0, C ∼ fN (εN ), εY |A = 0, C ∼ fY (εY ), (3.14)

where fY (·) and fN (·) are unrestricted baseline densities. The following Corollary is obtained:

Corollary 1 Under the assumptions stated in Theorem 1 and the location-scale model (3.14) , we

have that

Ỹ = sY (C)

{
F−1εY ◦ FεN

(
N∗ − µn (C)

sn (C)

)}
+ µy (C) , (3.15)

and in the special case where FεN (·) = FεY (·), then

Ỹ = sy (C)

{
N∗ − µn (C)

sn (C)

}
+ µy (C) , (3.16)

where N∗ and Ỹ are given in Theorem 1.

Note also that if FεN (·) = FεY (·), then the regularity condition 6 is not strictly required. Next,

we describe a simple practical implementation of the NOC adjustment given in Corollary 1, first

assuming a location-scale family allowing FN (·) and FY (·) to be different, and then further assuming

FN (·) = FY (·).

Let µ̂n(·), µ̂y(·) be estimators of the mean functions for the negative and primary outcomes

under no exposure, and let ŝn(·), ŝy(·) denote estimators of the standard deviations of N and Y .

These can be obtained using standard models for mean and variance regression, e.g. one may take

µ̂n (C) = π̂0 + π̂′1C the ordinary least squares estimator of E(N |A = 0, C) using the subsample

with A = 0, and likewise one may take ŝ2n (C) = exp (ω̂0 + ω̂′1C) a standard log-linear regression of

the squared N − µn(C) in the unexposed subsample, and similarly for µ̂y (·) and ŝy (·) . Further,

let F̂N (·) and F̂Y (·) be non-parametric estimators of the cumulative distribution functions of N

and Y in the unexposed, estimated as follows: based on µ̂y(·), ŝy(·), scaled residuals are obtained as

ε̂i = {Yi − µ̂y(Ci)}/sy(Ci), i = 1, . . . , n0 for the outcome Y , in the n0 unexposed. These residuals

Hosted by The Berkeley Electronic Press



14 T. Sofer and others

are used to obtain the empirical estimate of FY (·) non-parametrically,

F̂Y (u) =
1

n0

n0∑
i=1

I{εi 6 u},

where I(εi 6 u) is the indicator function. Similarly, F̂N (·) is obtained for the negative outcome N .

1. Following Theorem 1 and Corollary 1, an estimator of α is obtained by substitution, i.e.

α̂1 =

∑
i:Ai=1 Yi − ŝy (Ci)

{
F̂−1εY ◦ F̂εN

(
N∗−µ̂n(Ci)
ŝn(Ci)

)}
− µ̂y (Ci)∑

i:Ai=1 1
. (3.17)

2. Assuming FN (·) = FY (·), (3.17) simplifies to:

α̂2 =

∑
i:Ai=1 Yi − ŝy (Ci)

(
N∗−µ̂n(Ci)
ŝn(Ci)

)
− µ̂y (Ci)∑

i:Ai=1 1
. (3.18)

3. Under homoscedasticity, i.e. ŝy(Ci) = ŝy for all Ci, and similarly for ŝn, upon rearranging:

α̂3 =

∑
i:Ai=1 [Yi − µ̂y (Ci)]∑

i:Ai=1 1
− ŝy
ŝn

[N∗ − µ̂n (Ci)]∑
i:Ai=1 1

= η̂y −
ŝy
ŝn
η̂n (3.19)

where η̂y and η̂n are the standard estimators of the effect of treatment on the treated for

Y and N respectively. This formulation provides some intuition for the proposed indirect

adjustment, whereby the standard estimator of theA−Y association is adjusted by subtracting

an estimator of the magnitude of confounding bias given by the scaled association between

N and A, with scaling factor ŝy/ŝn. The scaling factor is necessary here, to account for

possible scale differences between N and Y , or between the magnitude of the effect of the

unmeasured confounder on N and Y . The more complicated estimator α̂1 further accounts

for distributional differences and possible heteroscedasticity.

In the appendix, we provide a simple expression for the large sample variance of α̂2 which may

be used to construct confidence intervals; alternatively, we recommend using the nonparametric

bootstrap for inference.
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4. Simulation study

We conducted a simulation study to demonstrate the applicability of our proposed indirect NOC

adjustment under a location-scale model. We generated data from the model defined by

Y = (U + η0 + Cηc +Aα̃)× σy

N = (W + β0 + Cβc)× σn

with U and W from the same location-scale family. We set σy = 3, σn = 1.5, (η0, ηc)
T = (1, 2)T ,

(β0, βc)
T = (2, 3)T , and α̃ = 1, so the exposure effect on the unexposed amounted to α = α̃×σy = 3.

To simulated confounding bias between exposure groups, we determined the distribution of C,U

and W by exposure status. U and W came from either a normal or a uniform distribution, with

U,W |A = 0 ∼ N (0, 1.5), and U,W |A = 1 ∼ N (2, 1.5), or U,W |A = 0 ∼ uniform(1, 9) and

U,W |A = 1 ∼ uniform(3, 13). The observed confounder had C|A = 0 ∼ N (0, 1), C|A = 1 ∼

N (0.5, 1).

Note that a näıve analysis ignoring the possibility of unmeasured confounding between exposure

groups would attribute the difference in means

E[Y |A = 1, C]− E[Y |A = 0, C] = α+ (E[U |A = 1]− E[U |A = 0])× σy

solely to the effect of treatment, when the term (E[U |A = 1]− E[U |A = 0]) × σy is in fact the

bias, and is equal to 6 when U and W are normally distributed, and 9 when they are uniformly

distributed. Also note that under the uniform distribution scenario, the positivity assumption 6 does

not hold, and therefore the estimator α1 from Section 3.2 may be biased. However the estimator

α2 that assumes FN (·) = FY (·) will not be biased, since in this case the positivity assumption is

not required.

We generated data with n = 100, 500 observations, with n/2 observations in each exposure

group. We compared the accuracy of the estimators proposed in Section 3.2 over 1000 simulations.
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16 T. Sofer and others

Note that although both outcomes Y and N are generated under homoscedastic errors, with U and

W following a common distribution given A and C, nonetheless, we consider inferences about the

effect of treatment on the treated using the methods developed in previous sections both with and

without imposing these assumptions. In addition, we compare the estimator of α using NOC to the

näıve regression estimator that regresses Y on A and C.

Table 1 provides the absolute bias and MSE of the estimator of treatment effect on the treated

for each of the various scenarios and assumptions described above. Using N for negative outcome

control assuming a location-scale model yields very good results. The data were simulated with ho-

moscedastic errors and a common location-scale family for Y and N , so that the qq-transformation

between the standardized Y and N in the unexposed group is the identity. Accordingly, when ho-

moscedasticity and identity qq-transformations were assumed, the estimated effects are unbiased

and the MSE is smallest compared to other scenarios. Relaxing the homoscedasticity assumption and

modeling the variance via a log-linear model resulted in only slightly larger MSEs. However, mod-

eling the qq-transformation between the standardized Y and N in the unexposed group had mixed

effects. Under normal distribution of the unobserved confounders, modeling the qq-transformation

had little effect on the bias and efficiency of the estimators. However, under uniform distribution of

the unmeasured confounders, modeling this transformation resulted in substantially larger MSEs

and biased estimators. This is because the positivity condition did not hold. The näıve estimator

that regresses Y against A and C showed had the expected bias.

5. Data analysis

We implemented the proposed NOC indirect adjustment to account for confounding in studying

the effect of short term (4 weeks) exposure to black carbon (BC, an air pollution component) on

fibrinogen, a blood inflammation marker. We selected BMI as the negative control outcome, since
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BMI is likely not affected by short term exposure to air pollution, while it likely shares unmeasured

confounders with inflammation markers. In prior work by Zeka and others (2006), fibrinogen levels

were shown to be associated with 4 weeks exposure to BC in the Normative Aging Study (NAS)

cohort. The investigators took 4 weeks moving average of BC, measured at an areal sensor, just

prior to a clinic visit as the exposure, and adjusted to multiple confounders, including BMI. We

now reuse this data set.

The NAS is a longitudinal study following a cohort of US veterans. They report to the clinic

every 3-4 years. We consider a data set of complete cases (i.e. includes exposure, adjusting variables,

and outcome values) from visits between November 14, 2000 and December 31, 2004, as in Zeka and

others (2006). We use BC values measured either at the areal sensor in Boston (as in Zeka and others

(2006)), or geospatial model-predicted values at participants’ home addresses (Gryparis and others,

2007). The covariates were age and weather-related variables: season, mean barometric pressure,

relative humidity, and temperature in the 24 hours preceding the clinic visit. Table 3 provides the

cohort characteristics. BC is dichotomized and set to 0 if BC is less than the median observed in

the data (“low exposure”), and 1 otherwise (“high exposure”) .We implemented the four models

compared in the simulations, i.e. the more robust models allowing for heteroscedasticity, and/or

different location-scale family, and the model that assumes homoscedasticity and same location-scale

family. In addition to these models of indirect adjustment, we also compared the analysis to the

a näıve regression analysis that regresses log-fibrinogen on the BC measure of interest, covariates,

and BMI, and to the “DID” analysis that assumes that the negative control outcome log-BMI is

measured on the same scale as the primary outcome log-fibrinogen. Note that this is not in fact the

standard DID, as log-BMI is obviously not the baseline measure of log-fibrinogen.

We evaluated the assumptions on the distributions of Y and N . To evaluate the assumption

of a common location-scale family of Y and N , we considered the histograms of scaled residuals
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18 T. Sofer and others

of BMI, fibrinogens, and their log-transformation in the low-exposure group, after regressing on

covariates. These histograms are provided in Figure 7. One can see that after log-transformation

both the primary and control outcomes have symmetric distributions, and it is reasonable to assume

that they are sampled from the same location-scale family. We also observed that log-fibrinogen

and log-BMI are measured on different scales. Next, we assessed the homoscedasticity assumption

on the residuals of Y and N in the low exposure group. We used a 5-fold cross validation of the

restricted data set, where in each “fold” we took a fourth of the participants, and generated mean

and variance models to predict the outcomes (log-fibrinogen) of the held-out fifth of the participants.

We calculated the mean squared errors for these predictions as
∑nk

i=1((yi − Cβ̂y)2 − exp(Cω̂y))2,

where nk is the number of observation in the k = 1, . . . , 5 set of observations, β̂y is the vector of

regression coefficients of the outcome y, and ω is the vector of regression coefficients in the log-linear

models of the residuals. The cross-validated prediction score is the mean of these 5 scores. Table 2

provides the results of these cross validations, and they suggest that modeling the variances of both

Y and N conditional on covariates is beneficial.

Figure 5 provides effect estimates using the various models described above, and their 95%

bootstrap confidence intervals from 1000 bootstrap samples. One can see that when using more

robust models (that make fewer assumptions), the confidence intervals are wider, in agreement

with the simulations studies, in which MSEs were larger for more general models. Consider the

dichotomized (high vs low) BC exposure measured at an areal sensor. For this model, based on

the histograms in Figure 4 and the results from assesing heteroscedasticity in Table 2, the most

appropriate estimates assumes that Y and N come from the same location-scale family (“same

LS” in the figure) and, the variance varies within levels of covariates (“var(C)” in the figure).

Interestingly, in this case the effect estimates of BC are larger than the standard regression estimate.

The “DID” analysis had hardly any impact on the results compared to the ordinary regression
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analysis, since log-BMI is measured on a different scale than log-fibrinogen, and more accurately -

in values much closer to zero. This demonstrates the importance of accounting for the outcome’s

scale in DID-type analysis. More generally, even if the negative outcome is the same as the primary

outcome, there may be difference in variances across groups that are important to account for.

Interestingly, when using the predicted BC measures at the participants’ home addresses, BC

effect estimates are closer to null. This is likely due to measurement error from the geospatial model

used to predict the BC measurements. Such models were shown to often lead to biases towards the

null in estimating air pollution effects (Zeger and others, 2000).

In contrast with standard regression, estimates based on NOC approaches under different

location-scale families found no significant exposure effect; however, confidence intervals from all

models contained the point estimate obtained using standard regression, suggesting that BMI does

not provide any significant evidence of unobserved confounding bias.

6. Software

Software in the form of R code, together with a sample input data set and complete documentation

is available on request from the corresponding author (etchetge@hsph.harvard.edu).

7. Supplementary Material

Acknowledgments

The authors thank... Conflict of Interest: None declared.

Hosted by The Berkeley Electronic Press



20 REFERENCES

References

Abadie, Alberto. (2005). Semiparametric difference-in-differences estimators. The Review of

Economic Studies 72(1), 1–19.

Angrist, Joshua D and Krueger, Alan B. (1999). Empirical strategies in labor economics.

Handbook of labor economics 3, 1277–1366.

Athey, Susan and Imbens, Guido W. (2006). Identification and inference in nonlinear difference-

in-differences models. Econometrica 74(2), 431–497.

Blundell, Richard and MaCurdy, Thomas. (2000). Labor supply. In: Ashenfelter, O. and

D. Card, eds. (editors), Handbook of Labor Economics. North Holland: Elsevier, pp. 1559–1695.

Flanders, W Dana, Klein, Mitchel, Darrow, Lyndsey A, Strickland, Matthew J,

Sarnat, Stefanie E, Sarnat, Jeremy A, Waller, Lance A, Winquist, Andrea and

Tolbert, Paige E. (2011). A method for detection of residual confounding in time-series and

other observational studies. Epidemiology (Cambridge, Mass.) 22(1), 59.

Gryparis, Alexandros, Coull, Brent A, Schwartz, Joel and Suh, Helen H. (2007).

Semiparametric latent variable regression models for spatiotemporal modelling of mobile source

particles in the greater boston area. Journal of the Royal Statistical Society: Series C (Applied

Statistics) 56(2), 183–209.

Hernán, Miguel A, Hernández-D́ıaz, Sonia and Robins, James M. (2004). A structural

approach to selection bias. Epidemiology 15(5), 615–625.

Lipsitch, Marc, Tchetgen Tchetgen, Eric and Cohen, Ted. (2010). Negative controls: a

tool for detecting confounding and bias in observational studies. Epidemiology 21(3), 383–388.

http://biostats.bepress.com/harvardbiostat/paper194



REFERENCES 21

Meyer, Breed D. (1995). Natural and quasi-experiments in economics. Journal of business &

economic statistics 13(2), 151–161.

Pearl, Judea. (2009). Causality . Cambridge university press.

Tchetgen Tchetgen, Eric J. (2014). The control outcome calibration approach for causal

inference with unobserved confounding. American journal of epidemiology 179(5), 633–640.

Zeger, Scott L, Thomas, Duncan, Dominici, Francesca, Samet, Jonathan M,

Schwartz, Joel, Dockery, Douglas and Cohen, Aaron. (2000). Exposure measurement

error in time-series studies of air pollution: concepts and consequences. Environmental health

perspectives 108(5), 419.

Zeka, Ariana, Sullivan, James R, Vokonas, Pantel S, Sparrow, David and Schwartz,

Joel. (2006). Inflammatory markers and particulate air pollution: characterizing the pathway

to disease. International Journal of Epidemiology 35(5), 1347–1354.

APPENDIX

A. Mathematical derivations

Proof of Theorem 1: Let SN |A,C (n) = P {N > n|A,C} and FN |A,C (n) = P {N < n|A,C} .

First we establish that assumption (3.11) is equivalent to:

FY0|A=0,C ◦ F−1Y0|A=1,C (v) = FN |A=0,C ◦ F−1N |A=1,C (v)

since

FY0|A=0,C ◦ F−1Y0|A=1,C (v)

= Pr
{
Y0 6 F−1Y0|A=1,C (v) |C,A = 0

}
= Pr

{
hy (U,C) 6 F−1Y0|A=1,C (v) |C,A = 0

}
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N A Y

U

C

Fig. 1. Directed acyclic graph depicting the causal association between the treatment A, primary outcome
Y , negative control outcome N , measured pre-exposure confounders C, and unmeasured confounders U .

Z(0) A Z(1)

U

C

Fig. 2. Directed acyclic graph depicting the causal association between the treatment A, pre-exposure
outcome Z(0), post-exposure outcome Z(1), measured pre-exposure confounders C, and unmeasured con-
founders U .

Table 1. Finite sample bias and MSE (in parenthesis) averaged over 1000 simulations, for estimat-
ing the effect of treatment on the treated (α = 3) via indirect adjustment, under the location-scale
model. The unmeasured confounders were sampled from either the normal or the uniform family.
The Näıve model is the regression estimator of Y on C and A. Other estimators either assume
homoscedasticity, or model the variance as a function of covariates C, and either assume that the
qq-transformation between the standardized primary outcome Y and the negative control outcome
N in the unexposed group is the identity (“QQ identity”), or model this transformation nonpara-

metrically.

Family n Näıve Assuming homoscedasticity Modeling the variance
regression QQ identity QQ modeled QQ identity QQ modeled

Normal 100 5.99(36.83) 0.05(02.72) 0.47(02.54) 0.13(02.99) 0.52(02.65)
Normal 500 5.99(36.06) 0.01(00.53) 0.12(00.57) 0.03(00.59) 0.12(00.61)
Uniform 100 9.09(85.15) 0.03(05.65) 2.61(10.06) 0.03(05.98) 2.59(10.03)
Uniform 500 8.97(81.02) 0.01(01.23) 2.34(06.22) 0.03(01.27) 2.31(06.10)
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and note that

FY0|A=1,C (y) = Pr {Y0 6 y|C,A = 1}

= Pr {hy (U,C) 6 y|C,A = 1}

= Pr
{
U 6 h−1y (y, C) |C,A = 1

}
= FU |C,A=1

(
h−1y (y, C)

)
so that

F−1Y0|A=1,C (v) = hy

(
F−1U |C,A=1 (v) , C

)
and therefore we may conclude that

FY0|A=0,C ◦ F−1Y0|A=1,C (v)

= Pr
{
hy (U,C) 6 F−1Y0|A=1,C (v) |C,A = 0

}
= Pr

{
hy (U,C) 6 hy

(
F−1U |C,A=1 (v) , C

)
|C,A = 0

}
= Pr

{
U 6 F−1U |C,A=1 (v) |C,A = 0

}
= FU |A=0,C ◦ F−1U |A=1,C (v)

Likewise,

FN |A=0,C ◦ F−1N |A=1,C (v) = FW |A=0,C ◦ F−1W |A=1,C (v)

proving

FU |A=0,C ◦ F−1U |A=1,C (v) = FW |A=0,C ◦ F−1W |A=1,C (v) (A.1)

⇐⇒ FY0|A=0,C ◦ F−1Y0|A=1,C (v) = FN |A=0,C ◦ F−1N |A=1,C (v)

the result.
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Proof of Corollary 1: From Theorem 1

Ỹ ∼ F−1Y |A=0,C ◦ FN |A=0,C (N∗) .

First, note that

FN |A=0,C(v) = p(N < v|A = 0, C) = p

(
N − µn(C)

sn(C)
<
v − µn(C)

sn(C)

∣∣∣∣A = 0, C

)
= FεN

(
v − µn(C)

sn(C)

)
.

Second, let F−1Y |A=0,C(u) = v, for 0 < u < 1. The inverse probability function can be defined as

F−1Y |A=0,C(u) = min{v : p(Y < v|A = 0, C) = u}. Then:

u = FY |A=0,C(v) = p(Y < v|A = 0, C) = p

(
Y − µy(C)

sy(C)
<
v − µy(C)

sy(C)

∣∣∣∣A = 0, C

)
= FεY

(
v − µy(C)

sy(C)

)
Thus,

v = sy(C)F−1εY (u) + µy(C) = F−1Y |A=0,C(u).

Combining the two results, we get:

Ỹ = sy(C)F−1εY ◦ FεN
(
N∗ − µn(C)

sn(C)

)
+ µy(C).

Now, if FεY (·) = FεN (·), trivially

Ỹ = sy(C)

(
N∗ − µn(C)

sn(C)

)
+ µy(C).

B. Asymptotic variance of the location-scale NOC estimate

Assume that sy(Ci) = sy, sn(Ci) = sn. The estimating equation U(θ) for θ = (βy,βn, sy, sn, α) is

given by

U(θ) =


U(βy)
U(βn)

U(s2y;βy)
U(s2n;βn)
U(α)



http://biostats.bepress.com/harvardbiostat/paper194



REFERENCES 25

with influence function

E

[
∂

∂θ
U(θ)

]−1
U(θ)

with:

U(βy) =
1∑

i:Ai=0 1

∑
i:Ai=0

Ci
(
Yi − CTi βy

)
U(βn) =

1∑
i:Ai=0 1

∑
i:Ai=0

Ci
(
Ni − CTi βn

)
U(sy) =

1∑
i:Ai=0 1

∑
i:Ai=0

(
Yi − CTi βy

)2 − s2y
U(sn) =

1∑
i:Ai=0 1

∑
i:Ai=0

(
Ni − CTi βn

)2 − s2n
U(α) =

1∑
i:Ai=1 1

∑
i:Ai=1

[
Yi − sy

{
N∗ − CTi βn

sn

}
− CTi βy

]
− α.

The matrix ∂

∂θ
U(θ) is given by:

∂

∂βy

U(βy) 0 0 0 0

0 ∂

∂βn

U(βn) 0 0 0
∂

∂βy

U(sy) 0 ∂
∂sy

U(sy) 0 0

0 ∂

∂βn

U(sn) 0 ∂
∂sn

U(sn) 0
∂

∂βy

U(α) ∂

∂βn

U(α) ∂
∂sy

U(α) ∂
∂sn

U(α) ∂
∂αU(α)

,


with:

∂

∂βy
U(βy) = − 1∑

i:Ai=0 1

∑
i:Ai=0

CiC
T
i

∂

∂βn
U(βn) = − 1∑

i:Ai=0 1

∑
i:Ai=0

CiC
T
i

∂

∂βy
U(sy) = − 2∑

i:Ai=0 1

∑
i:Ai=0

Ci
(
Yi − CTi βy

)
∂

∂sy
U(sy) = −2sy

∂

∂βn
U(sn) = − 2∑

i:Ai=0 1

∑
i:Ai=0

Ci
(
Ni − CTi βn

)
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∂

∂sn
U(sy) = −2sn

∂

∂βy
U(α) = − 1∑

i:Ai=1 1

∑
i:Ai=1

CTi

∂

∂βn
U(α) =

1∑
i:Ai=1 1

∑
i:Ai=1

sy
sn
CTi

∂

∂sy
U(α) = − 1∑

i:Ai=1 1

∑
i:Ai=1

{
N∗ − CTi βn

sn

}
∂

∂sn
U(α) =

1∑
i:Ai=1 1

∑
i:Ai=1

sy

{
N∗ − CTi βn

s2n

}
∂

∂α
U(α) = −1.

Finally, the covariance matrix of the estimators is given by

[
∂

∂θ
U(θ)

]−1
Pn
[
Ui(θ)UTi (θ)

] [ ∂
∂θ
U(θ)

]−1
,

where Ui is an individual equation for subject i, and Pn[xi] = 1/n
∑n
i=1 xi.

[Received August 1, 2010; revised October 1, 2010; accepted for publication November 1, 2010 ]
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N A Y

W U

C

Fig. 3. Directed acyclic graph depicting the causal association between the treatment A, primary outcome
Y , negative control outcome N , measured pre-exposure confounders C, and unmeasured confounders U and
W of the primary and secondary outcomes, respectively.

Table 2. 5-fold cross-validated prediction scores comparing two models for the variances. The ‘ho-
moscedasticity’ option assumes homoscedasticity across all levels of the confounding variables, and

‘model variance’ assumes that the covariates affect the error variance via a log-linear model.

Outcome homoscedasticity model variance

log-fibrinogen 0.032 0.007
log-BMI 0.032 0.001

Table 3. NAS cohort characteristics, for participants observed between November 2000 and Decem-
ber 2004. Measures are given in medians and ranges are in parentheses.

Characteristic value

Number of participants 616
Number of visits 703
Age 74 (58, 92)
BMI 27.6 (17.9, 46)
Fibrinogen 328 (109, 741)
Black carbon concentration (Areal) 1.18 (0.32, 2.02)
Black carbon concentration (Address) 0.75 (0.42, 1.17)
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Fig. 4. Histograms of the residuals of the primary outcome (fibrinogen) and negative control outcome (BMI),
and their log transformations, after regressing on the covariates in the low-exposure group.
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Fig. 5. Estimates of the effect of exposures to BC on log-fibrinogen as a binary variable, with values either
predicted at participants’ home addresses (left), or measured at an areal sensor at Boston (right), and
95% bootstrap confidence intervals. Effects were estimated using the indirect adjustment method with
log-BMI as the negative control outcome, and compared to standard regression adjusted to BMI, and to
the näıve DID method that assumes that the negative control outcome log-BMI is measured at the same
scale as the primary outcome. var(1) and var(C) refer to modeling the variance using a log-linear model
assuming dependence on covariates (var(C)), or homoscedasticity (var(1)). The location-scale family (LS)
of log-fibrinogen and log-BMI were assumed identical (“same”) or different (“diff”).
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