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Multiple Testing. Part III. Procedures for
Control of the Generalized Family-Wise Error

Rate and Proportion of False Positives

Mark J. van der Laan, Sandrine Dudoit, and Katherine S. Pollard

Abstract

The accompanying articles by Dudoit et al. (2003b) and van der Laan et al. (2003)
provide single-step and step-down resampling-based multiple testing procedures
that asymptotically control the family-wise error rate (FWER) for general null hy-
potheses and test statistics. The proposed procedures fundamentally differ from
existing approaches in the choice of null distribution for deriving cut-offs for the
test statistics and are shown to provide asymptotic control of the FWER under gen-
eral data generating distributions, without the need for conditions such as subset
pivotality. In this article, we show that any multiple testing procedure (asymptot-
ically) controlling the FWER at level alpha can be augmented into: (i) a multiple
testing procedure (asymptotically) controlling the generalized family-wise error
rate (i.e., the probability, gFWER(k), of having more than k false positives) at level
alpha and (ii) a multiple testing procedure (asymptotically) controlling the prob-
ability, PFP(q), that the proportion of false positives among the rejected hypothe-
ses exceeds a user-supplied value q in (0,1) at level alpha. Existing procedures for
control of the proportion of false positives typically rely on the assumption that the
test statistics are independent, while our proposed augmentation procedures con-
trol the PFP and gFWER for general data generating distributions, with arbitrary
dependence structures among variables. Applying our augmentation methods to
step-down multiple testing procedures that asymptotically control the FWER at
exact level alpha (van der Laan et al., 2003), yields multiple testing procedures
that also asymptotically control the gFWER and PFP at exact level alpha. Finally,
the adjusted p-values for the gFWER and PFP-controlling augmentation proce-
dures are shown to be simple functions of the adjusted p-values for the original
FWER-controlling procedure.
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1 Introduction

Multiple hypothesis testing methods are concerned with the simultaneous
test of m > 1 null hypotheses, while controlling a suitably defined Type I er-
ror (i.e., false positive) rate. There is a rich literature on multiple testing. We
refer the reader to textbooks by Hochberg and Tamhane (1987) and Westfall
and Young (1993), and to overview articles by Shaffer (1995) and Dudoit
et al. (2003a). Classical approaches to multiple testing call for controlling
the family-wise error rate (FWER), that is, the chance of making at least one
Type I error. Hochberg and Tamhane (1987) describe a variety of single-step
and step-down methods for controlling the FWER, based on cut-off rules
for the ordered p-values corresponding to each null hypothesis. Westfall and
Young (1993) provide resampling-based multiple testing procedures for con-
trol of the FWER. Pollard and van der Laan (2003) and Dudoit et al. (2003b)
propose a general class of single-step multiple testing procedures for control-
ling a user-supplied Type I error rate, defined as an arbitrary parameter of
the distribution of the number of false positives. Such error rates include,
for example, tail probabilities for the number of Type I errors (generalized
family-wise error rate, gFWER), and the mean (per comparison error rate,
PCER) and median number of Type I errors. While Pollard and van der
Laan (2003) focus on single-parameter null hypotheses and test statistics
which are asymptotically normally distributed, Dudoit et al. (2003b) extend
the proposed approach to general null hypotheses defined in terms of sub-
models for the data generating distribution, provide adjusted p-values for
each procedure, and present a number of applications of the theory. van der
Laan et al. (2003) propose step-down multiple testing procedures for control-
ling the FWER for general null hypotheses and test statistics. As detailed
in these three articles, our approach to multiple testing fundamentally dif-
fers from existing approaches in the literature (e.g., methods discussed in
Hochberg and Tamhane (1987) and Westfall and Young (1993)) in the choice
of null distribution for deriving rejection regions, i.e., cut-offs for the test
statistics. We propose a general characterization and explicit construction
for a test statistics null distribution that provides asymptotic control of the
Type I error rate under general data generating distributions, without the
need for conditions such as subset pivotality.

A common criticism of multiple testing procedures designed to control
the FWER is their lack of power, especially for large-scale testing problems
such as those encountered in genomics and astronomy. Here, we consider two
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broad classes of Type I error rates that are less stringent than the FWER and
may therefore be more appropriate for current high-dimensional applications:
the generalized family-wise error rate (gFWER) and the proportion of false
positives among the rejected hypotheses (PFP). The gFWER is a relaxed
version of the FWER, which allows k > 0 false positives, that is, gFWER(k)
is defined as the chance of at least (k + 1) Type I errors (k = 0 for the usual
FWER). While Pollard and van der Laan (2003) and Dudoit et al. (2003b)
provide single-step procedures for control of the gFWER, we note that none
of the above articles supply step-down methods for controlling this error rate.

A variety of multiple testing methods controlling the false discovery rate
(FDR), i.e., the expected proportion of false positives among the rejected
hypotheses, have been proposed in a frequentist setting by Benjamini and
co-authors (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001;
Benjamini and Braun, 2002; Yekutieli and Benjamini, 1999). These articles
establish FDR control results under the assumption that the test statistics are
either independently distributed or have certain forms of dependence (e.g.,
positive regression dependence). Among the many applications of FDR-
controlling procedures we mention Reiner et al. (2003) and Yekutieli and
Benjamini (1999). Abramovich et al. (2000) show that FDR-controlling pro-
cedures can also be used to adapt to unknown sparsity in regression. A
(Bayesian) mixture model approach to obtain multiple testing procedures
controlling the FDR is considered in Efron et al. (2001a), Efron et al. (2001b),
Storey (2001), Storey (2002), Storey and Tibshirani (2001), Storey and Tib-
shirani (2003), Storey et al. (2003), and Tusher et al. (2001). The latter
framework assumes that test statistics are independent and identically dis-
tributed realizations from a mixture model, though robustness against this
assumption has been noted.

In contrast to FDR-controlling procedures that focus on the expected value
of the proportion of false positives among the rejected hypotheses, Genovese
and Wasserman (2001) consider tail probabilities for this proportion. Under
the assumption that the test statistics are independent, these authors pro-
vide procedures that control the probability, PFP (q), that the proportion
of false positives exceeds a user-supplied value q ∈ (0, 1). Under the same
independence assumption, Genovese and Wasserman (2002) extend the the-
ory for FDR control by representing the FDR as an empirical process. In
studies in which investigators wish to have high confidence (i.e., chance at
least 1− α) that the set of rejected null hypotheses contains at most a spec-
ified proportion q of false positives, PFP control is the appropriate form of
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Type I error control, while FDR-controlling approaches would only control
this proportion on average. Multiple testing procedures proposed thus far for
controlling a parameter (i.e., mean for FDR or tail probability for PFP (q))
of the distribution of the proportion of false positives among the rejected hy-
potheses rely on the following assumptions concerning the joint distribution
of the test statistics: independence, specific dependence structures (such as
positive regression dependence), or normality.

The present article proposes simple augmentations of FWER-controlling
procedures, for control of the generalized family-wise error rate (Section 2.2)
and the proportion of false positives among the rejected hypotheses (Section
2.3). Theorems 1 and 2 establish finite sample control and exact asymp-
totic control results for such augmentation procedures, under general data
generating distributions, with arbitrary dependence structures among vari-
ables. Adjusted p-values for the gFWER and PFP-controlling augmentation
procedures are shown to be simple functions of the adjusted p-values for the
original FWER-controlling procedure. The companion articles give a detailed
introduction to our general approach to multiple testing and provide single-
step (Dudoit et al., 2003b; Pollard and van der Laan, 2003) and step-down
(van der Laan et al., 2003) multiple testing procedures for controlling the
FWER for general null hypotheses and test statistics. The basic framework
and main definitions are recalled below for convenience.

2 Multiple testing procedures

2.1 Basic framework

Model. Let X1, . . . , Xn be n independent and identically distributed (i.i.d.)
random variables, X ∼ P ∈ M, where the data generating distribution P is
known to be an element of a particular statistical model M (possibly non-
parametric).

Null hypotheses. In order to cover a broad class of testing problems, we
define m null hypotheses in terms of a collection of submodels, Mj ⊆ M,
j = 1, . . . ,m, for the data generating distribution P . The m null hypotheses
are defined as H0j ≡ I(P ∈Mj) and the corresponding alternative hypotheses
as H1j ≡ I(P /∈Mj).
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For many testing problems of interest, each null hypothesis H0j refers
to a single parameter µj(P ), j = 1, . . . ,m. The corresponding submodels
are of the form Mj = {P ∈ M : µj(P ) = µ0j}, for two-sided tests, and
Mj = {P ∈ M : µj(P ) ≤ µ0j} for one-sided tests, where µ0j are user-
supplied null-values.

Let S0 = S0(P ) ≡ {j : H0j is true} = {j : P ∈ Mj} be the set
of m0 = |S0| true null hypotheses, where we note that S0 depends on
the true data generating distribution P . Let Sc

0 = {1, . . . ,m}/S0 ≡ {j :
H0j is false} = {j : P /∈Mj} be the set of m1 = m−m0 false null hypothe-
ses, i.e., true positives.

Multiple testing procedures. A multiple testing procedure (MTP) can be
represented by a random subset Sn of Rn = |Sn| rejected hypotheses, that
estimates the set Sc

0 of true positives,

Sn = S(Tn, Q0, α) ≡ {j : H0j is rejected} ⊆ {1, . . . ,m}. (1)

As indicated by the long notation S(Tn, Q0, α), the set Sn is a function of:
(i) the data, X1, . . . , Xn, through an m-vector of test statistics Tn = (Tn(j) :
j = 1, . . . ,m), where each Tn(j) corresponds to a null hypothesis H0j; (ii)
a test statistics null distribution, Q0, for computing cut-offs for each Tn(j)
(and the resulting adjusted p-values); and (iii) the nominal level α of the
MTP, i.e., the desired upper bound for a suitably defined Type I error rate.
Multiple testing procedures such as those proposed in the companion articles
(Dudoit et al., 2003b; van der Laan et al., 2003; Pollard and van der Laan,
2003) can be represented as

Sn = S(Tn, Q0, α) = {j : Tn(j) > cj},

where cj = cj(Tn, Q0, α), j = 1, . . . ,m, are possibly random cut-offs, or crit-
ical values, computed under the null distribution Q0 for the test statistics.

Type I error rates. In any testing situation, two types of errors can be
committed: a false positive, or Type I error, is committed by rejecting a true
null hypothesis (Sn∩S0), and a false negative, or Type II error, is committed
when the test procedure fails to reject a false null hypothesis (Sc

n ∩ Sc
0).

Denote the number of Type I errors by Vn = |Sn ∩ S0|. The multiple testing
literature is concerned with constructing an optimal estimator of the set of
true positives Sc

0 (i.e., most powerful set, with minimal number of Type II

5
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errors), while controlling a parameter θn = θ(FVn,Rn), of the joint distribution
of the numbers of Type I errors Vn and rejected hypotheses Rn, at a user-
supplied level α.

Here, we consider procedures that control the following two broad classes
of Type I error rates: the generalized family-wise error rate and the propor-
tion of false positives among the rejected hypotheses. The generalized family-
wise error rate (gFWER), for a user-supplied integer k = 0, . . . ,m0 − 1, is
the probability of at least (k + 1) Type I errors. That is,

gFWER(k) ≡ Pr(Vn ≥ k + 1) = 1− FVn(k), (2)

where FVn is the discrete cumulative distribution function on {0, . . . ,m} for
the number of Type I errors, Vn. When k = 0, the gFWER is the usual
family-wise error rate (FWER), or probability of at least one Type I error,

FWER ≡ Pr(Vn ≥ 1) = 1− FVn(0). (3)

The proportion of false positives among the rejected hypotheses (PFP), for a
user-supplied q ∈ (0, 1), is defined as

PFP (q) ≡ Pr(Vn/Rn > q). (4)

In the remainder of the article, we use the shorter phrase proportion of false
positives to refer to the proportion of false positives among the Rn rejected
hypotheses and not among the total number m of null hypotheses. Controlling
the later proportion would amount to controlling the gFWER. Note that
while the gFWER is a parameter of only the marginal distribution for the
number of Type I errors Vn, the PFP is a parameter of the joint distribution
of (Vn, Rn). Note also that the false discovery rate (FDR) is the expected
value of the proportion of false positives,

FDR ≡ E[Vn/Rn] (5)

(with the convention that Vn/Rn ≡ 0 if Rn = 0), while PFP (q) is a tail
probability for this proportion.

A multiple testing procedure Sn = S(Tn, Q0, α) is said to provide finite
sample control of a Type I error rate θn (gFWER(k) or PFP (q)) at level
α ∈ (0, 1), if θn ≤ α, and asymptotic control of this error rate at level α, if
lim supn θn ≤ α. It is common practice to set α = 0.05.
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Adjusted p-values. Given a multiple testing procedure Sn(α) = S(Tn, Q0, α),
the adjusted p-value, P̃n(j), for null hypothesis H0j, is defined as

P̃n(j) ≡ inf{α : j ∈ Sn(α)}, j = 1, . . . ,m. (6)

If Sn(α) is right-continuous at α, in the sense that limα′↓α Sn(α′) = Sn(α),
then the adjusted p-values imply Sn(α) for each value of α through the rela-
tion

Sn(α) = {j : P̃n(j) ≤ α}. (7)

Let On(j) denote indices for the ordered adjusted p-values, so that P̃n(On(1)) ≤
. . . ≤ P̃n(On(m)). Then, the set of rejected hypotheses Sn(α) consists of the
indices for the Rn(α) = |Sn(α)| hypotheses with the smallest adjusted p-
values, that is, Sn(α) = {On(j) : j = 1, . . . , Rn(α)}.

Augmentation procedures. This article proposes augmentations of FWER-
controlling procedures that control the gFWER and PFP. That is, we presup-
pose a multiple testing procedure Sn = S(Tn, Q0, α), that provides (asymp-
totic) control of the FWER at level α (Procedure 0, below). The reader is
referred to the companion articles for a detailed discussion of the choice of
test statistics Tn, null distribution Q0, and specific proposals of single-step
and step-down procedures that control the FWER (Dudoit et al., 2003b;
van der Laan et al., 2003; Pollard and van der Laan, 2003). Accordingly, we
take the test statistics Tn and their null distribution Q0 as given, and denote
the set of rejected hypotheses by Sn(α), to emphasize only the dependence of
this set on the nominal level α of the MTP. Similarly, we denote the number
of rejected hypotheses by Rn(α) ≡ |Sn(α)| and the number of Type I errors
by Vn(α) ≡ |Sn(α) ∩ S0|.

Procedure 0. FWER-controlling procedure.
Suppose one has available a multiple testing procedure Sn(α) that provides
finite sample control of the FWER at level αn ∈ (0, 1) and asymptotic
control of the FWER at level α ∈ (0, 1). That is,

αn = Pr(Vn(α) > 0), ∀n, (8)

and
lim sup

n→∞
Pr(Vn(α) > 0) = lim sup

n→∞
αn = α∗ ≤ α, (9)

where Vn(α) = |Sn(α) ∩ S0| denotes the number of Type I errors for proce-
dure Sn(α).
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Given a FWER-controlling procedure Sn(α) and a random subset An(α)
(i.e., An(α) is a deterministic function of the data, X1, . . . , Xn), satisfying
Pr(An(α) ⊆ Sc

n(α)) = 1, where Sc
n(α) ≡ {1, . . . ,m}/Sn(α) is the set of non-

rejected hypotheses, we define a new multiple testing procedure S+
n (α) by

S+
n (α) ≡ Sn(α) ∪ An(α). (10)

That is, S+
n (α) is an augmentation of the MTP Sn(α) by the set An(α),

identifying |An(α)| additional rejections among the null hypotheses which
were not rejected by Sn(α). In the sequel, the set An(α) will always denote
a subset of Sc

n(α). We also define

R+
n (α) ≡ |S+

n (α)|,

as the number of rejected hypotheses, and

V +
n (α) ≡ |S+

n (α) ∩ S0|,

as the number of Type I errors for the augmentation multiple testing proce-
dure S+

n (α).

Sections 2.2 and 2.3, below, provide explicit proposals of augmentation
sets An(α) that define procedures S+

n (α) for controlling the gFWER and
the PFP, respectively. Theorems 1 and 2 establish finite sample control and
exact asymptotic control results for such augmentation procedures.

2.2 Multiple testing procedures for control of the gFWER

2.2.1 Augmentation procedures

For control of the gFWER, Theorem 1 states that, for any non-negative
integer k and set An(α) with Pr(|An(α)| = k) = 1, the multiple testing pro-
cedure S+

n (α) = Sn(α)∪An(α) provides finite sample control of gFWER(k)
at level αn, that is, Pr(V +

n (α) > k) ≤ αn, ∀n. In addition, if Sn(α) controls
the FWER asymptotically exactly at level α∗ and the true alternatives are
asymptotically always rejected by Sn(α) (condition (14), below), then the
augmentation procedure S+

n (α) also provides asymptotically exact control of
gFWER(k) at level α∗, that is, lim infn Pr(V +

n (α) = k) = 1− α∗.
Though Theorem 1 applies to any random set An(α) satisfying the speci-

fied size constraints with probability one, because of power considerations, we
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propose the following construction for An(α), based on the ordered adjusted
p-values for the FWER-controlling procedure.

Procedure 1. Augmentation procedure for control of the gFWER.
Consider a multiple testing procedure Sn(α), such as Procedure 0, that
provides finite sample control of the FWER at level αn and asymptotic
control of the FWER at level α.

1. First, order the m hypotheses according to their FWER adjusted p-
values, P̃n(j), from smallest to largest, that is, define indices On(j),
so that P̃n(On(1)) ≤ . . . ≤ P̃n(On(m)). The FWER-controlling pro-
cedure rejects null hypotheses

Sn(α) = {j : P̃n(j) ≤ α} = {On(j) : j = 1, . . . , Rn(α)}. (11)

2. For a given integer k = 0, . . . ,m − Rn(α), define an augmentation
gFWER-controlling procedure S+

n (α) by

S+
n (α) ≡ Sn(α) ∪ An(k, α), (12)

where An(k, α) is an augmentation set of size k defined by

An(k, α) ≡ {On(j) : j = Rn(α) + 1, . . . , Rn(α) + k}. (13)

That is, the set An(k, α) corresponds to the k most significant hy-
potheses that were not rejected by the FWER-controlling procedure
Sn(α).

2.2.2 Finite sample and asymptotic control of gFWER

Theorem 1 [Control of gFWER] Consider a multiple testing procedure
Sn(α), such as Procedure 0, that provides finite sample control of the FWER
at level αn and asymptotic control of the FWER at level α. That is, Pr(Vn(α) >
0) = αn, ∀n, and lim supn Pr(Vn(α) > 0) = lim supn αn = α∗ ≤ α.
Finite sample control. For a non-negative integer k, suppose An(α) is a
random subset such that the events An(α) ⊆ Sc

n(α) and |An(α)| = min(k, m−
|Sn(α)|) have joint probability one. Then, the augmentation procedure S+

n (α) =
Sn(α)∪An(α) provides finite sample control of gFWER(k) at level αn, that

9

Hosted by The Berkeley Electronic Press



is,
Pr(V +

n (α) > k) ≤ Pr(Vn(α) > 0) = αn, ∀n.

Asymptotic exact control. Consider a random subset An(α) such that the
events An(α) ⊆ Sc

n(α) and |An(α)| = k have joint probability one. Asymp-
totic control at level α follows immediately from finite sample control above.
Suppose now that Sn(α) also satisfies

lim
n→∞

Pr(Sc
0 ⊆ Sn(α)) = 1, (14)

that is, the true alternative hypotheses are asymptotically always rejected by
Sn(α). Then, the augmentation procedure S+

n (α) = Sn(α) ∪ An(α) is such
that

lim inf
n→∞

Pr(V +
n (α) = k) = 1− α∗. (15)

In particular, S+
n (α) provides exact asymptotic control of gFWER(k) at level

α∗ ≤ α, that is,
lim sup

n→∞
Pr(V +

n (α) > k) = α∗.

Note that the augmentation set An(k, α) in Procedure 1 trivially satisfies
the conditions of Theorem 1.

Proof of Theorem 1.

Finite sample control. Since Pr(|An(α)| ≤ k) = 1, we have Pr(V +
n (α) ≤

Vn(α) + k) = 1. Thus, Pr(V +
n (α) > k) ≤ Pr(Vn(α) + k > k) = Pr(Vn(α) >

0), which equals αn by definition.

Asymptotic exact control. Define Bn ≡ I(Sc
0 ⊆ Sn(α)). By assumption,

limn Pr(Bn = 1) = 1. Thus,

Pr(V +
n (α) = k) = Pr(V +

n (α) = k | Bn = 1)Pr(Bn = 1) + o(1).

Note that, if Bn = 1, then An(α) ⊆ Sc
n(α) ⊆ S0, so that V +

n (α) = Vn(α) + k,
where we use that |An(α)| = k with probability one. Thus,

Pr(V +
n (α) = k) = Pr(Vn(α) + k = k | Bn = 1)Pr(Bn = 1) + o(1)

= Pr(Vn(α) = 0 | Bn = 1)Pr(Bn = 1) + o(1)

= Pr(Vn(α) = 0)− Pr(Vn(α) = 0, Bn = 0) + o(1)

= Pr(Vn(α) = 0) + o(1),

10

http://biostats.bepress.com/ucbbiostat/paper141



where the last equality follows by noting that Pr(Vn(α) = 0, Bn = 0) ≤
Pr(Bn = 0) → 0, as n → ∞. By assumption, we have lim infn Pr(Vn(α) =
0) = 1− α∗, thus, as required lim infn Pr(V +

n (α) = k) = 1− α∗.

2

2.2.3 Adjusted p-values

Consider multiple testing Procedure 1, for controlling gFWER(k) at level α,
where S+

n (α) = Sn(α)∪An(k, α) and the augmentation set An(k, α) is defined
in equation (13). By definition, the adjusted p-values P̃+

n (j) for augmentation
procedure S+

n (α) are given by

P̃+
n (j) = inf{α : j ∈ S+

n (α)}.

As one might expect, these adjusted p-values are trivial functions of the
adjusted p-values P̃n(j) for the FWER-controlling procedure Sn(α). Recall
the ordering H0,On(1), . . . , H0,On(m) of the null hypotheses, with corresponding

FWER adjusted p-values P̃n(On(1)) ≤ . . . ≤ P̃n(On(m)). Then, the gFWER
adjusted p-values are given by

P̃+
n (On(j)) =

{
0, if j = 1, . . . , k,

P̃n(On(j − k)), if j = k + 1, . . . ,m.
(16)

2.3 Multiple testing procedures for control of the PFP

2.3.1 Augmentation procedures

For control of the PFP, given q ∈ (0, 1), define

kn(q, α) ≡ max

{
j ∈ {0, . . . ,m−Rn(α)} :

j

j + Rn(α)
≤ q

}
and

q∗ ≡ kn(q, α)

kn(q, α) + Rn(α)
≤ q, (17)

where Rn(α) = |Sn(α)| denotes the number of rejected hypotheses for FWER-
controlling procedure Sn(α). Then, Theorem 2 states that, for a set An(α)
with Pr(|An(α)| = kn(q, α)) = 1, the multiple testing procedure S+

n (α) =

11

Hosted by The Berkeley Electronic Press



Sn(α)∪An(α) provides finite sample control of PFP (q∗) at level αn, that is,
Pr (V +

n (α)/R+
n (α) > q∗) ≤ αn, ∀n. In addition, if Sn(α) controls the FWER

asymptotically exactly at level α∗ and the true alternatives are asymptot-
ically always rejected by Sn(α) (condition (14), in Theorem 1), then the
augmentation procedure S+

n (α) also provides asymptotically exact control of
PFP (q∗) at level α∗, that is, lim infn Pr(V +

n (α)/R+
n (α) = q∗) = 1− α∗.

As does Theorem 1 for gFWER control, Theorem 2 applies to any random
set An(α) satisfying the specified size constraints with probability one. How-
ever, for power considerations, we propose the following specific construction
for the augmentation set An(α), based on the ordered adjusted p-values for
the FWER-controlling procedure.

12
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Procedure 2. Augmentation procedure for control of the PFP.
Consider a multiple testing procedure Sn(α), such as Procedure 0, that
provides finite sample control of the FWER at level αn and asymptotic
control of the FWER at level α.

1. First, order the m hypotheses according to their FWER adjusted p-
values, P̃n(j), from smallest to largest, that is, define indices On(j),
so that P̃n(On(1)) ≤ . . . ≤ P̃n(On(m)). The FWER-controlling pro-
cedure rejects null hypotheses

Sn(α) = {j : P̃n(j) ≤ α} = {On(j) : j = 1, . . . , Rn(α)}. (18)

2. For a given q ∈ (0, 1), define an augmentation PFP-controlling pro-
cedure S+

n (α) by

S+
n (α) ≡ Sn(α) ∪ An(kn(q, α), α), (19)

where An(kn(q, α), α) is an augmentation set of size kn(q, α) defined
by

kn(q, α) ≡ max

{
j ∈ {0, . . . ,m−Rn(α)} :

j

j + Rn(α)
≤ q

}
(20)

and

An(kn(q, α), α) ≡ {On(j) : j = Rn(α)+1, . . . , Rn(α)+kn(q, α)}. (21)

That is, the set An(kn(q, α), α) corresponds to the kn(q, α) most sig-
nificant hypotheses that were not rejected by the FWER-controlling
procedure Sn(α).

2.3.2 Finite sample and asymptotic control of PFP

Theorem 2 [Control of PFP] Consider a multiple testing procedure Sn(α),
such as Procedure 0, that provides finite sample control of the FWER at level
αn and asymptotic control of the FWER at level α. That is, Pr(Vn(α) > 0) =
αn, ∀n, and lim supn Pr(Vn(α) > 0) = lim supn αn = α∗ ≤ α. For q ∈ (0, 1),
suppose An(α) is a random subset such that the events An(α) ⊆ Sc

n(α) and
|An(α)| = kn(q, α) have joint probability one.
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Finite sample control. The augmentation procedure S+
n (α) = Sn(α) ∪

An(α) provides finite sample control of PFP (q∗) at level αn, that is,

Pr

(
V +

n (α)

R+
n (α)

> q∗
)
≤ Pr(Vn(α) > 0) = αn, ∀n.

Asymptotic exact control. Asymptotic control at level α follows immedi-
ately from finite sample control above. Suppose now that Sn(α) also satisfies
condition (14), that is, limn Pr(Sc

0 ⊆ Sn(α)) = 1. Then, the augmentation
procedure S+

n (α) = Sn(α) ∪ An(α) is such that

lim inf
n→∞

Pr

(
V +

n (α)

R+
n (α)

= q∗
)

= 1− α∗. (22)

In particular, S+
n (α) provides exact asymptotic control of PFP (q∗) at level

α∗ ≤ α, that is,

lim sup
n→∞

Pr

(
V +

n (α)

R+
n (α)

> q∗
)

= α∗.

Note that the augmentation set An(kn(q, α), α) in Procedure 2 trivially
satisfies the conditions of Theorem 2. Unlike the PFP-controlling procedures
in Genovese and Wasserman (2001), which assume independence of the test
statistics, our proposal controls the PFP for test statistics with arbitrary
joint distributions.

Proof of Theorem 2.

Finite sample control. Since Pr(|An(α)| = kn(q, α)) = 1, we have V +
n (α) ≤

Vn(α) + kn(q, α) and R+
n (α) = Rn(α) + kn(q, α). Thus,

V +
n (α)

R+
n (α)

≤ Vn(α) + kn(q, α)

Rn(α) + kn(q, α)
.

Define the indicator Cn ≡ I(Vn(α) = 0). Given Cn = 1 and by definition of
q∗, we have that

Vn(α) + kn(q, α)

Rn(α) + kn(q, α)
=

kn(q, α)

Rn(α) + kn(q, α)
= q∗.
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Thus,

Pr

(
V +

n (α)

R+
n (α)

> q∗
)

≤ Pr

(
Vn(α) + kn(q, α)

Rn(α) + kn(q, α)
> q∗

)
= Pr(· > q∗|Cn = 1)Pr(Cn = 1)

+ Pr(· > q∗ | Cn = 0)Pr(Cn = 0)

= 0 ∗ Pr(Cn = 1) + Pr(· > q∗ | Cn = 0)αn

≤ αn,

where we use the short-hand notation · for (Vn(α) + kn(q, α))/(Rn(α) +
kn(q, α)).

Exact asymptotic control. As in the proof of Theorem 1, let Bn ≡ I(Sc
0 ⊆

Sn(α)). Given Bn = 1, we have V +
n (α) = Vn(α) + kn(q, α) and hence

V +
n (α)

R+
n (α)

=
Vn(α) + kn(q, α)

Rn(α) + kn(q, α)
. (23)

Recall the definition Cn ≡ I(Vn(α) = 0) and also define Dn ≡ I(Bn = Cn =
1). Since, by assumption, limn Pr(Bn = 1) = 1 and lim infn Pr(Cn = 1) =
1−α∗, we have lim infn Pr(Dn = 1) = 1−α∗. Given Dn = 1 (i.e., Vn(α) = 0
and An(α) ⊆ Sc

n(α) ⊆ S0) and by definition of q∗, we have that

Vn(α) + kn(q, α)

Rn(α) + kn(q, α)
=

kn(q, α)

Rn(α) + kn(q, α)
= q∗.

Thus,

Pr

(
V +

n (α)

R+
n (α)

= q∗
)

= Pr

(
V +

n (α)

R+
n (α)

= q∗ | Dn = 1

)
Pr(Dn = 1)

+ Pr

(
V +

n (α)

R+
n (α)

= q∗ | Dn = 0

)
Pr(Dn = 0)

= 1 ∗ Pr(Dn = 1)

+ Pr

(
V +

n (α)

R+
n (α)

= q∗ | Dn = 0

)
Pr(Dn = 0)

and hence

lim infn→∞ Pr
(

V +
n (α)

R+
n (α)

= q∗
)

= (1− α∗) + lim infn→∞ Pr
(

V +
n (α)

R+
n (α)

= q∗ | Dn = 0
)

Pr(Dn = 0).
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In the remainder of the proof, we show that the second term equals zero. The
event {Dn = 0} is a union of three events, {Bn = 1, Cn = 0}, {Bn = 0, Cn =
1}, and {Bn = 0, Cn = 0}. Because limn Pr(Bn = 0) = 0, it follows that the
last two events happen with probability tending to zero. Consequently, we
have

Pr
(

V +
n (α)

R+
n (α)

= q∗ | Dn = 0
)

Pr(Dn = 0)

= Pr
(

V +
n (α)

R+
n (α)

= q∗ | Bn = 1, Cn = 0
)

Pr(Bn = 1, Cn = 0) + o(1).

Finally, by (23), we have

Pr
(

V +
n (α)

R+
n (α)

= q∗ | Bn = 1, Cn = 0
)

= Pr
(

Vn(α)+kn(q,α)
Rn(α)+kn(q,α)

= q∗ | Bn = 1, Cn = 0
)

= Pr(Vn(α) = 0 | Bn = 1, Cn = 0)
= 0.

This completes the proof that lim infn Pr(V +
n (α)/R+

n (α) = q∗) = 1− α∗.

2

2.3.3 Adjusted p-values

Consider multiple testing Procedure 2, for controlling PFP (q∗) at level α,
where S+

n (α) = Sn(α)∪An(kn(q, α), α) corresponds to the augmentation set
An(kn(q, α), α) defined in equation (21). Let

Un(α) ≡ 1

m

m∑
j=1

I(P̃n(j) ≤ α), (24)

where P̃n(j) are the adjusted p-values for the FWER-controlling procedure
Sn(α). For simplicity, suppose Sn(α) is right-continuous at α, for all α ∈
(0, 1), so that we have the representation Sn(α) = {j : P̃n(j) ≤ α} and
thereby Rn(α) =

∑m
j=1 I(P̃n(j) ≤ α) = Un(α) ∗m. Let On(j) denote indices

for the ordered adjusted p-values, P̃n(On(j)), for FWER-controlling proce-
dure Sn(α), so that P̃n(On(1)) ≤ . . . ≤ P̃n(On(m)). Then, the adjusted
p-values, P̃+

n (On(j)), corresponding to null hypotheses H0,On(j), for the PFP-
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controlling procedure S+
n (α), are given by

P̃+
n (On(j)) = inf{α : On(j) ∈ S+

n (α)}

= inf

{
α :

j −Rn(α)

j
≤ q

}
= inf

{
α :

j − Un(α) ∗m

j
≤ q

}
= inf

{
α : Un(α) ≥ (1− q)

j

m

}
= U−1

n

(
(1− q)

j

m

)
, j = 1, . . . ,m. (25)

Here, we define the inverse F−1 of a cumulative distribution function F by
F−1(y) ≡ inf{x : F (x) ≥ y}, and note that F (x) ≥ y ⇔ x ≥ F−1(y). Thus,
our proposed augmentation multiple testing procedure S+

n (α), for controlling
PFP (q∗) at level α, can be stated in terms of the adjusted p-values for the
FWER-controlling procedure Sn(α), as

S+
n (α) =

{
On(j) : U−1

n

(
(1− q)

j

m

)
≤ α

}
=

{
On(j) : j ≤

∑m
l=1 I(P̃n(l) ≤ α)

1− q

}
. (26)

2.4 Available FWER-controlling multiple testing pro-
cedures

Consider an m-vector of test statistics Tn = (Tn(j) : j = 1, . . . ,m), where
each Tn(j) corresponds to a null hypothesis H0j, and let Qn = Qn(P ) denote
the joint distribution of these test statistics. Multiple testing procedures
available in the literature for (asymptotic) control of the FWER at level α
are of the form

Sn = S(Tn, Q0, α) = {j : Tn(j) > cj},

where cj = cj(Tn, Q0, α), j = 1, . . . ,m, are possibly random cut-offs, com-
puted under a null distribution Q0 for the test statistics. As detailed in
the companion articles (Dudoit et al., 2003b; van der Laan et al., 2003; Pol-
lard and van der Laan, 2003), different proposals of MTPs correspond with
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different cut-off rules, e.g., single-step vs. step-down, common-quantile vs.
common-cut-off procedures.

These three articles provide specific proposals for single-step and step-
down common-quantile and common-cut-off procedures that asymptotically
control the FWER, for general null hypotheses and test statistics. A key
feature of these procedures is the test statistics null distribution Q0 (rather
than data generating null distribution) used to derive the cut-offs cj (and the
resulting adjusted p-values). Dudoit et al. (2003b) and van der Laan et al.
(2003) identify an asymptotic null domination condition, whereby the num-
ber of Type I errors, Vn(α) = |Sn(α) ∩ S0|, is asymptotically stochastically
larger under the test statistics null distribution Q0 than under the true distri-
bution Qn(P ). As a result, asymptotic control of the Type I error rate under
the assumed null distribution does indeed imply asymptotic control of this
error rate under the true, unknown data generating distribution. When the
true distribution of the S0-specific test statistics asymptotically equals their
null distribution under Q0, one has asymptotic exact control of the Type I
error rate. Dudoit et al. (2003b) and van der Laan et al. (2003) propose
as an explicit null distribution the asymptotic distribution of the vector of
null-value shifted and scaled test statistics and provide a general bootstrap
algorithm to conveniently obtain consistent estimators of this distribution.
Single-step and step-down procedures based on consistent estimators of the
joint null distribution are shown to also provide asymptotic control of the
Type I error rate, for general data generating distributions, without the need
for conditions such as subset pivotality.

Alternatively, one can use a conservative explicit bound on the tail prob-
ability of the number of rejections, under a proper null distribution such
as that proposed in Dudoit et al. (2003b) and van der Laan et al. (2003).
This bound is typically based on the tail probabilities of the marginal dis-
tributions of the test statistics (Tn(j) : j ∈ S0) for the true null hypotheses
and relies on standard probability inequalities, such as Boole’s inequality:
Pr(∪m

l=1Bl) ≤
∑m

l=1 Pr(Bl), for events Bl of the form Bl = {Tn(l) > cl}.
While such an approach circumvents the need for resampling techniques to
estimate the joint distribution of the vector of test statistics, it can result
in very conservative multiple testing procedures. Examples of such methods
are single-step and step-down procedures based on known marginal distri-
butions for the test statistics (e.g., N(0, 1)) or on finite sample conservative
marginal tail probabilities as one obtains from using Bernstein’s and Boole’s
inequalities (Hochberg, 1988; Holm, 1979; Hommel, 1988; Rom, 1990; Simes,
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1986).

2.5 Multiple testing procedures for control of the FDR

Consider a multiple testing procedure Sn(α), such as Procedure 0, asymptot-
ically controlling the FWER at level α. To obtain our first (more refined) re-
sult regarding control of the false discovery rate, we make the slightly stronger
assumptions that the limit of FWER exists, that is, limn Pr(Vn(α) > 0) =
α∗ ≤ α, and that the true alternative hypotheses are asymptotically always
rejected by Sn(α) (condition (14), in Theorem 1, above). The first assump-
tion implies that the statements of Theorem 2 hold with lim supn and lim infn

replaced by limn. Next, consider a corresponding PFP augmentation proce-
dure S+

n (α), such as Procedure 2, with given q and α. Then, by Theorem 2,
procedure S+

n (α) satisfies

lim
n→∞

Pr

(
V +

n (α)

R+
n (α)

= q∗
)

= 1− α∗ and lim
n→∞

Pr

(
V +

n (α)

R+
n (α)

> q∗
)

= α∗,

where q∗ is defined in equation (17) and is such that q∗ ≤ q. Consequently,
one can bound the false discovery rate (FDR) of augmentation procedure
S+

n (α) as follows

lim
n→∞

E

[
V +

n (α)

R+
n (α)

]
= lim

n→∞
E

[
V +

n (α)

R+
n (α)

∣∣∣∣ V +
n (α)

R+
n (α)

≤ q∗
]

Pr

(
V +

n (α)

R+
n (α)

≤ q∗
)

+ lim
n→∞

E

[
V +

n (α)

R+
n (α)

∣∣∣∣ V +
n (α)

R+
n (α)

> q∗
]

Pr

(
V +

n (α)

R+
n (α)

> q∗
)

≤ q∗(1− α∗) + α∗

≤ q(1− α∗) + α∗, (27)

where the second to last inequality follows from replacing the conditional
expectation E [V +

n (α)/R+
n (α)|V +

n (α)/R+
n (α) > q∗] by the conservative upper

bound of one and the last inequality follows from q∗ ≤ q. Note that the above
bound is non-parametric (i.e., it does not rely on independence assumptions).
It is conservative, since it corresponds to a distribution for which, in the limit,
Pr(V +

n (α)/R+
n (α) = 1) = α∗. In the situation that α∗ = α (i.e., for exact

asymptotic control, as can be obtained with the step-down FWER-controlling
procedures in van der Laan et al. (2003)), then setting, for example, α = q =
1 −

√
1− q1, results in asymptotic control of the FDR at level q1, i.e., in

limn E [V +
n (α)/R+

n (α)] ≤ q1.
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In general, for any procedure Sn(α) asymptotically controlling the FWER
at level α, that is, such that lim supn Pr(Vn(α) > 0) = α∗ ≤ α, Theorem
2 implies the following more conservative bound for the FDR of the corre-
sponding augmentation PFP procedure S+

n (α), for any user-supplied q and
α,

lim sup
n→∞

E

[
V +

n (α)

R+
n (α)

]
≤ q + α. (28)

Hence, setting, for example, α = q = q1/2, results in asymptotic control of the
FDR at level q1. The latter bound is conservative in two ways: from bounding
lim supn E [V +

n (α)/R+
n (α)|V +

n (α)/R+
n (α) > q] by one, as above, and also from

replacing lim supn Pr(V +
n (α)/R+

n (α) ≤ q) by the conservative upper bound
of one. Note that the finite sample result in Theorem 2 implies that the FDR
of procedure S+

n (α) is bounded by q + αn. The above arguments provide us
with the following two procedures for asymptotically controlling the FDR at
a user-supplied level q1.

Theorem 3 [Control of FDR at level q1] Consider a multiple testing pro-
cedure Sn(α) asymptotically controlling the FWER at level α, that is, such
that lim supn Pr(Vn(α) > 0) = α∗ ≤ α. Then, the corresponding PFP aug-
mentation procedure S+

n (α) (e.g., Procedure 2), with α = q = q1/2, asymp-
totically controls the FDR at level q1, that is,

lim sup
n→∞

E

[
V +

n (α)

R+
n (α)

]
≤ q1. (29)

If, in addition, (i) α∗ = α, (ii) limn Pr(Vn(α) > 0) = α∗, and (iii) limn Pr(Sc
0 ⊆

Sn(α)) = 1 (condition (14)), then augmentation procedure S+
n (α), with α =

q = 1−
√

1− q1, asymptotically controls the FDR at level q1.

It would be interesting to compare these new proposals to the conservative
procedure of Benjamini and Yekutieli (2001), which is, to our knowledge, the
only fully non-parametric FDR-controlling procedure in the literature.

3 Conclusions

The present article aimed to fill a gap in the current multiple testing litera-
ture by providing generally applicable multiple testing procedures (sharply)
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controlling the number and proportion of false positives. Specifically, Theo-
rems 1 and 2 teach us that one can map a multiple testing procedure Sn(α),
controlling the FWER at level αn (for a fixed sample size n), directly and
computationally trivially, into multiple testing procedures S+

n (α) controlling
gFWER(k) and PFP (q) at level αn, for any user-supplied k = 0, 1, . . . and
q ∈ (0, 1). Moreover, if as n converges to infinity, (a) the multiple testing pro-
cedure Sn(α) provides exact asymptotic control of the FWER at level α and
(b) Sn(α) contains all true positives with probability tending to one, then the
corresponding augmented multiple testing procedures S+

n (α) also asymptoti-
cally exactly control gFWER(k) and PFP (q) at level α. Conditions (a) and
(b) can be achieved, in general, with the resampling based step-down proce-
dures presented in van der Laan et al. (2003). Finally, for any user-supplied
k or q, the adjusted p-values for the augmented multiple testing procedures
S+

n (α) are trivial functions of the ordered FWER-adjusted p-values for Sn(α)
(equations (16) and (25)). The important practical implication of the lat-
ter is that a multiple testing procedure Sn(α) (asymptotically) controlling
FWER at level α, and its corresponding adjusted p-values, provide us with-
out additional work with multiple testing procedures controlling gFWER(k)
and PFP (q) at level α for any k = 0, 1, . . ., q ∈ (0, 1), and α ∈ (0, 1).

The multiple testing procedures proposed in this and accompanying arti-
cles (Dudoit et al., 2003b; van der Laan et al., 2003; Pollard and van der Laan,
2003) will be implemented in the near future in the open source R package
multtest, released as part of the Bioconductor Project (www.bioconductor.
org). A large scale simulation study investigating the practical performance
of these procedures is presented in (Pollard et al., 2004).
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