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Drawing Valid Targeted Inference When
Covariate-adjusted Response-adaptive RCT
Meets Data-adaptive Loss-based Estimation,

With An Application To The LASSO

Wenjing Zheng, Antoine Chambaz, and Mark J. van der Laan
Abstract

Adaptive clinical trial design methods have garnered growing attention in the re-
cent years, in large part due to their greater flexibility over their traditional coun-
terparts. One such design is the so-called covariate-adjusted, response-adaptive
(CARA) randomized controlled trial (RCT). In a CARA RCT, the treatment ran-
domization schemes are allowed to depend on the patient’s pre-treatment covari-
ates, and the investigators have the opportunity to adjust these schemes during the
course of the trial based on accruing information (including previous responses),
in order to meet a pre-specified optimality criterion, while preserving the validity
of the trial in learning its primary study parameter.

In this article, we propose a new group-sequential CARA RCT design and cor-
responding analytical procedure that admits the use of flexible data-adaptive tech-
niques. The proposed design framework can target general adaption optimality
criteria that may not have a closed-form solution, thanks to a loss- based approach
in defining and estimating the unknown optimal randomization scheme. Both
in predicting the conditional response and in constructing the treatment random-
ization schemes, this framework uses loss-based data-adaptive estimation over
general classes of functions (which may change with sample size). Since the ran-
domization adaptation is response-adaptive, this innovative flexibility potentially
translates into more effective adaptation towards the optimality criterion. To tar-
get the primary study parameter, the proposed analytical method provides robust
inference of the parameter, despite arbitrarily mis-specified response models, un-
der the most general settings.



Specifically, we establish that, under appropriate entropy conditions on the classes
of functions, the resulting sequence of randomization schemes converges to a fixed
scheme, and the proposed treatment effect estimator is consistent (even under a
mis-specified response model), asymptotically Gaussian, and gives rise to valid
confidence intervals of given asymptotic levels. Moreover, the limiting random-
ization scheme coincides with the unknown optimal randomization scheme when,
simultaneously, the response model is correctly specified and the optimal scheme
belongs to the limit of the user-supplied classes of randomization schemes. We il-
lustrate the applicability of these general theoretical results with a LASSO- based
CARA RCT. In this example, both the response model and the optimal treatment
randomization are estimated using a sequence of LASSO logistic models that may
increase with sample size. It follows immediately from our general theorems that
this LASSO-based CARA RCT converges to a fixed design and yields consistent
and asymptotically Gaussian effect estimates, under minimal conditions on the
smoothness of the basis functions in the LASSO logistic models. We exemplify
the proposed methods with a simulation study.



1 Introduction

1.1 Covariate-adjusted, response-adaptive randomized clinical trials

Adaptive clinical trial design methods have garnered growing attention in recent years. In a fixed trial design,
all key aspects of the trials are set before the start of the data collection, usually based on assumptions that
are yet unsure at the design stage. By contrast, an adaptive trial design allows pre-specified modifications
of the ongoing trial based on accruing data, while preserving the validity and integrity of the trial. This
flexibility potentially translates into more tailored studies. The study could be more efficient, e.g., have
shorter duration, or involve fewer subjects. The study could have greater chance to answer the clinical
questions of interest, e.g., detect a treatment effect if one exists, or gather broader dose-response information.

Once they have defined the primary study objective of the trial (e.g., testing the effect of a treatment), the
investigators may wish to accommodate additional design objectives (e.g., minimizing sample size or exposure
of patients to inferior treatment) without compromising the trial. To do this, they may use an adaptive
randomization trial design. We focus here on the study of the so-called covariate-adjusted response-adaptive
(CARA) randomized controlled trials (RCTs). In a CARA RCT, the randomization schemes are allowed
to depend on the patient’s pre-treatment covariates, and the investigators can adjust the randomization
schemes during the course of the trial based on accruing information, including previous responses, in order
to meet the pre-specified design objectives. Such adjustments take place at interim time points given by
sequential inclusion of blocks of ¢ patients, where ¢ > 1 is a pre-specified integer. We consider the case of
¢ =1 for simplicity of exposition, though the discussions generalize to any ¢ > 1.

The trial protocol pre-specifies the observed data structure, scientific parameters of interest (the primary
study objective), analysis methods, and a criterion characterizing an optimal randomization scheme (the
design objective). Here, baseline covariates and a primary response of interest are measured on each patient.
The primary study objective is the marginal treatment effect. The design objective is captured by an
optimality criterion that is a function of the unknown conditional response.

Contrary to a fixed design RCT, a CARA RCT produces non-independent and non-identically distributed
observations, therein lie the subtleties in its theoretical study. Traditionally, covariate-adjusted analysis of a
fixed design RCT is carried out using a parametric model for the conditional response (or distribution) given
treatment and covariates. Under correct specification, the maximum likelihood estimator for this model is
consistent and asymptotically Gaussian. The extension of this non-robust inference to CARA RCTs has
been established and discussed in (Zhang, Hu, Cheung, and Chanl,2007)) and (Hu and Rosenberger, [2006)). A
recent development in the analysis of fixed design RCTs is the use of doubly robust methods like the targeted
minimum loss estimation (TMLE, van der Laan and Rubin| 2006) to obtain consistent, asymptotically
Gaussian estimators under arbitrarily mis-specified models (Moore and van der Laan, [2009, [Rosenblum,
2011)). A first extension of this robust inference to CARA RCTs has been proposed by Chambaz and van der
Laan| (2013). They showed that, when the treatment assignment is conditioned only on a discrete summary
measure of the covariates, it is possible to derive a consistent and asymptotically Gaussian estimator of the
study parameter which is robust to mis-specification of an arbitrary parametric response model.

Despite the above developments, several gaps remain to be addressed to fully realize the promise of
CARA RCTs. We focus on two of them. Firstly, because the robust inference provided by [Chambaz and
van der Laan| (2013) relies on assigning treatment based on discrete covariate summaries, its application is
perhaps limited in real-life RCTs where response to treatment may be correlated with a large number of a
patient’s baseline characteristics, some of which being continuous. Secondly, even though under robust in-
ference, the choice of the response model does not compromise consistent estimation of the study parameter,
it may still affect the estimation of the optimal randomization scheme. Specifically, since the randomization
scheme is response-adaptive, a more data-adaptive estimator of the conditional response model can more
effectively steer the randomization schemes towards the unknown optimal randomization scheme. Moreover,
since a patient’s primary response is often correlated with many individual characteristics, greater latitude
in adjusting for these baseline covariates, in both treatment assignment and conditional response estima-
tion, allows the investigators to better account for heterogeneity in the patients population. Traditional
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parametric regression techniques are often too restrictive in such a high-dimensional scenario. While the use
of data-adaptive techniques is very common in the independent and identically distributed (i.i.d.) context,
its applicability in an adaptive RCT remains rather uncharted.

In this article, we aim to bridge the two aforementioned gaps in the study of CARA RCTs. Firstly,
we achieve robust inference of the study parameter without restrictions on the covariate measures used
in the treatment randomization. Secondly, we adopt the use of loss-based data-adaptive estimation over
general classes of functions (which may change with sample size) in constructing the treatment randomization
schemes and in predicting the unknown conditional response. This allows one to target general randomization
optimality criteria that may not have a closed form solution, and it may potentially improve the estimation
of the unknown optimal randomization schemes. We establish that, under appropriate entropy conditions on
the classes of functions, the resulting sequence of randomization schemes converges to a fixed randomization
scheme, and the proposed estimator is consistent (even under a mis-specified response model), asymptotically
Gaussian, and gives rise to valid confidence intervals of given asymptotic levels. Moreover, the limiting
randomization scheme coincides with the unknown optimal randomization scheme when, simultaneously,
the response model is correctly specified and the optimal randomization scheme belongs to the limit of
the user-supplied classes of randomization schemes. Our theoretical results benefit from recent advances in
maximal inequalities for martingales by van Handel (2011)).

For concreteness, our parameter of interest here is the marginal risk difference, vy, and our design
objective is to maximize the efficiency of the study (i.e., to reach a valid result using as few blocks of patients
as possible). As we shall see, the optimal randomization scheme is, in this case, the so-called covariate-
adjusted Neyman design, which minimizes the Cramér-Rao lower bound on the asymptotic variances of a
large class of estimators of ¥5. We emphasize that the results presented here are not limited to the marginal
risk difference or the Neyman design, and can be easily modified to other study objectives/effect measures
and other design objectives/optimality criteria.

To illustrate the proposed framework, we consider the LASSO to estimate the conditional response given
treatment and baseline covariates and to target the unknown optimal randomization scheme. This example
essentially encompasses the parametric approach in (Chambaz and van der Laan, 2013) as a special case.
The asymptotic results ensue under minimal conditions on the smoothness of the LASSO basis functions.
The performance of the procedure is evaluated in a simulation study.

In the next section, we give a bird’s eye view of the literature on CARA RCTs and put our contribution
in context.

1.2 Literature review

Adaptive randomization has a long history that can be traced back to the 1930s. We refer to (Rosenberger,
1996, Rosenberger, Sverdlov, and Hul [2012), (Hu and Rosenberger, 2006|, Section 1.2) and (Jennison and
Turnbull, 2000, Section 17.4) for a comprehensive historical perspective. Many articles are devoted to the
study of response-adaptive randomizations, which select current treatment probabilities based on responses
of previous patients (but not on the covariates of the current patients). We summarize some representative
works below, but refer to (Hu and Rosenberger, 2006, |Chambaz and van der Laan, 2011b, Zhang and
Rosenberger, |2012}, Rosenberger et al., |2012)) for a bibliography on that topic. The first methods are based
on urn-models (e.g. Wei and Durham (1978), [Ivanova (2003)). There, treatment allocation is represented
by drawing balls of different colors from an urn, and the urn composition is updated based on accruing
responses, with the ethical goal of assigning most patients to the superior treatment arm. Since there is
no formal criterion governing how skewed the treatment allocation should be, significant loss of power can
arise when the effect size between treatment arms is large (Rosenberger and Hul, 2004). A formal “optimal
allocation approach” was proposed by Hu and Rosenberger| (2003). There, an optimal allocation is defined
as a solution to a possibly constrained optimization problem, such as minimizing sample size (yielding the
so-called Neyman allocation), or minimizing failure while preserving power. This optimal allocation is a
function of unknown parameters of the conditional response, which are estimated using a parametric model
based on available responses. Consistency and asymptotic normality of the maximum likelihood estimator
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for this model were established in Hu and Rosenberger; (2006).

In a heterogeneous population where response is often correlated with the patient’s individual character-
istics, it is sensible to take into account covariates in treatment assignment. CARA randomization extends
response-adaptive randomization to tackle heterogeneity by dynamically calculating the allocation probabil-
ities based on previous responses and current and past values of certain covariates. Compared to the broader
literature on response-adaptive randomization, the advances in CARA randomization are relatively recent,
but growing steadily. Among the first approaches, (Rosenberger, Vidyashankar, and Agarwall |2001} |Bandy-
opadhyay and Biswas, 2001)) considered allocations that are proportional to the covariate-adjusted treatment
difference, which is estimated using generalized linear models for the conditional response. Though these
procedures are not defined based on formal optimality criteria, their general goal is to allocate more patients
to their corresponding superior treatment arm. Atkinson and Biswas (2005) presented a biased-coin design
with skewed allocation, which is determined by sequentially maximizing a function that combines the vari-
ance of the parameter estimator, based on a Gaussian linear model for the conditional response, and the
conditional treatment effect given covariates. Up till here, very little work had been devoted to asymptotic
properties of CARA designs. Subsequently, Zhang et al.|(2007) established the asymptotic theory for CARA
designs converging to a given target covariate-adjusted allocation function when the conditional responses
follow a parametric model. |Zhang and Hu| (2009)) proposed a covariate-adjusted doubly-adaptive biased coin
design whose asymptotic variance achieves the efficiency bound. In these optimal allocation approaches, the
challenge remains that the explicit form of the target covariate-adjusted allocation function is not known.
To overcome this, it has often been derived as a covariate-adjusted version of the optimal allocation from
a framework with no covariates (Rosenberger et all [2012). |Chang and Park (2013)) proposed a sequential
estimation of CARA designs under generalized linear models for the conditional response. This procedure
allocates treatment based on the patients’ baseline covariates, accruing information and sequential estimates
of the treatment effect. It uses a stopping rule that depends on the observed Fisher information. With re-
gard to hypotheses testing, Shao, Yu, and Zhong| (2010), Shao and Yu (2013) provided asymptotic results for
valid tests under generalized linear models for the conditional responses in the context of covariate-adaptive
randomization. Most recently, progress has also been made in CARA designs in the longitudinal settings,
see for example (Biswas, Bhattacharya, and Park, 2014, Huang, Liu, and Hul 2013, |Sverdlov, Rosenberger,
and Ryeznik, [2013)).

The above contributions have established the validity of statistical inference for CARA RCTs under a
correctly specified model, thus extending many of the classical non-robust inference methods from the fixed
design setting into the CARA setting. Doubly robust approaches like TMLE allow to go beyond correctly
specified models by leveraging the known treatment randomization to provide the necessary bias reduction
over the mis-specified response model. [Moore and van der Laan (2009), Rosenblum (2011) address the fixed
design setting and |Chambaz and van der Laan| (2013) provide the first extension to the adaptive design
setting.

Finiteness conditions were at the core of (Zhang et al.l [2007) (correctly specified parametric response
model) and (Chambaz and van der Laan, [2013) (arbitrary parametric response model and treatment as-
signment based on discrete covariates). They were instrumental in the asymptotic study based on Taylor
approximations. Recent advances by van Handel| (2011) on maximal deviation bounds for martingales allow
us to apply more general empirical processes techniques, thus opening the door for the use of data-adaptive
estimators to target the optimal randomization scheme while preserving valid inference. More specifically,
we extend the robust inference framework of (Chambaz and van der Laan| (2013) to allow for the use of gen-
eral classes of conditional response estimators and randomization schemes. Moreover, we adopt a loss-based
approach to defining and targeting the optimal randomization scheme, thereby also extending applicability
of CARA RCT to optimal randomization criteria that may not have a closed form solution.

1.3 Organization of the article

The remainder of this article is organized as follows. Section [2| presents the statistical challenges, and
describes the proposed targeted, adaptive sampling scheme and inference method to address them. The
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section also states our main assumptions and principal result. Section [3] provides contextual comments for
content of Section [2} Section [4] presents the building blocks of the main result, therefore shedding light on
the inner mechanism of the procedure. Section [f| illustrates the procedure using the LASSO methodology
both to target the optimal randomization scheme and to estimate the conditional response given baseline
covariates and treatment. The performance of the LASSO-based CARA RCT is assessed in a simulation
study in Section [6] The article closes on a discussion in Section All proofs and some useful, technical
results are gathered in the appendix.

2 Targeted inference based on data adaptively drawn from a CARA
RCT using loss-based estimation

At sample size n, we will have observed the ordered vector O,, = (O4, ..., O,), with convention Oy = (). For
every 1 < i < n, the data structure O; writes as O; = (W;, A;,Y;). Here, W; € W consists of the baseline
covariates (some of which may be continuous) of the ith patient, A; € A = {0,1} is the binary treatment of
interest assigned to her, and Y; € ) is her primary response of interest. We assume that the outcome space
O =W x A x ) is bounded. Without loss of generality, we may then assume that ) = (0, 1), i.e., that the
responses are between and bounded away from 0 and 1.

Section presents the target statistical parameter and optimal randomization scheme. It also lays out
the foundations to describe the proposed CARA RCT. The description is completed in Sections and
where we present our adaptive sampling scheme and targeted minimum loss estimator. Section states
our main assumptions and result.

2.1 Likelihood, model, statistical parameter, optimal randomization scheme

Let pw be a measure on W equipped with a o-field, 4 = Dirac(0) + Dirac(1) be a measure on .4 equipped
with its o-field, and puy be the Lebesgue measure on ) equipped with the Borel o-field. Define u =
ww ® pa ® py, a measure on O equipped with the product of the above o-fields. In an RCT, the unknown,
true likelihood of O,, with respect to (wrt) pu®™ is given by the following factorization of the density of O,
wrt p®m:

Lerg,(0n) = ] fwo(Wa) x (Augs(1[W3) + (1 — Ai)gi(0[W7)) x fy (V| Ay, W)
i=1

= fwo(Wi) x gi(AilWi) x fyo(Yi| A, Wi), (1)
=1

where (i) w — fiyo(w) is the density wrt up of a true, unknown law Qo on W (that we assume being
dominated by pw), (i) {y — fyo(yla,w) : (a,w) € A x W} is the collection of the conditional densities
y — fyo(yla, w) wrt gy of true, unknown laws on ) indexed by (a,w) (that we assume being all dominated
by py), (i) gi(1|W;) is the known (given by user) conditional probability that A; = 1 given W;, and
(iv) gn = (91,---,9n), the ordered vector of the n first randomization schemes. One reads in (i)
that W1y, ..., W, are independently sampled from Qyw,, (i) that Y7,...,Y, are conditionally sampled from
fyo(-|A1, W)y, ..., fyo(-|An, Wy)py, respectively, and (iii) that each A; is drawn conditionally on W; from
the Bernoulli distribution with known parameter g;(1|W;).

Let F be the semiparametric collection of all elements of the form f = (fi, fy (-|a, w), (a,w) € A x W)
where fiy is a density wrt pp and each fy(-|a,w) is a density wrt py. In particular, we define fy =
(fwo, fyo(-la, w), (a,w) € A x W) € F. In light of (1)) define, for every f € F, Lgg, (0On) = [, fi (W;) ¥
gi(Ai|Ws) x £y (Y| A;, W;). The set {Lgg, : f € T} is a semiparametric model for the likelihood of O,. It
contains the true, unknown likelihood Lg, g ..
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For the sake of illustration, we choose the marginal treatment effect on an additive scale as our parameter
of interest. Thus, let T : F — [—1, 1] be the mapping such that, for every f = (fy, fy (+-|a, w), (a, w) € AXW),

T(F) = / (Qve(L, ) — Q£ (0, w)) iy (w)dpary. (2)

where Qy ¢(a, w) = [yfy (y|a, w)dpy is the mean of fy (-|a, w)uy. The true marginal treatment effect on an
additive scale is g = T(fy). Of particular interest in medical, epidemiological and social sciences research,
it can be interpreted causally under assumptions on the data-generating process (Pearl, [2000).

We have not specified yet what is precisely the sequence of randomization schemes g, = (g1, ..., gn). Our
CARA sampling scheme “targets” a randomization scheme gy which minimizes a user-supplied optimality
criterion. By targeting gg we mean estimating gg based on past observations, and relying on the resulting
estimator to collect the next block of data, as seen in . For the sake of illustration, we consider the case
that gg is the following minimizer

(3)

go = arggmin Eonyg

(Y — QY,fo (A’ W))2
g*(AW)

across all randomization schemes g. We emphasize that the above definition of gy involves the unknown fj,
so it is unknown too. We will comment on and motivate our interest in gg in Section As we shall
see, go minimizes a generalized Cramér-Rao lower bound for ¢y. Known in the literature as the Neyman
design (Hu and Rosenberger, 2006)), go actually has a closed-form expression as a function of fy. We do not
use this closed-form expression in order to illustrate the generality of our framework which allows to target
any randomization scheme defined as a minimizer of an optimality criterion.

2.2 Notation

Let O = (W, A,Y) be a generic data-structure. Every distribution of O consists of two components: on
the one hand, the marginal distribution of W and the conditional distribution of Y given (A, W), which
correspond to a f € F; on the other hand, the conditional distribution of A given W, or randomization
scheme. To reflect this dichotomy, we denote the distribution of O as P 4, where () equals the couple
formed by the marginal distribution of W and the conditional distribution of ¥ given (A, W), and g equals
the randomization scheme. We denote (¢ the true couple @) in our population of interest, which corresponds
to fy and is unknown to us. For a given ), we denote Qy the related marginal distribution of W and Qy
the related conditional expectation of Y given (A, W). If Q = Qo, then Qw and Qy are denoted Qw, and
Qy,0, respectively.

We denote G and Qy the set of all randomization schemes and the set of all conditional expectations of
Y given (A, W), respectively. Thus, for any @ and g, Py, 4 is the true, partially unknown distribution of O
when one relies on g, and Ep, ,(Y[A, W) = Qy (A, W), Py 4(A =1|W) = g(1|W) = 1—-g(0|W) P 4-almost
surely.

With this notation, ¢y can be rewritten

iy = / (Qvo(L,w) = Qyo(0, ) dQuro(w)

and satisfies 1o = Ep,  (Qy,0(1, W) — Qy,0(0,W)) whatever is g € G.

2.3 Loss functions and working models

Let ¢ € G be the balanced randomization scheme wherein each arm is assigned with probability 1/2
regardless of baseline covariates. Let ¢" € G be a randomization scheme, bounded away from 0 and 1 by
choice, that serves as a reference. In addition, let L be a loss function for Qy,p and Q1 , be a working model
for the conditional response

Ql,n = {QY,B : /B € Bn} - QY‘
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One choice of L is the quasi negative-log-likelihood loss function L. For any Qy € Qy bounded away from
0 and 1, LM(Qy) satisfies

— L¥(Qy)(0) = Y log(Qy (4, W)) + (1~ Y)log (1 — Qv (A, W)). (4)
Another interesting loss function L for Q)y,q is the least-square loss function L', given by

LE(Qy)(0) = (Y — Qv (4, W))%. ()

Likewise, let Lg, be a loss function for gg, which may depend on Qy € Qy, and let G;,, C G be a
working model for the optimal randomization scheme. In this context, a loss function for gy may be given,

for any Qy € Qy, by
(Y — Qy(A,W))?
g(A[W)

We explain the motivation and justification for this loss function in section

Lay (9)(0)

(6)

As suggested by the notation, the sets Qi , and G; , may depend on n. In that case, the two sequences
of sets must be non-decreasing. Moreover, the specifications must guarantee that the elements of Q; =
Un>191,n and those of G; = U,>1G1,, be uniformly bounded away from 0 and 1.

2.4 Targeted adaptive sampling and inference

The estimation of gy involves the estimation of Qy,9. At each step, the current estimators of Qy,o and go
are also used to craft a targeted estimator of vg.

We initialize the sampling scheme by setting g; = ¢°. Consider 1 < i < n. Since

(LQY,O (9)(0)

go = argminEon . J(AT)

> and  Qy, = argmin Ep,  (L(Qy)(0)),

9€g QyeQ
we define -
01— Lay,, (9)(05)
g; € arg min - L , 7
g€G1,; 1 Z gj(AjWVj) ( )
where
. g (A;|W5)
i L( 8
fi € angamin Z Qo)) W) ®)

By specifying the sequence of randomization schemes7 this completes the definition of the likelihood function,
hence the characterization of our sampling scheme.

To estimate 1y based on O,,, we introduce the following one-dimensional parametric model for Qy:

{Qy 3, (€) = expit (logit(Qys,) + €H(gn)) : € € £}, (9)

where £ C R is a closed, bounded interval containing 0 in its interior and H(g)(0) = (24 — 1)/g(A|W).
The optimal fluctuation parameter is

n

1 gn(Ai|W;)
€, € arg min — Q )NO0;) ———=. 10
g n; (Qy,, (€))( )gz’(Az“Wi) (10)
We set Q5. = Qv,s,(€n) and define
1 ,
= EZQY,BH (1, Wi) — Qy, (0, W;). (11)
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We show in Section [4| that v} consistently estimates 1)g. We also show that \/n/X, (1) — 1) is approxi-
mately standard normally distributed, where 3, is an explicit estimator . This enables the construction
of confidence intervals of desired asymptotic level. As for the optimal randomization scheme gy, we show that
it is targeted indeed, in the sense that g, converges to the projection of go onto U, >1G1,,. The assumptions
under which our results hold are typical of loss-based inference. They essentially concern the existence and
convergence of projections, as well as the complexity of our working models, expressed in terms of bracketing
numbers and integrals. In Section [5, we develop and study a specific example based on the LASSO.

2.5 Further notation

Consider a class F of real-valued functions and ¢ : R — R. If ¢ o f is well-defined for each f € F, then we
note ¢(F) = {pof: f € F}. Set asemi-norm ||-| on F and 6 > 0. We denote N (9, F,||-||) the d-bracketing
number of F wrt || - || and J(5, F,| - ||) = f05 V/log N (g, F,| - |)de the corresponding bracketing integral at
J.

In general, given a known g € G and an observation O drawn from Py, 4, Z = g(A|W) is a deterministic
function of g and O. Note that Z should be interpreted as a weight associated with O and will be used as
such. Therefore, we can augment O with Z, i.e., substitute (O, Z) for O, while still denoting (O, Z) ~ Pg, 4
In particular, during the course of our trial, conditionally on O;_;, the randomization scheme g; is known
and we can substitute (O;, Z;) = (O, gi(Ai|W;)) ~ Pg,,q for O; drawn from Pg, 4. The inverse weights
1/9i(A;|W;) are bounded because G is uniformly bounded away from 0 and 1.

The empirical distribution of O,, is denoted P,. For a function f : O x [0,1] — R? we use the notation
Pof = n 'Y, f(O4,Z;). Likewise, for any fixed Poy, € M, Pgyf = Ep, (f(0,Z)) and, for each
1=1,...,n, PQo,gif = EPQngz' [f(Ol, Zi)|0i,1], PQo,gnf =n! Z?:l EPQngi [f(Ol, Zi)|oi71]-

The supremum norm of a function f : O x [0,1] — R? is denoted ||f||co. If d = 1 and f is mea-
surable, then the L?(Pg, 4r)-norm of f is given by HngPQ = Py, f? If f is only a function of W,
"Qo,9"

then we denote | fl2,y.o its L?(Pgy,gr)-norm, to emphasize that it only depends on the marginal distri-
bution Qw,o. With a slight abuse of notation, if f is only a function of (A, W), then HfH%QWO is the

L2(PQ079T)—norm of w — f(1,w). In particular, for Qy,Q%} € Qy and g¢,¢' € G, ||Qy — QQ/H%,PQO o
Epg, o (Qv(A,W) = Q4(A, W), and |lg — ¢'13 0,0 = Paw., ((9(1[W) = ¢/ (1]V))?).
2.6 Asymptotics

Our main result rely on the following assumptions.
A1l. The conditional distribution of Y given (A, W) under Qg is not degenerated.
Ezistence and convergence of projections.

A2. For each n > 1, there exists Qy,, , € Q1,, satisfying

PQo.g L(Qy,p,.,0) = Qyégfgl Pqo.gn L(Qy,p)-

There also exists Qy,, € Q1 such that, for all § > 0,

PQogr L(Qy,p) < inf PQo.gr L(Qy).-
{de911|lQY—QY,BO ll2,Pq, or 25}

A3. For each n > 1, there exists ¢, 0 € G1,, satisfying

PQo.g7LQy 5, (9n0) /9" = gelrglf PQo,g-LQy.s,(9)/9" (12)
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There also exists g € G; such that, for all § > 0,

PQogm Ly g,(90)/9" < inf PQogr Ly s,(9)/9" (13)
02010l 4,20

A4. Assume that Qyg, from A2 and g; from A3 exist. For each € € £, introduce

Qv (€) = expit (logit(Qy,5) + € (gg)) , (14)

where H(g3)(0) = (24 —1)/g{(A|W). Then, there is a unique ¢y € € such that

€ € arg f?in PQo.gs LM Qv (€)). (15)
€ec

Reasoned complexity.

A5. The two entropy conditions J(1, Q1. || - [l2,py, ,-) = o(v/n) and J(1,L(Qun), || - [l2,py, ,-) = o(v/1)
hold.

A5*. If {0, }n>1 is a sequence of positive numbers, then 6, = o(1) implies J(n, Qi [| - [l2,p, ,-) = o(1).
A6. The entropy condition J(1,G1n, || - [|2,Qw,) = 0(/n) holds.

A6*. If {0, }n>1 is a sequence of positive numbers, then d,, = o(1) implies J(d,, Gn|| -

Q»Qw,o) = 0(1)'

Theorem 1 (Asymptotic study of the targeted CARA RCT). Assume that A2, A3, A5 and A6 are met.
Then, the targeted CARA design converges in the sense that ||gn — g5ll2,Qu., — 0 in probability as n — oo.
If, in addition, A4 holds, then the TMLE 1)} consistently estimates 1y. Moreover, if A1, A5* and A6*
also hold, then \/n/%, (V) — 1o) is approzimately standard normally distributed, where ¥, is the explicit
estimator given in (@)

The last statement in the above theorem underpins the statistical analysis of the proposed targeted
CARA RCT. In particular, denoting §;_, /5 the (1 — a/2)-quantile of the standard normal distribution, the

interval [1/1;; + & a2V 20/ n} is a confidence interval of asymptotic level (1 — «).

3 Comments on Section [2]

3.1 A closer look at the parameter of interest and the optimal randomization scheme

Central to our approach is formulating ¢y as the value at fy of the mapping T : F — [—1,1] given by (2).
Let M denote the set of all possible distributions of O. Because we slightly changed perspective and now
think in terms of distributions Py, € M instead of f € JF, it is convenient to introduce the mapping
U : M — [—1,1] characterized by

V(Pgg) = /(QY(lyw) — Qv (0, w))dQw (w) = Ep, , (Qv (1, W) — Qv (0, W)).

Since ¥ only depends on Py 4 through @, we will now on systematically write ¥(Q) in place of ¥(Pg 4) to
alleviate notation.

The mapping ¥ is pathwise differentiable. Its efficient influence curve sheds light on the asymptotic
properties of all regular and asymptotically linear estimators of ¥y = W(Qp). The latter statement is
formalized in the following lemma —we refer the reader to (Bickel, Klaassen, Ritov, and Wellner, 1998
van der Laan and Robins, |2003| van der Vaart, 1998) for definitions and proofs.
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Lemma 1. The mapping ¥ : M — [—1,1] is pathwise differentiable at every Py, € M wrt the maz-
imal tangent space. Its efficient influence curve at Py g, denoted D(Pg4), orthogonally decomposes as

D(Pg,4)(0) = Dw(Q)(W) + Dy (Qy, 9)(0) with

Dy (Q)(W) = Qy(1,W)—-Qy(0,W) —¥(Q),
24 -1

Dy (Qy,9)(0) = S(AW) Y - Qv (A4 W)).

The variance Varp, ,(D(P)(0)) is a generalized Cramér-Rao lower bound for the asymptotic variance of
any regular and asymptotically linear estimator of ¥(Q) when sampling independently from Pg 4. Moreover,

if either Qy = Qy or g =g’ then Ep, (D(Pg 4)(0)) =0 implies ¥(Q) = ¥(Q').

The last statement of Lemma [1}, often referred to as a “double-robustness” property, assures that D can
be deployed to safeguard against model mis-specifications when estimating 9. This is especially relevant
in an RCT setting, since the randomization scheme ¢ is known whenever one samples an observation from
Py

By Lemma [l the asymptotic variance of a regular, asymptotically linear estimator under independent
sampling from Py, 4 is lower-bounded by

— 2
R0 =iy (C= )

min Varp
geg Qo-9

In this light, targeting go defined by means that the goal of adaptation is to reach a randomization
scheme of higher efficiency, i.e., to obtain a valid estimate of ¥y using as few blocks of patients as possible.
As mentioned in section , though not used in our approach, go actually has a closed form expression
Go(1W) = 0o(1, W) /(a0(1, W) + 00(0, W)), where o3 (A, W) is the conditional variance of Y given (A, W)
under @g. Under this randomization scheme, the treatment arm with higher probability for a patient with
baseline covariates W is the one for which the conditional variance of the response is higher.

3.2 On the data-adaptive loss-based estimation of Qy,

The reference randomization scheme ¢ offers the opportunity to differentially weight each observation in .
This action impacts the convergence of Qy g, and thus that of g,, as seen in Sections and (the limit
g4 depends on g").

As we already emphasized, the working model Q; , may depend on sample size n. If it does, then the
sequence of working models must be non-decreasing and Q1 = U,>1Q1,, can be interpreted as the limiting
working model for Qy,p. We would typically recommend to start with Q1 = ... = Q,, all equal to a small
set, with a user-supplied, deterministic ng, then to let the complexity grow with n. It is known, however,
that such a growth must remain tethered. Assumptions A5 and A5* provide appropriate conditions on the
complexity of Q,. We refer to Section for a discussion of their meaning.

The combined choice of loss function L and working model Q; ,, determines the technique used to estimate
Qy,. For instance, in the traditional parametric approach, the working model Q;, does not depend on
n and is indexed by a fixed, finite-dimensional parameter set. Under the LASSO methodology, which we
carefully describe and study in Section 5| logit(Q; 5,) is the linear span of a given basis, with constraints on
the linear combinations imposed through the definition of B,,.

3.3 On the data-adaptive loss-based estimation of gg

The optimal randomization scheme gy is defined as a minimizer of a certain criterion over the class G
of all randomization schemes, see . Thus, our loss-based estimation of gy based on O, consists of
defining g,41 as the minimizer in g of an estimator of the optimality criterion over the user-supplied class
of randomization schemes G ,,, see and the next paragraph. This approach is applicable in the largest
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generality. Alternatively, if W is discrete, then gy takes finitely many values and g,41 can be defined
explicitly based on Qy,, and O,. This is also the case if one is willing to assign treatment only based on
a discrete summary measure V of W. In this context, gg is defined as in , where the arg min is over
the subset of G consisting of those randomization schemes which depend on W only through V. We refer
the readers to (Chambaz and van der Laan, 2013|) for details. Note that assigning treatment based on
such summary measures is perhaps too restrictive in real-life RCTs where response to treatment may be
correlated with a large number of a patient’s baseline characteristics, some of which being continuous.

We now turn to the joint justification of @ and . The key point is the following equality, valid for

every ¢’ € G:
((Y — Qyo(4, W))2)
g(AW)g'(AIW) )~

go = argmin Ep, (16)

9geg
Equality tells us that go can be estimated using observations drawn from P, , based on the loss
function Lg, provided it is weighted by 1/¢’. Our observations Oy, ..., O, are drawn from Py g,, - - ., PQg.gn>
respectively. In this light, also validates .

Like Qj 5, the working model G;, C G may depend on sample size n. If it does, then the sequence
must be non-decreasing and G; = U,>1G1,, can be interpreted as the limiting working model for go. The
additional constraint that G; be uniformly bounded away from 0 and 1 is important. It implies the following
pivotal property: no matter how ¢" € G is chosen in Section there exists some constant x > 0, such that
max(|lg"/9ll s 119/9" |o,) < &, for all g € Gi. For ease of reference, we call it the dominated ratio property

of gl.

Using a fixed working model for gy, i.e., setting G = Gy ,, for every n > 1, is a valuable option. However,
in some situations, e.g. if the population is very heterogeneous, using a fixed, large working model G; may
delay, sample size-wise, the adaptation, thereby depriving the trial of the advantages of an adaptive design.
By allowing Gi, to depend on n, one gains the flexibility to enrich the working model for go according
to the modesty or generosity of the sample size. Similar to what we suggested for Q;, in Section we
would recommend to start with G; = ... = G, all equal to a small set, typically the singleton {g®}, then
to let the complexity of G, augment with n, though not too abruptly. Assumptions A6 and A6* provide
appropriate conditions on the complexity of Gy ,. We refer to Section for a discussion of their meaning.
The assumptions are mild, and allow us to use the LASSO to target the optimal randomization scheme g,
just like we can use the LASSO to estimate Qy,, see Section

3.4 On targeted minimum loss estimation

The conception of ¢, defined in follows the paradigm of targeted minimum loss estimation. In the
setting of a covariate-adjusted RCT with a fixed design and a fixed working model @1, a TMLE estimator
is unbiased and asymptotically Gaussian regardless of the specification of Q. |Chambaz and van der Laan
(2013) show that unbiasedness and asymptotic normality still hold in a framework very similar to that of
the present article when the randomization schemes depend on W only through a summary measure taking
finitely many values and when Q; is a simple linear model. Such a configuration can be obtained as a
particular case of the example developed in Section

Although using a mis-specified parametric working model Q; for Q)y,o does not hinder the consistency
of the estimator of v, it may affect its efficiency and the convergence of the CARA design to the targeted
optimal design. By relying on more flexible randomization schemes and on more adaptive estimators of
Qy,0, we may better adapt to the optimal randomization scheme gy through better variable adjustments
and the targeted construction of the instrumental loss function Lg, . Because gg is the Neyman design, our
approach yields greater efficiency through better variable adjustments and more accurate estimation of the
variance of the estimator.

Consider now @D and . The model @D goes through Qy, at € = 0 and satisfies the score condition

%Lkl(Qyﬁn(e))|E:0 = Dy (Qv3,,9n). If we set Qf, = (Qwon, Q;ﬁn), where Qyy,, is the empirical marginal
distribution of W, then ¢ = ¥(Q7} ), assuring that ¢y, is indeed a substitution estimator of ¢y = ¥(Qo).
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3.5 On the assumptions

Assumption A2 stipulates the existence of a projection Qyp,, of Qy, onto every working model Qi .
It may depend on the user-supplied reference randomization scheme ¢". If Qy, € Qi, i.e., if Qp is well-
specified, then the existence of Qyg, = Qy,o is granted. If Qy,o € Q1, i.e., if Q; is mis-specified, then A2
also stipulates the existence of a projection Qy,g, of Qy,0 onto Q1. It may also depend on g".

Similar comments apply to A3. Note that each g, and the limiting randomization scheme g; depend
on g" only through Qyg,: replacing g" with any arbitrarily chosen g € G in or does not alter the
values of g, ¢ and g;. Furthermore, @ and yield that

go = arg Ignin {VaTPQOVg (Dy (Qy,0,9)(0)) + Py g
gev1

(Qvo — Qvp,) }
g2 '

This shows that if Qy g, = Qv,0 and go € G1, then g5 = go, the optimal randomization scheme. In general,
g minimizes an objective function which is the sum of the Cramér-Rao lower bound and a second-order
residual. This underscores the motivation for using a flexible estimator in estimating Qy,o: by minimizing
the second-order residual, we get closer to adapting towards the desired optimal randomization criterion.

Recall that Qyg, is characterized by and that Qw,, is the empirical marginal distribution of W.
Heuristically, if the equality Qy,3, = Qv,0 holds then one should be able to prove that ¥((Qw,n, Qv,3,)) is
a consistent estimator of v¢y. Since Qy, = Qv,0 also yields that ¢y = 0 is the unique solution to in
A4, one understands that updating Qy,s, to Q3.5 = Qv,gs, (€n) and ¥ ((Qw,n, Qv,,)) to ¥y, as described in
and should preserve the consistency in the initially well-specified framework. In the more likely
situation where Q; is mis-specified, hence Qyg, # Qv and €y # 0, there is no reason to believe that
U((Qwn, Qy,p,)) should be a consistent estimator of 9. In this light, the updating procedure bends the
inconsistent initial estimator into a consistent one by drawing advantage from the double-robustness of D
that we presented in Lemma

In Sections and we commented on the interest of letting the working models Q1 ,, and G ,, depend
on sample size n. Assumptions A5 and A6 put very mild constraints on how the complexities of the working
models should evolve with n to guarantee the convergence of g, and consistency of ¢);. The constraints are
expressed in terms of bracketing integral. We refer the reader to (van der Vaart|,|1998, Examples 19.7-19.11,
Lemma 19.15) for typical examples. They include “well-behaved” parametric and Vapnik-Cervonenkis (VC)
classes. Assumptions A5%* and A6* should be interpreted as more stringent conditions imposed upon Q; ,,
and Gy 5. Indeed, for instance,

J(17 gl,nv ” ) HZQW,O)/\/E < J(l/\/ﬁ, gl,n? H ’ ||27QW,0)

because the entropy with bracketing is non-increasing, so that A6* does imply A6 (take 6, = 1/y/n). The
need for more stringent conditions arises when studying the convergence in law of ;.

4 Building blocks of Theorem

We now carry out the theoretical study of the targeted CARA design and its corresponding estimator
described in Section [2] All proofs are relegated to Section

We first focus on the convergence of the estimators )y,5,. The counterpart to this result in the i.i.d.
setting is well established (Pollard, 1984, van der Vaart, 1998, among others). The following proposition
revises those results for the current statistical setting.

Proposition 1 (convergence of Qy,, ). Under A2, A5, [|Qyp, — Qv Pogyr 0 in probability as
’ 0.9
n — oo.

We now turn to the convergence of the sequence of randomization schemes.
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Proposition 2 (convergence of the targeted CARA design). Under A2, A3, A5 and A6, it holds that
19n — 95 ll2,Qw.0 — O in probability as n — oco.

The following corollary of Proposition [2] will also prove useful.

Corollary 1. In the setting of Proposition @ it also holds that ||gn — g5ll2.Qw.e> II1/9n — 1/98“27QW,0’

Hn_l Y1 Gi — géHZ,Qw,o’ and Hn‘l S 1/gi— 1/98”2,Qw,o converge to 0 in probability and in L' asn —
00.

At this stage, the consistency of ¢, can be established. The proof relies on the convergence of Q3 5 to
a limiting conditional distribution, which is a fluctuation of the limit Qy,g, of Qy,g,, see Proposition

Proposition 3 (consistency of ¢}). Suppose that A2, A3, A4, A5 and A6 are met. Define
Q. 5, = expit (logit(Qy,5,) + o H (95)) , (17)

with H(g5)(0) = (24 = 1)/g5(A|W) and Qf) = (Qw,0, @y 5,)- It holds that ||QY 5 — QY g ll2,pg, ,» — 0 in
probability as n — oo. Moreover, ‘I/(QEO) = o and 1, consistently estimates 1)g.

We need further notation to state our last building block. For both 3 = 3y and 8 = 3, introduce dy 3

given by
2A -1

Define also
2
S0 = Poog (A5 + Dw(@3))" = Pavgs (D(Pas ) (19)
Sn = Z (04, Z;) + Dw(Q5,) (W), (20)
=1

where we recall that Q} = (Qwon, Q3 Bn)‘

Proposition 4 (asymptotic linearity and central limit theorem for v}). Assume that A1-A6* are met.
Then ¥, = X0 + op(1) with 9 > 0, and

Uy — o = (Pn — Pgog,) (dy,5, + Dw(Qf,)) +op(1/v/n). (21)
Moreover, \/3y,/n(¢} — 1) converges in law to the standard normal distribution.

Equality is an asymptotic linear expansion of 1) under our targeted, adaptive sampling scheme. It
is the key to the central limit theorem for \/n(¢ — ).

5 Example: targeted LASSO-based CARA RCT

In Sections and [l we have presented a general framework for constructing and analyzing CARA RCTs
using data-adaptive loss-based estimators for the nuisance parameters, coupled with the TMLE method-
ology to estimate the study parameter of interest. As described in Section [I] high-dimensional settings
are increasingly common in clinical trials working with heterogeneous populations. A popular device in
high-dimensional statistics, due to its computational feasibility and amenability to theoretical study, is the
LASSO methodology. In a nutshell, the LASSO is a shrinkage and selection method for generalized regres-
sion models that optimizes a loss function of the regression coefficients subject to constraint on the L! norm.
It was introduced by Tibshirani| (1996|) for obtaining estimators with fewer nonzero parameter values, thus
effectively reducing the number of variables upon which the given solution is dependent. In this section, we
illustrate the application of the proposed framework using the LASSO to estimate the conditional response
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and the optimal randomization scheme. The methodology introduced in |Chambaz and van der Laan| (2013))
is a special case of this targeted LASSO-based CARA RCT.

For simplicity, we assume that all components of W are continuous. With a little extra work, discrete
components could be handled as A is handled in (23).

Let (! = {8 € RN : ZjeN|ﬂj| < oo}. Consider {bn}nZD {b/n}n217 {dn}nZh and {d%}n21 four non-
decreasing, possibly unbounded sequences over R and, for some M, M’ > 0 and every n > 1, introduce the
sets

By = {8l <min(b, M) and Vj > dn, & = 0} (22)

and B], defined like B,, with ¥/, d,, and M’ substituted for b, dy, and M, respectively. Let {¢; : j € N}
be a uniformly bounded set of functions from W to R. Without loss of generality, we may assume that
|¢jllcc = 1 for all j € N. By choice, the functions ¢; (j € N) share a common bounded support W, and
all belong to the class of sufficiently smooth functions, in the sense that there exists a > dim(W)/2 such
that all partial derivatives up to order « of all ¢; exist and are uniformly bounded (see van der Vaart, |1998,
Example 19.9).

For each 8 € ¢!, we denote Qvp: AxW =R and 75 : A x W — R the functions characterized by

Qvp(A,W) = expit | Y (B¥A+ BT (1 - A)) 6;(W) |, (23)
JjEN

(1W) =1 —~5(0|W)

expit | Y B7¢;(W)

jEN

The LASSO-based CARA RCT design corresponds to a special choice of working models {Q; y}n>1,
{Gin}n>1, and loss function L for Qyo. We take Q1, = {Qyp : 8 € By} with M a deterministic upper-
bound on |logit(Y)| and the quasi negative-log-likelihood loss function L = L*' (4)). Note that the elements
of Q1 = Up>1Q1,, are uniformly bounded away from 0 and 1. We also take G, = {73 : § € B,,}. The
elements of G; = Up>1G1 5, are randomization schemes uniformly bounded away from 0 and 1 by expit(—M")
and expit(M'), respectively (M’ ~ 4.6 provides the lower- and upper-bounds 0.01 and 0.99).

Based on O, we estimate Qy,0 with Qy,g, ,,, where 3,1 is given in (set i =n + 1 in the formula).
Then we target go with g,+1 given in (set i =n 4+ 1 in the formula), i.e.

1 LQY,B (’Yﬁ)(oj)
gn+1 € argmin — et ) (24)
T e, n; 9;(A;IW;)

The minimization with the constraint ||3||; < min(b,, M), see (22)), can be rewritten as a minimization
free of the latter constraint by adding a term of the form A, ||3||1 to the empirical criterion, where \,, depends
on b,. Note that when d,, or d}, is held constant and M or M’ is infinite by choice, then or should
be interpreted as a standard parametric procedure rather than as a LASSO.

Theorem [I| has the following corollary.

Corollary 2 (asymptotic study of the targeted LASSO-based CARA RCT). Assume that A1, A2, A3, and
A4 are met. Then, the targeted LASSO-based CARA design converges in the sense that ||gn — g5ll2,Qwo — 0

in probability as n — oo. Moreover, the TMLE 1 consistently estimates g, and \/n/E, () — o) is
approzimately standard normally distributed, where X, is the explicit estimator given in

This corollary teaches us with minimal conditions on the smoothness of the basis functions, the targeted

LASSO-based CARA RCT produces a convergent design and a consistent and asymptotically Gaussian
estimator for the study parameter.
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6 Simulation study

In this section, we exemplify the theoretical results from the previous sections with a brief simulation study.
Specifically, we wish to (i) illustrate the robustness of the proposed TMLE estimator for the study parameter
1o, under possibly grossly mis-specified conditional response models, (i) show the use of data-adaptive
LASSO estimators to learn the conditional response in the construction and analysis of the targeted CARA
RCT, and (iii) evaluate the performances of the different strategies. The simulation study is conducted
using R (R Core Team) 2014).

6.1 Data-generating distribution

Under Qo, W = (U,V, Z1,...,Z) consists of 22 independent random variables, where U, Z1, ..., Zy are
all uniformly distributed on [0, 1], and V' € {1,2,3} is such that V =1, V =2 and V = 3 with probabilities
1/2, 1/3, and 1/6, respectively. Moreover, under Qp and conditionally on (4, W), Y is drawn from the
Gamma distribution with conditional mean

QY70(A, W)=2AV + (1 - A)V/2

and conditional variance

AV 4(1— A) >2

2 _

AW) = +

70 (4, W) (3(1+Z1) 31+ Z1)

It is easy to check that 1)g = 2.5 and that the optimal randomization scheme gq is given by go(1|W) =
V/(4+V).

6.2 Loss functions and working models

To simplify the language, we refer to a model that accounts for the relevant covariates as a correctly specified
model, even though the functional form may not be correct.

Estimation of the conditional response

Because Y is continuous and unbounded, we perform a linear transformation before the estimation proce-
dures to scale Y within (0, 1), then apply the reverse transformation to the final TMLE estimate of ¢y and
the corresponding variance estimates. We use the quasi negative-log-likelihood loss function LX' given by
(14)-

At sample size n, we consider two working models Q1 ,, for the conditional response. One is the following
mis-specified logistic regression model:

9f, = { @4 4(4, W) = expit (1A + 5oU) : f € R}

Contrary to what the notation suggests, it does not change as the sample size grows. It is fitted using
the glm function in R with the weights as given in (8). Note that the model fails to take into account the
covariate V' which drives the response in the underlying data-generating process.

The second one, denoted Qf , , is a LASSO logistic working model. Let d,, = min(20, |\/n/4]). If n is

1,n»

such that d,, <5, then an consists of
QY 5(A, W) = expit (B(A, U.Z,...,Zq,, AU, AZy,. .., AZdn)T) (all 8 € B, = R2%n+3),
If n is such that d,, > 5, then an consists of
QY 5(A, W) = expit (B(A, U,V,2Zy,....Zq , AU, AV, AZ1, ... ,AZdn)T) (all 8 € B, = R2%dn+5),

The resulting sequence of working models is non-decreasing in sample size. The models is fitted using the
cv.glmnet function from the package glmnet (Friedman, Hastie, and Tibshirani, 2010)), with weights given
in and the option "lambda.lse".
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Estimation of the optimal randomization scheme gg

We also consider two working models Gy, = G; for the optimal randomization scheme. The first one,
denoted G7", is a mis-specified logistic model given by

g5 (A=1[W) =expit (8o + /1U) (all B¢ R?).
The second one, denoted Gf, is a correctly specified logistic model given by
g5(A=1|W) = expit (6o + B1U + B2V)  (all B € R?).

The models are fitted using numerical methods to optimize the user-chosen adaptation criterion in @ We
implement this fitting using the optim function with a quasi-Newton method (method="BFGS"). To satisfy
the boundedness conditions, the resulting probability estimates are pre-specified to be truncated to lie within
[0.05,0.95]. However, in the actual simulation runs, all estimates lying comfortably within this interval, and
hence no truncation took place.

6.3 Study designs

For each pair of working models for the conditional response and for the optimal randomization scheme,
we construct a CARA RCT by initializing at a sample size of n = 300, and then sequentially recruiting
patients in blocks of size 200, up to n = 3100. For the initial sample of n = 300, treatment is randomly
assigned based on the balanced randomization scheme g°. Subsequently, given n observations, we estimate
the conditional response and use this to construct the treatment randomization scheme g,+1 used for the
next block of 200 patients. We also use this conditional response estimate and the sequence of randomization
schemes used so far to obtain a TMLE estimate 1) of 1.

In addition to these CARA RCTs, we also consider a fixed design RCT with treatment randomly as-
signed based on the balanced randomization scheme g”. We obtain the corresponding TMLE estimates by
fluctuating the initial conditional response estimates based on the logistic model {Q’;/ K B € R%}.

6.4 Results

For each trial design proposed in Section we run 500 independent simulated trials. Three figures
summarize the results of the simulation study. Each of them consists of two similar graphics, the LHS graphic
corresponding to the simulated trials based on the mis-specified model G{* for the optimal randomization
scheme, and the RHS graphic to the simulated trials based on the correctly specified model G{. The subtitles
“A7U” and “A~U+V” are the R formulas that encode for Gi"* and Gf, respectively.

Figure [1| depicts the performance of v} in terms of bias (first row), sample variance (second row) and
mean squared error (MSE, third row). We note that, despite the mis-specified response models, all TMLE
estimators are consistent for the treatment effect parameter vy. It appears that the LASSO-based estimator
may converge at a faster rate. This may be due to its increased efficiency (i.e., smaller sample variance) and
more aggressive bias reduction. Recall that the optimality criterion for our adaptive randomization aims
at maximizing efficiency of the trial through the minimization of the asymptotic variance of the estimators.
The increased efficiency of the LASSO-based CARA RCT, despite a larger working model for the conditional
response (increasing with sample size), suggests that a flexible data-adaptive response model coupled with
CARA design could indeed better achieve the optimality criterion, compared to a CARA design based on a
parametric response model, at least in situations where the parametric model fails to account for important
confounding variables. We also note that, under the data-generating process described in Section
the working model for the optimal randomization scheme has little effect on the efficiency of the TMLE
estimators. Yet, comparing the LHS and RHS graphics in Figure [I] suggests that G{*, the smaller, mis-
specified model for the optimal randomization scheme allows for slightly more aggressive bias reduction at
smaller sample sizes than GY, its larger, correctly specified counterpart.
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Let us turn now to the coverage of our CLT-based, 95%-confidence intervals (CIs). The empirical coverage
probabilities are depicted in Figure[2l On the one hand, we see that the empirical coverages are often below
the nominal coverage when using the mis-specified working model Gi* for the optimal randomization scheme
and either Qlf’n or Q‘Ln as working models for the conditional response (LHS graphic in Figure . On
the other hand, the coverage improves drastically when using the correctly specified working model G for
the optimal randomization scheme and either Qﬁ’,n or Q‘i’n as working models for the conditional response
(RHS graphic in Figure [2)). For a more precise assessment, we frame the coverage evaluation in terms of
hypotheses testing. For a given design (and its resulting CLT-based Cls) and at each intermediate sample
size n, let C' be the number of times in the 500 simulations when the CI covers the parameter of interest
1o. The random variable C is distributed from the Binomial distribution with parameter (500, 7). For a
given significance level 0 < o < 1, introduce the null hypotheses Hé_a : “m > 1—a” and its one-sided
alternative H 11_0‘ : “m < 1—a”. We perform one-sided tests of Hé_a against H 11_0‘ and display the p-values
for « = 5% (Figure |3}, first row) and o = 6% (Figure [3| second row). On the one hand, the LHS graphic
in Figure |3| reveals that 95% coverage is often not guaranteed when using the mis-specified working model
g1, for the optimal randomization scheme and either Qlf’n or Q{m as working models for the conditional
response, but also that 94% coverage cannot be ruled out. On the other hand, the RHS graphic in Figure
suggests that 95% coverage cannot be ruled out when using the correctly specified model g1 ,, for the optimal

randomization scheme and either Q’l7 »n OF Q{ ,, as working models for the conditional response.

7 Discussion

We have presented in this article a new group-sequential CARA RCT design and corresponding analytical
procedure that admits the use of flexible data-adaptive techniques. The proposed method extends the work
of Chambaz and van der Laan (2013) by providing robust inference of the study parameter under the most
general settings. Our framework adopts a loss-based approach in estimating the optimal randomization
scheme, and hence can target general optimality criteria that may not have a closed-form solutions. More-
over, our use of loss-based data-adaptive estimation over general classes of functions (which may change
with sample size), both in constructing the treatment randomization schemes and in predicting the un-
known conditional response, may potentially improve the randomization adaptation towards the optimality
criterion.

We established that, under appropriate entropy conditions on the classes of functions, the resulting
sequence of randomization schemes converges to a fixed scheme, and the proposed treatment effect estimator
is consistent (even under a mis-specified response model), asymptotically Gaussian, giving rise to valid
confidence intervals of given asymptotic levels. Moreover, the limiting randomization scheme coincides with
the unknown optimal randomization scheme when, simultaneously, the response model is correctly specified
and the optimal randomization scheme belongs to the limit of the user-supplied classes of randomization
schemes. We illustrated the applicability of these general theoretical results with a LASSO-based CARA
RCT. In this example, both the response model and the optimal treatment randomization are estimated
using a sequence of LASSO logistic models that may increase with sample size. It follows immediately from
our general theorems that this LASSO-based CARA RCT converges to a fixed randomization scheme and
yields consistent and asymptotically Gaussian effect estimates, under minimal conditions on the smoothness
of the basis functions in the LASSO logistic models.

We conducted a simulation study to evaluate the performance of the proposed methods. It confirmed
the robustness of the TMLE estimators under mis-specified response models. Coverage of the CLT-based
confidence intervals are assessed through by hypotheses testing. Overall there is no evidence (across 500
independent simulations) that the 95%-confidence intervals would have coverages that are less than 94%. In
addition, we do observe improved coverage when using the correct working model for the optimal randomiza-
tion scheme. In this simulation study, the increased efficiency of CARA design with a LASSO-based response
model, compared to the CARA (or balanced) design with a parametric response model, demonstrates that
the use of data-adaptive response models can indeed more effectively steer the adaptation towards the opti-
mality criterion (which was chosen to be efficiency in our example). More comprehensive empirical studies
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are needed to generalize these facts to other simulation scenarios.

We will soon make available a R package to allow interested readers to test the procedure. In the future,
we will also consider alternative strategies to randomly assign successive patients to the treatment arms
in such a way that the overall empirical conditional distribution of treatment given baseline covariates be
as close as possible to the current best estimator of the targeted optimal randomization scheme. This will
require both new theoretical developments and simulation studies.

A Appendix

The expression “a < b” means that there exists a universal, positive constant ¢ such that a < ¢ x b. We
use 1{C} to denote the indicator function of the set C. We denote the uniform norm of a real-valued
operator IT on F as ||II]| 7 = supsc# [II(f)]. Given two measurable functions f, A of (O, Z) and the random
variable A = A(O, Z), we find it convenient to use shorthand notation Py, qfA = Ep,,  (f(O,Z)A) and
PofA = Ep, (f(O,2)A) = n= 131, f(O4, Zi)N(O;, Z;). From here onward, the uncountable supremum is
interpreted as the essential supremum.

Section presents the proofs of Propositions Corollary [I, Theorem [1] and Corollary
Technical results underpinning the proofs of Section are gathered in Section

A.1 Main proofs

Proof of Proposition[l. We apply Lemma [4] with © = Q;, ©,, = Qi ,, d the distance induced on © by
the norm | - [|2,p,, ,-» M and M, characterized over © by M(Qy) = P, L(Qy) and M, (Qy) =
P,L(Qy)g"/Z = n~ 130 L(Qy)(0i)g" (A | W;)/Z;. Assumption A2 implies that (a) and (b) from
Lemma are met. It remains to prove that (c) also holds or, in other terms, that ||M, —M|g, , = op(1).

For any Qy € ©, characterize ¢(Qy) by setting £(Qy)(0,Z) = L(Qy)(0)g"(A|W)/Z. Then we can
rewrite ||M,, — M||g, , as follows:

My, =Mllo,,, = [|Pnf = Poogr LllQin = (Pn = Poo g )il 01 = [P0 — PQo,gn llec0s 1)

The dominated ratio property implies that J(1,£(Q1,n), || ll2,pg, ,») = O(J (1, L(Q1,n), [| - l2.Pg, ,») = o(v/1),
by A5. Since ¢(Q;) is uniformly bounded by construction, Lemmaapplies and yields || P, — P, g, ll¢(0, ) =
op(1).

Thus, we can apply Lemma It yields that [|Qys, — Qvsll2, Poygr = op(1), which is the desired
result. O

The next proof goes along similar lines.

Proof of Proposition[d We apply Lemma [ with © = Gi, ©,, = Gi 5, d the distance induced on © by
the norm || - [|l2,0y,0, M and M, characterized over © by M(g) = Pg,,gLqy 4, (9)/9" and My(g) =
PoLgy, (9)/Z = 0t 350 Loy, (9)(0i)/Z;. Assumption A3 implies that (a) and (b) from Lemma
are met. It remains to prove that (c) also holds or, in other terms, that |M, — M]|g, , = op(1).

Let ¢ and £, be characterized over G by £(¢)(O, Z) = Lq, , (9)(O)/Z on the one hand and £,(9)(0, Z) =
Lgy 4, (9)(0)/Z on the other hand. A simple decomposition and the triangle inequality yield the following
inequality:

My —=Mllg,,, = [(Paf = PQogrLay,s,/9") + Pulln = Ollg,.

1Pnl = PQo.gr LQy 5y /9" 61,0 + [1Pa(ln = O)llgy .

1P = Pao.ga )llgin + [1Pa(ln = O)llgy

= 1P = PQo,gnllegr ) + 1Pn(ln = O)llgy,- (25)

IA
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Consider the first RHS term in . Because Y and Qy g, are bounded, and because G; is bounded away
from 0 and 1 by construction, it holds that J(1,£(G1,n), [ - [2.Qwo) = O(J(1,1/G1n, || - ll2.Qw,)) = o(v/n) by
A6. Since £(Gy) is uniformly bounded, Lemma [§| applies and yields || P, — Pg,.g,l¢(g,.,) = 0pr(1).

We now turn to the second RHS term in . Note |L®(Qys,) — L®(Qys,)| < |Qy.5, — Qy.p,| because
Y is bounded and G; is uniformly bounded. This justifies the second inequality below, the first one being

a consequence of the uniform boundedness of G;,, and the last one a consequence of the fact that ¢g" is
bounded away from O:

|Pulln = Ollg,,, < Poll®(Qyp,) — L™Qvp,)l/ 2
S Pn|QY,/3n - QY,BO‘/Z
= PQug.|Qv,p, — Qv,ol/Z + (P — PQog,)|Qv,5, — Qvipol/Z
S Pogr|Qvis, — Qvipel + (Pn = Pgog,)|Qvs, — Qv,pol/Z-

The Cauchy-Schwarz inequality implies that Pg, |Qv,5, — Qv l < [|Qvs, — QY,[?OHQ,PQOM = op(1)
by Proposition whose assumptions are met. For any Qy € Qi, introduce h(Qy) characterized by

h(Qy)(O, Z) = ’Qy’gn (A, W) — Qyﬂo (A, W)|/Z Obviously,

|(Pn = PQo,g.)|Qv,8, — Qv /Z] < (P — Po.ga)bllr, = [1Pn — Pgogallnei..)-

Since Q; and G are uniformly bounded away from 0 and 1 by construction, it holds that h(Q;) is uniformly
bounded and that J(1,h(Qin), || - ll2,p4, ,») = O (L{lQy — Qv : Qv € Qunl} [l - ll2.pg, ) = o(v/n) by
A5. Therefore, Lemma [§ applies and yields || P, — Pg,.g,ln(0:.,) = or(1)-

We thus have showed that both [P, — Pg,g,ll¢g,,) = op(1) and |[Py(n — €)|lg,,, = op(1), hence
M, —Ml|g, ,, = op(1) in light of . Consequently, we can apply Lemma It yields that [|gn—g5l2,Quw, =
op(1), which is the desired result. O

Proof of Corollary[1. Since G; is uniformly bounded, ||gn — g§ll2,Qwo = op(1) implies ||gn — g5ll2,Qwo — O
in L' as n — oo. Since (i) 1/gn — 1/g5 = (95 — 9n)/9ngs, and (i) Gy is uniformly bounded away from 0
and 1, [|1/gn — 1/g5l12,Qu.o — 0 follows from |lgn — g5 ll2,Qw.,e — 0, both in probability and in L' as n — co.
Consider now the L'-convergence of |[n™! 3" | g; — 9oll2,Qwo- By convexity,

1 n
E <=2 E(lgi — gillzows)

2,Qw,0 i=1

1 n
n Zgi - 9%
=1

We already know that E(|lgn — gll2,0m0) = 0(1). Applying Cesaro’s lemma yields that n=* > 7" | E(||g; —
9612,Qwo) = 0(1), too. From this, we deduce that [[n™' Y77 g; — g§ll2,Qu,e — 0 in L' as n — oco. This
implies that the convergence also holds in probability because G; is uniformly bounded. Likewise,

1 n
< - E E (Hl/gz - 1/98H2,QW,0) )
27QW,O =1

1 n
EL=S 1/g—1/g"
Hn;/g /9%

where E([|1/gn — 1/g5ll2,Qw,) = o(1) is already known. Thus, the same argument as above yields that
[n= 13 1/gi — 1/ g5 ll2.0m0 — 0 in L' and in probability as n — oo. This completes the proof. O

Proof of Proposition[3. This is a three-part proof. First, we show that |e, — 9| = op(1). Second, we prove
that |Qy 5 — Q% 4, ll2.Pg, ,» = 0p(1). Third, we demonstrate that W(Q% ) = v, then that ¢} consistently
estimates 1.

We apply (van der Vaart], 1998, Theorem 5.9) (substituting M,, and M for ¥,, and ¥) with © =
&, d the Euclidean distance, M and M, characterized over © by M(e) = Pg, g: Dy (Qv,5(€), g5), and

M, (€) = P,Dy(Qy,(€),9n)gn/Z, see and (9) for the definitions of Qy,g,(€) and Qy,g, (¢). From the
differentiability of € — L¥(Qy 5(¢)), validity of the differentiation under the integral sign, and definition of
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€0 , we deduce that M(ep) = 0. By definition of ¢, , M,,(e,) = 0 too. Assumption A4 implies that
the second condition of the theorem is met. Therefore it suffices to check that the first one holds too, i.e.
to prove that [|[M,, — M||¢ = op(1).

Introduce F = {fe : € € £} with f(0,2) = (24 - 1)(Y — Qy,p,(€)(A,W))/Z for each € € £. We start
with the following derivation:

24 — 1
M, =M = sup P, (fe +— (Qy,p(€) — QY,ﬁn(E))> — Pgo.g, Je
24 —1
< [P — Pgognllr+ sup P (Qv,p,(€) — Qv,a,(€))] . (26)

Consider the first RHS term in . Set €1,e2 € £. Because the expit function is 1-Lipschitz and G
is uniformly bounded, it holds that ||f — felleo S |61 — €2]. Since £ is a bounded set by construction,
the uniformly bounded, parametric class F satisfies J(1,F, | - [[2,py, ) < 00 (see van der Vaart, 1998,
Example 19.7). Consequently, we can apply Lemma (with a fixed class) and conclude that [P, —Pg, g, 7 =
op(1).

Next, the second term in the RHS of is upper-bounded by A,, = supc¢ Pn|Qy s, (€) — Qv (€)|/Z.
Since (i) expit is 1-Lipschitz, (i) Q1 is bounded away from 0 and 1, and logit is Lipschitz on any compact
subset of ]0, 1[, it holds that

A, sup Py logit(Qy,g,) — logit(Qy,,) + €(H(gn) — H(95))| /Z

Po|Qy,gy — Qv,,|/Z + Pall/gn — 1/ 951/ 2
(P = PQo.g.)|Qy,py — Qv,p.1/Z + Pqog.|Qv,s0 — Qv |/ Z
+(Pn - PQo,gn)|1/gn - 1/98‘/2 + Pngn’l/gn - 1/98|/Z‘ (27)

While studying the second RHS term of in the proof of Proposition [2, we proved the following facts:

PQo.gn|Qy,80 — Qvi.l/Z S PQogr|Qv,s0 — Qv,p,| = op(1) and (P — Py g,)|Qv,5, — Qv,8,1/Z = op(1) (the
assumptions of Proposition [2| are met here too). Therefore, it only remains to study the two rightmost

terms in the RHS of (27). Since G; is uniformly bouded away from 0, (P, — Poyg,)|1/9n — 1/95|/Z =
O(||Pn — Pqognlli/g,,)- Moreover, Lemma [§| applies because 1/G; is uniformly bounded and A6 is met,
hence | P — Paogally /s, = 0r(1) and (Po — Poyg,)|1/gn — 1/g31/Z = op(1). Finally,

Pogall/gn —1/901/2 < Poogr|t/gn — 1/g0] < [11/9n — 1/ g0ll2.0w0 = 0p(1)

by Cauchy-Schwarz and Corollary |1}, whose assumptions are met here too. In summary, A, = op(1).

We have show that the RHS expression in converges to 0 in probability as n — oo, hence |M,, —
M|le = op(1). Thus, all assumptions of Lemma [4f hold, from which we deduce that €, converges to €y as
n — o0o. This completes the first part of the proof.

NN

Let Qy x G x € be equipped with the norm characterized by ||(Qy, g, €)|| = |Qy [l2,ro, ,» + 9ll2,0w,o +€l-
Propositions and the first part of the proof imply that (Qyg,,gn,€n) converges to (Qy,g,, 35, €0) in
probability wrt || - || as n — co. Let f: Qy x G x £ — Qy be characterized by

f(Qy,g,€)(0) = expit (logit(Qy (A, W)) + €(24 — 1) /g(A|W)) (28)

Set (Qy1,91,€1), (Qyz2,92,€2) € Qy X G x . Because (i) expit is 1-Lipschitz, (i) Qi , is bounded away
from 0 and 1, and logit is Lipschitz on any compact subset of ]0, 1[, (i77) G; is uniformly bounded away from
0, (iv) € is a bounded set, it holds that

Hf(QY,lv g1, 61) any f(QY,2a 92, 62)||2,PQ0,9T
< || logit(Qy;1) — logit(Qv,2)ll2, Py, , + le2(1/g1 — 1/92)l2,0wo + (€1 — €2)/91]l2.0w 0
S Qv = Qvally p, - +1l91 = 92lla.gy, +ler — €2 = [[(Qvi1, 91, €1) = (Qvi2, 92, €2)|
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(f is Lipschitz). Therefore, the convergence |[(Qy,g,, gns €n) — (Qy,8y, 95, €0) || = op(1) and equalities Q3. 5 =

F(Qvs,s9ns€n)s Q’{/ﬁo = f(Qv.0, 95, €0), entail ||Q’{/”Bn — Q;BOHZPQWT = op(1), hence our first claim. This
completes the second part of the proof.

The second claim follows from the double-robustness of the efficient influence curve D. Indeed, M(eg) =
Poo.gz Dy(Q§5O,g§) = 0 from the first part of this proof, and Pg, g DW(Q;O) = 0 from the definitions of ¥
and Dy, hence Pp, fD(PQZo’ga) = 0. Thus, Lemma [I| guarantees that ¥(Q} ) = ¥(Qo) since Py, g: and

PQEO’ » share the same gj. We now turn to the third and last claim. For both 5 = fp and 8 = 3,, introduce
q§‘,, 3 characterized by
Gys(W) = Qy5(1, W) — Qy5(0,W). (29)

Define also an = (Qwo, Qy. Bn) and ¢ = \P(an) Since ¢" is bounded away from 0, the Cauchy-Schwarz
inequality yields

[ = ol = [¥7 = W(Q5,)| = [Pog(@y,s, = Qyp,) (24 = 1)/
S Poogr|Qvip, — Qvipol < Qv 5, — Qg ll2.pg, ,r = 0r ().
Furthermore, ¢}, =y = (Pn—PQo,g,)(4y 5, — 45 5,) T (Pn— PQo,g.)4y 5,- By similar arguments as before, we

establish that (P, — Pgo.g,)(qy.5, — ¢5,) = op(1). In addition, the law of large numbers (for independent,
identically distributed random variables, since gy B, 1s 2 bounded function of W only) guarantees that

(Pn — PQo,gn )8y 5, = op(1). In summary, 15 — o = (¥ — 7)) + (¥ — 1) = op(1), as stated. This
completes the proof. O

The asymptotic linear expansion in Proposition |4|is a by-product of the exact linear expansion that
we state and prove below. Recall the definitions of dy. ; and gy 4 (8= Bp or B=p,) given in 1} and .

Lemma 2 (exact linear expansion of ¥}). It follows from the definition of ¥} that

Un =0 = —Poog Doy g5) (30)
= (Pn— PQo.g.)(dyp, + Dw(@5,))
(P — Poog,) ((dyg, — 3 5,) + (dvp, — 4v:5,)) - (31)

Proof of Lemma[Z Consider . By Lemma |1} the efficient influence curve decomposes as D(PQEn 798) =
Dy(Q;ﬂn,gS)—{—Dw(QEn). Define qY’()(W) = Qyjo(l, W)_QY,O((), W). Firstly, Pg,, 9 Dw(QEn) = PQO?-QS q;ﬁn—
¥y,- Secondly, Pg, gDy (Qyg,,95) = Po,gs(2A— 1Y — Q¥4 )/95 = PQo,gO(QY,O — ¢yg,)- Adding these
two equalities yields PQo g*D(PQEn 05) = PQo.gzav0 — ¥y, = Yo — 1y, which is the desired result.

We now turn to . Denote P, g, the empirical distribution of O,, weighted by gy (Ai|W;)/g:(A:|W;).
By construction of the ﬂuctuatlon and definition of ¢, , it holds that Pn,gnDY(QYﬁna gn) = 0.
Moreover, can be rewritten as PnDW(QZn) = 0. Therefore, 1) is equivalent to

by = Yo = (Pn — Pgo,gs) Dw (Q,) + (Pag, Dy (QV,5,: 9n) — PQo.gs Dy (@5, 95)) - (32)
Adding and subtracting (P, — PQngé)DW(QEo) to the first term in the RHS expression of implies
(Pr = PQoge) Dw(Qp,) = (Pn— Pygs)Dw(Q5,) + (Pn — Pgog:) (Dw(Q5,) — Dw(Q3p,))
= (Pn = PQog5) Dw (Qp,) + (Pn — PQo.g;)(av,5, — 4v.5,)
= (Pn— PQog.)Dw(Qp,) + (Pn — PQog.)(av,5, — 4v,8,); (33)

where the last equality is valid because DW(QEO), q;‘,7 B qi? 5, are functions of W only. As for the second
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term in the RHS expression of , it equals

= gn(Ai|W;) 24, Vo OF e (AW — P 2ATL o )
Z(gZ(A\W)gn(A\W)(Z Qy,s, (Ai, W) Qo,gogé(A‘W)( Qys,)

n

1 24; — . . 24 -1 .
= 2 <M(Yi — Qy 5, (Ai, W) PQo,giigi(A W) (Y Qy,gn)>

= (Pn — PQog,)dv 3,

= (Pn - PQO,gn)d;,,Bo + (Pn - PQO,gn)(dik/7ﬁn - d;,ﬁo)- (34)
The equalities , and imply . ]

It appears that the second term in the RHS expression of is asymptotically negligible at rate /n.
Indeed,

Lemma 3. It holds that (P — Payg,) ((d5, = di,s,) + (65,5, — a3,5,) ) = 0p(1/v/).

Proof of Lemmal[3 The key to this proof is Lemma

Introduce Q7F ,, = {f(Qvp,9,€) : Qvg € Qin,g € Gin, € € E}, where f is given by (28), and set § > 0.
The elements of Q are uniformly bounded away from 0 and 1. By A5, A6 and Lemma the bracketing
numbers N (0, 10g1t(Q1 n)s || ll2,pgy o) and N(6,1/Q1m, || - ll2,pg, ) are finite. Obviously, the bracketing
number N(6,&,]| - |) is finite too. Choose arbitrarily three collections of d-brackets of smallest possible
cardinality that cover logit(Q1,), 1/G1n, and €. Given f(Qy,s,9,€) € Q7 ,,, let [lg,uq], [lg,ug] and [l, uc]
be d-brackets from these collections and containing logit(Qy,), 1/g and €, respectively. We can assume
without loss of generality that the uniform lower- and upper-bounds of logit(Q;,) (respectively, 1/Gi ;)
are also lower- and upper-bounds on lg, ug, (respectively, Iy, uy). We can also assume that |lc], |u] <
sup.c¢ |€|. Characterize A and v by setting A(O) = Al.H (uy)(0)+ (1 —A)uH(ly)(O) and, similarly, v(O) =
AucH(lg)(O) + (1 — A)lcH (ug)(O). Then [expit(lg + A), expit(ug + )] is a bracket containing f(Qys, g, €).
Since expit is 1-Lipschitz, it follows that (expit(ug + v) — expit(lg + M) < ((ug —lg) + (v — M)? < 2(ug—
1) +2(y — N)? where (v — A\)? < (ue — 1)* + (H(ug) — H(1y))? < (ue — 1e)? + (ug — ly)%. Consequently,
there exists a universal constant ¢ > 1 such that [expit(lg + A), expit(ug + )] be a cd-bracket. Thus,

NG, Q5 |- oy ) < N(8/0,10gi6(Qun) |1 - 2.7, ) X N(6/6,1/Gum || I @ugs) X N(6/¢,E, ] - |) hence,
by Lemma J((Sa Qi,na H ’ HQ,PQO,QT) S J(67 Ql,nv y r) + J((S, gl,nv ” ’ HZQW,o) + ‘](57 €, | ’ |) Therefore,
A5* and A6™ imply that if 6, = o(1) then J(&y, Qf ., [ - [l2,P,, ,-) = 0(1) as well. Now, we use this to prove
the lemma.

For each Qy € Q7 ,,, characterize dy (Qy) by setting dy (Qy)(0,Z) = (2A - 1)(Y — Qy (A, W))/Z. By
uniform boundedness of Up,>197 ,,, Y and Z, the existence of a sequence of envelope functions satisfying
(a) in Lemma 10| is granted. Moreover, Lemma (11| yields that there exists ¢ > 0 such that J(,dy (97 ,,), | -
) e (0,97, [ [l2,pg, ,r) for all 6 > 0. Thus, 6, = o(1) implies J(6n, dy (Q7 ,,), [ - [l2,Py, ,») = 0(1),
and condition (b) in Lemma 10[is met too. Now, the convergence [|Q, 5 — QY g ll2,7,, ,» = 0p(1), established
in Proposition 3} implies Pg, ¢ (dy (Qy5,) — ciy(Q;ﬁo))2 = op(1) by Cauchy-Schwarz, since |dy (Q3 5 ) —
dy (Qy5,)| S 1@y, — @3 5,]- We apply Lemmato obtain \/n(F, — Pgyg,)(dy 5, — dy 5,) = op(1).

Now, for each Qy € Qf ,,, characterize gy (Qy) by setting gy (Qy)(W) = Qy (1, W) — Qy (0, W). Choose
a collection of N (4, Q7 ,,, || l2,Pg, 4) O-brackets [l ux] covering Qf , and set arbitrarily Qy € 9i,
Assume without loss of generality that Qy € [l1,u1] and characterlze I} and u} by setting I{(W) =
(1, W) —uy(0,W) and uj (W) = ui (1, W) —13(0, W). It holds that gy (Qy) € [l’l,ul] and Pg, g (u] — l’)
26%/c for 0 < ¢ = min(infg",1 — supg”) < 1. Thus, N(6,qv(Q5,), |l - l2,Pg, r) < N (\v/2/¢d, Q5 ) |
»), hence J(dn,qv (97 ,), | - ll2,py, ,») = o(1) whenever 8, = o(1): condition (b) in Lemma [10] is
met. Condition (@) in the same lemma is also met since Unzlqy(Qin) is uniformly bounded. Moreover,
1QY,5, — Q¥ ll2,Pg, ,» = 0P(1) implies [lgy (@ 5,) — av (QY g))ll2.py, ,» = 0P(1) since P, gr(ay (Qy5,) —
av (Qy.5,)° < 2PQo.g7 (Qy5,(1L,W) = Q3 5 (L, W))? + 2Pg, 4+ (Qy. 5 (1, W) = Q35 (1,W))? and, for both
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0= 0,1, Pour (@35, (@ W) = @ (0, W))? = Py (@45, — @ PL{A = a} /g7 (alW) S Py (@5, —
Q;ﬁo)Q because ¢” is bounded away from 0 and 1. We apply Lemma [10| to obtain /n(P, — PQO’gn)(qgk,ﬁn -
Gy,p,) = op(1).

This completes the proof. O

The proof of Proposition [ is now at hand.

Proof of proposition[]. We first note that follows straightforwardly from Lemmas [2| and
Set fo = dy. 5, + Dw(Qp,) and f, = dy. 5 + Dw(Qj, ). With this notation, o = Pgq g« f§, Xn = Pofr-
Introduce also S, = Py, g, f3- For either (f,8) = (fo, Bo) or (f,8) = (fn, Bn), it holds that
1 n
Poogf* = —> Pooef?
i=1

* * * * 1 = (Y - Q; )2
= Paug; (Dw(@5)° +2Dy(Q3n6) Dw(Q5)) + 1o D~ Pangy— e~
i=1 0%

(Y —Qyp)1 ¢
= Poug; (Dw(Q3)? + 2Dy (Qy,5.6)Dw (@3) + Payg—— 2= > /g
0 i=1

Now, because (Y — Q5 ﬁ)Q <1 and g is bounded away from 0 and 1, the Cauchy-Schwarz inequality yields

|PQ07gnf2 - PQO,Qsz‘ =

Y - Qy5)° (1 & \
Py gs——— 0 gzl/gi—l/go

90 i=1
n

1
SN Mg —1/gt
=D g =1/

i=1

n

1
2N g —1/gt
=~ Vg =1/

i=1

S PQog; < (35)

27QW,0

Thus, taking f = fo and applying corollary (1, we obtain E(S,) = X + o(1) and S,, = ¥¢ + op(1) ( Note
that X9 > 0 by Al. Let us show now that ¥, = ¥y + op(1) by proving ¥, — S,, = op(1). We use the
following decomposition:

Yp—Sp = (Pn - PQo,gn)(fg - fg) + (Pn - PQo,g;n)fO2 + PQOygn(fTQL - fg)
= (Po— Poog)(fi — ) + (Pu = Pooga) f3 + Paogs (fr — 13) +op(1), (36)
where the second equality holds because PQo,gnf2 = PQog; f? + op(1) for both f = fo and f = f, (by

and Corollary . Because fy and all f,’s (n > 1) are uniformly bounded, the first term in the RHS
expression of satisfies

[(Po = Pgog,)(fa— D S 1(Pa—Pgog,)(fn — fo)l
= |[(Pn— PQog,)(dy g, —dygs,)+ (655, — dvg)| =op(1/v/n)

by Lemma |§| (see m for the definition of q; 5). Since fg is bounded, the Kolmogorov strong law of large
numbers (Sen and Singer| 1993, Theorem 2.4.2) guarantees that the second term in the RHS expression of
converges to 0 P-almost-surely, hence (P, — Pg,.g,)fo = op(1). Consider now the third term in the
RHS expression of (36). Note that (fn—f0)(0,Z) = (2A—-1)(Qy 5, — QY5 ) (A W)/Z+ (a5 5, —av5,) (W) —
(¥5, — o), hence |fn — fo| $|Q% 5, — Qv + 14y 5, — 435, + [¥, — Yol because Z is bounded away from
0 and 1. Using again (i) that fy and all f,’s (n > 1) are uniformly bounded, and (7i) the Cauchy-Schwarz
inequality and the dominated ratio property, we get

| Pgogz (fr = FO S [Py, (fn — fo)
S PQog|Qvs, — Qvigel + Paogslay,s, — @v,s| + ¥ — ol
S 1Qvs, — Qvigllz,ro, o + 1075, — av 8o ll2,Pg, o + W0 — Yol
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We know that [QF. 5 — QY. ll2,py, ,» = op(1) by Proposition |1} we showed at the end of the proof of
Lemmathat this implies ||q§‘,,ﬁn —dy 5, |27on’gr = op(1), and Propositionguarantees that ¢} —1o = op(1).
Consequently, [Pg, g ( 12— f3)| = op(1). We have thus proven that all terms in the RHS expression of
are op(1), hence ¥, — S, = op(1) and X,, = 3¢ + op(1), as we claimed earlier.

We show now that (21)), which we rewrite here ¢} — ¢g = (P, — Pg,.g,)fo + op(1/y/n), implies that
V/n/Xo(¥} — o) converges in law to the standard normal distribution. This is a consequence of (Sen and
Singer}, 1993, Theorem 3.3.7) because (i) Sn/FE(S,) — 1 = op(1), and (i) for each o > 0, E(P,f51{f§ >
a’*nE(S,)}) = o(E(S,)) trivially holds since fy is bounded and E(S,) = Yo + o(1) with ¥y > 0. Then
Slutsky’s lemma and ¥,, = ¥+ op(1) yield the convergence in law of \/n/%, (¢} — 1) to the same limiting
distribution. This completes the proof. O

The proof of Corollary [2| boils down to (i) showing that A5, A5* A6, A6* are met and (ii) applying
Theorem [l

Proof of Corollary[4 We show below that A5 and A5* are met. A parallel argument can be used to show
that A6 and A6* hold too. Since A1-A4 are satisfied by assumption, Theorem [1| thus applies and yields
the stated result.

Fix 6 > 0, a sequence {0y }n>1 of positive numbers such that 4, = o(1), and n > 1. By construction,
the functions ¢; (j € N) all belong to a class C of smooth functions over the bounded support W such
that all partial derivatives up to order a > dim(W)/2 of all f € C exist and are uniformly bounded by a
constant C' > 0. By (van der Vaart, (1998, Example 19.9), it holds that log N(6,C, | - [l2,ry, ;) < 5~V for
V =dim(W)/a < 2.

Note that F = {ZjeN Bip; = Z?lo Bj¢; : B € By} is a subset of C, provided that the constant C' in the
definition of C is large enough (if not, it suffices to replace C' with M C', with M the constant involved in
). We apply three times Lemma 11} to obtain that J(6, 7, || - l2,py, ,r) 2 J(0,10git(Qin), || - ll2,p, ,+) 2
J(0, Qun, | ll2,Pgy 4r) 2 I (0 L (Q1 ), | - |2,Pg, ;)¢ from left to right, the inequalities follow from (i) the
third claim of Lemma [11| with h, i’ given by h(O) = A and I/ (O) = (1 — A), (ii) from the sixth claim with
¢ = expit, which is increasing and 1-Lipschitz, and (%ii) from the seventh claim with A given by h(O) =Y.
Therefore,

J(6n, L(Q10), || - |

27PQ0,9’7‘) S J<5n7 QL?’M || ) szon,gT)

On
< 0G| apg, ) S / e V2de = o(1),
’ 0

and A5* is fulfilled. Choosing d,, = 1/4/n yields that A5 is also fulfilled. This completes the proof. O

A.2 Useful technical results
Convergence of M-estimators.

The following lemma is a simple adaptation of (van der Vaart and Wellner, 1996, Corollary 3.2.3).

Lemma 4 (convergence of M-estimators). Let M, be a real-valued, stochastic processes indexed by a metric
space (O,d), and let M : © — R be a real-valued, deterministic function over ©. Consider a sequence of
subsets O, C © and the following assumptions:

(a) There exists 6y € © such that M(th) < infagr M(0) for every open set T'C © containing 6.

(b) For each n > 1, there exists 0} € ©,, such that M(6}) = infyco, M(0). Moreover, M(6}) — M(0y) =
o(1).

(c) It holds that |M,, — M||e, = op(1).
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Under the above three assumptions, if 0,, € ©,, satisfies My, (0,,) —M,,(6%) <0 for alln > 1, then d(6,,,00) =
op(1).

Proof of Lemmal[j. Set n > 1. By (a), it holds that

0 < M(6,) — M(6)
= (M(Qn) - Mn(en)) + (Mn(en) - Mn(QZ)) + (Mn(QZ) - M(H:;)) + (M(QZ) - M(HO)) :

The above first and third RHS terms are both upper-bounded by ||[M,, — M||e,. The second RHS term
is non-positive by definition of 6,. The fourth RHS terms is o(1) by (b). Thus, it actually holds that
0 < M(6,) — M(f) < 2|M,, — Mo, +o(1) = 0p(1) by (c).

Set ¢ > 0. By (a), there exists § > 0 such that d(6,,60) > ¢ implies M(6,,) — M(6p) > 6. Since we have
shown that M(6,,) — M(6p) = op(1), we can therefore conclude that d(6,,6y) = op(1) too. O

Maximal inequalities and convergence of empirical processes.

In this article, we repeatedly exploit uniform laws of large numbers. They are derived from maximal
inequalities for martingales by van Handel (2011) that also played an important role in (Chambaz and
van der Laan) 2011alc). For completeness, we now state these results.

Let ¢ : R — R be such that ¢(z) = e — 2z — 1. Let F be a class of measurable functions, n > 1 be an
integer, K > 0 and 0 > 0 be two positive constants. For each f € F, n(P, — Pgyg,)f = Y i1 (f(Oi, Z;) —
Pgo.g:f) is a discrete martingale sum.

Set N = N(6,F, | - ll2,py, ,); the d-bracketing number of F wrt || - [|2,p, . Following van Handel

(2011)), we define a (6, n,F, K)-bracketing set as a collection {(Ag,I‘f) : ¢ < n}j<n of random variables
such that (i) for each f € F, there exits j < N satisfying Ag < f(04,Z;) < Fg for all i < n, and (i)
for all j < N, 2K?n~ 137" PQ07gi<Z>(|AZ - I‘f]/K) < §2. Let N(,n,F,K) denote the cardinality of the
smallest (6, n,F, K)-bracketing set. Finally, introduce for each f € F the random variable R, x(f) =

2K°n 1 3T Po.g, d(If1/K).

Lemma 5 (Proposition A.2 by van Handel| (2011)). There ezists an universal constant C > 0 such that,
for all R > 0,

] na?
~ < ~ (P — VYf>al < SR
" (?elgl Winac( ) = Ry g, (B~ Faow) 12 a) e ( C¥(er + 1)R> |

for any «, co,c1 > 0 such that ¢3 > C%*(cy + 1) and

VR
o caR
— 1 K)de <a< —/—.
\/ﬁ/o Vieg N (e,n, F, K)de < o < I

Lemma 6 (Corollary A.8 by van Handel (2011)). Suppose the class F is finite. For all R > 0 and any
event C,

E (ma]}__cl{an,K(f) <R} I%a;(i(ﬂ — Pgo.e:) f> < \/2R10g <1 + 11?21)) + 8K log (1 * ]—52*)) '

fe

If, in addition, maxser ||flloo < U, then K can be replaced with U/3 in the second term of the above RHS
expression.

Importantly, [van Handel (2011)’s proofs of Lemmas |5 and @ remain valid when the class F is allowed to
depend on n. To use lemmas |5{and @7 it is necessary to get a grip on N'(4,n, F, K) and the random variables
R, k(f), f € F. The next lemma is helpful in this regard.

Recall that, by the dominated ratio property of Gy, ||g/¢" ||, < & for all g € G;.
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Lemma 7 (L?morm version of lemma 7 by |Chambaz and van der Laan| (2011c)). Assume that U =
supser || flloo is finite. Then, for all f € F, Rpav(f) < 4/3n >0 Poy.gl fI2. Moreover, it holds that
N(V2k8,n, F AU) < N6, F, || - l2,pg, 4r)-

Proof of Lemmal[7] Set f € F, i < n, and m > 2. It holds that Py, |f|™ < Um_QPQOM(h.|f]2
%!Um_gPQo,gi |f|>. Therefore, for K = 4U,

2K2Pp . K)=204U)2 S ZQougil/ 1
U™ 2Po, 4| f1? Po.g.|f1?
4U 2: = m! 4U09 =16 2: onn :4PQo,gi’f|2/3'

m>2 m>2

The monotone convergence theorem guarantees the first equality. Summing up the above inequalities for
i=1,...,n yields the first bound.

Let (Zj,uj)jSN be a set of N = N(0, F,| - ||2,onyg,ﬁ) 0-brackets covering F wrt || - ||2’pQ07gr. Let Ag =
max (¢’ (0;, Z;), —U) and I‘g = min(uj(Oi,Zi),'U) for all i < n,j < N. Set f € F and j < N such
that f € [¢/,u/]. Then, for all i < n, (i) A < f(0;,Z;) < TJ, (ii)) U < A} < TY < U, and (iii)
< AJ < I‘J < 7. Thus, for all m > 2,

PgonlA — T < (2U)" 2P |A] — LI < (2U)" 2k Py yr|A] — LI
m)!
< (2U)™ 2K Py gr |00 — W |? < (2U)™2k6% < 2'(2U)m_2/£52.
Consequently, still using K = 4U, it holds that

m!(4U)m

2K Poy,,0(|A] —T|/4U) = 2(4U)* )

m>2

Ll < 3202 Z 2 : 4U — 2102
m

Again, the monotone convergence theorem validates the first equality. Summing up the above inequali-
ties for i = 1,...,n yields 2K?n™1 Y"1 | Py, 50(|A) — TZ|/K) < 2k62, hence {(Al,TY) : i < n}j<n is a
(V2k0,n, F, K)-bracketing set and N'(v/2xd,n, F,4U) < N (6, F, || - ”vaQo,gT)' This completes the proof. [

By combining Lemmas [5] and [7, we now establish a uniform law of large numbers.

Lemma 8. Let {F,}n>1 be a sequence of sets of measurable functions such that U = supgey, ., 7, | flloo e

finite. If J(\/2/3KU, Fu, || - ll2,pg, ;) = 0o(v/1), then for all o> 0 there exists ¢ > 0 and ng > 1 such that,
for every n > nyg,

P sup (P, — Pgyg.) f>a] <27
fEFn

Consequently, sup re 7, |(Pn — Po.g,)f| converges to 0 P-almost surely.

Lemma [§| modifies Theorem 8 in (Chambaz and van der Laan| (2011c) to use an L%metric and allow the
classes of functions to change with n.

Proof of Lemma[8 Set a > 0, and let K = 4U, R = 4/3U?, ¢; = aK/R, ¢y = Cy/c1 + 1, where C is the
universal constant from Lemma Note that \/R/2k = \/2/3xU. By assumption, there exists ng > 1 such

that, for all n > no, J(\/R/2K, Fn, || - [l2,Pg, ,») < VRO/COV2E.
Set n > ng. By Lemmaﬂ N(V2K0,1, Fp, 4U) < N(8, Fn, || - l2,pg, ,)- Therefore,

VR VR/2r
o V2kcq
— 1 ey, 4 <
=1, Vieg N (e, n, Fp,4U)de < n

vV 2Kkco aR
= \/ﬁ J(\/R/QK/aJT-.TLaH'HQ,PQoygr) Sa:?
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Lemma [b| applies and yields here

P sup (P, —Pgg,)f >a| < P| sup max — (P, — Poog)f > a | <2e7
feFn fEFn i<n N

with ¢ = a?/c2R. This completes the proof. O

Lemma [5| also allows us to adapt the maximal inequality of (van der Vaart, 1998, Lemma 19.34), valid
under independent, identically distributed sampling, to our targeted, adaptive sampling. We state and prove
this result in lemma[9] We introduce the function Log given by Log(z) = max(1,log(z)) (all z > 0).

Lemma 9. Let F be a class of measurable, real-valued functions and § > 0 be such that PQ07grf2 < 62 for
every f € F. Let F be an envelope function of F. Define a(e) = 6/\/Log N(e, F,| - H27PQ0,g’") for all e > 0.
For each n > 1, it holds that

2,Poyqr) T VIE (PQo g, F1{F > Vna(d)}) (37)
2,Poy ) T VP g F1{F > \/na(s)} . (38)

Proof of Lemma[9 The proof parallels that of (van der Vaart], 1998, Lemma 19.34).

Preliminary. Inequality follows readily from because F1{F > \/na(d)} is non-negative and G,
is endowed with the dominated ratio property. To understand the sum of two terms on the RHS of ,
first note that E(|| P, — Pg,.g.|l7) is upper-bounded by

VRE([|P, — Poyg,llr) < JO,F, |-

ferF

E (Sup (P = PQo,g ) fHF < \/ﬁa(5)}!> TE (;lelgl(Pn — PQo.g ) f{F > \/ﬁa(5)}\> : (39)

Now, for every f € F,

(P = PQo g, ) fI{E > vna(8)} < (Pn + Poo ) FU{E > vna(0)},

hence, by the tower rule, the second term in (39)) is smaller than E((P, + Pgg.)F1{F > /na(é)}) =
2E(Pg, g, F1{F > \/na(6)}). Thus, to prove it remains to show that \/n times the first term in (39)
is smaller than J(6, F, | - [|2,r,, ), up to a universal, multiplicative constant.

Before proceeding, note that N (e, {f1H{F' < vna(6)} : f € Fh |- ll2,pg, ,r) < N(& F, |l - ll2,pg, ) for
all € > 0, so that we may assume, without loss of generality, that sup ez || flloo < v/na(d). What follows is
based on a chaining technique to replace F with a finite class.

Chaining. We now define a nested sequence of partitions on F, then deduce a finite representation of F
from it. Fix gg such that 6 <27% < 2§. For each integer ¢ > g, denote N, = N(279, F, || - Hg,onygr). Since
e N(e, 7, || ll2,pq, ,r) 18 non-decreasing, it holds that

é
S 27 /Log N, < /0 JEOSNE FL I lpg, - )i (40)

q9>q0

1. For each ¢ > qg, cover F with Nq many brackets [lqyivuq,i]KNq such that PQO’QTA?M < 2724 for all
i < N,. Note that we may assume, without loss of generality, that Ay ; = ug; — g < 2F < 2v/na(6)
. C
for all i < Ny. Define Fy1 = [lg1,uq1] then, recursively, Fy; = [lg4, uqil () (Uj<i[lq7j,uq7j]> for
2<1 < Nq. We have our first partition: F = UfV:ql Fy,i, which we call partition of F at level gq.

From the sequence of partitions {{Fg; : 1< Nq}}quov we derive a nested sequence of partitions as
follows. The first partition is {Fg,i : @ < Ny} itself. Then, recursively, at a level g such that {F; : i <
Ny} is not a successful refinement of {]—"(q,l)ﬂ- 11 < Ny—1}, we replace each partitioning set at level ¢
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by its intersection with all partitioning sets at level (¢ —1). All partitioning sets derived in this fashion
from F,; are associated With the same A, ;. For a given ¢ > qo, the possibly new partition consists of

at most N, =T[¢ 7= Ny partitioning sets. Using the inequality |/Log N, < Z Log Nq/, we see
that ( is preserved in the sense that

q
ZZ_q\/Loqu < 22_‘1 Z \/Log]\?q

q>q90 4290 q'=q0
< > 279/Log N, </ \/LogNs F - L )de (41)
q>4q0

2. At each level ¢ > go and for each F; (i < N,), fix a representative f,; € F,;. For every f € F, if
f € Fyi, then we set m,f = f,; and Ayf = A,,;. Introduce ag, = 2a(27%) = 279+ /., /Tog N,, and,
for each ¢ > qo, f € F, By f =0,

ag = 2771/\/Log Ny,
Agaf = 1{Aq0f§\/ﬁaqo,...,Aq_lfg\/ﬁaq_l},
Byf = 1{Ayf <Vnag, .., A1 f < Vnag_1,Agf > V/nag} .
By nestedness of the sequence of partitions, f — A,f and f — B,f are constant over each Fg;

(1 < Ng). Moreover, Byf + Agf = Ag—1f for all ¢ > qp and f € F. In addition, since ¢ — a(e) is
non-decreasing, Ay, f < 2F < 2y/na(d) < 2y/na(27%°) = /nagy,, hence A, f = 1.

Using these facts, any f € F decomposes as

f=maf+ > (f=mf)Bef + > (mqf —mg1f)Ag1f. (42)

q>qo+1 g>qo+1

To see this, note first that either (i) By f = 0 for all ¢ > g, which implies, by recursion, that A,f = 1 for
all ¢ > qo, or (i) there exists ¢; > go such that By, f = 1, in which case B, f = 0 for all ¢ > qo, ¢ # q1,
and A,f =1 for all o < ¢ < q1, Aqf =0 for all ¢ > ¢;. If (i) holds, then we deal with a telescopic
sum and boils down to f = 7y, f 4 limy—o0 T f — 7y, f. The above equality is valid because both
mqf and f are in the bracket [lq, uq], whose size [[uq — lg[|2,p,, ,» — 0 as n — oo. If (i) holds, then
f=mgpf+(f—7qf)+ Zq go+1(Tgf — mq—1[) is evidently true.

Define for convenience Fo = {mgof/vn : f € F}, Fp = {D_ 501 (f — 7 f)Bef/v/n : f € F}, and
Fe = {2 ysqor1(Taf — mg-1f)Aq—1f/v/n : f € F}. Each sum in the definition of Fj, consists of at
most one single term. Each sum in the definition of F. is either finite, or telescopic, with a limit, in
which case the dominated convergence theorem guarantees that Pg, g, Zq2q0+1(7rqf —Tg—1f)Aq-1f =

ZquOH Pgo.gn (Mg f —mg—1f)Aq—1f. Therefore, yields
E(|[(Pn = Pooga)llF)/vn < E(|(Pa — Pgog.)ll7)
+ E([[(Pn = Pog.)ll7) + E([(Pn — Poogn)llFz)- (43)

We shall study in turn each term in the RHS expression of .
Class F,. For every f € F, (i) g f| < v/na(6) < v/na(27%°) = \/nag, /2, hence suppcz, [|hllcc < agy/2,
and (ii) Pg, g (Tgf)? < 02 (true by assumption). Apply Lemma |§| with F = F,, C the whole probability

space, U = ag, /2, K = 4U, R = 4k5?/3 (an upper-bound on nR,, 4 (mg, f/+/n) valid uniformly in f € F by
Lemma [7)): it holds that

E(HPTL_PngnH]:a) 5 5\/LOquo+aqoLOquo

Log N,
< 270, Tog N, +2 %t —=_90_
& v/ Log Ny,

> 279 /Log N,. (44)

q42>q90

IN
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Class Fy. For every q > qo, f € F, |f — mof| < Ayf implies

‘(Pn - PQO:gn)(f - qu)‘ < ( +PQ0 gn) qf < ’(Pn - PQo,gn)Aqf‘ +2PQo,gnAqf‘

Thus, by using repeatedly the triangle inequality and the dominated convergence theorem, we obtain
E(|[ P, — PQngnH]:b)

< Z E(sup (Pn — PQog)A quqf/\F|>+2 Z E(;UPPQogn qafBq f/f) (45)

q>qo+1 Jer q>qo+1

Consider the first term in the RHS expression of . Fix ¢ > qo. Note that f, f" € F,; implies
AgfByf = Agf'Byf'. So, the supremum sup ez [(Pn — PQo.g,)A¢f Byf/v/n| is actually a maximum over
a set of cardinality N;. Moreover, for each f € F, (i) 0 < AyfByf < Ay_1fByf < y/nas—1, hence
suppez, |hlloo < ag1, and (ii) Pgygr(AgfByf)? < 2729, Apply Lemma |§| with F = F, C the whole
probability space, U = a,—1, K = 4U, R = 4k2729/3 (an upper-bound on nR, 4u(A,fByf/v/n) valid
uniformly in f € F by Lemma [7)): it holds that

nk <Sup |(P, — PQo,gn)Aquqf/\/ﬁo S 277, /Log Ny + ag—1 Log N,
o LogNg

feFr
= 279 /Log N, + 277"
\/Log Ny
S 279y/Log Ny. (46)

Consider now the second term in (45)). Fix ¢ > go and f € F. Since B,f = 1 only if \/na, < A, f, it follows
that

VnagPqq,g,Aqf Bef < Pqog, (Aqf)Q Byf < 27
for every 1 < i < n. Therefore,

Jsclelg)__ PQngnAquqf/\/ﬁ < 2_2q/naq S 2_q\/ Log Nq/n- (47)

By , summing up and over q > qo finally yields

E(|P, - Poyg,llm) S Y 279/Log Ny (48)
q>qo+1

Class F.. Fix q¢ > qo. Note that f, f' € F,; implies (mqf — mg—1f)Aqf = (mqf' — mg—1f")Aqf’. So, the
supremum || P, — Py, g, |7 is actually a maximum over a set of cardinality N,. Moreover, for each f € F,
(i) |7qf — Tg-1flAq-1f < Dg1fAg1f < V/nag_1, hence supyc 7. [|h]|cc < ag—1, from which we also deduce
that (i) Poy,gr ((mqf — Tg—1f)Ag=1f)? < Pgygr(Agf)? < 2729, Therefore, the same reasoning as the one
which lead us to applies again, and we obtain

E(|Py - Poyg.llz) S D 279/Tog N,. (49)
q>qo+1

Combining , , , , and completes the proof. O

To prove Proposition [4, we must study the convergence in probability of empirical processes indexed by
estimated functions. Lemma[I0]below provides sufficient conditions to derive such convergences. The version
of this lemma under a i.i.d. sampling scheme is given by (van der Vaart and Wellner, 2007, Theorem 2.2).
Here, we provide its extension to the current targeted adaptive sampling scheme. The proof of Lemma
hinges on Lemma [9]
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Lemma 10 (convergence of empirical processes indexed by estimated functions). For each n > 1, let
Fn ={fon : 0 € ©,n € T,} be a class of measurable, real-valued functions, with envelope function F,.
Suppose the following holds:

(a) The sequence {F,},>1 satisfies the Lindeberg condition: Pg,,F2 = O(1) and, for every § > 0,
Paugr F21{Fy > 6/} = o(1).

(b) If 6n = o(1), then it holds that J(0n, Fn, || - |2,y ,») = o(1).

Ifnn € Ty, is such that supgeg Pog.gr (fo.n —fom)? = op(1) for someng € Np>1Un>pTh, then supgeg |v/n(Pn—
PQo.g.)(fom, = Jome)| = 0p(1).

Proof of lemma[T0 Define the random class FO = {fom, — fon, : 0 € ©}. We wish to prove that /n|| P, —
Pqognllz0 = op(1). Set arbitrarily a > 0,e > 0, and introduce FO = {fg77 fon : 0 € ©,m € T,}, which

admits 2F, as an envelope function. For every § > 0, it holds that J (3, F2, |||z, Poger) S J(6:Fn, [ ll2,pg, 4 )-
Consequently, by (b) and (i) in Lemma [12] below, there exists p > 0 and no > 1 such that, for all n > no,
J(00, 3, || - ll2.pg, o) < ac. Define T3(do) = {n € Tn : suPgee Poog (fom — fom) < 6}, and F(do) =
{fo, — fom 1 0 € O,m € T (8)} C FL. By assumption, there exists ny > 1 such that P(n, ¢ T2 () <
whenever n > ni.

Set n > max(ng,n1). By the Markov inequality, and because 1, € T°(8y) implies F0 C F2(8y), it holds
that

P (VallPy ~ Pagllzg 2 @) < P & T2(00)) + 0" (Vi Py = Paug,ll 714 € TS(0)})
e+ a7 E (VA Pa = Poug, | 7g(an L € T5(00)})

e+a B (VillPo = Poog.ll 70650)) - (50)

N—
IN AN IA

By Lemma [9) whose conditions are met,

E (Vnl|Pn = Poog, 7o) S J (0, F (o), || - l12,P0, o) + V1 Pqo g FaL{Fy > V/nan(0)/2}
< J(60, F |l - 2P, o)
+a,(80) " Pgy g F21{Fy, > v/na,(0)/2}, (51)

where a,(do) = 50/\/L0gN(50,]:79(50), I ll2,pg, o) By (i) in Lemma [12 below, m = J(do, Fy,(0), || -

,) is a bounded function. We also know that, for all m > 1,

T (80, Fn(00): || - ll2,Pgy 4) = 50\/L0g N (80, F2,(80), || - ll2,Pgq o) = 85/ am(do)-

In particular, m +— a,,(d9) must be bounded away from 0. Let ¢ > 0 be such that a,,(d9) > ¢ for all m > 1.
With this in mind, implies

E (VAllPa = Poy g.llraan) < 7650, 72, - ) + ¢ Py 2L, > vie/2},

where J (80, F2, || - ||z, Pg,,or) < @€ by construction. Assumption (b) guarantees that there exists ny > 1 such
that m > no implies Pg, gr F21{F,, > /mc/2} < ace. In summary, provided that n > max(ng,n1,n2),

and yield P(y/n||P, — Pgy g, ll 70 = @) < 3e. In other words, \/n||P, — Pg,.g,ll 70 = op(1). This
completes the proof. ]

The next two lemmas proved useful in our demonstrations.

Lemma 11. Let F be a uniformly bounded class of measurable, real-valued functions. Let h, h' be two
measurable, bounded, real-valued functions. We do not assume that h,h/ € F. Set § > 0.
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e Define F' equal either to {f —h : f € F}, or {f|h| : f € F}, or {fIh| + f'|W| : f,f € F}, or
{fl : feFYy, or {f?: feF}, or{o(f): f € F} where ¢ is non-decreasing and Lipschitz, or
{hlog(f) + (1 — h)log(1 — f) : f € F} if the functions in F and h take their values in [0,1] and are
uniformly bounded away from 0 and 1. It holds that J (6, F", | - |l2,pq, ,») < J(6: F. |l - ll2,pg, 4r)-

o Define F' = {\/f: f € F} if the functions in F are non-negative. It holds that J(3, F", || - l|2,pg, ;) S
TV, F, - ll2,pgy or)-

Proof of Lemma[ll Fix ¢ >0 and M > 0 such that supscr || flloc < M < o00. Let N = N(6,F, || -[l2,po, ;)
and consider a collection of §-brackets {[l;,u;] : ¢ < N} that covers F.

e Case F' = {f —h: f € F}. The collection of d-brackets obtained by substituting [l; — h,u; — h] for
[li,u;], all i < N, covers F'. This proves the first claim.

o Case F' ={f|h|: f € F}. The collection of d||h||~-brackets obtained by substituting [I;|h],u;|h|] for
(i, ui], all i < N, covers F'. This proves the second claim.

o Case F' = {f|h|+ f'|W'| : f, f € F}. The collection of brackets consisting of [I;|h|+1;|h'|, u;|h|+u;|R|],
all i,j < N, covers F'. Consider i,j7 < N, and set v;; = wlh| + uj|h'|, N\ij = U|h| + ||, ¢ =
|A[12, + [|[W]|2: it holds that Pg, g (7ij — Aij)? < 262

Therefore, N (6, F', || - [l2,py, ;) < N(6/c, F. | - HgprO’gT)Q, from which the third claim follows.

o Case F' ={|f|: f € F}. Set f € F, and assume without loss of generality that f € [I;,u;]. Define
Fy=1{f>0}, . =1{f <0}, G- =1{l1 > 0}, G_ =1{u; <0}, and Go = 1{l1 <0 < wu;}. Then

Fy(l)4 + Fo(u)- < [f| < Fhouy — F- Iy
with
F_|_(ll)+ + F_(ul)_ =Gl — G_up = A,
and
Fiui—F_ 1 = Gyui—G_l1 + Gy (F+U1 - F_ll)
< G+U1 —G_l1 + Go(u1 — ll) =7.
Thus A\ < |f| <1, where 41 — Ay = uy — [y, hence Py, g (71 — )2 <62
Therefore, N(6, F', || - l|2,pg, ;) < N(6, F, || - [|2,pg, ), from which the fourth claim follows.

e Case F' = {f? : f € F}. Set f € F, and assume without loss of generality that f € [ly,u1].
Let [A,71] be the bracket that we just built. The inequalities \; > 0 and f? < M? imply that

A < f2 < min(y, M?). Set Ay = A1, 72 = /min(y7, M2) so that A3 < f2 < 42. Obviously,
’}/g — )\% S 2’}/2(’}/2 - )\2) S 2M(71 — )\1), hence PQo,g’" (’y% — )\%)2 § 4M2(52.

Therefore, N (8, F', || - HZ,PQO,gr> < N(0/2M, F,| -

2,Pgq.q" ), from which the fifth claim follows.

o Case F' = {o&(f) : f € F}. Say that ¢ is c¢-Lipschitz. The collection of cd-brackets obtained by
substituting [¢(1;), ¢(u;)] for [I;,u;], all i < N, covers F'. This proves the sixth claim.

o Case F' ={hlog(f)+ (1 —h)log(1—f): f € F}. Set f € F, and assume without loss of generality
that f € [l1,u1] and 0 < infrer f <11 <uyp <supper f < 1. Define A3 = hlog(l) + (1 — h)log(1 —1)
and 3 = hlog(u) + (1 — h) log(1 — ). It holds that A3 < hlog(f)+ (1 —h)log(l — f) < ~3. Moreover,
0 < 73— A3 < (ug — 1y) because log is Lipschitz on any compact subset of (0,1). Consequently, there
exists ¢ > 1 such that Py, , (73 — A3)? < 242

Therefore, N (6, F', || - |l2,pg, ;) < N(3/¢, F, || - ll2,py, ,), from which the seventh claim follows.
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o Case F' = {\/f : f € F}. Set f € F, and assume without loss of generality that f € [I1,u1] and
l1 > 0. Then VI < V/F < \/ur. Moreover, (y/ur — vh)? < (y/ur — Vi) (y/u1 + vIi) = uy — l;. The
Cauchy-Schwarz inequality yields Pg, g~ (u1 —{1) < \/PQO,gr (u1 —17)2 < V6.

Therefore, N (3, F', || - l|2,pg, ;) < N6, F,| - l2,Pg, 4 )+ from which the eighth claim follows.

This completes the proof. ]

Lemma 12. For each n > 1, let F,, be a class of measurable, real-valued functions such that 6, = o(1)
implies J(6n, Fn, || - l2.pg, ,») = 0(1). Then (i) J(6, Fn, | - ll2,pq, ,») = O(1) for every § > 0, and (ii) for
every € > 0, there exist 6 > 0 and ny > 1 such that J(6, Fn, || - |2,y ) < € for all n > ny.
Proof of Lemma[13. We prove (i) and (ii) by contradiction.

Suppose there exists § > 0 such that limsup,, ., J (6, Fn, || - [[2,py, ,») = 00. Without loss of generality,

we can assume that J(J, Fy, || - H2,PQMT) > 227 for each n > 1. Now,
5
J(57 fnu || : ’ 2,PQ0’97‘) - J(5/27 an || : H2’PQOa9T) + /5/2 \/IOgN(‘E?fn? H . Q,PQO’g’r)dg)
with
5
2J(6/2, Fu, |l - l2,Pg o) = 5\/10gN(5/2,fn, I ll2,pgy ,r) > 2/5/2 \/logN(s,fn, I N2, o )de-

Therefore, J(6, Fu, || - ll2,pg, ,r) = 22" implies J(6/2, Fy, || - l2,Pgy 4r) 2 22" /2 hence, by recursion,
J(0/2", Fu, |l - szonygr) > 22n/2n =2".

The sequence {dn}n>1 given by 6, = §/2" satisfies 6, = o(1) and limy 00 J(6n, Fn, || - l2,p, ,») = 00, in
contradiction with the assumption of the lemma. This completes the proof of (7).

Now, assume that there exists e > 0 such that, for all 6 > 0, there exists ny > 1 for which J(d, Fy,, || -
2,Pg, ) > € In particular, we can construct by recursion an increasing sequence {¢(n)},>1 such that,

for all n > 1, J(1/n, Fpmy || - ll2.pg, ,») > €. This induces the existence of a sequence {0, }n>1 such that
on = o(1) and limsup,,_,o J(dn, Fn, || - l|l2,Py, ,-) > €, in contradiction with the assumption of the lemma.
This completes the proof of (). O
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Figure 1: Performance TMLE across 500 simulations. Each row corresponds to a performance measure
(top: bias, middle: sample variance, bottom: MSE). Each column corresponds to a working model for the
optimal randomization scheme (left: mis-specified working model GJ*, right: correctly specified working
model Gf). The red and green dots correspond to our CARA RCT with different working models for the
conditional response (red: LASSO working model Q‘in, green: parametric working model Qzl’m). The blue
dots correspond to a RCT with a fixed design set to the balanced randomization scheme ¢® and of . as
(fixed) parametric working model for the conditional response. 7
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Figure 2: Empirical coverage of CLT-based 95% CIs across 500 simulations. Each column corre-
sponds to a working model for the optimal randomization scheme (left: mis-specified working model G*,
right: correctly specified working model Gf). The red and green dots correspond to our CARA RCT with
different working models for the conditional response (red: LASSO working model Qli’n, green: parametric
working model sz,n)- The blue dots correspond to a RCT with a fixed design set to the balanced random-

ization scheme ¢g® and QF

lines indicate the confidence levels 95% and 94%.
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Figure 3: Hypotheses testing to assess, across 500 simulations, the quality of coverage guaran-
teed by the CLT-based 95%-CI. Each row corresponds to a null hypothesis Hg_" s ér > 1—a” (top:
a = 5%, bottom: a = 6%), where 7 is the actual coverage guaranteed by each CI, which should satisfy
by construction m > 95%. Each column corresponds to a working model for the optimal randomization
scheme (left: mis-specified working model Gi", right: correctly specified working model Gf). The red and
green colors correspond to our CARA RCT with different working models for the conditional response (red:
LASSO working model an, green: parametric working model Qlf,n)- The blue color correspond to a RCT
with a fixed design set to the balanced randomization scheme ¢° and oY, as (fixed) parametric working
model for the conditional response. The yellow line indicates the threshold 0.05.
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