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Unobserved confounding can seldom be ruled out with certainty in observational studies. An ap-

proach sometimes used to determine the extent to which a treatment effect on a primary outcome

may be subject to confounding bias, is to evaluate whether the treatment of interest is associ-

ated with a so-called negative control outcome after adjusting for all observed confounders.1−6 A

secondary outcome is then said to be a valid negative control variable, to the extent that it is

influenced by unobserved confounders of the treatment effects on the primary outcome, while not

causally influenced by the treatment.3 Thus, a negative control outcome found to be empirically

associated with the treatment may provide compelling evidence of unobserved confounding for

the primary outcome, provided that no unobserved confounder of the treatment-negative control

outcome fails also to confound the treatment-primary outcome relation.3 Suppose that in a certain

application, beyond assessing the presence of an association between a negative control outcome

and the treatment to detect confounding bias, one may wish to use the negative control outcome

to correct for confounding bias. A natural next step might be to consider the magnitude of the

estimated association as an unbiased estimate of bias due to unmeasured confounding, and one

might be tempted to simply correct the confounded estimate of the treatment-outcome association

by subtracting the estimated bias. While this ad-hoc bias correction is intuitively appealing, it has

previously been noted that it is sensitive to the relative scales of the primary and negative control

outcomes.5 A notable diffi culty with the approach is that it requires interpreting the bias observed

for the negative control outcome as somehow equivalent to the bias one would have observed be-

tween the treatment and the primary outcome under the null hypothesis of no causal effect of

the treatment (more precisely between the treatment and the treatment-free potential outcome).

A prerequisite for such "bias equivalence" is that the primary and negative control outcomes are

measured on scales of comparable magnitude. An important case where bias equivalence can be

expected to hold is when the control outcome is a baseline measure of the outcome process prior
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to treatment. In such settings, the well known difference-in-differences approach to control for

unobserved confounding may formally be justified as a negative outcome control approach.5 How-

ever, outside of this special situation, the assumption of bias equivalence may not be appropriate if

the outcomes are clearly measured on different scales, such as, say if the negative control outcome

is dichotomous while the primary outcome is continuous. The assumption would then likely be

violated since an additive association of the exposure with the control outcome would a priori be

restricted by the binary nature of the outcome, while the additive association of the outcome in

view with exposure would not.5

In this note, we describe another prominent setting where indirect adjustment for unobserved

confounding can be achieved by differencing regression estimates of the effect of treatment on the

primary and negative outcome. Specifically, we show that when the primary and negative outcomes

are time to event outcomes that follow a certain Cox proportional hazards model respectively, then

under fairly reasonable monotonicity assumptions, a consistent estimate of the treatment causal

effect can be obtained by simply subtracting the estimated log-hazards ratio for the treatment-

negative outcome association from that of the treatment-primary outcome association. Thus, we

show that for the Cox proportional hazards regression model, the intuitive indirect adjustment

for unobserved confounding by differencing effect estimates is in fact sound for a wide range of

settings of common interest. To formally state the result requires introducing some notation. Let

T denote the primary time to event outcome, N denote the negative control time to event outcome,

A denote the exposure of interest, and X denote a set of pre-exposure covariates. In addition,

suppose that the hazard of N conditional on A and X, hN |A,X (n) is given by:

hN |A,X (n) = exp {β(A,X)}hN |A=0,X (n) (1)
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where the log hazards ratio function β(A,X) is independent of N , satisfies β(0, X) = 0, and

therefore the proportional hazards assumption holds conditional on X. Likewise, suppose that

the hazard function of T conditional on A,X also satisfies the proportional hazards assumption

within levels of X:

hT |A,X (t) = exp {η(A,X)}hT |A=0,X (t) (2)

In addition, let Na and Ta denote the potential outcomes under treatment a for the negative

and primary outcomes respectively. Under consistency, we have that Na = N and Ta = T if

A = a. Under the assumption that N is a valid negative control outcome, we also have that

Na = N1−a = N , that is A has no individual causal effect on N. We further let U denote an

unmeasure confounder which is a continous unobserved common cause of A, T andN . Unobserved

confounding can naturally be incorporated algebraically by supposing that there exist functions

h0 and h1 such that given X, the potential outcomes in the absence of treatment T0 and N0 = N

satisfy

T0 = h0 (U,X) (3)

N = h1(U,X) (4)

with hj(u, x) monotone increasing in u for all x, but otherwise unrestricted functions. We then

have the following result.

Result : Under assumptions (1)− (4), we have that

ψ (X) =
hT1|A=1,X (t)

hT0|A=1,X (t)
= exp (η(1, X)− β(1, X))

and therefore the causal log hazards ratio ψ (X) encoding the effect of A for the exposed conditional
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on X can be obtained by simply subtracting the log- hazards ratio of A for the negative control

outcome from that for the primary outcome.

The proof of Result is provided in the Supplemental Materials, where we show that the result

continues to hold even if the unobserved confounder of the A-T association is distinct from that of

the A-N association, provided that the association between the former and treatment is equivalent

to that of the second in a sense made precise in the Supplemental Materials.
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APPENDIX

Proof of Result. Let SN |A,X (n) = P {N ≥ n|A,X} and FN |A,X (n) = P {N < n|A,X} . Let

FT0|A,X and FU |A,X be likewise defined. Then, by Theorem 1 of Sofer et al,11 we have that under

monotonicity assumptions (3) and (4), for all v in the unit interval,

FT0|A,X ◦ F−1T0|A=0,X (v) (5)

= FN |A,X ◦ F−1N |A,X (v) (6)

= FU |A,X ◦ F−1U |A=0,X (v) (7)

Note that , under the proportional hazards assumption, we have that

SN |A,X (n) = exp
{
− exp (β(A,X))HN |A=0,X (n)

}

, where HN |A=0,X (n) =
∫ n
0
hN |A=0,X (m) dm, and

F−1N |A,X (v) = S−1N |A,X (1− v)

= H−1N |A=0,X {− log (1− v) exp (−β(A,X))}

therefore

FN |A=0,X ◦ F−1N |A,X (v)

= 1− exp
{
−HN |A=0,X

(
F−1N |A,X (v)

)}
= 1− exp

{
−HN |A=0,X

(
H−1N |A=0,X {− log (1− v) exp (−β(A,X))}

)}
= 1− exp {log (1− v) exp (−β(A,X))}
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does not depend on the conditional cumulative hazard function HN |A=0,X . Consider the causal

quantile-quantile transformation

ψ (v, A,X) = FT0|A,X ◦ F−1TA|A,X (v)

Under the Cox model

hT |A,X (t) = exp (η(A,X))hT |A=0,X (t)

holds, we then have that,

ψ (v,A,X) = FT0|A,X ◦ F−1T0|A=0,X ◦ FT0|A=0,X ◦ F
−1
TA|A,X (v)

= FU |A,X ◦ F−1U |A=0,X ◦ FT0|A=0,X ◦ F
−1
TA|A,X (v)

= FN |A,X ◦ F−1N |A=0,X ◦ FT0|A=0,X ◦ F
−1
TA|A,X (v)

= 1− exp {log (1− v) exp (η(A,X)− β(A,X))}

or equivalently

hTA|A,X (t)

hT0|A,X (t)
= exp (η(A,X)− β(A,X)) ,

proving the result.

The result continues to hold if we relax the assumption of a common unmeasured confounder

for T as for N, thus allowing the unobserved confounder U of the A− T association to be distinct

from the unobserved confounderW of the A−N association, provided that the association between

U and A is similar to the association between W and A in the following sense. For all u in the

unit interval,

FU |A,X ◦ F−1U |A=0,X (v) = FW |A,X ◦ F−1W |A=0,X (v) (8)
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This is the assumption of quantile-quantile equi-confounding introduced in Sofer et al11. The

assumption is weaker and thus implied by the more easier interprete assumption of distributional

equi-confounding which states that the conditional distribution of U given A and X matches the

conditional distribution of W given A,X, i.e.

FU |A,X (·) = FW |A,X (·) .

The result then follows from the fact that equation (8) implies equations (6) and (7) .
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