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A general framework for diagnosing confounding 

of time-varying and other joint exposures 
 

John W. Jackson 

 

ABSTRACT 

 

Statistical methods for studying the causal effects of time-varying exposures and 

other joint effects in observational settings (g-methods) are increasingly diffusing 

into applied practice. Unfortunately, unlike methods for point exposures (e.g. 

propensity-score matching), there are few tools to help researchers understand 

the extent and nature of measured confounding for joint exposures, and also how 

well an applied method resolves it. There is a substantial need for tools that 

explicitly map to the exchangeability assumptions that undergird causal inference 

for effects of joint exposures while retaining intuitive interpretations for less 

technical audiences (e.g. reviewers for applied journals, policy makers, etc.). 

 

Beginning from the implications of exchangeability conditions that hold in 

hypothetical sequentially randomized trials, we develop covariate balance metrics 

and trellised plots for time-varying exposures that (1) describe measured 

confounding (2) assess time-dependent confounding—the indication for g-

methods (3) describe residual confounding after certain g-methods have been 

applied (e.g. inverse probability weighting). We extend this framework to cover 

distinct point and time-varying exposures, and also data where there is 

informative censoring. 

 

Using a simulated dataset (n=100,000) of time-varying exposures and covariates 

(some affected by exposure) under scenarios of model specification, weight 

truncation, and censoring, we demonstrate that this conceptually grounded 

framework can aid the transparent design, analysis, and reporting of observational 

studies for joint exposures. 

 

Correspondence: John W. Jackson, Yerby Postdoctoral Research Fellow, Department of Epidemiology, Harvard School of Public 

Health, 677 Huntington Avenue, Boston, MA 02115, john.jackson@mail.harvard.edu. Acknowledgements: The author would 

like to acknowledge helpful conversations with James M. Robins and Tyler J. VanderWeele. All errors belong to the author. 
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INTRODUCTION 

 

Medicine and public health are often concerned with sustained or varying exposures over time, the 

co-action of multiple exposures, or how exposure effects are mediated. These can all be conceptualized 

as joint exposures. Whether studies of joint exposures yield valid results hinges upon the ability to 

measure and adjust for all outcome risk factors that influence each exposure under investigation (e.g. 

confounders—common causes of exposure and outcome). Typically authors pursuing causal effects 

will adjust for confounding by estimating exposure-outcome associations within levels of these risk 

factors or their measurable proxies (covariates). But now it is well known that more sophisticated 

adjustment methods—g-methods—are required when there is time-dependent confounding i.e. any 

covariate itself is affected by any exposure under study.1 Inverse probability weighted estimation of 

marginal structural models is by far the most popular choice of g-methods and is increasingly 

appearing substantive and clinical journals. 

 

Unfortunately, there are few practical tools available to diagnose the severity and nature of 

confounding for joint exposures. Most studies only report how covariates distribute at baseline or over 

person-time but these portrayals are incomplete. There are also few tools to inform whether g-methods 

are warranted. Most arguments for their use rest on external subject matter knowledge divorced from 

empirical arguments because existing tools (e.g. regression) to diagnose time-dependent confounding 

are tedious and liable to bias in censored data. G-methods involve layers of parametric decision-

making to find the optimal tradeoff between validity and statistical precision. But the impact of these 

choices on residual confounding is expressed in summary statistics that lack intuitive meaning for less 

technical audiences, including those who review clinical research manuscripts and guide policy. 

 

Here, we develop a general framework for covariate balance based on the implications of 

exchangeability assumptions for joint exposures, and use it to diagnose: (1) confounding in the study 

population (2) time-dependent confounding (3) residual confounding after adjustment by inverse 

probability weighting (see Appendix for a special case of the parametric g-formula). Beginning with 

the setting of a time-varying exposure, we first review the expected statistical relationships between 

exposures and covariates under sequential randomization. We present the diagnostic framework for a 

time-varying exposure (Table 1) and expand this to distinct point exposures (and also distinct time-

varying exposures in the Appendix). We then discuss interpretations and issues that arise for censored 

data and present suitable extensions (Table 2). Throughout, we illustrate the approach with simulated 

data where the data-generating process is known, and address practical issues in the Discussion. We 

have developed flexible and easy-to-use R code (forthcoming). 
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NOTATION AND SIMULATED DATA EXAMPLE 

 

For any random variable 𝑉, let �̅�(𝑡) be a historical vector of its realizations through time 𝑡 i.e. 

𝑉(0), … , 𝑉(𝑡). Let 𝑘 index the amount of time by which a variable precedes time 𝑡. Let 𝑉𝑥 represent 

the counterfactual value 𝑉 would have realized had 𝑋 been set to value 𝑥. Finally, let the expression 

𝑉 ∐ 𝐴 | 𝐶 represent statistical independence between 𝑉 and 𝐴 conditional on 𝐶. For illustration we 

simulated a baseline-randomized trial of a time-varying exposure 𝐴(𝑡) subject to confounding over 

follow-up by a vector of covariates 𝐶(𝑡) = (𝐿(𝑡), 𝑀(𝑡), 𝑁(𝑡), 𝑂(𝑡), 𝑃(𝑡)), and also a censoring indicator 

𝑆(𝑡) with no censoring at baseline (i.e. 𝑃[𝑆(0) = 0] = 1). Realizations were drawn at times 𝑡 = (0,1,2) 

according to the structural equation model in Figure 1, except that covariates 𝑁(𝑡), 𝑂(𝑡), and 𝑃(𝑡) 

were independent of previous exposures 𝐴(𝑡 − 𝑘 − 1) conditional on full exposure and covariate 

histories �̅�(𝑡 − 𝑘 − 2) and 𝐶̅(𝑡 − 𝑘 − 1); the remaining covariates 𝐿(𝑡) and 𝑀(𝑡) were time-dependent 

confounders. Because our metrics ignore data on the outcome 𝑌 we did not simulate it. See the 

Appendix for details.  

 

EXCHANGEABILITY AND STATISTICAL EXOGENEITY FOR A TIME-VARYING EXPOSURE 

 

In our simulated baseline-randomized example trial, suppose that we want to estimate causal effects 

for people who follow different exposure regimes over time. This query compares counterfactual 

outcomes for the joint set of exposures over time e.g. 𝐸[𝑌�̅�′] − 𝐸[𝑌�̅�′′]. Robins1,2 proved that this 

contrast can be estimated under certain conditions. Among them, it must be the case for each time 𝑡 

that the exposed and unexposed are exchangeable given their exposure and covariate history up 

through time 𝑡 − 1 i.e. 𝑌�̅� ∐𝐴(𝑡)|�̅�(𝑡 − 1), 𝐶̅(𝑡). This untestable assumption requires that for each 

time 𝑡, nature randomly assigned exposure within levels of exposure history and covariate history (a 

sequentially randomized trial). 

 

As recognized by Hernán and Robins,3,4 the concept of a sequential randomized trial illuminates 

notions of confounding for joint exposures. If we could imagine a study where at each time 𝑡 exposure 

is randomly assigned given exposure history alone, there would be no confounding because 

longitudinal analyses condition upon full exposure history. In this sequentially randomized trial, a 

stronger form of exchangeability 𝑌�̅� ∐𝐴(𝑡)|�̅�(𝑡 − 1)  would hold which has clear implications for how 

data are structured under no time-varying confounding: we would have 𝐶̅(𝑡)∐𝐴(𝑡)|�̅�(𝑡 − 1), covariate 

balance within levels of exposure history. This phenomenon, known also as statistical exogeneity, 

cannot prove exchangeability because unmeasured covariates may be imbalanced across non-

randomized exposures. But observing statistical exogeneity does provide reassuring evidence that 

exposure groups are comparable for measured confounders at least. 
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DIAGNOSTIFC FRAMEWORK 

 

Overview 

 

Our framework uses covariate balance to examine departures from statistical exogeneity (a metric for 

measured confounding) in the crude and inverse probability weighted populations (Diagnostics 1 and 

3) and also to assess time dependent confounding (Diagnostic 2). In Table 1 we present diagnostics 

for a time-varying exposure in uncensored data. Diagnostics for distinct point exposures are briefly 

covered in the text, and distinct time-varying exposures in the Appendix. Extensions for censored data 

are presented in Table 2 (for a time-varying exposure) and Appendix Table 2 (distinct exposures). We 

use the mean difference of covariates between any arbitrary level of exposure 𝑎′ and a common 

referent 𝑎′′ to measure covariate balance because it contributes to bias expressions for confounding.5 

The framework can use other metrics, even ones that incorporate data on the outcome (see Appendix). 

 

The framework can describe confounding for inquiries involving all observed regimes (e.g. to find the 

optimal one) or ones comparing specific regimes (e.g. always versus never exposed). Our presentation 

considers all observed regimes for simplicity but we detail application to precise regime contrasts in 

the Appendix. 

 

Diagnostics for a Time-Varying Exposure in the Absence of Censoring 

 

Diagnostic 1: is time-varying confounding present, and how is it patterned over time? 

 

In Table 1 we present a diagnostic for time-varying confounding: to examine across levels of exposure 

at each time 𝑡, the balance of all preceding covariates among each pattern of exposure history through 

time 𝑡 − 1:  

 

𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′, �̅�(𝑡 − 1)] − 𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1)] 

 

for all 𝑡 ∈ {0, … , 𝑡} and all 𝑘 ∈ {0, … , 𝑡} where 𝑘 ≤ 𝑡′, and all observed �̅�(𝑡 − 1). The structure of this 

diagnostic is shown in Appendix Figure 1a for the association between 𝐴(𝑡) and 𝐶̅(𝑡). In Figure 2, we 

applied Diagnostic 1 to our simulated data and present the results as a trellised6 covariate-balance 

plot, which belies useful information: imbalance was largest for the most recent covariates and decayed 

with increasing distance between exposure and covariate times; there was no confounding at 𝑡 = 0 

but the pattern and magnitude of confounding was the same for times 𝑡 = 1 and 𝑡 = 2; the least 

balanced covariates were 𝐿 (higher among the exposed) and 𝑀 (higher among the unexposed), and 𝑁 

was the least imbalanced. 
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Diagnostic 2: is time-dependent confounding present, and how is it patterned over time? 

 

Time-dependent confounding occurs when a time-varying covariate 𝐶(𝑡) is affected by any earlier 

exposure. Robins showed that while one must adjust for such confounders to validly estimate the 

causal effect of an exposure regime, any estimator that merely stratifies the analysis within levels of 

these covariates will block exposure effects and suffer from selection-bias.1,2 But the selection-bias 

would arise even if time-varying exposures were only associated with subsequent covariates through 

an unmeasured common cause. Any metric of time-dependent confounding, then, should capture 

associations between exposures and future covariates that are either causal or due to unmeasured 

common causes. 

 

Diagnosing time-dependent confounding requires some form of adjustment. Consider Figure 1, if we 

compared the crude covariate prevalence at time 𝑡 = 2 between levels of exposure at time 𝑡 = 1, our 

metric would be confounded by exposure and measured covariates at time 𝑡 = 0. These confounds 

do not contribute to the bias from time-dependent confounders that motivates the use of g-methods. 

One might examine statistical dependence between 𝐶(𝑡) and 𝐴(𝑡 − 𝑘 − 1) within levels of exposure 

history �̅�(𝑡 − 𝑘 − 2) and covariate history 𝐶̅(𝑡 − 𝑘 − 1) but this would be tedious even with 

regression-based tools. We propose to instead examine such dependence in populations where 

exposure 𝐴(𝑡 − 𝑘 − 1) is statistically exogenous, either in a weighted population or within each 

stratum of the propensity score for 𝐴(𝑡 − 𝑘 − 1) (where the model for 𝐴(𝑡 − 𝑘 − 1) includes all 

measured common causes of 𝐴(𝑡 − 𝑘 − 1) and 𝑌). 

 

In Table 1 we propose a novel diagnostic for time-dependent confounding in the absence of censoring: 

to examine the weighted balance of a covariate at each time 𝑡, across levels of exposure at all previous 

times 𝑡 − 𝑘 − 1, among each pattern of exposure history through time 𝑡 − 𝑘 − 2 (Diagnostic 2a): 

 

𝐸 [
𝑊𝑎(𝑡−𝑘−1) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2))

× 𝐶(𝑡)
]

− 𝐸 [
𝑊𝑎(𝑡−𝑘−1) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|�̅�(𝑡 − 𝑘 − 2))

× 𝐶(𝑡)
] 

 

for all 𝑡 ∈ {0, … , 𝑡} and all 𝑘 ∈ {0, … , 𝑡 − 1} where 𝑘 < 𝑡′, and all observed �̅�(𝑡 − 𝑘 − 2). This is 

accomplished using a stabilized inverse probability weight for exposure 𝐴(𝑡 − 𝑘 − 1) 

 

𝑊𝑎(𝑡−𝑘−1) =
𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2)]

𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1)]
 

 

which requires a model for exposure 𝐴(𝑡 − 𝑘 − 1) given exposure history �̅�(𝑡 − 𝑘 − 2) and covariate 

history 𝐶̅(𝑡 − 𝑘 − 1). As depicted in Appendix Figure 1b, 𝐴(𝑡 − 𝑘 − 1) and 𝐶̅(𝑡 − 𝑘 − 1) will not be 
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associated within levels of �̅�(𝑡 − 𝑘 − 2) in the weighted population if the models and weights correctly 

specified.7 

 

Time-dependent confounding can also be assessed using propensity-score stratification (Table 1). The 

approach examines the balance of a covariate at each time 𝑡 across levels of exposure at all previous 

times 𝑡 − 𝑘 − 1, among each level of the propensity score 𝑒𝑎(𝑡−𝑘−1) (Diagnostic 2b):  

 

𝐸[𝐶(𝑡)|𝐴(𝑡 − 𝑘 − 1) = 𝑎′, 𝑒𝑎(𝑡−𝑘−1)] − 𝐸[𝐶(𝑡)|𝐴(𝑡 − 𝑘 − 1) = 𝑎′′, 𝑒𝑎(𝑡−𝑘−1)] 

 

for all 𝑡 ∈ {0, … , 𝑡} and all 𝑘 ∈ {0, … , 𝑡 − 1} where 𝑘 < 𝑡′. This metric is estimated for all propensity 

score levels which are the predicted values from a model for exposure 𝐴(𝑡 − 𝑘 − 1) given exposure 

history �̅�(𝑡 − 𝑘 − 2) and covariate history 𝐶̅(𝑡 − 𝑘 − 1) 

 

𝑒𝑎(𝑡−𝑘−1) =  𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1)] 

 

, but in practice are coarsened into strata (usually quantiles) in which statistical exogeneity 

𝐶̅(𝑡 − 𝑘 − 1)∐𝐴(𝑡 − 𝑘 − 1) holds for each stratum. As shown in Appendix Figure 1c, 𝐴(𝑡 − 𝑘 − 1) will 

not be associated with 𝐶̅(𝑡 − 𝑘 − 1) within levels of the propensity score 𝑒𝑎(𝑡−𝑘−1) provided that the 

model is correctly specified.8 

 

These balance metrics will often lack causal interpretations because investigators rarely identify and 

measure all common causes of 𝐶(𝑡) and 𝐴(𝑡 − 𝑘 − 1); nevertheless, they capture precisely the 

associations that lead to selection-bias if time-dependent confounders are conditioned upon while 

estimating joint effects. In Figure 3, we applied Diagnostic 2a to the simulated data which we report 

as a trellised plot. The patterns observed in Figure 3 correctly suggest that only covariates 𝐿 and 𝑀 

were associated with previous exposures: for 𝐿 the association was strong and positive; for 𝑀 it was 

weaker and negative. An investigator studying exposure regimes in this data should consider adjusting 

for 𝐿 and 𝑀 using g-methods. 

 

Diagnostic 3: is residual time-varying confounding present, and how is it patterned over time? 

 

When investigators estimate the average causal effect of a treatment regime using a marginal structural 

model, cumulative inverse probability weights are estimated for each exposure time, based on models 

for each exposures 𝐴(𝑡) given covariate history 𝐶̅(𝑡) and exposure history �̅�(𝑡 − 1) (see Robins9 and 

Cole10 for detailed reviews). Hernán and Robins7 proved if certain conditions are met, applying these 

weights to persons following treatment regimes through time 𝑡 yields a pseudo-population resembling 

a sequentially randomized trial: at every time 𝑡, 𝐴(𝑡) is not associated with preceding covariates 𝐶̅(𝑡) 

within levels of exposure history �̅�(𝑡 − 1), as shown in Appendix Figure 1d. The necessary conditions 

include correct specification of the exposure models and also positivity (non-zero probability of each 
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exposure level given observed covariate and exposure histories). Residual confounding in the weighted-

population will occur when either condition fails or the weights are mis-specified. The standard 

practice of examining the mean of the stabilized weights captures residual imbalance for covariates 

that only appear in the denominator.10 

 

In Table 1 we present a substantively meaningful diagnostic for residual time-varying confounding in 

the inverse probability weighted population: to examine for each time 𝑡 across levels of exposure, the 

weighted balance of all preceding covariates among each pattern of exposure history through time 

𝑡 − 1 (Diagnostic 3): 

 

𝐸 [
𝑊𝑎(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′|�̅�(𝑡 − 1))

× 𝐶(𝑡 − 𝑘)
] − 𝐸 [

𝑊𝑎(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′′|�̅�(𝑡 − 1))

× 𝐶(𝑡 − 𝑘)
] 

 

for all 𝑡 ∈ {0, … , 𝑡} and 𝑘 ∈ {0, … , 𝑡} where 𝑘 ≤ 𝑡′, and observed �̅�(𝑡 − 1), using an inverse probability 

weight, perhaps 

  

𝑊𝑎(𝑡) = ∏
𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1)]

𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘)]

𝑘=𝑡

𝑘=0
 

 

to target the average causal effect. This analogue of Diagnostic 1 summarizes residual imbalance in 

the weighted population. In Figure 4, we applied this diagnostic to the simulated data after 

constructing correctly specified cumulative inverse probability weights and present the results as a 

trellised plot. There was no measured confounding in the weighted population. 

 

Residual imbalance in the weighted population can arise from many sources, including: incorrectly 

specified weights or models, positivity violations, and finite-sample bias. In Figure 5 we demonstrate 

that Diagnostic 3 captures imbalance from these sources. Noticeable imbalances were induced when 

the weights were truncated to the 10th and 90th percentiles, and imbalances from model-

misspecification and conservative weight truncation were less severe. 

 

Diagnostics for Distinct Point Exposures in the Absence of Censoring 

 

Suppose in our example trial we measured an unrandomized co-exposure 𝑍 as shown in Figure 6. Any 

causal question involving both 𝐴 and 𝑍 pertains to their joint effect (e.g. direct effects or causal 

interaction between 𝐴 and 𝑍). We can use exchangeability assumptions to estimate such causal effects 

under certain conditions.11 If both 𝐴 and 𝑍 were taken as point exposures, we would require that (a) 

levels of exposure 𝐴 are marginally exchangeable 𝑌𝑎𝑧∐𝐴—or within levels of common causes had 𝐴 

not been randomized—and (b) levels of exposure 𝑍 are exchangeable within levels of 𝐴 and L i.e. 

𝑌𝑎𝑧∐𝑍|𝐴, 𝐿 (or 𝑌𝑎𝑧∐𝑍|𝐴, 𝐿, 𝐶 if 𝐴 were not randomized).  When there is no confounding for the joint 
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effect, all measured and unmeasured covariates preceding exposure 𝐴 are independent of 𝐴, and those 

preceding exposure 𝑍 are independent of 𝑍 within levels of 𝐴. This forms the basis of examining 

measured confounding for joint exposures 𝐴 and 𝑍 (Diagnostic 1): 

 

𝐸[𝐶|𝐴 = 𝑎′] − 𝐸[𝐶|𝐴(𝑡) = 𝑎′′] 

and 

 

𝐸[𝐶|𝑍 = 𝑧′, 𝐴] − 𝐸[𝐶|𝑍 = 𝑧′′, 𝐴] 

 

for each level of 𝐴; one would also check for balance of 𝐿 across 𝑍 within levels of 𝐴. (See Jackson et 

al12,13 for applied examples). Diagnosing residual confounding after applying inverse probability 

weights for both A and Z also follows (Diagnostic 3): 

 

𝐸[𝑊𝑎𝑧 × 𝐼(𝐴 = 𝑎′) × 𝐶] − 𝐸[𝑊𝑎𝑧 × 𝐼(𝐴 = 𝑎′′) × 𝐶] 

 

and 

𝐸[𝑊𝑎𝑧 × 𝐼(𝑍 = 𝑧′|𝐴) × 𝐶] − 𝐸[𝑊𝑎𝑧 × 𝐼(𝑍 = 𝑧′′|𝐴) × 𝐶] 

 

For each level of 𝐴, where 𝑊𝑎𝑧 is an inverse probability weight for joint exposure to 𝐴 and 𝑍, perhaps 

 

𝑊𝑎𝑧 =
𝑃[𝐴 = 𝑎]

𝑃[𝐴 = 𝑎|𝐶]
×

𝑃[𝑍 = 𝑧|𝐴]

𝑃[𝑍 = 𝑧|𝐴, 𝐶, 𝐿]
 

 

(one would also check the weighted balance of 𝐿 across levels of 𝑍 within levels of 𝐴). To assess time-

dependent confounding (Diagnostic 2) one could fit a model for exposure 𝐴 conditional upon 

covariates 𝐶 and evaluate the inverse probability weighted or propensity-score stratified balance of 𝐿 

across levels of 𝐴. In the Appendix we provide diagnostics for distinct exposures that vary over time 

in uncensored and censored data. 

 

Diagnostics for a Time-Varying Exposure in the Presence of Censoring 

 

So far we have implicitly assumed complete follow-up for all subjects. In the real world participants 

drop out of studies or investigators administratively censor them. We now extend our framework to 

cover these settings (see Appendix for when censoring is used to focus on specific exposure regimes). 

Our comments concern a time-varying exposure but also apply to distinct exposures. 
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Diagnostic 1: is time-varying confounding present, and how is it patterned over time? 

 

In Table 2 we extend Diagnostic 1 for a time-varying exposure for the uncensored: to examine across 

levels of exposure the balance of all preceding covariates among each pattern of exposure through 

time 𝑡 − 1:  

 

𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′, �̅�(𝑡 − 1), 𝑆̅(𝑡) = 0] − 𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1), 𝑆̅(𝑡) = 0] 

 

for all 𝑡 ∈ {0, … , 𝑡} and 𝑘 ∈ {0, … , 𝑡} where 𝑘 ≤ 𝑡′ and observed �̅�(𝑡 − 1). In this case, imbalance of 

covariates 𝐶̅(𝑡 − 𝑘) across level of 𝐴(𝑡) still reflect associations between 𝐶̅(𝑡 − 𝑘) and 𝐴(𝑡) that are 

causal or driven by common causes. As seen in Figure 1, it also reflects associations that arise from 

stratifying upon a common effect (conditioning upon 𝑆̅(𝑡) = 0). Regardless of the structure, any non-

causal association between 𝐶(𝑡 − 𝑘) and 𝐴(𝑡) will bias estimates for causal effects of 𝐴 on 𝑌 so 

Diagnostic 1 retains a useful interpretation even in the presence of censoring. 

 

Diagnostic 2: is time-dependent confounding present, and how is it patterned over time? 

 

Informative censoring—that which is influenced by exposure and covariates—can bias assessments of 

time-dependent confounding even when the query concerns a randomized exposure’s effect on a 

covariate (consider open path 𝐴(0) →𝑆(2)← 𝐶(1) ← 𝑈 ← 𝐶(2) in Figure 1 among the uncensored). 

In Table 2 we propose a novel method for assessing time-dependent confounding in censored data 

that, when fairly strong assumptions hold, will recover the association between 𝐶(𝑡) and 𝐴(𝑡 − 𝑘 − 1) 

arising from their causal relationship or unmeasured common causes. Specifically, we modify 

Diagnostics 2a and 2b to incorporate a cumulative inverse probability of censoring weight that removes 

the collider-stratification bias when all common causes of 𝑆(𝑡) and 𝐶(𝑡) are measured and the models 

and final weight are specified correctly: 

 

(Diagnostic 2a) 

 

𝐸 [
𝑊𝑎𝑠(𝑡−𝑘−1) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡)
]

− 𝐸 [
𝑊𝑎𝑠(𝑡−𝑘−1) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|�̅�(𝑡 − 𝑘 − 2))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡)
] 

 

for all 𝑡 ∈ {0, … , 𝑡} and all 𝑘 ∈ {0, … , 𝑡 − 1} where 𝑘 < 𝑡′, and observed �̅�(𝑡 − 𝑘 − 2), where the weight 

𝑊𝑎𝑠(𝑡−𝑘−1) is the product of an exposure weight 

 

𝑊𝑎(𝑡−𝑘−1) =
𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2), 𝑆̅(𝑡 − 𝑘 − 1) = 0]

𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘 − 1) = 0]
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and a censoring weight 

 

𝑊𝑠(𝑡) =  ∏
𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0]

𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0, �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1)]

𝑘=𝑡

𝑘=0
 

 

(Diagnostic 2b) 

 

𝐸 [
𝑊𝑠(𝑡) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′|𝑒𝑎(𝑡−𝑘−1))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡)
] − 𝐸 [

𝑊𝑠(𝑡) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|𝑒𝑎(𝑡−𝑘−1))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡) 
] 

 

for all 𝑡 ∈ {0, … , 𝑡} and all 𝑘 ∈ {0, … , 𝑡 − 1} where 𝑘 < 𝑡′, and all propensity score levels 𝑒𝑎(𝑡−𝑘−1) 

(coarsened into strata), where the propensity score is 

 

𝑒𝑎(𝑡−𝑘−1) =  𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘 − 1) = 0], 

 

and the censoring weight is 

 

𝑊𝑠(𝑡) =  ∏
𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0]

𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0, �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1)]

𝑘=𝑡

𝑘=0
 

 

The modified Diagnostics 2a and 2b for censored data incorporate the same cumulative inverse 

probability of censoring weight for time 𝑡, the product of inverse probability weights from baseline 

through time 𝑡. These require models for each censoring time 𝑡 − 𝑘 given exposure history 

�̅�(𝑡 − 𝑘 − 1) and covariate history 𝐶̅(𝑡 − 𝑘 − 1), fit among the uncensored at time 𝑡 − 𝑘 − 1 (note 

that exposure history does not appear in the numerator). The weights used in Diagnostic 2a and the 

strata in Diagnostic 2b are based on models for exposure 𝐴(𝑡 − 𝑘 − 1) fit among the uncensored at 

𝑡 − 𝑘 − 1. The final weighted balance metric is estimated among the uncensored at time 𝑡, when 𝐶(𝑡) 

is measured. 

 

For Diagnostic 2a the weighted population exhibits: (a) statistical exogeneity for exposure 𝐴(𝑡 − 𝑘 −

1) i.e.  𝐶̅(𝑡 − 𝑘 − 1)∐𝐴(𝑡 − 𝑘 − 1)|�̅�(𝑡 − 𝑘 − 2), 𝑆(𝑡 − 𝑘 − 1) = 0 and (b) censoring as a random 

process from baseline up through time 𝑡 i.e. 𝑆̅(𝑡)∐ �̅�(𝑡 − 1), 𝐶̅(𝑡 − 1) (Appendix Figure 2a). For the 

weighted population in Diagnostic 2b (Appendix Figure 2b), censoring is random but statistical 

exogeneity for exposure 𝐴(𝑡 − 𝑘 − 1) only holds among the uncensored within levels of the propensity 

score 𝑒𝑎(𝑡−𝑘−1) (in practice, coarsened strata sufficiently narrow to preserve this property). Thus, 

Diagnostics 2a and 2b isolate associations between 𝐴(𝑡 − 𝑘 − 1) and 𝐶(𝑡) that reflect their causal 

relationship or association from unmeasured common causes—these are the associations that will lead 

to bias when mere stratification is used to adjust joint effect estimates for time-dependent confounders 

even after accounting for censoring. In Appendix Figure 3, we applied Diagnostic 2a with and without 
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the censoring weight to examine whether, among those with complete data at time 𝑡 = 2, exposures 

𝐴(0) and 𝐴(1) affect covariates 𝐶(2). Before the censoring weight is applied it appears that 𝑂(2) 

might be a time-dependent confounder along with 𝐿(2) and 𝑀(2), but upon applying the censoring 

weight we correctly see that it is not. 

 

Diagnostic 3: is residual time-varying confounding present, and how is it patterned over time? 

 

In Table 2 we propose a diagnostic for residual time-varying confounding in weighted uncensored 

population: to examine for each time 𝑡 across levels of exposure, the weighted balance of all preceding 

covariates among each pattern of exposure through time 𝑡 − 1 (Diagnostic 3):  

 

𝐸 [
𝑊𝑎(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′|�̅�(𝑡 − 1))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡 − 𝑘)
] − 𝐸 [

𝑊𝑎(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′′|�̅�(𝑡 − 1))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡 − 𝑘)
] 

 

for all 𝑡 ∈ {0, … , 𝑡} and 𝑘 ∈ {0, … , 𝑡} where 𝑘 ≤ 𝑡′, and all observed 𝐴(𝑡 − 1), using an inverse 

probability weight, perhaps 

 

𝑊𝑎(𝑡) = ∏
𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘) = 0]

𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘), 𝑆̅(𝑡 − 𝑘) = 0]

𝑘=𝑡

𝑘=0
 

 

When censoring is informative this metric stratifies upon a collider and bias ensues, as would happen 

with any naïve analysis that incorrectly assumed non-informative censoring. Thus Diagnostic 3 

captures the imbalance from selection-bias induced by informative censoring along with any residual 

imbalance from weight or model-misspecifications or other sources. 

  

Sometimes investigators who wish to remove the selection-bias from informative censoring will apply 

cumulative inverse probability weights that address both confounding and selection-bias.9 This 

strategy abandons the causal effect of exposure on 𝑌 among the uncensored in favor of another 

estimand, the average causal effect of interventions for exposure and censoring on 𝑌. One can 

appropriate Diagnostic 3 for distinct exposures in censored data (see Appendix) to explore residual 

confounding after adjusting for measured confounding and selection-bias in this way. 

 

DISCUSSION 

 

We have outlined a fairly general framework to use covariate balance to assess confounding for one 

or more point exposures or time-varying exposures in the presence or absence of censoring that 

examines: (1) the nature of confounding in the study population (2) whether confounders associate 

with previous exposures (3) the nature of residual confounding after applying certain g-methods. 

These metrics map precisely to the exchangeability conditions often used to define confounding for 
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complex exposures, and yet can be succinctly portrayed as a trellised plots that intuitively present a 

wealth of substantive information. 

 

Diagnostic 1 can aid model parsimony by identifying risk factors most associated with exposure. 

Diagnostic 2 allows one to examine which covariates, if any, might require adjustment by g-methods. 

Diagnostic 3 describes provides a rich summary of how well inverse probability weights achieve their 

aim of emulating a sequentially randomized trial. Sometimes alternate weights are designed to control 

for a subset of confounders9,12 and here Diagnostic 3 shows how well the weights balance the covariates 

the intended covariates while describing remaining confounding to be addressed in the model for the 

outcome. This framework is also compatible with sub-population estimands such as the average 

exposure effect among the exposed: Diagnostic 1 reports covariate balance in the full population which 

contributes to confounding bias for this estimand5 and Diagnostic 3 shows how well so-called SMR 

weights13 reweight the unexposed to mirror the exposed. In the Appendix, we consider a fourth 

diagnostic to examine residual confounding for a special case of the parametric g-formula14—an 

alternative method to adjust for time-dependent confounders.12 

 

Some limitations deserve more attention. As often done in point exposure studies, Diagnostics 1 and 

3 focuses on marginal balance for each covariate but the exchangeability assumptions that undergird 

estimation of causal effects imply a much stronger condition: balance of strata formed by covariates. 

While randomized studies imply both joint and marginal balance, using marginal balance as proxy for 

joint balance in observational designs (as done here) requires a leap of faith. Another general issue 

with covariate balance is that it omits data on the outcome (although some welcome this15) so inferring 

the magnitude and direction of confounding bias requires external knowledge. In the Appendix we 

propose a straightforward way to incorporate empirical data on the covariate-outcome relationships 

to yield bias metrics on the risk difference scale. As others emphasize,15 finding balance for measured 

confounders says nothing of balance for unmeasured ones, and should interpreted with care. When 

Diagnostic 2 is applied to censored data using the censoring weight, residual selection-bias will remain 

if shared determinants of censoring and covariates go unmeasured, or if censoring is nearly 

deterministic for some strata and there is strong selection-bias.16 Addressing some forms of censoring 

(e.g. mortality or a time-to-event outcome) imply subtle interpretations that we discuss in the 

Appendix. While the finite sample properties of these metrics have not been evaluated, we suspect 

that they will perform better when used to diagnose confounding for specific regimes of interest (see 

Appendix). One might also consider standardizing balance metrics over exposure history or propensity 

score strata when these are sparsely populated. When reporting many covariates or measurement 

times on media with fixed dimensions, it may be preferable to select a subset of times and report 

separately each row of the trellised plot (as in Figure 3) or the diagonal (as in Figure 4). 
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These metrics describe persons who follow exposure regimes in ways that relate to the potential 

direction, strength, and nature of confounding. In an era of “Big Data” and significant advances in 

causal modeling, epidemiologists must preserve intimacy with their data and use adaptive tools that 

portray its complexity in ways that are concise, intuitive, and conceptually grounded. Moreover, 

intimacy with data should inform our statistical analyses, however complex, and we are responsible 

for communicating their performance in ways that less technical readers might understand. We have 

developed tools that we hope embody these values and provide easy-to-use R functions (Austria, 

Vienna) for their implementation (forthcoming).  
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APPENDIX 

 

Extensions to Distinct Time-Varying Exposures 

 

To diagnose confounding for the joint effect of distinct time-varying exposures, we can adapt our framework 

by conditioning the metrics and requisite models on joint exposure history and assessing each exposure 

separately. We develop this result for the case of two time-varying exposures where at each time 𝑡, exposure 

𝐴(𝑡) affects covaraites 𝐶(𝑡) which affect exposure 𝑍(𝑡), and covariates 𝐶(𝑡) affect subsequent exposures 𝐴(𝑡 +

𝑘) and 𝑍(𝑡 + 𝑘). 

 

Exchangeability conditions for distinct time-varying exposures 

 

To identify the average causal effect of a treatment regime involving time-varying 𝐴(𝑡) and 𝑍(𝑡) in 

observational data, sequential ignorability (along with positivity and consistency) must hold for both 𝐴(𝑡) and 

𝑍(𝑡) for each time 𝑡, given joint exposure history and covariate history (i.e. 𝑌𝑎𝑧∐𝐴(𝑡)|�̅�(𝑡 − 1), �̅�(𝑡 − 1), 𝐶̅(𝑡) 

and 𝑌𝑎𝑧∐𝑍(𝑡)|�̅�(𝑡 − 1), �̅�(𝑡), 𝐶̅(𝑡) for all 𝑡).19 Suppose in a sequentially randomized trial, 𝐴(𝑡) and 𝑍(𝑡) were 

randomly assigned each time 𝑡 within levels of joint exposure history. Stronger versions of exchangeability 

𝑌𝑎𝑧∐𝐴(𝑡)|�̅�(𝑡 − 1), �̅�(𝑡 − 1) and 𝑌𝑎𝑧∐𝑍(𝑡)|�̅�(𝑡 − 1), �̅�(𝑡) would hold for all 𝑡 and we would expect statistical 

exogneiety (covariate balance within joint exposure history) for both 𝐴(𝑡) and 𝑍(𝑡) i.e. 𝐶̅(𝑡)∐𝐴(𝑡)| �̅�(𝑡 −

1), �̅�(𝑡 − 1) and 𝐶̅(𝑡)∐𝑍(𝑡)|�̅�(𝑡), �̅�(𝑡 − 1) for all 𝑡. Thus, departures from statistical exogeneity for either 

exposure 𝐴 or 𝑍 signals measured confounding for their joint effect. 

 

Diagnostic 1: is time-varying confounding present, and how is it patterned over time? 

 

In Appendix Table 1 we present a simple diagnostic for confounding for two time-varying exposures in 

uncensored data: to examine at each time 𝑡 across levels of exposure, the balance of all preceding covariates 

among each pattern of joint exposure history, first for 𝐴(𝑡) and then for 𝑍(𝑡) (Diagnostic 1). This balance 

metric could be presented as two trellised plots, one for all 𝐴(𝑡) and another for all 𝑍(𝑡), where each dot 

represents the balance for a particular joint exposure history (see Figure 2 for a similar layout). An extension 

for censored data is presented in Appendix Table 2. 

 

Diagnostic 2: is time-dependent confounding present, and how is it patterned over time? 

 

A covariate in 𝐶 associated with any preceding exposure 𝐴 or 𝑍, causally or through unmeasured common 

causes, is a time-dependent confounder for the average joint effect of 𝐴(𝑡) and 𝑍(𝑡) on 𝑌. In Appendix Table 

1, we present diagnostics for time-dependent confounding when the co-action of two time-varying exposures 

is estimated in uncensored data. Diagnostic 2a compares the balance of 𝐶(𝑡) across levels of all 𝐴(𝑡 − 𝑘 − 1) 

within levels of joint exposure history after applying stabilized inverse probability weights for 𝐴(𝑡 − 𝑘 − 1), 
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and repeats this assessment for all 𝑍(𝑡 − 𝑘 − 1) using weights for 𝑍(𝑡 − 𝑘 − 1); note that the weights condition 

on joint exposure history in the numerator and denominator. The alternate Diagnostic 2b examines the balance 

of 𝐶(𝑡) across levels of all 𝐴(𝑡 − 𝑘 − 1) within levels of the propensity score for 𝐴(𝑡 − 𝑘 − 1), and repeats this 

assessment for 𝑍(𝑡 − 𝑘 − 1) within levels of propensity score for 𝑍(𝑡 − 𝑘 − 1). Either form of Diagnostic 2 

could be presented as two-trellised plots, one for all 𝐴(𝑡 − 𝑘 − 1) and the other for all 𝑍(𝑡 − 𝑘 − 1), where 

now each dot represents the balance for a particular joint exposure history (see Figure 3 for a similar layout). 

 

Both approaches isolate the relevant associations between 𝐶(𝑡) and 𝐴(𝑡 − 𝑘 − 1), or between 𝐶(𝑡) and 𝑍(𝑡 −

𝑘 − 1), when the models for exposures 𝐴(𝑡 − 𝑘 − 1) and 𝑍(𝑡 − 𝑘 − 1) and weights (or strata) are correctly 

specified (see Appendix Table 1). These models must condition on joint exposure history; all common causes 

of 𝐴(𝑡 − 𝑘 − 1) and 𝑌 should be included in the model for 𝐴(𝑡 − 𝑘 − 1); and all common causes of 𝑍(𝑡 − 𝑘 −

1) and 𝑌 should be included in the model for 𝑍(𝑡 − 𝑘 − 1). Extensions for censored data are presented in 

Appendix Table 2. 

 

Diagnostic 3: is residual time-varying confounding present, and how is it patterned over time? 

 

Inverse probability weights can be used to adjust for time dependent confounding of the average joint effect 

of regimes involving 𝐴(𝑡) and 𝑍(𝑡); the theory and technical details are covered elsewhere.19 The weight at 

each time 𝑡 is the product of the cumulative inverse probability weights for 𝐴(𝑡) and 𝑍(𝑡) that condition upon 

joint exposure history in both the numerator and denominator, but only covariate history in the denominator. 

When the requisite models are correctly specified and other conditions are met these weights will create a 

pseudo-population that resembles a trial where at each time 𝑡, both 𝐴(𝑡) and 𝑍(𝑡) are randomized within 

levels of joint exposure history.7 If the weights or the models for 𝐴(𝑡) and 𝑍(𝑡) are incorrectly specified, or 

there are positivity violations for either 𝐴(𝑡) or 𝑍(𝑡), there will be residual confounding in the weighted 

population. 

 

In Appendix Table 1 we present a diagnostic for residual confounding of the joint effect of 𝐴(𝑡) and 𝑍(𝑡) in 

the inverse probability weighted population: to examine at each time 𝑡 across levels of exposure, the weighted 

balance of all preceding covariates among each pattern of joint exposure history through time 𝑡 − 1, first for 

𝐴(𝑡) and then for 𝑍(𝑡)  (Diagnostic 3). These metrics could be presented as two trellised plots, one for all 

𝐴(𝑡) and the other for all 𝑍(𝑡), where now each dot represents a particular exposure history stratum  (see 

Figure 4 for a similar layout). This analogue of Dialogue 1 examines residual confounding for joint exposures 

in the population weighted by the cumulative inverse probability of joint exposure to �̅�(t) and �̅�(𝑡). As in the 

case with a single exposure, the diagnostic will capture residual confounding when alternate weight-

specifications are used to improve efficiency or target other estimands. Extensions for censored data are 

presented in Appendix Table 2. 
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Applications to Causal Inquiries Contrasting Specific Regimes 

 

For a single time-varying exposure 𝐴(𝑡), it is possible to forgo comparing all exposure regimes and focus on 

two or more specific ones. For an analogous sequentially randomized trial, this would involve randomizing 

𝐴(𝑡) for persons with exposure histories that are compatible with at least one exposure regime of interest and 

terminating the trial for all others, repeating this process until the trial has ended. Persons who at time 𝑡 − 1 

have followed a regime of interest but their assignment at time 𝑡 places them in a regime of no interest would 

have their exposure 𝐴(𝑡) recorded, but would not undergo randomization at time 𝑡 + 1. They would be 

administratively censored after being assigned to regimes outside the study’s purview. 

 

In such a trial we would have would have exchangeability 𝑌�̅�†∐𝐴(𝑡)|�̅�(𝑡 − 1)† for all times 𝑡 and all exposure 

histories �̅�(𝑡 − 1)†, where 𝑌�̅�† corresponds to the counterfactual outcome under an entire regime of interest 

�̅�†, and �̅�(𝑡 − 1)† represents a strata of exposure history up through time 𝑡 − 1 compatible with an entire 

regime of interest. There would be no confounding for this inquiry and we would observe 𝐶̅(𝑡)∐𝐴(𝑡)|�̅�(𝑡 − 1)† 

i.e. statistical exogeneity within levels of exposure histories through time 𝑡 − 1 that are compatible with an 

entire regime of interest. 

 

Applying Diagnostics 1 and 3 in this setting requires formulae for censored data (Table 2 and Appendix Table 

2) where persons are censored (i.e. 𝑆(𝑡) = 1) once their history �̅�(𝑡 − 1) becomes incompatible with all 

exposure regimes of interest (and 𝑆(𝑡) = 0 otherwise). Diagnostics 1 and 3 then compare the distribution of 

covariates for those who remain on particular regimes of interest at time 𝑡 vs. those who deviate from them. 

Applying Diagnostic 2 also requires formulae for censored data where persons are censored (i.e. 𝑆(𝑡 − 𝑘 −

1) = 1) once their history �̅�(𝑡 − 𝑘 − 2) becomes incompatible with all exposure regimes of interest (and 𝑆(𝑡 −

𝑘 − 1) = 0 otherwise), regardless of their exposure trajectories after time 𝑡 − 𝑘 − 2:  

 

(Diagnostic 2a) 

 

𝐸 [
𝑊𝑎𝑠(𝑡−𝑘−1) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2))

× 𝐼(𝑆̅(𝑡 − 𝑘 − 1) = 0) × 𝐶(𝑡)
] − 𝐸 [

𝑊𝑎𝑠(𝑡−𝑘−1) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|�̅�(𝑡 − 𝑘 − 2))

× 𝐼(𝑆̅(𝑡 − 𝑘 − 1) = 0) × 𝐶(𝑡)
] 

 

for all 𝑡 ∈ {0, … , 𝑡} and all 𝑘 ∈ {0, … , 𝑡 − 1} where 𝑘 < 𝑡′, and observed �̅�(𝑡 − 𝑘 − 2) compatible with regimes 

of interest, where 𝑊𝑎(𝑡−𝑘−1) is 

 

𝑊𝑎(𝑡−𝑘−1) =
𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2), 𝑆̅(𝑡 − 𝑘 − 1) = 0]

𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘 − 1) = 0]
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(Diagnostic 2b) 

 

𝐸 [
𝑊𝑠(𝑡) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′|𝑒𝑎(𝑡−𝑘−1))

× 𝐼(𝑆̅(𝑡 − 𝑘 − 1) = 0) × 𝐶(𝑡)
] − 𝐸 [

𝑊𝑠(𝑡) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|𝑒𝑎(𝑡−𝑘−1))

× 𝐼(𝑆̅(𝑡 − 𝑘 − 1) = 0) × 𝐶(𝑡) 
] 

 

for all 𝑡 ∈ {0, … , 𝑡} and all 𝑘 ∈ {0, … , 𝑡 − 1} where 𝑘 < 𝑡′, and all propensity score levels 𝑒𝑎(𝑡−𝑘−1), where the 

propensity score is 

 

𝑒𝑎(𝑡−𝑘−1) =  𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|�̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘 − 1) = 0] 

 

(the exposure weight and propensity score definitions are of the same form as proposed in Table 2 and 

Appendix Table 2; the key difference is how the censoring indicator is defined for the balance metric). These 

modified versions of Diagnostics 2a and 2b examine whether exposures 𝐴(𝑡 − 𝑘 − 1) are associated with future 

covariates 𝐶(𝑡) among those whose exposure history �̅�(𝑡 − 𝑘 − 2) is compatible with a regime of interest. 

Similar results apply in the setting of distinct time-varying exposures, say 𝐴(𝑡) and 𝑍(𝑡). For Diagnostics 1 

and 3 censoring 𝑆(𝑡) = 0 if exposure histories �̅�(𝑡 − 1) and �̅�(𝑡 − 1) are both compatible with a joint exposure 

regime of interest and 𝑆(𝑡) = 1 otherwise. In the case of Diagnostic 2 censoring 𝑆(𝑡 − 𝑘 − 1) = 0 if exposure 

histories (�̅�(𝑡 − 𝑘 − 2) and �̅�(𝑡 − 𝑘 − 2) are both compatible with a joint exposure regime of interest and 

𝑆(𝑡 − 𝑘 − 1) = 1 otherwise. 

 

If there are other censoring mechanisms at play (e.g. study dropout) one can simply estimate the these metrics 

using additional censoring indicators indexed at time 𝑡 and applying cumulative inverse probability of censoring 

weights for these mechanisms, as shown in Table 2 and Appendix Table 2. 

 

Extension to the Parametric G-formula 

 

A special case of the parametric g-formula for longitudinal settings uses strata from models for longitudinal 

propensity score histories �̅�𝑎(𝑡)  conditional on propensity score history �̅�𝑎(𝑡−1) and exposure history �̅�(𝑡 − 1) 

to replace models for covariate histories 𝐶̅(𝑡). 

 

Achy-Brou et al14 proved that if 𝑌�̅�∐𝐴(𝑡)|𝐶̅(𝑡), �̅�(𝑡 − 1) holds then 𝑌�̅�∐𝐴(𝑡)|�̅�𝑎(𝑡), �̅�(𝑡 − 1) holds as well, 

implying statistical exogeneity 𝐶̅(𝑡)∐𝐴(𝑡) within joint levels of �̅�𝑎(𝑡) and �̅�(𝑡 − 1). It would be infeasible to 

check for covariate balance within joint levels of all propensity scores �̅�𝑎(𝑡)  and exposure history �̅�(𝑡 − 1), but 

such balance relies on balance within levels of each 𝑒𝑎(𝑡) and exposure history �̅�(𝑡 − 1) as a prerequisite. 

 

Therefore, as proposed by Shinohara et al20, diagnosing residual confounding for applications of the parametric 

g-formula that rely on models for propensity-score history in place of models for covariate history could 

proceed as follows: evaluate for each time 𝑡 across levels of exposure, the balance of all preceding covariates 

𝐶(𝑡 − 𝑘) among each stratum of the longitudinal propensity score 𝑒𝑎(𝑡) and each pattern of exposure history 
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up through time 𝑡 − 1 (for each distance 𝑘 where 𝑘 ≤ 𝑡). The results can be plotted in the same format as 

figure 4. 

 

Bias Metrics for Measured Confounding 

 

The framework outlined in the main text proposes to use covariate balance 

 

𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′, �̅�(𝑡 − 1)] − 𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1)] (Diagnostic 1) 

or  

 

𝐸[𝑊(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′|�̅�(𝑡 − 1) × 𝐶(𝑡))] − 𝐸[𝑊(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′′|�̅�(𝑡 − 1) × 𝐶(𝑡))] 

 

(Diagnostic 3) to diagnose confounding, which omit data on the outcome. Consequently the balance metrics 

do not describe the magnitude and direction of bias from failing to adjust for a covariate. 

 

It follows from VanderWeele and Arah 20105 that if one failed to adjust for a dichotomous confounder 𝐶(𝑡 −

𝑘) while estimating the additive average causal effect for exposure 𝐴(𝑡) on outcome 𝑌, the bias would equal 

(if covariates did not interact with each other or 𝐴 to cause 𝑌): 

 

∑ (𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′, �̅�(𝑡 − 1)] − 𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1)])
�̅�(𝑡−1)

×  (𝐸[𝑌|𝐶(𝑡 − 𝑘) = 1|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1)] − 𝐸[𝑌|𝐶(𝑡 − 𝑘) = 0|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1)]) 

 

Thus, we can incorporate data on the outcome for binary covariates (and indicator variables for categorical 

ones) in a principled way by multiplying our proposed balance metrics by the difference in mean outcome 

across levels of the covariate, conditional on the unexposed at time t and exposure history through time 𝑡 − 1:  

 

𝐸[𝑌|𝐶(𝑡 − 𝑘) = 1|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1)]

−  𝐸[𝑌|𝐶(𝑡 − 𝑘) = 0|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1)] 

in the case of Diagnostic 1, and  

 

𝐸[𝑊(𝑡) × 𝐼(𝐶(𝑡) = 1|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1) × 𝑌(𝑡))] − 𝐸[𝑊(𝑡) × 𝐼(𝐶(𝑡) = 0|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1) × 𝑌(𝑡))] 

 

in the case of Diagnostic 3 where 𝑊(𝑡) represents the cumulative inverse probability of exposure weight at 

time 𝑡. For uncensored data one would simply estimate them among the uncensored at time 𝑡. This bias 

metric will equal zero when either (a) the covariate C is not associated with the exposure 𝐴 or (b) the covariate 

𝐶 is not associated with the outcome 𝑌. As with covariate balance, it is not an aggregate summary of bias. It 

does, however, allow for a fairer assessment of the strength and direction of confounding across covariates. 

The results of VanderWeele and Arah5 provide more general bias expressions than the one applied here. 
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Subtle Interpretations for Diagnostic 2 in Censored Data 

 

In the main text we presented our diagnostic framework in the context of an outcome 𝑌 measured at the end 

of follow-up and expanded our assessment of time-dependent confounding (Diagnostic 2) to the setting where 

censoring occurs, proposing the use of a cumulative inverse probability of censoring weight (IPCW) to remove 

the selection-bias from conditioning on a common effect of exposures and covariates. Standard 

implementations of IPCW9 (used alongside weights for exposure) to estimate causal effects on 𝑌 suppose a 

joint intervention on exposure and co-intervention to enforce study retention, which may be easy to imagine 

for processes involving attrition but more challenging for those of mortality, competing risks, or medical time-

to-event phenomena (Appendix Figure 4). Using IPCW in those settings targets our inference to a world where 

no one dies, or has a competing risk, or has an event. These populations, arguably, are less interesting for 

estimating policy-relevant estimates of causal effects. However, they remain relevant in our diagnostic setting 

where the goal of Diagnostic 2 is to isolate and describe associations between exposures and future covariates 

that are causal or from unmeasured common causes. 

 

Details of Example Simulations 

 

We simulated a baseline-randomized trial (n=100,000) of a time-varying exposure 𝐴(𝑡) subject to confounding 

over follow-up by a vector of covariates 𝐶(𝑡) = (𝐿(𝑡), 𝑀(𝑡), 𝑁(𝑡), 𝑂(𝑡), 𝑃(𝑡)), and also a censoring indicator 

𝑆(𝑡) with no censoring at baseline (all realized at times 𝑡 = (0,1,2)) (Figure 1). Each covariate in 𝐶(𝑡) was 

specified as a function of its prior realizations and an unmeasured variable 𝑈, and also exposure 𝐴(𝑡) in the 

case of time-dependent covariates 𝐿(𝑡) and 𝑀(𝑡). For times 𝑡 > 0 exposure 𝐴(𝑡) depended on entire exposure 

and covariate histories �̅�(𝑡) and 𝐶̅(𝑡) and also the interactions 𝑀(𝑡 − 1) × 𝑁(𝑡 − 1) and 𝑂(𝑡 − 1) × 𝑃(𝑡 − 1). 

For time 𝑡 = 0 there was no censoring but for times 𝑡 > 0 censoring depended on full exposure and covariate 

histories �̅�(𝑡) and 𝐶̅(𝑡).  

 

Realizations for all variables 𝑉(𝑡) were simulated as random bernoulli draws with probability 𝑝𝑣(𝑡). For 𝐴(0), 

𝑆(0), and also 𝑈, the probability was specified directly. For all other variables we used linear combinations on 

the log odds scale to calculate 𝑝𝑣(𝑡). This setup allowed for encoding of time-varying confounding by both 

immediate and distant covariates, temporally indexed by 𝑡 − 𝑘. The expanded linear combinations we specified 

are listed below, where 𝛽𝑥
𝑣(𝑡 − 𝑘) is a vector of log odds ratios expressing effect of some variable 𝑋 (measured 

at time 𝑡 − 𝑘) on variable 𝑉 (measured at time 𝑡), where 1 ≤ 𝑘 ≤ 𝑡 when 𝑋 = 𝑉, and possibly 0 ≤ 𝑘 ≤ 𝑡 

otherwise): 

 

logit 𝑝𝑙(𝑡) =  𝛽0𝑙(𝑡) + 𝛽𝑢
𝑙 𝑢 + ∑ 𝐿′(𝑡 − 𝑘)𝛽𝑙

𝑙(𝑡 − 𝑘)𝑘=𝑡
𝑘=1 +∑ 𝐴′(𝑡 − 𝑘)𝛽𝑎

𝑙 (𝑡 − 𝑘)𝑘=𝑡
𝑘=1   

 

logit 𝑝𝑚(𝑡) = 𝛽0𝑚(𝑡) + 𝛽𝑢
𝑚𝑢 + ∑ 𝑀′(𝑡 − 𝑘)𝛽𝑚

𝑚(𝑡 − 𝑘)𝑘=𝑡
𝑘=1 +∑ 𝐴′(𝑡 − 𝑘)𝛽𝑎

𝑚(𝑡 − 𝑘)𝑘=𝑡
𝑘=1   
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logit 𝑝𝑛(𝑡) = 𝛽0𝑛(𝑡) + 𝛽𝑢
𝑛𝑢 + ∑ 𝑁′(𝑡 − 𝑘)𝛽𝑛

𝑛(𝑡 − 𝑘)𝑘=𝑡
𝑘=1   

 

logit 𝑝𝑜(𝑡) = 𝛽0𝑜(𝑡) + 𝛽𝑢
𝑜𝑢 + ∑ 𝑂′(𝑡 − 𝑘)𝛽𝑜

𝑜(𝑡 − 𝑘)𝑘=𝑡
𝑘=1   

 

logit 𝑝𝑝(𝑡) = 𝛽0𝑝(𝑡) + 𝛽𝑢
𝑝

𝑢 + ∑ 𝑃′(𝑡 − 𝑘)𝛽𝑝
𝑝

(𝑡 − 𝑘)𝑘=𝑡
𝑘=1   

 

logit 𝑝𝑎(𝑡) = 𝛽0𝑎(𝑡) + ∑ 𝐴′(𝑡 − 𝑘)𝛽𝑎
𝑎(𝑡 − 𝑘)

𝑘=𝑡

𝑘=1
+ ∑ 𝐿′(𝑡 − 𝑘)𝛽𝑙

𝑎(𝑡 − 𝑘)
𝑘=𝑡

𝑘=0

+ ∑ 𝑀′(𝑡 − 𝑘)𝛽𝑚
𝑎 (𝑡 − 𝑘)

𝑘=𝑡

𝑘=0
+ ∑ 𝑁′(𝑡 − 𝑘)𝛽𝑛

𝑎(𝑡 − 𝑘)
𝑘=𝑡

𝑘=0

+ ∑ 𝑂′(𝑡 − 𝑘)𝛽𝑜
𝑎(𝑡 − 𝑘)

𝑘=𝑡

𝑘=0
+ ∑ 𝑃′(𝑡 − 𝑘)𝛽𝑝

𝑎(𝑡 − 𝑘)
𝑘=𝑡

𝑘=0

+ 𝛽𝑚×𝑛
𝑎 (𝑡) × (𝑀(𝑡 − 𝑘) × 𝑁(𝑡 − 𝑘)) + 𝛽𝑜×𝑝

𝑎 (𝑡) × (𝑂(𝑡 − 𝑘) × 𝑃(𝑡 − 𝑘)) 

 

logit 𝑝𝑠(𝑡) = 𝛽0𝑠(𝑡) + ∑ 𝐴′(𝑡 − 𝑘)𝛽𝑎
𝑠(𝑡 − 𝑘)

𝑘=𝑡

𝑘=1
+ ∑ 𝐿′(𝑡 − 𝑘)𝛽𝑙

𝑠(𝑡 − 𝑘)
𝑘=𝑡

𝑘=1

+ ∑ 𝑀′(𝑡 − 𝑘)𝛽𝑚
𝑠 (𝑡 − 𝑘)

𝑘=𝑡

𝑘=1
+ ∑ 𝑁′(𝑡 − 𝑘)𝛽𝑛

𝑠(𝑡 − 𝑘)
𝑘=𝑡

𝑘=1

+ ∑ 𝑂′(𝑡 − 𝑘)𝛽𝑜
𝑠(𝑡 − 𝑘)

𝑘=𝑡

𝑘=1
+ ∑ 𝑃′(𝑡 − 𝑘)𝛽𝑝

𝑠(𝑡 − 𝑘)
𝑘=𝑡

𝑘=1
 

 

To obtain censored data used in Appendix Figure 3 we repeated the simulation but censored records once 

𝑆(𝑡) = 1 was realized, and to obtain data with positivity violations used in Figure 5c, 5d, and 5e we set 𝑝𝑎(𝑡) =

1/10,000,000 whenever 𝐿(𝑡) = 0 and 𝑂(𝑡) = 1. We report the specific parameter values for all 𝛽0𝑣(𝑡) and 

𝛽𝑥
𝑣(𝑡 − 𝑘) on directed acyclic graphs in Appendix Figure 5.  
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TABLES 

Table 1. Balance metrics for confounding of a time-varying exposure 𝐴(𝑡) by time-varying 
risk-factors 𝐶(𝑡) in the absence of censoring 𝑆(𝑡) 

Diagnostic 1: Time-varying confounding i.e. 𝑪(𝒕 − 𝒌) across levels of 𝑨(𝒕)  
(for all 𝑡 ∈ {0, … , 𝑡} and 𝑘 ∈ {0, … , 𝑡} where 𝑘 ≤ 𝑡′) 

Balance metric Definitions 

𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′, �̅�(𝑡 − 1)]
− 𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1)] 

N/A 

  

Diagnostic 2: Time-dependent confounding i.e. 𝑪(𝒕) across levels of 𝑨(𝒕 − 𝒌 − 𝟏)  

(for all 𝑡 ∈ {0, … , 𝑡} and all 𝑘 ∈ {0, … , 𝑡 − 1} where 𝑘 < 𝑡′) 

Balance metric  

a. by inverse probability weighting Weight 𝑊𝑎(𝑡−𝑘−1) 

𝐸 [
𝑊𝑎(𝑡−𝑘−1) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2))

× 𝐶(𝑡)
]

− 𝐸 [
𝑊𝑎(𝑡−𝑘−1) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|�̅�(𝑡 − 𝑘 − 2))

× 𝐶(𝑡)
] 

𝑊𝑎(𝑡−𝑘−1)

=
𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2)]

𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1)]
 

 

b. by propensity score stratification Propensity score 𝑒𝑎(𝑡−𝑘−1) 

𝐸[𝐶(𝑡)|𝐴(𝑡 − 𝑘 − 1) = 𝑎′, 𝑒𝑎(𝑡−𝑘−1)]

− 𝐸[𝐶(𝑡)|𝐴(𝑡 − 𝑘 − 1) = 𝑎′′, 𝑒𝑎(𝑡−𝑘−1)] 

𝑒𝑎(𝑡−𝑘−1)

=  𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1)] 

Diagnostic 3: Residual time-varying confounding i.e. 𝑪(𝒕 − 𝒌) across levels of 𝑨(𝒕) 
(for all 𝑡 ∈ {0, … , 𝑡} and 𝑘 ∈ {0, … , 𝑡} where 𝑘 ≤ 𝑡′) 

Balance metric Weight  𝑊𝑎(𝑡) 

𝐸 [
𝑊𝑎(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′|�̅�(𝑡 − 1))

× 𝐶(𝑡 − 𝑘)
]

− 𝐸 [
𝑊𝑎(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′′|�̅�(𝑡 − 1))

× 𝐶(𝑡 − 𝑘)
] 

𝑊𝑎(𝑡)

= ∏
𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1)]

𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘)]

𝑘=𝑡

𝑘=0
 

 

  

Page 23 of 42
Hosted by The Berkeley Electronic Press



Table 2. Balance metrics for confounding of a time-varying exposure 𝐴(𝑡) by time-varying risk-factors 𝐶(𝑡) 
in the presence of censoring 𝑆(𝑡) 

Diagnostic 1: Time-varying confounding i.e. 𝑪(𝒕 − 𝒌) across levels of 𝑨(𝒕)  
 (for all 𝑡 ∈ {0, … , 𝑡} and 𝑘 ∈ {0, … , 𝑡} where 𝑘 ≤ 𝑡′) 

Balance metric Definitions 

𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′, �̅�(𝑡 − 1), 𝑆̅(𝑡) = 0]
− 𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1), 𝑆̅(𝑡) = 0] 

N/A 

  

Diagnostic 2: Time-dependent confounding i.e. 𝑪(𝒕) across levels of 𝑨(𝒕 − 𝒌 − 𝟏)  

 (for all 𝑡 ∈ {0, … , 𝑡} and all 𝑘 ∈ {0, … , 𝑡 − 1} where 𝑘 < 𝑡′) 

Balance metric  

a. by inverse probability weighting Weight 𝑊𝑎𝑠(𝑡−𝑘−1) = 𝑊𝑎(𝑡−𝑘−1) × 𝑊𝑠(𝑡) 

𝐸 [
𝑊𝑎𝑠(𝑡−𝑘−1) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡)
] 

−𝐸 [
𝑊𝑎𝑠(𝑡−𝑘−1) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|�̅�(𝑡 − 𝑘 − 2))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡)
] 

𝑊𝑎(𝑡−𝑘−1)

=
𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2), 𝑆̅(𝑡 − 𝑘 − 1) = 0]

𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘 − 1) = 0]
 

 

𝑊𝑠(𝑡)

=  ∏
𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0]

𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0, �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1)]

𝑘=𝑡

𝑘=0
 

b. by propensity score stratification Propensity score 𝑒𝑎(𝑡−𝑘−1) and weight 𝑊𝑠(𝑡) 

𝐸 [
𝑊𝑠(𝑡) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′|𝑒𝑎(𝑡−𝑘−1))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡)
] 

−𝐸 [
𝑊𝑠(𝑡) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|𝑒𝑎(𝑡−𝑘−1))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡) 
] 

 

𝑒𝑎(𝑡−𝑘−1)

=  𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|�̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘 − 1) = 0] 
𝑊𝑠(𝑡)

=  ∏
𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0]

𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0, �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1)]

𝑘=𝑡

𝑘=0
 

Diagnostic 3: Residual time-varying confounding i.e. 𝑪(𝒕 − 𝒌) across levels of 𝑨(𝒕) 
(for all 𝑡 ∈ {0, … , 𝑡} and 𝑘 ∈ {0, … , 𝑡} where 𝑘 ≤ 𝑡′) 

Balance metric Weight  𝑊𝑎(𝑡) 

𝐸 [
𝑊𝑎(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′|�̅�(𝑡 − 1))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡 − 𝑘)
]

− 𝐸 [
𝑊𝑎(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′′|�̅�(𝑡 − 1))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡 − 𝑘)
] 

𝑊𝑎(𝑡) = ∏
𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘) = 0]

𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘), 𝑆̅(𝑡 − 𝑘) = 0]

𝑘=𝑡

𝑘=0
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Appendix Table 1. Balance metrics for confounding of distinct time-varying exposures 𝐴(𝑡) and 𝑍(𝑡) by time-
varying risk-factors 𝐶(𝑡) in the absence of censoring 

Diagnostic 1: Time-varying confounding i.e. 𝑪(𝒕 − 𝒌) across levels of 𝑨(𝒕)  
(for all 𝑡 ∈ {0, … , 𝑡} and 𝑘 ∈ {0, … , 𝑡} where 𝑘 ≤ 𝑡′) 

Balance metrics Definitions 

𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′, �̅�(𝑡 − 1), �̅�(𝑡 − 1)]
− 𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1), �̅�(𝑡 − 1)] 

N/A 

𝐸[𝐶(𝑡 − 𝑘)|𝑍(𝑡) = 𝑧′, �̅�(𝑡 − 1), �̅�(𝑡)]
− 𝐸[𝐶(𝑡 − 𝑘)|𝑍(𝑡) = 𝑧′′, �̅�(𝑡 − 1), �̅�(𝑡)] 

N/A 

Diagnostic 2: Time-dependent confounding i.e. 𝑪(𝒕) across levels of 𝑨(𝒕 − 𝒌 − 𝟏)  

(for all 𝑡 ∈ {0, … , 𝑡} and all 𝑘 ∈ {0, … , 𝑡 − 1} where 𝑘 < 𝑡′) 

Balance metrics  

a. by inverse probability weighting Weight 𝑊𝑎(𝑡−𝑘−1) and 𝑊𝑧(𝑡−𝑘−1) 

𝐸 [
𝑊𝑎(𝑡−𝑘−1) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2))

× 𝐶(𝑡)
]

− 𝐸 [
𝑊𝑎(𝑡−𝑘−1) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|�̅�(𝑡 − 𝑘 − 2))

× 𝐶(𝑡)
] 

𝑊𝑎(𝑡−𝑘−1) =
𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2)]

𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2), �̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1)]
 

 

𝐸 [
𝑊𝑧(𝑡−𝑘−1) × 𝐼(𝑍(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2))

× 𝐶(𝑡)
]

− 𝐸 [
𝑊𝑧(𝑡−𝑘−1) × 𝐼(𝑍(𝑡 − 𝑘 − 1) = 𝑧′′|�̅�(𝑡 − 𝑘 − 2))

× 𝐶(𝑡)
] 

𝑊𝑧(𝑡−𝑘−1) =
𝑃[𝑍(𝑡 − 𝑘 − 1) = 𝑧|�̅�(𝑡 − 𝑘 − 2)]

𝑃[𝑍(𝑡 − 𝑘 − 1) = 𝑧|�̅�(𝑡 − 𝑘 − 2), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1)]
 

 

b. by propensity score stratification Propensity score 𝑒𝑎(𝑡−𝑘−1) 

𝐸[𝐶(𝑡)|𝐴(𝑡 − 𝑘 − 1) = 𝑎′, 𝑒𝑎(𝑡−𝑘−1)]

− 𝐸[𝐶(𝑡)|𝐴(𝑡 − 𝑘 − 1) = 𝑎′′, 𝑒𝑎(𝑡−𝑘−1)] 

𝑒𝑎(𝑡−𝑘−1)

=  𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2), �̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1)] 

𝐸[𝐶(𝑡)|𝑍(𝑡 − 𝑘 − 1) = 𝑧′, 𝑒𝑧(𝑡−𝑘−1)]

− 𝐸[𝐶(𝑡)|𝑍(𝑡 − 𝑘 − 1) = 𝑧′′, 𝑒𝑧(𝑡−𝑘−1)] 

𝑒𝑧(𝑡−𝑘−1)

=  𝑃[𝑍(𝑡 − 𝑘 − 1) = 𝑧′|�̅�(𝑡 − 𝑘 − 2), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1)] 

Diagnostic 3: Residual time-varying confounding i.e. 𝑪(𝒕 − 𝒌) across levels of 𝑨(𝒕) 
(for all 𝑡 ∈ {0, … , 𝑡} and 𝑘 ∈ {0, … , 𝑡} where 𝑘 ≤ 𝑡′ for 𝑍 and 𝑘 < 𝑡′ for 𝐴) 

Balance metrics Weight  𝑊𝑎𝑧(𝑡) = 𝑊𝑎(𝑡) × 𝑊𝑧(𝑡) 

𝐸 [
𝑊𝑎𝑧(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′|�̅�(𝑡 − 1)), �̅�(𝑡 − 2)

× 𝐶(𝑡 − 𝑘)
]

− 𝐸 [
𝑊𝑎𝑧(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′′|�̅�(𝑡 − 1)), �̅�(𝑡 − 2)

× 𝐶(𝑡 − 𝑘)
] 𝑊𝑎(𝑡) = ∏

𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 2)]

𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1)]

𝑘=𝑡

𝑘=0
 

 

𝑊𝑧(𝑡) = ∏
𝑃[𝑍(𝑡 − 𝑘) = 𝑧|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1)]

𝑃[𝑍(𝑡 − 𝑘) = 𝑧|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘)]

𝑘=𝑡

𝑘=0
 𝐸 [

𝑊𝑎𝑧(𝑡) × 𝐼(𝑍(𝑡) = 𝑧′|�̅�(𝑡 − 1)), �̅�(𝑡 − 1)

× 𝐶(𝑡 − 𝑘)
]

− 𝐸 [
𝑊𝑎𝑧(𝑡) × 𝐼(𝑍(𝑡) = 𝑧′′|�̅�(𝑡 − 1)), �̅�(𝑡 − 1)

× 𝐶(𝑡 − 𝑘)
] 
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Appendix Table 2. Balance metrics for confounding of distinct time-varying exposures 𝐴(𝑡) and 𝑍(𝑡) by time-varying risk-
factors 𝐶(𝑡) in the presence of censoring 

Diagnostic 1: Time-varying confounding i.e. 𝑪(𝒕 − 𝒌) across levels of 𝑨(𝒕)  
(for all 𝑡 ∈ {0, … , 𝑡} and 𝑘 ∈ {0, … , 𝑡} where 𝑘 ≤ 𝑡′) 

Balance metrics Definitions 

𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′, �̅�(𝑡 − 1), �̅�(𝑡 − 1), 𝑆̅(𝑡) = 0]
− 𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1), �̅�(𝑡 − 1), 𝑆̅(𝑡) = 0] 

N/A 

𝐸[𝐶(𝑡 − 𝑘)|𝑍(𝑡) = 𝑧′, �̅�(𝑡 − 1), �̅�(𝑡), 𝑆̅(𝑡) = 0]
− 𝐸[𝐶(𝑡 − 𝑘)|𝑍(𝑡) = 𝑧′′, �̅�(𝑡 − 1), �̅�(𝑡), 𝑆̅(𝑡) = 0] 

N/A 

Diagnostic 2: Time-dependent confounding i.e. 𝑪(𝒕) across levels of 𝑨(𝒕 − 𝒌 − 𝟏)  

(for all 𝑡 ∈ {0, … , 𝑡} and all 𝑘 ∈ {0, … , 𝑡 − 1} where 𝑘 < 𝑡′) 

Balance metrics  

a. by inverse probability weighting Weight 𝑊𝑎𝑧(𝑡−𝑘−1) = 𝑊𝑎(𝑡−𝑘−1) × 𝑊𝑠(𝑡) and 𝑊𝑧𝑠(𝑡−𝑘−1) = 𝑊𝑧(𝑡−𝑘−1) × 𝑊𝑠(𝑡)  

𝐸 [
𝑊𝑎𝑠(𝑡−𝑘−1) × 𝐼(𝑆̅(𝑡) = 0)

× 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2)) × 𝐶(𝑡)
]

− [
𝑊𝑎𝑠(𝑡−𝑘−1) × 𝐼(𝑆̅(𝑡) = 0)

× 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|�̅�(𝑡 − 𝑘 − 2)) × 𝐶(𝑡)
] 

𝑊𝑎(𝑡−𝑘−1)

=
𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2), 𝑆̅(𝑡 − 𝑘 − 1) = 0]

𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎|�̅�(𝑡 − 𝑘 − 2), �̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘 − 1) = 0]
 

𝑊𝑧(𝑡−𝑘−1)

=
𝑃[𝑍(𝑡 − 𝑘 − 1) = 𝑧|�̅�(𝑡 − 𝑘 − 2, 𝑆̅(𝑡 − 𝑘 − 1) = 0)]

𝑃[𝑍(𝑡 − 𝑘 − 1) = 𝑧|�̅�(𝑡 − 𝑘 − 2), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘 − 1) = 0]
 

𝑊𝑠(𝑡)

=  ∏
𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0]

𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0, �̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1)]

𝑘=𝑡

𝑘=0
 

𝐸 [
𝑊𝑧𝑠(𝑡−𝑘−1) × 𝐼(𝑆̅(𝑡) = 0)

× 𝐼(𝑍(𝑡 − 𝑘 − 1) = 𝑧′|�̅�(𝑡 − 𝑘 − 2)) × 𝐶(𝑡)
]

− [
𝑊𝑧𝑠(𝑡−𝑘−1) × 𝐼(𝑆̅(𝑡) = 0)

× 𝐼(𝑍(𝑡 − 𝑘 − 1) = 𝑧′′|�̅�(𝑡 − 𝑘 − 2)) × 𝐶(𝑡)
] 

b. by propensity score stratification Propensity scores 𝑒𝑎(𝑡−𝑘−1) and 𝑒𝑧(𝑡−𝑘−1) and Weight 𝑊𝑠(𝑡) 

𝐸 [
𝑊𝑠(𝑡) × 𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′|𝑒𝑎(𝑡−𝑘−1))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡)
]

− [
𝑊𝑠(𝑡)𝐼(𝐴(𝑡 − 𝑘 − 1) = 𝑎′′|𝑒𝑎(𝑡−𝑘−1))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡)
] 

𝑒𝑎(𝑡−𝑘−1)

=  𝑃[𝐴(𝑡 − 𝑘 − 1) = 𝑎′|�̅�(𝑡 − 𝑘 − 2), �̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘 − 1) = 0] 

𝑒𝑧(𝑡−𝑘−1)

=  𝑃[𝑍(𝑡 − 𝑘 − 1) = 𝑧′|�̅�(𝑡 − 𝑘 − 2), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘 − 1) = 0] 

𝑊𝑠(𝑡)

=  ∏
𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0]

𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0, �̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1)]

𝑘=𝑡

𝑘=0
 

𝐸 [
𝑊𝑠(𝑡) × 𝐼(𝑍(𝑡 − 𝑘 − 1) = 𝑧′|𝑒𝑧(𝑡−𝑘−1))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡)
]

− [
𝑊𝑠(𝑡) × 𝐼(𝑍(𝑡 − 𝑘 − 1) = 𝑧′′|𝑒𝑧(𝑡−𝑘−1))

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡)
] 

Diagnostic 3: Residual time-varying confounding i.e. 𝑪(𝒕 − 𝒌) across levels of 𝑨(𝒕) 
(for all 𝑡 ∈ {0, … , 𝑡} and 𝑘 ∈ {0, … , 𝑡} where 𝑘 ≤ 𝑡′ for 𝑍 and 𝑘 < 𝑡′ for 𝐴) 

Balance metrics Weight  𝑊𝑎𝑧(𝑡) = 𝑊𝑎(𝑡) × 𝑊𝑧(𝑡) 

𝐸 [
𝑊𝑎𝑧(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′|�̅�(𝑡 − 1)), �̅�(𝑡 − 2)

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡 − 𝑘)
]

− 𝐸 [
𝑊𝑎𝑧(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′′|�̅�(𝑡 − 1)), �̅�(𝑡 − 2)

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡 − 𝑘)
] 

𝑊𝑎(𝑡)

= ∏
𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 2), 𝑆̅(𝑡 − 𝑘) = 0]

𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 2), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘) = 0]

𝑘=𝑡

𝑘=0
 

 

𝑊𝑧(𝑡) = ∏
𝑃[𝑍(𝑡 − 𝑘) = 𝑧|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘) = 0]

𝑃[𝑍(𝑡 − 𝑘) = 𝑧|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘), 𝑆̅(𝑡 − 𝑘) = 0]

𝑘=𝑡

𝑘=0
 

𝐸 [
𝑊𝑎𝑧(𝑡) × 𝐼(𝑍(𝑡) = 𝑧′|�̅�(𝑡 − 1)), �̅�(𝑡 − 1)

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡 − 𝑘)
]

− 𝐸 [
𝑊𝑎𝑧(𝑡) × 𝐼(𝑍(𝑡) = 𝑧′′|�̅�(𝑡 − 1)), �̅�(𝑡 − 1)

× 𝐼(𝑆̅(𝑡) = 0) × 𝐶(𝑡 − 𝑘)
] 
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FIGURE LEGENDS 

 

Figure 1. Directed Acyclic Graph for data generating mechanism of simulated data examples (excluding the 

outcome 𝑌, see Appendix for details). 

 

Figure 2. A trellised covariate balance plot for Diagnostic 1 in the uncensored simulated data. The plot is 

comprised of sub-plots indexed by specific exposure measurement times (rows) and covariate measurement 

times (columns). Each sub-plot thus presents the mean difference across of each covariate 𝐶 (i.e. 

𝐿,𝑀,𝑁, 𝑂, 𝑃) assessed at time 𝑡 − 𝑘, comparing exposures 𝐴 = 1 and 𝐴 = 0 at time 𝑡, for each pattern of 

exposure history through time 𝑡 − 1 (dots). When all of the dots in a horizontal plane align at zero there is 

no confounding of exposure assessed at any time 𝑡 by the confounder assessed at time 𝑡 − 𝑘. When this 

holds for all covariates in each sub-plot, the exposures are statistically exogenous and there is no measured 

time-varying confounding. Note that the sub-plots along the trellis diagonal running from the lower left to 

upper right constitute an assessment of covariate balance for the most recent covariates i.e. 𝐶(𝑡), which 

many applied studies privilege for adjustment. 

 

Figure 3. A row from the full trellised covariate balance plot for Diagnostic 2a to examine whether covariates 

are time-dependent confounders (here, those measured at time 𝑡 = 2). In the full plot, exposure 

measurement times would be indexed by columns and covariate measurement times by rows. Each subplot 

presents the mean difference of each covariate 𝐶 (i.e. 𝐿,𝑀,𝑁, 𝑂, 𝑃) assessed at time 𝑡, comparing exposures 

𝐴 = 1 and 𝐴 = 0 at time 𝑡 − 𝑘 − 1, for each pattern of exposure history through time 𝑡 − 𝑘 − 2 (dots). If for 

a given subpanel, a dot aligns at zero, then that covariate measurement is not associated with prior exposure 

assessed at time 𝑡 − 𝑘 − 1, and if this holds for all previous exposure measurement times (and covariate 

measurement times) then that covariate is not a time-dependent confounder. If this holds for all subpanels, 

no measured covariates are time-dependent confounders. Note that in the full plot, sub-plots along the trellis 

diagonal running from lower left to upper right constitute an assessment of whether covariates are associated 

with the most recent exposure i.e. 𝐴(𝑡 − 1). 

 

Figure 4. The diagonal from the full trellised covariate balance plot for Diagnostic 3 for residual time-varying 

confounding in the weighted population. Here the diagonal shows that the weights balanced covariates most 

proximal to exposure (and all other covariates as well, not shown). In the full plot, exposure measurement 

times would be indexed by rows and covariate measurement times by columns. The interpretation is similar 

to the one given for Diagnostic 1: each subplot presents the weighted balance of covariates 𝐶 (i.e. 

𝐿,𝑀,𝑁, 𝑂, 𝑃) assessed at times 𝑡 − 𝑘, comparing the exposures 𝐴 = 1 and 𝐴 = 0 at time 𝑡, among each 

pattern of exposure history through time 𝑡 − 1 (dots). There is no confounding of 𝐴(𝑡) by a given covariate 

when all dots in a horizontal plane align at zero; when this holds for all covariates in all subplots in the full 

plot, there is no confounding by measured covariates in the weighted population. Note that in the full plot, 

the sub-plots along the trellis diagonal running from the lower left to upper right constitute an assessment of 
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covariate balance for the most recent covariates i.e. 𝐶(𝑡), which many applied studies privilege for 

adjustment. 

 

Figure 5. Demonstration of Diagnostic 3 for residual imbalance in the weighted population under various 

scenarios. (a) correct specification of the exposure model. (b) mis-specification of the exposure model by 

only including recent covariates 𝐶(𝑡 − 1) and omitting covariate-covariate interactions (c) random non-

positivity specified in the data-generating model for 𝐴(𝑡) such that 𝑃[𝐴(𝑡)|�̅�(𝑡 − 1), 𝐶̅(𝑡)] = 1/10,000,000 

when 𝐿(𝑡) = 0 and 𝑂(𝑡) = 1. (e) weights truncated to 1st and 99th percentiles under injected positivity 

violation. (f) weights truncated to 10th and 90th percentiles under injected positivity violation. 

 

Figure 6. Directed Acyclic Graph for example of two distinct point exposures 𝐴 (randomized) and 𝑍 (not 

randomized). Here, 𝐿 represents a time-dependent confounder because it is an effect of 𝐴 but cause of 𝑍 

and 𝑌. 

 

Appendix Figure 1. Directed Acyclic Graphs for each diagnostic in the absence of censoring. (a) Diagnostic 1 

for assessing 𝐴(𝑡)’s association with 𝐶(𝑡). (b) Diagnostic 2a implemented by inverse probability weighting to 

assess whether 𝐶(𝑡) is affected by or associated with 𝐴(𝑡 − 1) not through measured common causes (c) 

Diagnostic 2b by propensity score stratification to assess whether 𝐶(𝑡) is affected by or associated with 

𝐴(𝑡 − 1) not through measured common causes. (d) Diagnostic 3 to assess residual associations between 

𝐶(𝑡) and 𝐴(𝑡) after applying cumulative inverse probability weights for 𝐴(𝑡). Bold arrows represent 

associations captured by the diagnostic and (for diagnostics that apply weights) dashed arrows represent 

associations that the weights are meant to remove. Note that in (a) only the causal path between 𝐶(𝑡) and 

𝐴(𝑡) is bolded but many other non-causal paths also contribute to Diagnostic 1. 

 

Appendix Figure 2. Directed Acyclic Graphs for each diagnostic in the presence of censoring. (a) Diagnostic 

1 for assessing 𝐴(𝑡)’s association with 𝐶(𝑡). (b) Diagnostic 2a implemented by inverse probability weighting 

to assess whether 𝐶(𝑡) is affected by or associated with 𝐴(𝑡 − 1) not through measured common causes or 

selection-bias (c) Diagnostic 2b to assess whether 𝐶(𝑡) is affected by or associated with 𝐴(𝑡 − 1) not 

through measured common causes or selection-bias. (d) Diagnostic 3 to assess residual associations between 

𝐶(𝑡) and 𝐴(𝑡) after applying cumulative inverse probability weights for 𝐴(𝑡). Bold arrows represent 

associations captured by the diagnostic and (for diagnostics that apply weights) dashed arrows represent 

associations that the weights are meant to remove. Note that in (a) only the causal path between 𝐶(𝑡) and 

𝐴(𝑡) is bolded but many other non-causal paths also contribute to Diagnostic 1. 

 

Appendix Figure 3. Demonstration of Diagnostic 2a for time-dependent confounding for censored data using 

inverse probability weighting (a) omitting the cumulative inverse probability of censoring weight (b) 

incorporating the cumulative inverse probability of censoring weight. 
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Appendix Figure 4. Directed Acyclic Graph for a time-to-event or competing risk 𝑌(𝑡) (e.g. death), time-

varying exposure 𝐴, and time-dependent confounders 𝐶. 

 

Appendix Figure 5. Directed Acyclic Graph for simulation parameters involving a vector of covariates 𝐶(𝑡). 

Values assigned to an edge represent conditional odds ratios given the child node’s parents. 𝑆(1) and 𝑆(2) 

are not shown, and deterministic arrows from 𝑆(𝑡) are present when 𝑆(𝑡) is conditioned upon, representing 

whether the child node is observed. The base line odds were (Figure 5a) 0 for 𝑆(0), 0.15 for 𝑆(1), 0.15 for 

𝑆(2), 0.67 for U, 0.5 for 𝐴(0), 0.4  for 𝐴(1), 0.3 for 𝐴(2); (Figure 5b) 0.3 for 𝐿(0), 𝐿(1), and 𝐿(2); (Figure 

5c) 0.75 for 𝑀(0), 𝑀(1), and 𝑀(2); (Figure 5d) 0.5 for 𝑁(0), 𝑁(1), and 𝑁(2); (Figure 5e) 0.6 for 𝑂(0), 

𝑂(1), and 𝑂(2); (Figure 5f) 0.4 for 𝑃(0), 𝑃(1), and 𝑃(2). 
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Appendix Figure 5e. 

 

 

 
Appendix Figure 5f.  
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