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Second Order Inference for the Mean of a
Variable Missing at Random

Ivan Diaz, Marco Carone, and Mark J. van der Laan

Abstract

We present a second order estimator of the mean of a variable subject to missing-
ness, under the missing at random assumption. The estimator improves upon ex-
isting methods by using an approximate second order expansion of the parameter
functional, in addition to the first order expansion employed by standard doubly
robust methods. This results in weaker assumptions about the convergence rates
necessary to establish consistency, local efficiency, and asymptotic linearity. The
general estimation strategy is developed under the targeted minimum loss based
estimation (TMLE) framework. We present a simulation comparing the sensitivity
of the first and second order estimators to the convergence rate of the initial esti-
mators of the outcome regression and missingness score. In our simulation, the
second order TMLE improved the coverage probability of a confidence interval
by up to 53% for slow convergence rates of the initial estimators. In addition, we
present a first order estimator inspired by a second order expansion of the parame-
ter functional. This estimator only requires one-dimensional smoothing, whereas
implementation of the second order TMLE generally requires kernel smoothing
on the covariate space. The first order estimator proposed is expected to have im-
proved finite sample performance, compared to existing first order estimators. In
our simulations, the proposed first order estimator improved the coverage prob-
ability by up to 68% for slow convergence rates of the initial estimators of the
outcome regression and the missingness score. We provide an illustration of our
methods using a publicly available dataset targeting the effect of an anticoagulant
on health outcomes of patients undergoing percutaneous coronary intervention. In
our example, the use of an estimator with expected improved properties changes
dramatically the substantive conclusions of the study. We provide R code to im-
plement the proposed estimator.



1 Introduction

Estimation of the mean of an outcome subject to missingness is a problem extensively studied
in the statistics literature. Under the assumption that missingness is independent of the outcome
conditional on observed covariates, the marginal expectation is identified as a parameter depending
on the conditional expectation given covariates among observed individuals (outcome regression
henceforth) and the marginal distribution of the covariates. If the covariate vector consists of a few
categorical variables, a nonparametric maximum likelihood estimator yields an optimal (consistent,
asymptotically linear, and efficient) estimator of the mean outcome. However, if the covariate
vector contains continuous variables or its dimension is large, estimation of the outcome regression
requires smoothing on the covariate space. In the statistics literature, this has been often achieved
by means of a parametric model. Unfortunately, the correct specification of a parametric model
is a chimerical tasks in high-dimensional settings or in the presence of continuous variables [11],
and data-adaptive prediction estimation methods such as those developed in the statistical learning
literature (e.g., super learning, model stacking, bagging, etc.) must be used.

Our methods are developed in the context of targeted learning [13, 14], a field of statistics
that deals with the use of data-adaptive methods coupled with optimal estimation theory for semi-
parametric models and empirical process theory. In particular, the targeted minimum loss based
estimation (TMLE) framework allows consistent and locally efficient estimation of arbitrary low-
dimensional parameters in high dimensional models, under regularity and smoothness conditions.
In our context, targeted learning allows the incorporation of flexible, data adaptive estimators of
the outcome regression into the estimation procedure.

Several doubly robust and locally efficient estimators have been proposed for the missing data
problem. These estimators are based on an expansion of the parameter functional in terms of a
first order component and a remainder, and are asymptotically linear, under certain conditions.
Arguably, the most important condition is that the outcome regression and the probability of miss-
ingness conditional on covariates (missingness score henceforth) are estimated consistently at an
appropriate rate. A sufficient assumption for establishing

√
n-consistency of doubly robust estima-

tors is that the outcome regression and the missingness score converge to their true values at rates
faster than n−1/4. We present a second order TMLE that incorporates a second order expansion
of the parameter functional in order to relax this assumption, which may be implausible for high
dimensions and certain data-adaptive estimators. The method we present is an application of the
general higher order estimation theory we present in [3]. We refer to the second order estimator as
2-TMLE in contrast to the first order TMLE discussed by [14], referred to as 1-TMLE.

A complete literature review of higher order estimation theory is presented in [3]. The most
relevant references for the problem studied here are [8] and [9]. In particular, [8] presents a partic-
ular second order expansion of the target parameter, as well as a second order estimator based on
that expansion. This estimator directly uses inverse weighting by a kernel estimate of the covariate
density. As a result of the course of dimensionality, the estimator is expected to have poor perfor-
mance in finite samples as the dimension of the covariate space increases. Particularly, it may fall
outside of the parameter space. In contrast, the 2-TMLE presented here is a substitution estimator
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that falls in the parameter space with probability one.
As with the estimator presented in [8], implementation of the 2-TMLE requires approximating

the second order influence function by means of kernel smoothing, which is subject to the curse of
dimensionality. This issue may be circumvented by utilizing an alternative second order expansion
that uses kernel smoothing on the missingness score, which is a one-dimensional function of the
covariate vector. Since the true missingness score is generally unknown, implementation of this
estimator must be carried out using an estimated missingness score. Unfortunately, as discussed in
[3], introduction of the estimated missingness score in place of its true value yields a second order
remainder term in the analysis of the estimator. As a consequence, the estimator obtained is not a
second order estimator. We refer to this estimator as a 1?-TMLE in accordance to this observation.
Notably, the second order remainder term obtained with the 1?-TMLE is different from that of the
1-TMLE, which implies they have different finite sample properties. We conjecture that the 1?-
TMLE improves finite sample performance over the 1-TMLE, and present a case study in which
there are considerable finite sample gains.

Compared to the standard 1-TMLE, implementation of the 1?-TMLE requires the inclusion of
one additional covariate in the outcome regression. As a result, its implementation is straightfor-
ward and comes at no computational cost. In fact, the potential finite sample gains in performance
can be overwhelming, as we illustrate in a simulation studying the coverage probability and mean
squared error of the two estimators.

The paper is organized as follows. In Section 2 we review first order efficient estimation theory
for the mean outcome in a missing data model. In Section 3 we present the second order expansion
of the parameter functional and use it in Section 3.1 to construct a 2-TMLE, for a fixed bandwidth
of a kernel smoother. In Section 3.2 we introduce the 1?-TMLE discussed above. In Section 4 we
describe a cross-validation method that may be used to select the bandwidth for the 2-TMLE as
well as the 1?-TMLE. Section 5 presents a simulation showing that the 1?-TMLE and the 2-TMLE
have improved coverage probabilities and mean squared error for slow convergence rates of the
estimated outcome regression and missingness score. We conclude with Section 6 illustrating the
use of the 1?-TMLE.

2 Review of First Order Estimation Theory

Let W denote a d-dimensional vector of covariates, and let Y denote an outcome of interest mea-
sured only when a missingness indicator A is equal to one. We assume that Y is binary or contin-
uous taking values in the interval (0, 1). The observed data O = (W,A,AY ) is assumed to have a
distribution P0 in the nonparametric modelM. Assume we observe an i.i.d. sample O1, . . . , On,
and denote its empirical distribution Pn. For every element P ∈M, we define

QW (P )(w) := P (W ≤ w)

g(P )(w) := P (A = 1|W = w)

Q̄(P )(w) := EP (Y |A = 1,W = w),

2
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where EP denotes expectation under P . We denote QW,0 := QW (P0), g0 := g(P0), and Q̄0 :=
Q̄(P0). We refer to Q̄ as the outcome regression, and to g as the missingness score. We suppress
the argument P from the notation QW (P ), g(P ), and Q̄(P ) whenever it does not cause confusion.
For a function f of o, we use the notation Pf :=

∫
f(o)dP (o). Let Ψ : M→ R be a parameter

mapping defined as Ψ(P ) := EP (Q̄(W )), and let ψ0 := Ψ(P0). Under the assumptions that

i) A⊥⊥Y |W under P0 (missing at random) and

ii) P0(g0(W ) > 0) = 1 (positivity),

it can be shown that ψ0 = EF0(Y ), where F0 is the true distribution of the full data (W,Y ).
Because Ψ depends on P only through Q := (QW , Q̄), we also use the alternative notation Ψ(Q)
to refer to Ψ(P ).

First order inference for ψ0 is based on the following expansion of the parameter functional
Ψ(P ) around the true P0:

Ψ(P )−Ψ(P0) = −P0D
(1)(P ) +R2(P, P0), (1)

where D(1)(P ) is a function of an observation o = (w, a, y) that depends on P , and R2(P, P0) is
a second order remainder term. The super index (1) is used to denote a first order approximation.
This expansion may be seen as analogous to a Taylor expansion when P is finite dimensional, and
the expression second order may be interpreted in the same way.

We use the expression first order estimator to refer to estimators based on first order approxi-
mations as in equation (1). Analogously, the expression second order estimator is used to refer to
estimators based on second order approximations, e.g., as presented in Section 3 below.

Doubly robust locally efficient inference is based on approximation (1) with

D(1)(P )(o) =
1{a = 1}
g(w)

{y − Q̄(w)}+ Q̄(w)−Ψ(P ), (2)

R2(P, P0) =

∫ {
1− g0(w)

g(w)

}
{Q̄(w)− Q̄0(w)}dQW,0(w). (3)

It is a straightforward algebra exercise to check that equation (1) holds with the definitions given
above. D(1) above is referred to as the canonical gradient, or the efficient influence function re-
ferred to in the literature [1, 13].

For the sake of limiting the discussion we focus on the analysis of a first order TMLE, other
doubly robust locally efficient estimators may be analyzed with similar arguments. First order
targeted minimum loss based estimation of ψ0 proceeds by constructing an estimator P̂ of P0

satisfying PnD(1)(P̂ ) = 0, and using equation (1) to obtain

ψ̂ − ψ0 = (Pn − P0)D(P̂ ) +R2(P̂ , P0),

where ψ̂ := Ψ(P̂ ). Assuming

3
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i) D(1)(P̂ ) converges to D(1)(P0) in L2(P0) norm,

ii) the size of the class of functions considered for estimation of P̂ is bounded (technically, there
exists a Donsker classH so that D(1)(P̂ ) ∈ H with probability tending to one),

empirical process theory (e.g., theorem 19.24 of [16]) shows that

ψ̂ − ψ0 = (Pn − P0)D
(1)(P0) +R2(P̂ , P0).

In addition, if
R2(P̂ , P0) = oP (1/

√
n), (4)

we obtain
ψ̂ − ψ0 = (Pn − P0)D

(1)(P0) + oP (1/
√
n).

This implies, in particular, that ψ̂ is a
√
n-consistent estimator of ψ0, it is asymptotically normal,

and it is locally efficient.
In this paper we discuss ways of constructing an estimator that requires a consistency assump-

tion weaker than (4). Note that (4) is an assumption about the convergence rate of a second order
term involving the product of the differences ˆ̄Q − Q0 and ĝ − g0. Using the Cauchy-Schwarz
inequality repeatedly, |R2(P̂ , P0)| may be bounded as

|R2(P̂ , P0)| ≤ ||1/ĝ||∞ ||ĝ − g0||P0 || ˆ̄Q− Q̄0||P0 ,

where ||f ||2P :=
∫
f2(o)dP (o), and ||f ||∞ := sup{f(o) : o ∈ O}. A set of sufficient conditions

for assumption (4) to hold is, for example,

i) ĝ is bounded away from zero with probability tending to one

ii) ĝ is the MLE of g0 ∈ G = {g(w;β) : β ∈ Rd} (i.e., g0 is estimated in a correctly specified
parametric model.) This implies ||ĝ − g0||P0 = OP (1/

√
n).

iii) || ˆ̄Q− Q̄0||P0 = oP (1).

Similarly, a set of sufficient conditions is that ĝ is bounded away from zero with probability tending
to one, ˆ̄Q is an MLE in a correctly specified parametric model, and the L2(P0) norm of ĝ − g0
converges to zero in probability. As discussed in [11], however, correct specification of a parametric
models is hardly achievable in high dimensional settings.

Data adaptive estimators must then be used for the outcome regression and missingness score,
but they may potentially yield a remainder term R2 with a convergence rate slower than n−1/2. In
the next section we present a second order expansion of the parameter functional that allows the
construction of estimators that require consistency assumptions weaker than (4).
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3 Second Order Estimation

Let us first introduce some notation. For a function f (2) of a pair of observations (o1, o2), let
P 2
0 f

(2) :=
∫ ∫

f (2)(o1, o2)dP0(o1)dP0(o2) denote the expectation of f (2) with respect to the prod-
uct measure P 2

0 .
Second order estimators are based on second order expansions of the parameter functional of

the form
Ψ(P )−Ψ(P0) = −P0D

(1)(P )− 1

2
P 2
0D

(2)(P ) +R3(P, P0), (5)

where D(2) is a function of a pair of observations (o1, o2), and R3 is a third order term. This rep-
resentation exists only if W has finite support [3]. If the support of W is infinite, it is necessary
to use an approximate second order influence function relying on kernel smoothing, which may
introduce challenges due to the curse of dimensionality. In this section we discuss two possible es-
timation strategies: (i) an estimator that requires kernel smoothing on the covariate vector, and (ii)
an estimator that requires kernel smoothing on the missingness score. Strategy (i) is only practical
in the presence of a few, possibly data-adaptively selected covariates, whose quantity may increase
with sample size. Strategy (ii) requires a-priori knowledge of the true missingness score, and is
therefore not applicable in most practical situations. As a solution, we propose to use strategy (ii)
with the estimated missingness score, to obtain an estimator denoted as 1?-TMLE. As discussed in
[3], the 1?-TMLE is not a second order estimator, since introduction of an estimated missingness
score yields a second order term in the remainder term. Nevertheless, the potential finite sample
gains obtained with the 1?-TMLE compared to the standard 1-TMLE are worth further investiga-
tion. In Section 5.2 we present a simulation study in which the 1?-TMLE showed considerable
finite sample improvement of the mean squared error and the coverage probability.

3.1 Second Order Estimator with Kernel Smoothing on the Covariate Vector

Assume W contains only discrete variables. Then the second order expansion (5) holds with

D(2)(P )(o1, o2) =
2a11{w1 = w2}
g(w1)qW (w1)

(
1− a2

g(w1)

)
(y1 − Q̄(w1)),

R3(P, P0) =

∫ (
1−

g0(w)qW,0(w)

g(w)qW (w)

)(
1− g0(w)

g(w)

)(
Q̄(w)− Q̄0(w)

)
dQW,0(w),

where qW denotes the density associated to QW , and D(1) is defined in (2). It is a straightforward
algebra exercise to explicitly check that equation (5) holds.

In many practical situations, however, W is high-dimensional or it contains continuous vari-
ables so that the indicator 1{w1 = w2} has no support. To circumvent this issue, we propose to
use the above expansion replacing the indicator function with a kernel function Kh(w1 − w2), for
a given bandwidth h. We denote such approximation by D(2)

h . The conditions under which D(2)
h is

an appropriate approximation of D(2) are discussed in [3].

5
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Analogous to the 1-TMLE discussed in the previous section, we construct an estimator P̂
satisfying PnD

(1)(P̂ ) = P 2
nD

(2)
h (P̂ ) = 0. This allows us to exploit expansion (5) and con-

struct a
√
n-consistent estimator in which assumption R2(P̂ , P0) = oP (1/

√
n) is replaced by the

weaker assumption R3(h, P̂ , P0) = oP (1/
√
n), where R3(h, P̂ , P0) is a third order term similar

to R3(P̂ , P0), defined explicitly in Theorem 3 of [3]. For a complete treatment of other necessary
empirical process conditions we refer the interested reader to [3].

For a fixed bandwidth h, the proposed 2-TMLE is given by the following algorithm:

Step 1. Initial estimators. Obtain initial estimators ĝ and ˆ̄Q of g0 and Q̄0. In general, the functional
form of g0 and Q̄0 will be unknown to the researcher. Since consistent estimation of these
quantities is key to achieve consistency of ψ̂, we advocate for the use of data-adaptive
predictive methods that allow flexibility in the specification of these functional forms.

Step 2. Compute auxiliary covariates. For each subject i, compute auxiliary covariates Ĥ(1)(Ai,Wi)

and Ĥ(2)
h (Ai,Wi):

Ĥ(1)(Wi) :=
1

ĝ(Wi)

Ĥ
(2)
h (Wi) :=

1

ĝ(Wi)

(
1− ĝh(Wi)

ĝ(Wi)

)
,

where

ĝh(w) =

∑n
i=1Kh(w −Wi)Ai∑n
i=1Kh(w −Wi)

is a kernel regression estimator of g0.

Step 3. Solve estimating equations. Estimate the parameter ε = (ε1, ε2) in the logistic regression
model

logit ˆ̄Qε,h(w) = logit ˆ̄Q(w) + ε1Ĥ
(1)(w) + ε2Ĥ

(2)
h (w), (6)

by fitting a standard logistic regression model of Yi on Ĥ(1)(Wi) and ˆ̄H
(2)
h (Wi), with no

intercept and with offset logit ˆ̄Q(Wi), among observations with A = 1.

Step 4. Update initial estimator and compute 2-TMLE. Update the initial estimator as ˆ̄Q?h(w) =
ˆ̄Qε̂,h(w), and define the h-specific 2-TMLE as ψ̂h = Ψ( ˆ̄Q?h)

This algorithm is implemented in the R code provided in Appendix A.
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Rationale Behind the Estimation Algorithm: Solving the Relevant Estimating Equations.
The main arguments to prove that an estimator P̂ solving the estimating equations PnD(1)(P̂ ) =

P 2
nD

(2)
h (P̂ ) = 0 is asymptotically linear under the assumption that R3(P̂ , P0) = oP (1/

√
n) are

discussed in [3]. We provide a heuristic argument that the previous algorithm solves these estimat-
ing equations. The score equations of the logistic regression model (6) are equal to

n∑
i=1

Ĥ(1)(Yi − ˆ̄Qε,h(Wi)) = 0

n∑
i=1

Ĥ
(2)
h (Yi − ˆ̄Qε,h(Wi)) = 0.

Because the maximum likelihood estimator solves the score equations, it can be readily seen that

n∑
i=1

Ĥ(1)(Yi − ˆ̄Q?h(Wi)) = 0

n∑
i=1

Ĥ
(2)
h (Yi − ˆ̄Q?h(Wi)) = 0,

which, from the definitions of Ĥ(1) and Ĥ(2)
h , correspond to PnD(1)(P̂ ) = 0 and P 2

nD
(2)
h (P̂ ) = 0,

respectively.

Comparison with Alternative Second Order Estimators. To the best of our knowledge, the
only second order estimator preceding our proposal is discussed in [8]. For a fixed bandwidth h,
their estimator is defined as

ψ̂h = Ψ(P̂ ) + PnD
(1)(P̂ ) +

1

2
P 2
nD

(2)
h (P̂ ). (7)

Unlike our proposal, this estimator involved direct computation of D2
h, which in turn involves in-

verse weighting by an estimated multivariate density q̂W (w). As a consequence of the curse of
dimensionality these weights may be very unstable, which may lead to a highly variable estima-
tor. In addition, the above estimator does not always satisfy global constraints on the parameter
space. In contrast, our proposed 2-TMLE is always in the parameter space, since it is defined as a
substitution estimator.

3.2 Second Order Estimator with Kernel Smoothing on the Propensity Score

Smoothing on the support of W to compute H(2)
h might lead to sparsity issues when d is large. As

a solution to this problem, consider the second order expansion (5) of parameter Ψ(P ) for discrete

7
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W with:

D(2)(P )(o1, o2) =
2a11{g0(w1) = g0(w2)}

g(w1)qW (w1)

(
1− a2

g(w1)

)
(y1 − Q̄(w1)),

R3(P, P0) =

∫ (
1−

g0(w)qW,0(w)

g(w)qW (w)

)(
1− g0(w)

g(w)

)(
Q̄(w)− Q̄0(w)

)
dQW,0(w).

In contrast to the previous section, here qW,0(w) represents the density function d
dxP0(g0(W ) ≤

x)|x=g0(w), and qW (w) represents d
dxP (g0(W ) ≤ x)|x=g0(w). Analogous to the multivariate case,

it is often necessary to consider a kernel function Kh(g0(w1) − g0(w2)) instead of the indicator
1{g0(w1) = g0(w2)}, which may not be well supported in the data. We denote the approximate
second order influence function obtained with such an approximation by D(2)

h , to emphasize the
dependence on the choice of bandwidth. Using this approximation the estimation procedure de-
scribed in the previous section may be carried out in exactly the same fashion, but with ĝh replaced
by

ĝh(w) =

∑n
i=1Kh(g0(w)− g0(Wi))Ai∑n
i=1Kh(g0(w)− g0(Wi))

.

This algorithm yields an asymptotically linear estimator ofψ0 under the assumption thatR3(P̂ , P ) =
oP (1/

√
n), among other regularity assumptions.

Since g0 is often unknown, it is necessary to replace it by its estimate ĝ:

ĝh(w) =

∑n
i=1Kh(ĝ(w)− ĝ(Wi))Ai∑n
i=1Kh(ĝ(w)− ĝ(Wi))

.

Unfortunately, a careful analysis of the remainder term associated to this estimator reveals that the
introduction of an estimate ĝ in place of g0 yields a second order remainder term. This implies that
asymptotic linearity of this estimator (denoted 1?-TMLE) requires the convergence of a second or-
der term in order to be

√
n-consistent. The second order term associated to the 1?-TMLE, however,

is different from R2 defined in (3), required for asymptotic linearity of the 1-TMLE. As a conse-
quence, these estimators are expected to have different finite sample properties. We conjecture that
the 1?-TMLE of this section has improved finite sample properties over the 1-TMLE, and present
a case study in Section 5 supporting our conjecture.

4 Choosing the Optimal Bandwidth

The estimators presented in the previous section required a user-given bandwidth h. Several options
are available for choosing this bandwidth. In principle, it is possible to select the optimal bandwidth
using the log-likelihood loss function for estimation of the density q0. However, because this choice
is targeted to estimation of q0, it may result sub-optimal for estimation of ψ0. In this section we
propose an alternative loss function that targets directly the first order expansion of the parameter
of interest. The bandwidth estimator proposed is equivalent to the first step of the collaborative

8
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TMLE (C-TMLE) presented in [15]. This approximation of the C-TMLE is computationally more
tractable and works well in our simulations and data analysis, presented below.

Following [4], let s ∈ {1, . . . , S} index a random sample split into a validation sample V (s)
and a training sample T (s). The cross-validation bandwidth selector is defined as

ĥ := arg min
h
{cvRSS(h) + cvV ar(h) + n× [cvBias(h)]2},

where

cvRSS(h) :=

S∑
s=1

∑
i∈V (s)

(Yi − ˆ̄Q?h,s(Wi))
2,

cvV ar(h) :=

S∑
s=1

∑
i∈V (s)

[
Ai

ĝs(Wi)
(Yi − ˆ̄Q?h,s(Wi)) + ˆ̄Q?h,s(Wi)− ψ̂h,s

]2
,

cvBias(h) :=
1

S

S∑
s=1

(
ψ̂h,s − ψ̂h

)
,

are the cross-validated residual sum of squares (RSS), cross-validated variance estimate, and cross-
validated bias estimate, respectively. The key idea is to select the bandwidth h that makes Ĥ(2)

h

most predictive of Y , while adding an asymptotically negligible penalty term for increases in bias
and variance in estimation of ψ0. Here ˆ̄Q?h,s, ψ̂h,s, and ĝs are the result of applying the estimation
algorithms described in Section 3, using only data in the training sample T (s).

This loss function is the result of adding a mean squared error (MSE) term cvV ar(h) + n ×
[cvBias(h)]2 to the usual RSS loss function used in regression problems. Since he MSE contribu-
tion to the loss function is asymptotically negligible compared to the RSS, this loss function yields
a valid loss function for the parameter Q̄0.

This bandwidth selection algorithm is implemented in the R code provided in Appendix A.

5 Simulation

In this section we present the results of two simulation studies. In Section 5.1, we illustrate the
improvements obtained by a 2-TMLE compared to the 1-TMLE. In Section 5.2, we present a
simulation study exploring the potential finite sample improvements obtained with the 1?-TMLE,
compared to the 1-TMLE.

9
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5.1 2-TMLE Smoothing on the Covariate Space

Simulation Setup For each sample size n ∈ {500, 1000, 2000, 10000}, we simulated 1000
datasets from the joint distribution implied by the conditional distributions

W ∼ 6×Beta(1/2, 1/2)− 3

A|W ∼ Ber(expit(1 +W ))

Y |A = 1,W ∼ Ber(expit(−2 + exp(W ) +W )),

where Ber(·) denotes the Bernoulli distribution, expit denotes the inverse of the logit function,
and Beta(a, b) denotes the Beta distribution.

For each dataset, we fitted correctly specified parametric models for Q̄ and g. For a perturbation
parameter p, we then varied the convergence rate of ˆ̄Q by adding a random variable with Gaussian
distribution and mean 3×n−p and standard deviation n−p to the linear predictor in ˆ̄Q. Analogously,
the convergence rate of ĝ was varied using a perturbation parameter q by adding Gaussian noise
with mean 3 × n−q and standard deviation n−q to the linear predictor. We varied the values of p
and q in a grid on the square (0, 0.5)× (0, 0.25).

We computed a 1-TMLE as well as a 2-TMLE for each initial estimator ( ˆ̄Q, ĝ) obtained through
this perturbation. We compare the performance of the two estimators through their relative MSE
compared to the nonparametric efficiency bound, and the coverage probability of confidence inter-
val assuming a known variance. We assume the variance is known in order to isolate any random-
ness due to its estimation. The MSE and coverage probabilities are approximated through empirical
means across the 1000 simulated datasets.

Simulation Results Table 1 shows the relative MSE (rMSE, defined as n times the MSE divided
by the efficiency bound) of the 1-TMLE and the 2-TMLE for several sample sizes and selected
values of the perturbation parameter (p, q) (those for which we found large differences.) Figure 1
shows the relative MSE for all values of (p, q) used in the simulation.

For all sample sizes, the 2-TMLE improves the rMSE, particularly for slow convergence rates
of the outcome regression and the missingness score (small values of the perturbation parameters p
and q.) In addition, the rMSE of the 1-TMLE seems to diverge very fast for small values of p and
q, as compared to the 2-TMLE which diverges more slowly.

We computed the coverage probability of a Gaussian-based 95% confidence interval based on
the 1-TMLE and the 2-TMLE, using the true variance of the estimators. Table 2 shows the results
for selected values of the perturbation parameter (p, q). Figure 2 shows the results for all the values
of (p, q) used in the simulation.

For all sample sizes, the 2-TMLE has a coverage probability close to the nominal level 0.95.
In addition, the coverage probability of the 1-TMLE converges to zero much faster than that of
the 2-TMLE for small values of p and q, in agreement with the results for the rMSE shown in
Table 1. The largest improvement obtained with the 2-TMLE occurs at a sample size of n = 10000
and (p, q) = (0.002, 0.004), where the 1-TMLE has a coverage probability of 0.06 compared to
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Table 1: Relative MSE of the second order TMLE (2-TMLE) and the first order TMLE (1-TMLE)
for different sample sizes and convergence rates of the initial estimators of Q̄0 and g0.

1-TMLE 2-TMLE
n n

q p 500 1000 2000 10000 500 1000 2000 10000

0.004
0.002 1.76 2.57 3.73 13.91 1.19 1.32 1.39 1.88
0.044 1.71 2.49 3.48 12.48 1.19 1.33 1.39 1.97
0.107 1.63 2.24 3.09 10.24 1.20 1.32 1.39 2.10

0.046
0.002 1.50 2.04 2.69 8.05 1.13 1.25 1.29 1.55
0.044 1.48 1.98 2.58 7.34 1.12 1.27 1.29 1.61
0.107 1.41 1.89 2.32 6.09 1.12 1.29 1.31 1.74

0.130
0.002 1.24 1.51 1.72 3.31 1.06 1.16 1.18 1.24
0.044 1.24 1.47 1.65 3.05 1.10 1.15 1.17 1.25
0.107 1.20 1.42 1.58 2.58 1.08 1.18 1.20 1.29

Figure 1: Relative MSE of the second order TMLE (2-TMLE) and the first order TMLE (1-TMLE)
for different sample sizes and convergence rates of the initial estimators of Q̄0 and g0.
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0.84 obtained with the 2-TMLE. This simulation illustrates the potential for dramatic improvement
obtained by using the 2-TMLE in finite samples.
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Table 2: Coverage probabilities of the second order TMLE (2-TMLE) and the first order TMLE
(1-TMLE) for different sample sizes and varying convergence rates of the initial estimators of Q̄0

and g0.
1-TMLE 2-TMLE

n n
q p 500 1000 2000 10000 500 1000 2000 10000

0.004
0.002 0.88 0.80 0.71 0.06 0.93 0.94 0.92 0.84
0.044 0.89 0.81 0.71 0.08 0.93 0.93 0.92 0.84
0.107 0.89 0.83 0.74 0.13 0.93 0.93 0.93 0.82

0.046
0.002 0.90 0.85 0.79 0.23 0.94 0.94 0.94 0.88
0.044 0.90 0.85 0.80 0.29 0.93 0.94 0.93 0.86
0.107 0.91 0.88 0.82 0.38 0.93 0.94 0.93 0.86

0.130
0.002 0.93 0.91 0.88 0.67 0.94 0.94 0.94 0.91
0.044 0.92 0.91 0.89 0.71 0.94 0.94 0.94 0.91
0.107 0.93 0.92 0.90 0.76 0.94 0.94 0.95 0.90

Figure 2: Coverage probabilities of the second order TMLE (2-TMLE) and the first order TMLE
(1-TMLE) for different sample sizes and varying convergence rates of the initial estimators of Q̄0

and g0.
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5.2 Estimator Smoothing on the Estimated Propensity Score

In order to demonstrate the finite sample benefits obtained with the 1?-TMLE, we performed a
simulation comparing it to the 1-TMLE in terms of coverage probability and rMSE.

Simulation Setup For each sample size n ∈ {500, 1000, 2000, 10000}, we simulated 1000
datasets from the joint distribution implied by the conditional distributions

W = (W1,W2,W3) ∼ Clayton(2)

A|W ∼ Ber(expit(2− 2W1 − 2W 2
3 ))

Y |A = 1,W ∼ Ber(expit(−2 + exp(W3) +W1W2)),

where Ber(·) denotes the Bernoulli distribution, expit denotes the inverse of the logit function,
and Clayton(θ) denotes the Clayton copula of dimension 3 with distribution function

P (W1 ≤ w1,W2 ≤ w2,W3 ≤ w3) =
(
−2 + w−θ1 + w−θ2 + w−θ3

)1/θ
.

For each dataset, we fitted correctly specified parametric models for Q̄ and g. We then varied the
convergence rate of ˆ̄Q and ĝ by adding random variables with Gaussian distribution in the same
fashion of the previous section.

Simulation Results Table 3 shows the relative MSE of each estimator for different sample sizes
and selected values of the convergence perturbation (p, q). Figure 3 shows the same results for all
values of (p, q) used in the simulation.

The most important result in terms of rMSE is that it converges to infinity much slower for
the 1?-TMLE, as compared to the 1-TMLE, for small vales of p and q (Table 3). Figure 3 shows
that, when the estimator of g0 converges very slowly, the 1-TMLE has very bad performance if the
estimator of Q̄0 has a moderately slow convergence rate (e.g., 0.05 < p < 3.5 for n = 1000). This
is quite interesting since it seems to suggest that for slow convergence rates of ĝ it is preferable to
inconsistently estimate Q̄0 rather than estimating it at a slow rate, in finite samples. This fact is in
accordance to the findings of [6], who state that “... in at least some settings, two wrong models
are not better than one.” In our simulation, it seems that two models converging at slow rates are
not better than one model converging at a slow rate. This fact is attenuated with the use of the
1?-TMLE.
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Table 3: Relative mean squared error of the 1?-TMLE and the 1-TMLE for different sample sizes
and varying convergence rates of the initial estimators of Q̄0 and g0.

1-TMLE 1?-TMLE
n n

q p 500 1000 2000 10000 500 1000 2000 10000

0.002
0.002 1.55 1.79 2.21 6.16 1.56 1.80 2.22 6.00
0.065 1.82 2.35 3.41 13.00 1.70 2.01 2.56 6.47
0.149 2.12 2.91 4.26 14.64 1.84 2.20 2.62 4.73

0.044
0.002 1.32 1.43 1.58 3.02 1.34 1.48 1.63 3.35
0.065 1.53 1.81 2.30 6.54 1.47 1.65 1.89 3.83
0.149 1.77 2.17 2.89 8.03 1.60 1.80 2.01 3.05

0.086
0.002 1.18 1.24 1.26 1.77 1.20 1.27 1.32 2.02
0.065 1.33 1.44 1.63 3.35 1.31 1.38 1.47 2.33
0.149 1.49 1.70 2.03 4.27 1.42 1.50 1.60 2.04

Figure 3: Relative mean squared error of the 1?-TMLE and the 1-TMLE for different sample sizes
and varying convergence rates of the initial estimators of Q̄0 and g0.
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The coverage probabilities of a Gaussian-based 95% confidence interval assuming known vari-
ances are presented in Table 4, for selected values of (p, q), and in Figure 4, for all the values of
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(p, q) considered. Figure 4 shows that the coverage probability of the 1-TMLE degrades as sample
size increases for small values of p and q, reaching values as low as 0.12 when n = 10000. In com-
parison, the coverage probability of the 1?-TMLE is never below 0.50 even in the most extreme
cases (p < 0.1, q < 0.05, n = 10000).

The largest gain in performance for the 1?-TMLE is obtained when n = 10000, p = 0.149,
and q = 0.002 (see Table 4). In that case, the coverage probability of the 1-TMLE is 0.12, whereas
the 1?-TMLE has a coverage of 0.65.

Table 4: Coverage probabilities of the 1?-TMLE and the 1-TMLE for different sample sizes and
varying convergence rates of the initial estimators of Q̄0 and g0.

1-TMLE 1?-TMLE
n n

q p 500 1000 2000 10000 500 1000 2000 10000

0.002
0.002 0.93 0.90 0.86 0.49 0.93 0.90 0.87 0.51
0.065 0.91 0.86 0.75 0.16 0.92 0.89 0.83 0.47
0.149 0.88 0.81 0.68 0.12 0.90 0.87 0.83 0.65

0.044
0.002 0.93 0.92 0.90 0.75 0.93 0.92 0.90 0.73
0.065 0.92 0.89 0.84 0.44 0.93 0.91 0.88 0.67
0.149 0.90 0.86 0.78 0.35 0.92 0.90 0.87 0.76

0.086
0.002 0.94 0.94 0.93 0.87 0.94 0.93 0.92 0.85
0.065 0.93 0.92 0.89 0.70 0.93 0.92 0.91 0.81
0.149 0.92 0.90 0.86 0.61 0.93 0.91 0.90 0.85
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Figure 4: Coverage probabilities of the 1?-TMLE and the 1-TMLE for different sample sizes and
varying convergence rates of the initial estimators of Q̄0 and g0.
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6 Example

In order to illustrate the method presented, we make use of the dataset lindner available in the
R package PSAgraphics. The dataset contains data on 996 patients treated at the Lindner Center,
Christ Hospital, Cincinnati in 1997, and were originally analyzed in [2]. All patients received a
Percutaneous Coronary Intervention (PCI). One of the primary goals of the original study was to
assess whether administration of Abciximab (an anticoagulant) during PCI improves short and long
term health outcomes of patients undergoing (PCI). We reanalyze the lindner dataset focusing on
the cardiac related costs incurred within 6 months of patients initial PCI as an outcome. The co-
variates measured are: indicator of coronary stent deployment during the PCI, height, sex, diabetes
status, prior acute myocardial infarction, left ejection fraction, and number of vessels involved in
the PCI.

As noted by several authors [e.g. 10, 1, 7], causal inference problems may be tackled using
methods for outcomes missing at random. Let T denote an indicator of having received Abciximab.
Adopting the potential outcomes framework, consider the potential outcomes Yt : t ∈ {0, 1},
given by the outcomes that would have been observed in a hypothetical world if, contrary to the
fact, P (T = t) = 1. The consistency assumption states that A = t → Yt = Y , where Y is the
observed outcome. Thus, E(Yt) may be estimated using methods for missing outcomes, where Yt
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is observed only when T = t. In particular, estimation of E(Y1) and E(Y0) is carried out using
the methods described in the previous sections with A = T and A = 1 − T , respectively. Our
parameter of interest is the average treatment effect E(Y1)− E(Y0).

Since the outcome is continuous, we first used the transformation (y − min(y))/(max(y) −
min(y)) to map it to the interval [0, 1]. We then used the approach outlined in [5] to construct the
1-TMLE and the 1?-TMLE. The distribution of both estimators was estimated with the bootstrap.

The regression of the outcome conditional on covariates was estimated separately for the two
treatment groups. Both the outcome regression and the treatment mechanism where estimated
using a model stacking technique called super learning [12]. Super learning takes a collection of
candidate estimators and combines them in a weighted average, where the weights are chosen to
minimize the cross-validated prediction error of the final predictor. The collection of algorithms
used is described in Table 5. Table 6 shows the cross-validated risks of the algorithms as well as
their weights in the final predictor of Q̄0 and g0. This illustration is an example of a situation in
which the estimator of Q̄0 and g0 may converge at rates slower than n−1/4. Thus, we expect the
1?-TMLE to match or improve the performance of the 1-TMLE.

The R code used to implement the estimators is provided in Appendix A.

Table 5: Prediction algorithms used to estimate Q̄0 and g0
Algorithm Description

GLM Generalized linear model. The logit link was used for g0 and the
identity for Q0.

BayesGLM Bayesian GLM. Weakly informative priors were used as imple-
mented by default in the function bayesglm of the arm package
in R.

GAM Generalized additive model as implemented in the R package
gam.

PolyMARS Multivariate adaptive polynomial spline regression implemented
in the R package polspline.

Earth Multivariate adaptive regression splines implemented in the R
package earth.

The unadjusted dollar difference in the outcome between the two groups is equal to US$2216.
The first and second order TMLE give an adjusted difference of US$2993.9 and US$2835.7, re-
spectively. Figure 5 presents the bootstrap distributions of the estimators. In particular, the 95%
confidence intervals for the 1-TMLE and the 1?-TMLE are (1115.5, 4858.7) and (−233.9, 4845.8),
respectively. Note that an analysis based on the 1-TMLE would have concluded an effect signif-
icantly different from zero with a 0.05 type I error probability, whereas an analysis based on the
1?-TMLE would have concluded that the effect is not significant. In this illustration the use of an
estimator with improved asymptotic properties changes dramatically the substantive conclusion of
the study.
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Table 6: Cross-validated risk and weight of each algorithm in the super learner for estimation of
Q̄0 and g0.

Q̄0 Treated Q̄0 Untreated g0
Algorithm CV Risk Weight CV Risk Weight CV Risk Weight
GLM 0.00275 0.00000 0.00684 0.00000 0.19506 0.00000
BayesGLM 0.00275 0.00000 0.00684 0.00000 0.19502 0.13993
GAM 0.00274 0.65699 0.00679 0.57261 0.19495 0.00000
PolyMARS 0.00280 0.15156 0.00709 0.21333 0.18905 0.62503
Earth 0.00281 0.19145 0.00688 0.21405 0.19332 0.23504

The 1?-TMLE puts in more effort to remove bias caused by slow convergence rates of the initial
estimators. As a result, its variance provides confidence intervals that contain the true parameter
value with higher probability. However, to obtain this benefit of the 1?-TMLE, it is necessary to
use the bootstrap or a second order Taylor expansion, instead of the influence function D(1) which
is often used to estimate the variance of the 1-TMLE.
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Figure 5: Bootstrap estimate of the density of the estimators.
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Appendix A R code
require(’SuperLearner’)

## Function to truncate probabilities

trunc <- function(x){

x[x >= 0.999] <- 0.999

x[x <= 0.001] <- 0.001

x

}

## Kernel regression

kernelreg <- function(A, X, h){

reg <- ksmooth(X, A, bandwidth = h, n.points = 1000)

x <- reg$x[!is.na(reg$y)]

y <- reg$y[!is.na(reg$y)]

return(splinefun(x, y))

}

## Function to cross-validate the estimators.

## datat is the training data

## datav is the validation data, may be set to NULL

## h is the bandwidth

## lib is the super learner library

cvfun <- function(datat, datav, h, lib){

attach(datat)

on.exit(try(detach(datat), silent = T))

Y[A==0] <- 9999

n <- length(A)

gnfit <- try(SuperLearner(A, W, family = binomial(), SL.library = lib))

Qnfit <- try(SuperLearner(Y[A==1], W[A==1,], family = gaussian(), SL.library = lib))

predA <- function(x)trunc(predict(gnfit, newdata=x)$pred[,1])

predY <- function(x)trunc(predict(Qnfit, newdata=x)$pred[,1])

Qn <- try(trunc(predY(W)))

gn <- try(trunc(predA(W)))

predg <- kernelreg(A, gn, h=h)

gnn <- try(trunc(predg(gn)))

H1 <- 1/gn

H2 <- 1/gn * (1 - gnn/gn)

epsso <- try(coef(glm(Y ~ 0 + offset(qlogis(Qn)) + H1 + H2, family = binomial, subset = A == 1)))

Qn1 <- trunc(plogis(qlogis(Qn) + epsso[1] / gn + epsso[2]/gn * (1 - gnn/gn)))

psi <- mean(Qn1)
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detach(datat)

if(!is.null(datav)){

attach(datav)

on.exit(try(detach(datav), silent = T))

Y[A==0] <- 9999

Qnv <- trunc(predY(W))

gnv <- trunc(predA(W))

gnnv <- try(predg(gnv))

Qn1v <- trunc(plogis(qlogis(Qnv) + epsso[1] / gnv + epsso[2]/gnv * (1 - gnnv/gnv)))

Dv <- A/gn * (Y - Qn1v) + Qn1v - psi

detach(datav)

resv <- list(psi=psi, Dv=Dv, Qv=Qn1v)

return(resv)

} else {

return(psi)

}

}

## Function to compute the risk of a candidate h with V-fold cross-validation

cvrisk <- function(h, data, V, lib){

n <- length(data$A)

psi <- cvfun(data, datav=NULL, h, lib=lib)

valid <- split(sample(1:n), rep(1:V, length = n))

res <- sapply(valid, function(i){

datat <- lapply(data, function(x)subset(x, !(1:n %in% i)))

datav <- lapply(data, function(x)subset(x, 1:n %in% i))

out <- cvfun(datat, datav, h, lib)

cvRSS <- sum(((datav$Y - out$Qv)[datav$A==1])^2)

cvVar <- sum((out$Dv)^2)

cvBias <- 1/V * (out$psi - psi)

return(c(cvRSS=cvRSS,cvVar=cvVar,cvBias=cvBias))

})

fac <- apply(res, 1, sum)

risk <- fac[1] + fac[2] + n*fac[3]^2

return(risk)

}
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require(’SuperLearner’)

require(’PSAgraphics’)

data(lindner)

n <- dim(lindner)[1]

A <- lindner[,’abcix’]

Y <- lindner[,’cardbill’]

range <- range(Y)

Y <- (Y - range[1])/diff(range)

W <- lindner[, c(’stent’, ’height’, ’female’, ’diabetic’, ’acutemi’, ’ejecfrac’, ’ves1proc’)]

data1 <- list(W=W, A=A, Y=Y)

data0 <- list(W=W, A=1-A, Y=Y)

rm(A, W, Y)

## lib <- c(’SL.glm’, ’SL.bayesglm’, ’SL.gam’, ’SL.polymars’, ’SL.earth’)

## Runs faster:

lib <- c(’SL.glm’, ’SL.gam’)

## Compute the optimal bandwidth

hopt1 <- optimize(cvrisk, interval=c(0.00000001, 5), data1, V=5, lib=lib)$minimum

hopt0 <- optimize(cvrisk, interval=c(0.00000001, 5), data0, V=5, lib=lib)$minimum

## Compute the estimates

psi1 <- cvfun(data1, datav=NULL, h=hopt1, lib=lib)

psi0 <- cvfun(data0, datav=NULL, h=hopt0, lib=lib)

## Back to original Y scale

psi <- (psi1-psi0)*diff(range) + range[1]
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