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Stochastic Optimization via Forward Slice

May 8, 2015

1. INTRODUCTION

Optimization consists of maximizing or minimizing a real-valued objective
function. In chemical engineering, for example, optimization may be used to
find a set of conditions under which the maximum yield may be obtained from a
chemical process. The field of industrial engineering also deals with optimization
of complex processes, which include people, information, materials, etc. In
statistics, optimization has been used, for example, in estimating parameters
of the linear regression model, where the goal is to minimize the square loss
function. Another area in statistics for which optimization methods are highly
useful is in the area of optimal design where the experimental samples are chosen
to maximize the information that is attained from the experiment.

In many optimization problems, such as in estimating the linear regression
parameters, the objective function is simple enough such that closed-form so-
lutions may be obtained. However, in many problems encountered in practice,
the objective function to be maximized may not yield closed-form solutions.
Over many decades, optimization methods have been developed to solve these
problems. The optimization methods can be characterized into two categories:
deterministic and stochastic optimization methods.

Deterministic optimization is a branch in mathematics which encompasses
classical methods for optimization. Deterministic optimization methods, in gen-
eral, rely on the gradient or the Hessian of the objective function. Some common
methods for deterministic optimization include the conjugate gradient (CG)
method [6], BFGS method [1], and Nelder-Mead method [10].

Deterministic optimization methods are usually sensitive to the initial values
and may not converge depending on the initial value and the shape of the ob-
jective function. Furthermore, the solution from the deterministic optimization
methods may converge to a local extremum but not a global extremum.

Stochastic optimization methods attempt to address some of the above is-
sues. Stochastic optimization methods refer to methods that utilize iterates
that are ‘random’. An example of stochastic optimization methods is simulated
annealing, which is a local search algorithm used for optimization problems that
is capable of escaping from a local optimum by allowing a chance to select infe-
rior points at a given iteration [7]. The probability of selecting an inferior point
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depends on a “temperature” parameter at each iteration. However, some of
the issues with the simulated annealing method are that it needs to be heavily
calibrated, it is sensitive to initial value, and it does not guarantee convergence
to the global maximum.

In this paper, we propose another stochastic optimization method, which
we call “Forward Slice”, which we describe in Section 2. In Section 3, the
performance of the proposed method is evaluated in both optimization and in
its application in optimal design. In Section 4, we discuss the performance of
the method, as well as its advantages and some limitations.

2. METHOD: FORWARD SLICE

In this section we propose a method for stochastic optimization. We evaluate
its performance and apply to design problems in Section 3. At its core, our
method is based on the procedure that Neal (2003) called the ‘slice sampling’
procedure [9] [3] [8], which was originally developed as a Markov chain Monte
Carlo sampling procedure to draw samples from a target distribution. The slice
sampling method relies on an auxiliary variable which defines a level at which
we slice the target density to obtain regions from which we draw samples of the
target distribution.

Similar to Neal’s method, our procedure uses an auxiliary variable for stochas-
tic optimization that also defines the slices, but of an objective function to be
maximized (or minimized). Moreover, unlike with Neal’s method, the auxiliary
variable in our approach is not sampled and takes on non-decreasing values in
the sequential iterations of the procedure so that, for a given pre–specified tol-
erance, at the end of the procedure we attain the maxima and the argument of
the maxima (or close values given the selected tolerance level).

2.1 Forward Slice: Unidimensional case

Let f : X → R be a function with a compact domain X and codomain R.
We note that we alternatively may refer to X as the design space. Our goal is
to find values x ∈ X that maximize f(·). We build on the slice sampling idea
to derive a procedure for stochastic optimization.

In our method we obtain slices with increasing function level y at each it-
eration. We call it the forward slice procedure. For a given x0 ∈ X , we take
y = f(x0). Let S denote the horizontal slice as defined by Neal, which is the
region defined as S = {x : f(x) ≥ y}. The forward slice procedure selects the
next point from the slice region S, more specifically, the slice region within the
design space, which we denote as SX (i.e. SX = S ∩ X ). The forward slice
procedure guarantees that the next sample generated from the forward slice
(x1) follows f(x1) ≥ f(x0) because x1 is sampled from S, a region where the
function cannot take on decreasing values.
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Note that the set S may not be completely known. Regardless, the sampling
of x1 from the set S can be done using a simple rejection sampling scheme.
Specifically, first, we sample an initial proposal candidate (call it p0) by uni-
formly sampling from the entire design space X . If f(p0) ≥ f(x0), then we
take x1 = p0. Otherwise, we reduce the space from which we sample a pro-
posal based on p0. Specifically, since x0 ∈ S (because f(x0) ≥ f(x0)), then
we can obtain the revised sampling space as X (1) = X (0) ∩ (−∞, p0] if p0>x0
or X (1) = X (0) ∩ [p0,∞) if p0<x0. Then, we sample a new proposal p1 from
X (1). Similarly, if f(p1) ≥ f(x0), then we take x1 = p1. Otherwise, we reduce
the sampling space again based on p1 as X (2) = X (1) ∩ (−∞, p1] if p1>x0 or
X (2) = X (1)∩ [p1,∞) if p1<x0. We continue to sample proposal candidates and
to reduce the sampling space until we sample pj such that f(pj) ≥ f(x0), for
which we take x1 = pj .

There is no guarantee that the next selected point x1 maximizes the function
f(x). Thus, we define the forward slice as an iterative procedure, using the
obtained x1 from the previous iteration as the next input in the next iteration.
We use the following notation: x0 denotes the initial point input to the forward
slice, while xk and Sk denote, respectively, the point and the slice region after
the kth iteration where Sk = {x : f(x) ≥ f(xk)}, and SX

k denotes the portion of
the slice region Sk within the design space X , i.e. SX

k = Sk∩X . In other words,
SX
k is a set of points in X that is inside the slice region after the kth iteration, i.e.
SX
k = {x : x ∈ X , f(x) ≥ f(xk)}. Furthermore, we use the following notation

for the proposal candidates for one slice iteration: p0 denotes the initial proposal
candidate, X (1) denotes the space from which the next proposal (p1, if needed) is
drawn; and more generally pj denotes the proposal candidate after j previously-
rejected proposals, and X (j+1) denotes the space from which the next proposal
candidate (pj+1) is to be drawn if pj is also rejected. By convention, X (0) = X .
Given a user-specified tolerance for convergence ε, the forward slice procedure
is given as follows in Algorithm 1.
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Algorithm 1 Univariate forward slice

1: Set ε>0 as convergence tolerance, initial point x0, and design space X .
2: Set k = 0
3: repeat
4: Define Sk = {x : f(x) ≥ f(xk)}
5: Set j = 0. Sample xk+1 uniformly from SX

k = Sk ∩ X as follows:
6: repeat
7: Sample pj uniformly from X (j)

8: if f(pj) ≥ f(xk) then
9: xk+1 ← pj

10: break
11: else
12: if pj>xk then
13: X (j+1) ← X (j) ∩ (−∞, pj ]
14: else
15: X (j+1) ← X (j) ∩ [pj ,∞)
16: end if
17: j ← j + 1
18: end if
19: until f(pj) ≥ f(xk)
20: Calculate D = |(f(xk+1)− f(xk))/f(xk)|
21: k ← k + 1
22: until D ≤ ε

2.2 Forward Slice: Multidimensional case

We can extend the forward slice method to the multi–dimensional case in
analogy to the adaptive slice sampling by Thompson and Neal [11] that utilizes
sampled “crumbs” from a known auxiliary distribution. Neal [9] proposed these
“crumbs” as a trail of points in the space X that guide the drawing of the next
sample given the initial point. Assume the domain space X has dimension p.
Let J denote the matrix whose nullspace represents the subspace of X from
which the next crumb is to be drawn. This space is informed by the rejected
samples obtained from the crumbs. Similarly to the unidimensional case, for a
given x0 ∈ X , we take y = f(x0). Let S denote the horizontal slice as defined
by Neal, which is the region defined as S = {x : f(x) ≥ y}. The sampling from
the slice S is done also by rejection sampling similarly to the unidimensional
case. We start by obtaining a proposal sample xp from the design space X . If
f(xp)>f(x0), then we take x1 = xp. Otherwise, the proposal xp is rejected, and
the subspace from which the next proposal sample is taken from is guided by xp.
For a rejected proposal xp, let g∗ be the projection of ∇f(xp) onto the nullspace
of J , where ∇f denotes the gradient of the function f . If g∗ has a “large angle”
with the gradient of the function at the rejected proposal, then the nullspace of
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J and the gradient is “nearly” orthogonal. On the other hand, when the angle
is small, then we adapt the sampling subspace by appending the column of J
by the normalized g∗. Thompson and Neal defined θ to be the threshold angle
for “non-orthogonality”, and they proposed 60o as the threshold [11]. Then,
for a rejected proposal xp, a new proposal sample xp is obtained by sampling
from N (J) ∩ X , where N (J) denotes the nullspace of J . This can be done
by sampling x0

p from X and taking its projection onto the nullspace of J , i.e.

xp = (I − JJT )x0
p. This continues until a proposal xp such that f(xp)>f(x0)

is obtained
Thus, adapting the shrinking rank approach by Thompson and Neal [11] for

stochastic optimization via the iterative forward slice procedure we attain the
following Algorithm 2.
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Algorithm 2 Multivariate forward slice

1: Set the the tolerance ε, initial design point x0, the maximum number of
candidates per slice nc, the shrinking multiplier φ ∈ (0, 1), and the angle θ.

2: repeat
3: Obtain y ← f(x0)
4: Define S = {x : f(x) ≥ y}
5: Initialize J = [ ] as an empty-matrix.
6: Initialize S = X .
7: Sample x1 from SX = S ∩ X as follows
8: repeat
9: Obtain a random sample zk from S

10: if J = [ ] then
11: x̃k ← x0 + zk
12: else
13: x̃k ← x0 + zk − JJT zk
14: end if
15: if f(x̃k) ≥ y then
16: x1 ← x̃k
17: break
18: else
19: if the number of columns of J <p− 1 then
20: Calculate g∗ as follows
21: if J = [ ] then
22: g∗ = ∇f(x̃k)
23: else
24: g∗ = ∇f(x̃k)− JJT∇f(x̃k)
25: end if
26: if g∗T∇f(x̃k)

‖g∗T ‖‖∇f(x̃k)‖> cos(θ) then

27: Update J = [J g∗/‖g∗‖]
28: else
29: Update S ← S × φ
30: end if
31: else
32: Obtain nc candidate points from the sampling subspace.
33: Call this candidate set C.
34: if ∃xc ∈ C such that f(xc) ≥ y then
35: x1 ← argmax

c∈C
[f(c)]

36: break
37: else
38: Reset J = [ ]
39: end if
40: end if
41: end if
42: until f(x1) ≥ y
43: Calculate D = |(f(x1)− f(x0))/f(x0)|
44: x0 ← x1
45: until D ≤ ε
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2.3 Heuristics for Stochastic Optimization via Forward
Slice

The forward slicing method should select a point that gives a global maxi-
mum of a function f(·) under the following conditions:
(1). The function f is continuous, smooth, and differentiable in the space X .

(2). There is no local plateau in X . We define a local plateau as follows: a
local plateau exists in X if ∃ an interval P ⊂ X such that f(xi) = f(xj)
∀xi, xj ∈ P and ∃xk ∈ X such that f(xk)>f(x) ∀x ∈ P .

(3). The design space X is compact.

Under the above conditions, in the Appendix we show that the iterates
converge to a global maximum. For practical implementation of the algorithm,
however, we set a tolerance ε>0 to restrict the number of iterations.

A graphical illustration of the forward slice procedure is shown in Figure 1.
Consider the case where we have the initial point x0 closer to one of the local
modes that is not the global maximum. The first iteration of the forward slice
procedure is shown below.

The upper left panel of Figure 1 shows that the next sampled point based on
the first iteration is at the second mode or very close to it. Since the difference
in the response between f(x1) and f(x0) is larger than the set tolerance, we
perform another iteration of the forward slice, as shown in the upper right
panel of Figure 1. Given the new slice level, the slice S contains two intervals:
one interval for the first mode and another for the second mode. Since the first
interval is much larger than the second one, we are more likely to sample the
next x1 from the slice portion containing the first mode, which is what happened
in this case.

Given that we have not reached the tolerance for convergence, we perform
another forward slice step, as shown in the lower left panel of the Figure 1. We
observe that the slice level now excludes the second mode entirely, ensuring that
we will obtain the maximum that is in the first mode if we continue running the
forward slice until convergence. In this case, convergence is achieved after 17
iterations which is shown in the lower right panel of Figure 1, and we observe
that the x obtained gives the global maximum for f(x).
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Figure 1: An example run of the forward slice with tolerance ε = 1E-8.

3. SIMULATION STUDIES

3.1 Forward Slice in Optimization

We utilized simulation studies to assess the performance of the forward slice
method compared to alternative optimization methods, namely, the conjugate
gradient (CG) method, the Nelder-Mead method (NM), the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method, the bounded BFGS (L-BFGS-B) method,
simulated annealing (SANN), and the Brent method, all of which available with
the optim() function in R.

For the unidimensional case, we considered a multimodal response function
as a mixture of three normal distributions and assessed the methods over 1000
replications by comparing their resulting points x that maximize the function
f(x). All methods utilized a common initial value.
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Figure 2 shows that the NM, BFGS, L-BFGS-B, CG, and SANN methods
correctly select the highest mode around 50% of the time. On the other hand,
the forward slice method correctly selects the optimum at the highest mode 98%
of the time.
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● Forward slice 
NM
BFGS
CG
L−BFGS−B
SANN

Figure 2: Comparison of methods in a univariate setting. The points represent
where the optimum was selected for one replication. Reported percentages show
how often the point was selected as the optimum for each method upon 1,000
replications

Similarly, we considered a scenario of the multivariate response function
as a mixture of three bivariate normal distributions and assessed the methods
over 1000 replications by comparing their resulting points x that maximize the
function f(x).

Figure 3 and Table 1 show that the multivariate forward slice procedure
chooses the correct mode more frequently compared to the alternative methods.
The average maxima is also higher and closer to the true maxima under the
multivariate forward slice compared to the average from the alternative meth-
ods.
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Figure 3: Comparison of methods in multivariate setting. The hollow round
points represent where the optimum was selected for one replication.

Table 1: Comparison of methods in multivariate setting as shown also in Figure
3. The percentages are the frequency for each method selecting a point of
that given mode. This table presents results for the highest two modes of the
function, with the first mode higher than the second mode.

Method Mode 1 (%) Mode 2 (%) Mean response
Forward slice 61 22 0.208

NM 17 24 0.179
BFGS 12 15 0.123

CG 12 15 0.128
L-BFGS-B 18 21 0.170

SANN 35 16 0.169
True Maximum 0.239
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3.2 Forward Slice in Design Problems

In this section we consider the multi–dimensional design problem where the
goal is to select design points to maximize the information obtained from an
experiment, given that there is a constraint in the maximum sample size. Many
optimality criteria, describing some measure of information from an experiment,
have been developed over the years. The most commonly used criterion is the
D-optimality criterion, which seeks to minimize the volume of the confidence
ellipsoid of the parameters in a specific model.

Dror and Steinberg (2008) proposed a sequential method for obtaining a D-
optimal multi-variable experiment under the generalized linear models (GLM)
framework. Their method relies on approximations to the Bayesian D-optimality
criterion to improve computational efficiency and time. The Bayesian D-optimality
criterion is given by Chaloner and Larntz [2]:

φ(d) =

∫
log(|I(β; d)|)dπ(β).

Dror and Steinberg proposed two approximations to the Bayesian D-optimality
criterion. First, their method is based on the discretization of the prior. Sec-
ond, they use an approximation of the Bayesian D-optimality criterion (defined
above) to obtain a candidate set of points for appending to the current design
matrix with:

φ2(β̃; d) = log(|I(β̃; d)|)

where β̃ denotes the posterior median of the parameter β for the GLM model.
At each sequential step, the design point that maximizes the optimality criterion
is obtained using Federov’s exchange algorithm [4] [5]. At any given sequential
step, a candidate set of points C is obtained from the design space X , and
the current design matrix is appended by a random subset of the candidate
set. The Federov’s exchange algorithm is interative. At any iteration of the
exchange algorithm, a point from the design matrix is exchanged with a point
from the candidate set as to maximize the increase in the determinant of the
information matrix [5].

Alternatively, we propose to select the next design point using the forward
slice procedure. We note that the approximate D-optimality criterion specifi-
cally define the objective function for the forward slice. Specifically, we utilize
the function

f(x) = φ2(β̃; d) = φ2

(
β̃;

(
X
x

))
= log(|I(β̃; d)|).

Thus, in the above, d =

(
X
x

)
, where X is the current design matrix and x is

the next (multivariate) design point.
For completeness, we re-state the forward slice procedure for the D-optimality

criterion using the above function. We note that the initial design points are
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obtained using the algorithm by Dror and Steinberg to guarantee that the in-
formation matrix is of full rank, and to ensure comparability between methods.

Let n denote the current number of samples, and N denote the total sample
size. Then, the forward slice procedure for selecting a local D-optimal design
point is given by

Algorithm 3 Univariate forward slice

1: Define the tolerance ε.
2: Obtain the first n0 design points defining a full–rank current design matrix
X0 using the method by Dror and Steinberg using the Fedorov’s exchange
algorithm. (Note that n = n0 after this step)

3: for n<N do
4: Define x0n to be the nth row of X0

5: Define dn =

(
X0

x0n

)
6: Define f(x) = φ2

(
β̃;

(
X0

x

))
.

7: y ← f(x0n) = φ2(β̃; dn)
8: Obtain x1 using Algorithm 2 with x0n as initial point and f(x) defined

in step 6

9: Append X0 ←
(
X0

x1

)
10: end for

Simulation with 2 variables. We performed a simulation study with 1000 repli-
cations to assess the performance of the slice design procedure compared to
the Fedorov’s exchange algorithm for selecting a single next design point. We
used a logistic regression model with 2 variables with true regression parameters
(0, 7,−3)T . The initial design matrix is given by X =

1 −0.262 −1
1 0.259 1
1 0.754 1
1 0.108 −1


This initial design matrix X is based on running the algorithm by Dror and
Steinberg up until the information matrix given the current design points is
non-singular. Given that there are only 2 variables, we can obtain the contour
plot of the D-optimality criterion upon addition of one design point (x1, x2) as
a function of x1 and x2. With 1000 replications, the scatter of the next design
point given the current design X for both methods is given below.

Figure 4(a) shows that the obtained design point is close to the optimal
using the Fedorov’s exchange algorithm, whereas in Figure 4(b), we observe
that the obtained design point using the slice procedure also clusters around
the optimal. The mean log D-optimality for Fedorov’s is 0.01189, whereas the
mean log D-optimality for the slice procedure is 0.01188. The two methods
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appear to be comparable in selecting the next design point in terms of the
D-optimality criterion.

(a) (b)

Figure 4: Contour plot of the D-optimality criterion upon addition of one de-
sign point (x1, x2). Scatter of next optimal design points using the Federov’s
exchange algorithm (panel a) or the forward slice procedure (panel b).

Simulation studies are then performed to assess the performance of the for-
ward slice method throughout a study instead of selecting a single next design
point to sample. We assess the performance of the forward slice method in Dror
and Steinberg’s sequential D-optimal design with a binary response variable.
Dror and Steinberg’s sequential D-optimal design re-estimates the model pa-
rameters after the response under a new design point is observed. Based on the
current parameter estimates, the next design point is chosen to maximize the
estimate of the D-optimality criterion using the Fedorov Exchange Algorithm.
This procedure is repeated until the maximum sample size. In our simulation
studies, we only replace the Fedorov Exchange Algorithm with the forward slice
procedure, but do not change the parameter estimation procedure or stopping
criterion.

We performed a simulation study with 100 replications to assess the per-
formance of the slice design procedure compared to the Fedorov’s exchange
algorithm using a logistic regression model with 4 variables with the maximum
sample size of n=30.

Table 2 shows the true parameter values and the prior distribution for each
parameter along with corresponding simulation results. We note that in this set
of simulations the prior distributions are flat, but centered at the true parameter
values.
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Table 2: Simulation results comparing the performance of the forward slice to
the Fedorov’s exchange algorithm in the context of the method by Dror and
Steinberg when the priors are flat, but centered around the true parameter
value. We assume n=30.

Mean parameter (Mean 95% range)
Parameter True value Prior dist. Fedorov Forward-slice

β0 0 Unif(-10,10) -0.233 (2.246) -0.049 (1.98)
β1 7 Unif(-3,17) 11.84 (6.64) 12.20 (7.06)
β2 8 Unif(-2,18) 13.56 (7.46) 13.30 (7.91)
β3 -3 Unif(-13,7) -5.33 (3.80) -4.75 (2.87)
β4 0.5 Unif(-9.5,10.5) 0.79 (2.61) 0.79 (2.19)

Median D-Efficiency 0.52 0.56

From Table 2 above, we see that the median D-efficiency is slightly higher
using the forward-slice procedure compared to using the Fedorov Exchange Al-
gorithm. The bias and uncertainty of the parameter estimates are comparable
between the two methods.

We further explored the methods to assess sensitivity to the the assumed
priors with a simulation with 100 replications, but this time assuming that
the priors are flat and centered around 0 instead of centered around the true
parameter values, and with maximum sample size of n = 40 per replication.

Table 3: Simulation results comparing the performance of the forward slice to
the Fedorov’s exchange algorithm in the context of the method by Dror and
Steinberg when the priors are flat, but centered around 0. We assume n = 40.

Mean parameter (Mean 95% range)
Parameter True value Prior dist. Fedorov Forward-slice

β0 0 Unif(-10,10) 0.124 (1.528) 0.404 (1.25)
β1 7 Unif(-10,10) 6.77 (4.05) 7.88 (3.60)
β2 8 Unif(-10,10) 7.92 (3.29) 8.28 (3.04)
β3 -3 Unif(-10,10) -3.37 (2.09) -3.03 (1.70)
β4 0.5 Unif(-10,10) -0.23 (2.23) -0.39 (2.46)

Median D-Efficiency 0.46 0.50

From Table 3 above, we see that the median D-efficiency is slightly higher
using the forward-slice procedure compared to using Fedorov Exchange Algo-
rithm. The bias and uncertainty of the parameter estimates are comparable
between the two methods.
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4. DISCUSSION

The forward slice procedure is a stochastic optimization procedure that se-
lects points with response closer to the optimum at each iteration. The points
obtained from the forward slice procedure theoretically converge to the global
maximum within a constraint of the design space X . The forward slice proce-
dure allows escape from a local optimum by not restricting the search for the
next point to the local search. Rather, the forward slice procedure samples from
SX = S ∩ X , that is, the slice within the design space.

The forward slice procedure selects the highest mode (or maxima) most of
the times in univariate optimization, as shown in Figures 2, and 3 and outper-
forms the selection obtained with alternative optimization methods (conjugate
gradient, BFGS, L-BFGS-B, Nelder-Mead, and simulated annealing). Simi-
larly, the forward slice procedure outperforms the aforementioned alternative
optimization methods in the multivariate setting.

We assessed the method in a design problem approached by Dror and Stein-
berg and utilized the forward slice procedure instead of the Federov Exchange
Algorithm to obtain the design point that would maximize the D-optimality cri-
terion when appended to the current design matrix. In this case, the parameters
defining the true objective function are unknown. Thus, the objective function
changes upon accrual of new information. As a consequence, the optimum de-
sign points are selected based on the current estimate of the objective function
(by assuming a given model and based on the current estimates of the model
parameters). For the multifactor experiments, we found that the forward slice
procedure obtains design points with slightly higher D-efficiency compared to
the design points obtained with the Fedorov exchange algorithm.

One limitation for the forward slice procedure is that the probability of
sampling from the highest mode compared to a local lower mode depends on
the relative size of the ‘support’ of the modes at each slice level. For example, for
a function with narrow high mode and wider lower mode, as shown in Figure 5
below, we observe that the forward slice procedure only selects the highest mode
around 57% of the times. We observe, however, that the forward slice procedure
still outperforms the alternative methods which only selected the highest mode
around 20% of the times.
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Figure 5: Comparison of methods. The points represent where the optimum was
selected for one replication. Reported percentages show how often the point was
selected as the optimum for each method upon 1,000 replications

We note that the forward slice procedure may have an increased time to
convergence. In our simulations, the forward slice procedure took on aver-
age, around 5 times the computing time required for the simulated annealing
method. To explain this increase in computation time, take for an example the
one–dimensional optimization. The alternative methods may stop after finding
a local mode. The forward slice procedure, however, may continue sampling if
there is support for other modes in a given slice. In multi–dimensional setting
the increase in computational time can further be explained by the adaptive pro-
cedure for sampling from the slice. Thus, we observe a performance–computing
time trade–off with respect to our proposed method versus existing alternatives.
However, the ability of the method to continue to explore other modes allows
for its finding of the global maximum.
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Appendix

Under the conditions stated in Section 2.3, in this section we show that the
iterates of the forward slice procedure converge to a global maximum.

Lemma 2.1. For any given point x0 ∈ X , for which x0 is not a global maximum,
one iteration of the forward slice procedure gives a point x1 ∈ X such that
f(x1)>f(x0) a.s.

Proof. Given the initial point x0, we obtain the slice level y = f(x0) which
defines the horizontal ‘slice’ S0 = {x : f(x) ≥ f(x0)}. Based on our slice
procedure, the next point x1 is sampled from SX

0 = S0 ∩ X ⊆ S0. Note that
SX
0 6= ∅, since x0 ∈ SX

0 . Since ∀x ∈ S0, f(x) ≥ f(x0) by definition of S0,
we have f(x1) ≥ f(x0). Let AX

0 = {x : f(x) = f(x0)} ∩ X and BX
0 = {x :

f(x)>f(x0)} ∩ X . Thus, clearly SX
0 = AX

0 ∪ BX
0 , and AX

0 ∩ BX
0 = ∅. Since

x1 is sampled from SX
0 , so either x1 ∈ AX

0 or x1 ∈ BX
0 . However, given the

continuity and absence of local plateau, AX
0 is a set of finitely many points,

i.e. l(AX
0 ) = 0, where l denotes the Lebesgue measure. Since x1 is sampled

uniformly from SX
0 , then x1 is from AX

0 with probability l(AX
0 )/l(SX

0 ) or x1 is
from BX

0 with probability l(BX
0 )/l(SX

0 ). Since l(AX
0 ) = 0, then x1 ∈ BX

0 a.s.,
which means f(x1)>f(x0) a.s.

Recall the notation that for the kth iteration of the forward slice procedure,
xk denotes the current iterate, xk+1 denotes the next iterate, and Sk denotes
the ‘slice’ at the current iterate, i.e. Sk = {x : f(xk) ≥ f(x)}. Let X∗ =
{x∗1, x∗2, ..., x∗N} denote the points that give the global maxima, i.e. f(x∗i ) ≥ f(x),
∀x ∈ X , ∀i = 1, 2, ..., N . Given condition (2) of no local plateau in the design
space X , X∗ contains finitely many points.

Lemma 2.2. For a given point x0 ∈ X , for which x0 is a global maximum, i.e.
x0 ∈ X∗, an iteration of the forward slice procedure gives a point x1 ∈ X∗ a.s.

Proof. Given the initial point x0 ∈ X∗, the slice region is given by SX = X∗

since x0 is already a global maximum. Hence, the next design point x1 obtained
from an iteration of the slice procedure would result in uniform sampling of the
points from X∗ and hence x1 ∈ X∗.

For an arbitrary kth iteration, define SX
k = Sk ∩ X . Hence, SX

k ⊆ SX
k−1

because f(xk) ≥ f(xk−1). So, given the initial input x0, SX
0 ⊇ SX

1 ⊇ . . . ⊇
SX
k ⊇ . . .. Then, we have that ∩kn=1S

X
n = SX

k . Furthermore, SX
k is compact for

any kth iteration. By Cantor’s interesection theorem, ∩∞n=1S
X
n 6= ∅. First, we

prove that the limit of the slice regions exist, and is non-empty.

Lemma 2.3. The limit of SX
k exists and is non-empty

17

Hosted by The Berkeley Electronic Press



Proof.

lim inf
k→∞

SX
k =

⋃
k∈N

⋂
i≥k

SX
k =

⋃
k∈N

(SX
k ∩ SX

k+1 ∩ . . .)

Since SX
k ⊆ SX

k−1 for any k, then (SX
k ∩SX

k+1∩. . .) ⊇ (SX
k+1∩SX

k+2∩. . .) ⊇ . . ..
Thus, we have

lim inf
k→∞

SX
k =

⋃
k∈N

(SX
k ∩ SX

k+1 ∩ . . .) = (SX
1 ∩ SX

2 ∩ . . .) =
⋂
k∈N

SX
k

and

lim sup
k→∞

SX
k =

⋂
k∈N

⋃
i≥k

SX
k =

⋂
k∈N

SX
k .

Hence, limk→∞ SX
k = lim supk→∞ SX

k = lim infk→∞ SX
k =

⋂
k∈N S

X
k . By

Cantor’s intersection theorem,
⋂

k∈N S
X
k 6= ∅.

Moreover, ∀x ∈ X∗, x ∈ SX
k for any k = 1, 2, ... and the smallest possible

slice within the design space is SX = X∗. We then prove that the limit of the
slice regions SX

k is X∗.

Theorem 2.4. limk→∞ SX
k = X∗.

Proof. First, note that ∀x∗ ∈ X∗, x∗ ∈ SX
k for any k ∈ N, since x∗ is a global

maximum. Hence, X∗ ⊆
⋂

k∈N S
X
k . What is left to be proven is that the limit

of SX
k is not a set strictly greater than X∗.

Suppose that S̃ is any set strictly greater than X∗, that is, S̃ ∩ (X∗)C 6= ∅.
Denote SC = S̃ ∩ (X∗)C . For any k, SX

k ⊆ SX
k−1, to have limk→∞ SX

k = S̃, we

need that xc ∈ SX
k ,∀xc ∈ Sc ∀k ∈ N. By definition of SC , f(xc)<f(x∗) for any

xc ∈ SC , x
∗ ∈ X∗.

Given any iteration k, for S̃ to be the limit of SX
k , we need S̃ ⊆ SX

k . By the
continuity of the function f and Lemma 2.1, then for any given xc ∈ SC , ∃ an
interval Ic around x∗ for any x∗ ∈ X∗ such that f(xI)>f(xc),∀xI ∈ Ic. Let IC
denote the largest of such intervals, i.e. IC =

⋃
c Ic. Then, the given iteration k,

there is a non-zero probability that the next iterate from the forward procedure
selects the next iterate from IC . Specifically, the probability of obtaining the
next iterate from IC is given by PC

k = l(IC)/l(SX
k ), where l() denotes the

Lebesgue measure. Then:

• If the next iterate xk+1 ∈ IC , then the next slice region SX
k+1 would exclude

xc entirely, since f(xc)<f(xk+1).
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• If the next iterate xk+1 /∈ IC , then the next slice region SX
k+1 would

still include xc. However, note that since SX
k ⊃ SX

k+1, l(SX
k )>l(SX

k+1),

and hence PC
k <P

C
k+1. Thus, for a sequence of iterates xk, xk+1, ... /∈ IC ,

PC
k <P

C
k+1<..., and hence PC

k → 1. Then, ∃ a number n such that xk+n ∈
IC a.s.

Thus, ∃ a slice level SX
k+n such that xc /∈ SX

k+n a.s., and so ∀m ≥ n, xc /∈
SX
k+m. Hence, xc /∈

⋂
k∈N S

X
k . Since xc is an arbitrary point from SC , this is true

for all points in SC , and hence ∀xc ∈ SC , xc /∈
⋂

k∈N S
X
k . So, we have SC = ∅,

which is a contradiction to the definition of SC . This is true for an arbitrary
S̃, and hence true for any S̃. Hence, there does not exist a set S̃ strictly larger
than X∗ such that limk→∞ SX

k = S̃. Therefore, limk→∞ SX
k = X∗.

It follow from the above Theorem 2.4 that the iterates converge to a global
maximum, i.e. xk → x∗, x∗ ∈ X∗.
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