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Simulation of Semicompeting Risk Survival
Data and Estimation Based on Multistate

Frailty Model

Fei Jiang and Sebastien Haneuse

Abstract

We develop a simulation procedure to simulate the semicompeting risk survival
data. In addition, we introduce an EM algorithm and a B–spline based estimation
procedure to evaluate and implement Xu et al. (2010)’s nonparametric likelihood
es- timation approach. The simulation procedure provides a route to simulate
samples from the likelihood introduced in Xu et al. (2010)’s. Further, the EM
algorithm and the B–spline methods stabilize the estimation and gives accurate
estimation results. We illustrate the simulation and the estimation procedure with
simluation examples and real data analysis.
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We develop a simulation procedure to simulate the semicompeting risk survival
data. In addition, we introduce an EM algorithm and a B–spline based estimation
procedure to evaluate and implement Xu et al. (2010)’s nonparametric likelihood es-
timation approach. The simulation procedure provides a route to simulate samples
from the likelihood introduced in Xu et al. (2010)’s. Further, the EM algorithm and
the B–spline methods stabilize the estimation and gives accurate estimation results.
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1 Introduction

In randomized trial studies, a patient could experience multiple failure events. A typical
situation is that the patient experiences a disease related event, e.g. the recurrence of the
disease, before the failure of death. Such data structure is referred to as semicompeting
risk data (Fine et al., 2001). Unlike the competing risk data, the order of two event times
are restricted so that the disease related event must not happen before the death. In the
other words, the death event terminates the disease related event, but not vice verse. In such
setting, the joint distribution of the disease related event, namely the nonterminal event, and
the death event, namely the terminal event, are often of interest. Xu et al. (2010) suggested
to use the illness-death multistate formulation to model the semicompeting risk data through
specifying the transition intensities between three distinct states: the on study state (State
1), the illness state (State 2), and the death state (State 3). The three intensities were
assumed to satisfy the proportional hazard assumptions, while the baseline hazards were
modelled nonparametrically. In addition, they introduced a multiplicative shared frailty into
the model to construct joint distribution of the terminal and non-terminal event times. Xu
et al. (2010)’s method has wide applications. For example, in a pancreatic cancer study at
the Centers for Medicare and Medicaid Services, two events were considered, a nonterminal
event, readmission, and a terminal event, death. Xu et al. (2010)’s multistate formulation
can be applied to model the two event times so as to explore the covariate effects on the
event times jointly. To facilitate the practical application of Xu et al. (2010)’s method,
we develop a simulation strategy to evaluate the method and an estimation procedure to
implement the approach.
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In the semicompeting risk survival settings, the data generating mechanism is not as
straightforward as those in the usual multivariate survival settings because we must consider
the nature ordering of the two event times. Let T1, T2 be the non-terminal event and terminal
event times. The main question is how to generate T1, T2 such that T1, T2 and T2 given T1
follow specific marginal and conditional distributions. In this work, we develop a method
to generate semicompeting risk samples. Further, we wrote out the the survival functions
in close form expressions under the assumption that the baseline hazard are proportional
to each other.

To implement Xu et al. (2010)’s method, one challenge is to estimate the nonparametric
baseline hazard functions. Under the univariate survival case, the parameters of interest,
say the covariate effects, can be estimated through partial likelihoods without knowing the
baseline hazard. However, because of the inclusion of the frailty, the estimation of the
baseline hazards is necessary for obtaining the estimates for the covariate effects. Xu et al.
(2010) reduces the estimation problem to a parametric maximum likelihood estimation by
treating the baseline hazard at the event times as additional finite dimensional parameters.
However, in this way, the number of the parameters grows at the same rate as that of
the event time so that when the event rate is high in the sample or the sample size is
large, the estimation would be unstable (Nielsen et al., 1992). Therefore, we first propose
a EM algorithm to stabilize the computation. With the EM algorithm, we do not need
to specify the forms of the baseline hazards. Secondly, we use B–spline to approximate
the baseline hazards and implement the nonparametric maximimal likelihood estimation
procedure. With the B–spline approximation, we reduce the nonparametric estimation
problem to a parametric estimation, while the parameter number grows at the rate slower
than the growth rate of the event time so that the estimation is numerically more stable
than Xu et al. (2010)’s method.

The rest of the paper is organized as follows. We describe the simulation procedure in
Section 2. We introduce and evaluate the EM algorithm in Section 3. Then we introduce
and evaluate the B–spline based estimation procedure in Section 4. We conclude the paper
in Section 5.

2 The simulation procedures

In this section, we develop a simulation mechanism for generating the semicompeting risk
data based on the joint densities derived in Xu et al. (2010).

We first describe a general approach to generate the data. Then, we show that under
certain assumptions, the data generating functions can have closed forms. Let

λ1(t|Γ,X) = Γλ01(t)α1(X)

λ2(t|Γ,X) = Γλ02(t)α2(X)

λ3(t|t1,Γ,X) = Γλ03(t)α3(X), t > t1

to be the hazard functions for nonterminal event, terminal event without nonterminal event,
and terminal following a nonterminal event, where α1, α2, α3 are functions on the covari-
ates, λ01(t), λ02(t), λ03(t) are the baselines hazards. Further let Λ01(t),Λ02(t),Λ03(t) to be
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the corresponding cumulative baseline hazards. Under the assumption that Γ is gamma
distributed with mean 1 and variance θ, Xu et al. (2010) show that

f12(t1, t2) = (θ + 1)λ01(t1)λ03(t2) [1 + θΛ01(t1) + θΛ02(t1) + θ{Λ03(t2)− Λ03(t1)}]−1/θ−2

and

f∞2(t2) = λ02(t2) {1 + θΛ01(t2) + θΛ02(t2)}−1/θ−1

The joint density can be written as

f(t1, t2) = f12(t1, t2)I(t1 ≤ t2) + I(t1 =∞)f∞2(t2)

= I(t1 ≤ t2)(θ + 1)λ01(t1)λ03(t2) [1 + θΛ01(t1) + θΛ02(t1) + θ{Λ03(t2)− Λ03(t1)}]−1/θ−2

+I(t1 =∞)λ02(t2) {1 + θΛ01(t2) + θΛ02(t2)}−1/θ−1

As a result, we can obtain

Pr(Ti1 =∞) =

∫ ∞
0

f∞2(t2)dt2

We further derive the density of Ti1 when Ti1 <∞ from f12 as,

f12(t1) =

∫ ∞
t1

f12(t1, t2)dt2.

Therefore, combine with the Pr(Ti1 =∞) we have

f1(t1) = I(t1 <∞)

∫ ∞
t1

f12(t1, t2)dt2 + I(t1 =∞)

∫ ∞
0

f∞2(t2)dt2.

Then the survival function

S1(t1) = Pr(t1 ≤ Ti1 <∞) + Pr(Ti1 =∞)

=

∫ ∞
t1

f1(t)dt+ Pr(Ti1 =∞)

and

S1(t1|Ti1 <∞) =

∫ ∞
t1

f1(t)dt/{1− Pr(Ti1 =∞)}

In addition, we can also derive joint probability Pr{Ti2 > t2, Ti1 ∈ [t1, t1 +dt)}, t1 < t2 <∞,
which is

Pr{Ti2 > t2, Ti1 ∈ [t1, t1 + dt)}

=

∫ ∞
t2

f12(t1, t)dt

Therefore, the conditional survival function for Ti2 given Ti1 = t1 <∞ is,

S21(t2|t1) = Pr(Ti2 > t2|Ti1 = t1)

= Pr{Ti2 > t2, Ti1 ∈ [t1, t1 + dt)}/f12(t1).
Combining with Pr(Ti1 =∞), we now can use flip coin method to generate the data. With
probability Pr(Ti1 = ∞), we generate Ti2 from the survival function S21(t2|∞), and with
probability 1 − Pr(Ti1 = ∞), we generate Ti1 from S1(t1|Ti1 < ∞), and then generate Ti2
from S21(t2|t1), t1 <∞ conditioning on the observed value of Ti1 = t1.
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2.1 The simulation procedure under specific hazard functions

We define the hazard functions λ01(t) ≡ α1(Xi)λ0(t), λ02(t) ≡ α2(Xi)λ0(t), λ03(t) ≡
α3(Xi)λ0(t), where αj(Xi), j = 1, 2, 3 are functions of covariates depending on parame-
ters β1,β2,β3. And the hazard functions for T1, T2 with and without the nonterminal event
occurs before as λ1(t1|γ) = γλ01(t1), λ2(t2|γ, t1) = γλ03(t2), and λ2(t2|γ) = γλ02(t2), respec-
tively. The three hazards are proportional to each other in the sense that λ0l(t)/λ0k(t) does
not depend on t, l, k = 1, 2, 3, l 6= k. For illustration, we can use the Weibull hazard func-
tions with the identical shape parameters, κ, i.e., λ0j(t) = αj(Xi)λ0(t) = κhj exp(βjXi)t

κ−1,
where hj, j = 1, 2, 3 are positive constant. Here αj(Xi) = hj exp(βjXi), and λ0(t) = κtκ−1.
The piecewise constant hazard functions in Xu et al. (2010) is another example which also
follows our assumption.

Now we derive the survival functions used to generated data. For the semi-competing
risk data, let

f12(t1, t2) = (θ + 1)λ01(t1)λ03(t2) [1 + θΛ01(t1) + θΛ02(t1) + θ{Λ03(t2)− Λ03(t1)}]−1/θ−2

and

f∞2(t2) = λ02(t2) {1 + θΛ01(t2) + θΛ02(t2)}−1/θ−1

the joint density can be written as

f(t1, t2) = f12(t1, t2)I(t1 ≤ t2) + I(t1 =∞)f∞2(t2)

= I(t1 ≤ t2)(θ + 1)λ01(t1)λ03(t2) [1 + θΛ01(t1) + θΛ02(t1) + θ{Λ03(t2)− Λ03(t1)}]−1/θ−2

+I(t1 =∞)λ02(t2) {1 + θΛ01(t2) + θΛ02(t2)}−1/θ−1

= I(t1 ≤ t2)(θ + 1)α1(Xi)λ0(t1)α3(Xi)λ0(t2)[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)

+θα3(Xi){Λ0(t2)− Λ0(t1)}]−1/θ−2 + I(t1 =∞)α2(Xi)λ0(t2){1 + θα1(Xi)Λ0(t2)

+θα2(Xi)Λ0(t2)}−1/θ−1.

From the above expression, we can derive the

Pr(Ti1 =∞) =

∫ ∞
0

f∞2(t2)dt2

=

∫ ∞
0

κα2(Xi)λ0(t2){1 + θα1(Xi)Λ0(t2) + θα2(Xi)Λ0(t2)}−1/θ−1dt2

= −θ α2(Xi)

θα1(Xi) + θα2(Xi)
{1 + θα1(Xi)Λ0(t2) + θα2(Xi)Λ0(t2)}−1/θ

∣∣∣∣∞
0

=
α2(Xi)

α1(Xi) + α2(Xi)
.
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We further derive the density of Ti1 when Ti1 <∞ from f12 as,

f12(t1) =

∫ ∞
t1

f12(t1, t2)dt2

=

∫ ∞
t1

(θ + 1)κα1(Xi)λ0(t1)κα3(Xi)λ0(t2)[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)

+θα3(Xi){Λ0(t2)− Λ0(t1)}]−1/θ−2dt2

= − θ

θ + 1
(θ + 1)α1(Xi)λ0(t1)

α3(Xi)

θα3(Xi)
[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)

+θα3(Xi){Λ0(t2)− Λ0(t1)}]−1/θ−1
∣∣∣∣∞
t1

= α1(Xi)λ0(t1)[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)]
−1/θ−1

Therefore, combine with the Pr(Ti1 =∞) we have

f1(t1) = I(t1 <∞)α1(Xi)λ0(t1)[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)]
−1/θ−1

+I(t1 =∞)
α2(Xi)

α1(Xi) + α2(Xi)
.

Then the survival function

S1(t1) = Pr(t1 ≤ Ti1 <∞) + Pr(Ti1 =∞)

=

∫ ∞
t1

f1(t)dt+ Pr(Ti1 =∞)

=
α1(Xi)

α1(Xi) + α2(Xi)
[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)]

−1/θ

+
α2(Xi)

α1(Xi) + α2(Xi)

and

S1(t1|Ti1 <∞) =
α1(Xi)

α1(Xi) + α2(Xi)
[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)]

−1/θ/Pr(Ti1 <∞)

= [1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)]
−1/θ.

The hazard function for t1 <∞ is

λ1(t1) = I(t1 <∞){α1(Xi) + α2(Xi)}λ0(t1)[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)]
−1.
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We can also derive joint probability Pr{Ti2 > t2, Ti1 ∈ [t1, t1 + dt)}, t1 < t2 <∞, which is

Pr{Ti2 > t2, Ti1 ∈ [t1, t1 + dt)}

=

∫ ∞
t2

f12(t1, t)dt

=

∫ ∞
t2

(θ + 1)α1(Xi)λ0(t1)α3(Xi)λ0(t)[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)

+θα3(Xi){Λ0(t)− Λ0(t1)}]−1/θ−2dt

= − θ

1 + θ
(θ + 1)α1(Xi)λ0(t1)

α3(Xi)

θα3(Xi)
[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)

+θα3(Xi){Λ0(t)− Λ0(t1)}]−1/θ−1
∣∣∣∣∞
t2

= α1(Xi)λ0(t1)[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1) + θα3(Xi){Λ0(t2)− Λ0(t1)}]−1/θ−1.

Therefore, the conditional survival function for Ti2 given Ti1 = t1 <∞ is,

S21(t2|t1) = Pr(Ti2 > t2|Ti1 = t1)

=
[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1) + θα3(Xi){Λ0(t2)− Λ0(t1)}]−1/θ−1

[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)]−1/θ−1
.

And the conditional hazard function is

λ21(t2|t1) = −∂logS21(t2|t1)/∂t2
= (θ + 1)α3(Xi)λ0(t2)[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1) + θα3(Xi){Λ0(t2)− Λ0(t1)}]−1.

Further, when t1 =∞, we have

S21(t2|∞) = Pr(Ti2 > t2, Ti1 =∞)/Pr(Ti1 =∞)

=

{
α2(Xi)

α1(Xi) + α2(Xi)

}−1 ∫ ∞
t2

α2(Xi)λ0(t){1 + θα1(Xi)Λ0(t)

+θα2(Xi)Λ0(t)}−1/θ−1dt

= −
{

α2(Xi)

α1(Xi) + α2(Xi)

}−1
α2(Xi)

α1(Xi) + α2(Xi)
{1 + θα1(Xi)Λ0(t) + θα2(Xi)Λ0(t)}−1/θ

∣∣∣∣∞
t2

= {1 + θα1(Xi)Λ0(t2) + θα2(Xi)Λ0(t2)}−1/θ

which gives the hazard function

λ21(t2|∞) = −∂logS21(t2|∞)/∂t2

= {α1(Xi) + α2(Xi)}λ0(t2){1 + θα1(Xi)Λ0(t2) + θα2(Xi)Λ0(t2)}−1

In conclusion, the above derivations give the three hazard functions are

λ1(t1) = I(t1 <∞){α1(Xi) + α2(Xi)}λ0(t1)[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)]
−1

λ21(t2|t1) = I(t1 ≤ t2)(θ + 1)α3(Xi)λ0(t2)[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)

+θα3(Xi){Λ0(t2)− Λ0(t1)}]−1

λ21(t2|∞) = I(t1 =∞){α1(Xi) + α2(Xi)}λ0(t2){1 + θα1(Xi)Λ0(t2) + θα2(Xi)Λ0(t2)}−1
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and the corresponding survival functions are

S1(t1|Ti1 <∞) = [1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)]
−1/θ

S21(t2|t1) = Pr(Ti2 ≥ t2|Ti1 = t1)

=
[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1) + θα3(Xi){Λ0(t2)− Λ0(t1)}]−1/θ−1

[1 + θα1(Xi)Λ0(t1) + θα2(Xi)Λ0(t1)]−1/θ−1

S21(t2|∞) = Pr(Ti2 ≥ t2|Ti1 =∞)

= {1 + θα1(Xi)Λ0(t2) + θα2(Xi)Λ0(t2)}−1/θ.

Combining with the fact that Pr(Ti1 =∞) = α2(Xi)
α1(Xi)+α2(X2)

, we now can use flip coin method

to generate the data. With probability Pr(Ti1 = ∞), we generate Ti2 from the survival
function S21(t2|∞), and with probability 1−Pr(Ti1 =∞), we generate Ti1 from S1(t1|Ti1 <
∞), and then generate Ti2 from S21(t2|t1), t1 < ∞ conditioning on the observed value of
Ti1 = t1.

3 An EM Algorithm to Implement Xu et al. (2010)’s

Method.

3.1 The estimation without left truncation

Xu et al. (2010) introduced a nonparametric likelihood method for the estimation under the
multistate model. The estimation were performed under the assumption that the baseline
hazards had piece–wise constant forms. Assuming the frailty is gamma distributed, Xu
et al. (2010) derived the score functions for the covariate effects, the parameters associated
with the baseline hazards, and the parameter associated with the gamma frailty. Because
the baseline hazards are nonparametrically specified and the parameter size grows with the
observed event times, the computation is not stable when solving the score functions directly
for a large number of parameters. We propose to use the EM algorithm described in Nielsen
et al. (1992) to stabilize the estimation procedures. The method imputes the latent frailties
by their posterior mean obtained from conditioning on the observed random variables. More
specifically, by the property of the gamma distribution, we obtain the posterior mean of Γ
as

E(Γi|oi) =
δ1 + δ2 + 1/θ

1/θ + Λ01(yi1) exp(βT
1 xi) + Λ02(yi1) exp(βT

2 xi) + Λ03(yi1, yi2) exp(βT
3 xi)

(1)

where Λ03(yi1, yi2) = Λ03(yi2) − Λ03(yi1). Now knowing that, if E(Γi|oi) is known, the
estimation procedures are the same as the ones used in the Cox regression model. More
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specifically, we could write the score functions for β1,β2,β3 as follows

Uβ1 =
n∑
i=1

δi1

[
xi −

∑n
j=1 I(yi1 ≤ yj1)E

{
Γj exp(βT

1 xj)xj|oj
}∑n

j=1 I(yi1 ≤ yj1)E{Γj exp(βT
1 xj)|oj}

]

Uβ2 =
n∑
i=1

(1− δi1)δi2

[
xi −

∑n
j=1 I(yi2 ≤ yj1)E

{
Γj exp(βT

2 xj)xj|oj
}∑n

j=1 I(yi2 ≤ yj1)E{Γj exp(βT
2 xj)|oj}

]

Uβ3 =
n∑
i=1

δi1δi2

[
xi −

∑n
j=1 I(yj1 < yi2 ≤ yj2)E

{
Γj exp(βT

3 xj)xj|oj
}∑n

j=1 I(yj1 < yi2 ≤ yj2)E{Γj exp(βT
3 xj)|oj}

]
.

After obtaining βj, j = 1, 2, 3, we can estimate the baseline hazard by using Nelson-Aalen
type estimators, i.e,

λ̂01(yi1) =
δi1∑n

j=1 I(yi1 ≤ yj1)E{Γj exp(βT
1 xj)|oj}

λ̂02(yi1) =
(1− δi1)δi2∑n

j=1 I(yi2 ≤ yj1)E{Γj exp(βT
1 xj)|oj}

λ̂03(yi2) =
δi1δi2∑n

j=1 I(yj1 < yi2 ≤ yj2)E{Γj exp(βT
1 xj)|oj}

. (2)

Note that E(Γi|oi) is replaced by (1) in the estimation procedures. In estimating βj’s,
E(Γi|oi) is treated as a function of βj, while when estimating λ0j’s, E(Γi|oi) is assumed to
be known in advance. Because the estimating equation Uβj ’s involve λ0j’s through E(Γi|oi),
we obtain the estimators by iteratively using Uβj ’s and (2).

First, for each fixed θ, the estimation procedures start from estimating βj by using Uβj ’s
and initial λ0j’s, which are defaulted to be the Nelson–Aalen estimators without covariates.
Then we plug the resulting βj’s to (1) to obtain E(Γi|oi). Next, we plug βj and E(Γi|oi) to
(2) for updating λ0j’s. After that, we plug the current λ0j’s to Uβj ’s again to update βj’s.
We perform the iterative procedure until it converges.

The above procedure are based on a fixed θ. To find the estimator for θ, we use the
criteria that the given θ and the estimated βj’s and λ0j together maximize the likelihood
function that

n∏
i=1

λ01(Yi1)
δi1λ02(Yi2)

δi2(1−δi1)λ03(Yi2)
δi2δi1 exp{δi1βT

1 Xi + δi2(1− δi1)βT
2 Xi + δi1δi2β

T
3 Xi}

×(1 + θ)δi1δi2 [1 + θ{Λ01(Yi1) exp(βT
1 Xi) + Λ02(Yi1) exp(βT

2 Xi) + Λ03(Yi1, Yi2) exp(βT
3 Xi)}]−1/θ−δi1−δi2 .
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3.2 The estimation with left truncation

The EM algorithm can be easily extended to the setting when data are left truncation.
Follow Su and Wang (2012), we specify the score functions as

ULβ1 =
n∑
i=1

δi1

[
xi −

∑n
j=1 I(tj < yi1 ≤ yj1)E

{
Γj exp(βT

1 xj)xj|oj
}∑n

j=1 I(tj < yi1 ≤ yj1)E{Γj exp(βT
1 xj)|oj}

]

ULβ2 =
n∑
i=1

(1− δi1)δi2

[
xi −

∑n
j=1 I(tj < yi2 ≤ yj1)E

{
Γj exp(βT

2 xj)xj|oj
}∑n

j=1 I(tj < yi2 ≤ yj1)E{Γj exp(βT
2 xj)|oj}

]

ULβ3 =
n∑
i=1

δi1δi2

[
xi −

∑n
j=1 I(yj1 < yi2 ≤ yj2)E

{
Γj exp(βT

3 xj)xj|oj
}∑n

j=1 I(yj1 < yi2 ≤ yj2)E{Γj exp(βT
3 xj)|oj}

]
.

and the baseline hazard estimators as

λ̂L01(yi1) =
δi1∑n

j=1 I(tj < yi1 ≤ yj1)E{Γj exp(βT
1 xj)|oj}

λ̂L02(yi1) =
(1− δi1)δi2∑n

j=1 I(tj < yi2 ≤ yj1)E{Γj exp(βT
1 xj)|oj}

λ̂L03(yi2) =
δi1δi2∑n

j=1 I(yj1 < yi2 ≤ yj2)E{Γj exp(βT
1 xj)|oj}

.

Note that the only changes are made on the indicator functions of the time intervals. Other
estimations follow the same procedures as the ones using for the data without left truncation.

3.3 Simulation Examples

We implement the simulation and the EM estimation procedure in R. We generate the
censoring time from uniform distribution (c1, c2). The simulation function is “simCpRsk”,
which takes arguments “n” to be the sample size, “p” to be the covariate dimension to be,
“theta” to be θ , “lambda1, lambda2, lambda3” to be h1, h2, h3, “kappa” to be κ, “beta1,
beta2, beta3” to be β1,β2,β3, “cen1, cen2” to be c1, c2. The estimation function is “FrqID”
which takes “survData” to be the input dataset, “startValue” to be the user specified initial
value for estimating βj, j = 1, 2, 3, “stheta” to be the interval for searching the true θ. The
rest of the arguments are the control parameters used for determining the convergence of
the estimation procedure.

As an example, we generate n = 250 samples with one covariate generated from normal
(0, 1) distribution. We specify θ = 1, h1 = 2, h2 = 1, h3 = 0.5, κ = 0.5, β1 = 0.5, β2 =
0.1, β3 = −0.3 and the censoring distribution is uniform (2.5, 3). Under these specifications,
the nonterminal event rate is 64% and the terminal event rate is 87%. We obtain the
estimators as β̂1 = 0.46, β̂2 = 0.09, β̂3 = 0.09, θ̂ = 1.01. The results are close to the truth.
We also check if θ falls into the interior of the user specified interval by plotting the likelihood
vesus the values of θ. Figure 1 shows clearly that the likelihood is concave, and the resulting
estimators maximize the likelihood.

In addition, we implement the left truncation procedure proposed in Section 3.2. We
simulate additional left truncation times vi, i = 1, . . . , n from an uniform distribution on the
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range of (0, 0.5), and select the samples with yi1 > vi. The resulting sample contains 218

nontruncated observations. We obtain the estimators as β̂1 = 0.48, β̂2 = 0.10, β̂3 = 0.1, θ =
0.97, which is close to the truth. We further check if θ falls into the interior of the user
specified interval by plotting the likelihood vesus the values of θ. Figure 2 shows clearly
that the likelihood is concave, and the resulting estimators maximize the likelihood.

In another example, we generate the data using the same mechanism as described above.
The results are β̂1 = 0.42, β̂2 = 0.23, β̂3 = 0.43, θ̂ = 0.85. The results deviate from the true
values. It raises the question that if the likelihood is concave, and if the results fall into the
interior the selected region. We plot the likelihood vesus the values of θ as shown in Figure
3. Figure 3 shows that the likelihood is monotone decreasing, and the maximum is achieved
at the boundary of the chosen interval. Therefore, in practice, in order to ensure obtaining
accurate estimators, we suggest to implement likelihood checking as shown in Figure 1, 2
and 3.

4 A B-spline Method to Implement Xu et al. (2010)’s

Method.

One alterative to the Xu et al. (2010)’s method for the nonparametric maximum likelihood
estimation is to use the B-spline to approximate the unknown baseline hazard functions.
More specifically, we can use Brl(t)

Tαl to approximate λ0l(t) where Brl is the B-spline
basis with degree r, and αl is a r dimensional B-spline coefficient. Theoretically, there is
a Brl(t)

Tαl can well approximate λ0l(t) when the selected knots t1, . . . , tN , tk ∈ [0, τ ], k =
1, . . . , N goes to infinite, where τ is the maximal of the study duration, and N is the number
of knots. In practice, we can select a finite number of knots so that the maximization of the
nonparametric likelihood reduces to an finite dimension optimization problem, which can be
carried out using existing optimization routings. In addition to λ, we can also approximate
Λ(t) by

∫ t
0

Brl(s)dsα. Denoting
∫ t
0

Brl(s)ds by IBrl(t), as shown in De Boor et al. (1978),
IBrl(t) is a higher degree B-spline basis and has a closed form expression which facilitates
the computation. After replacing λ(t), Λ(t) by the B-spline approximates, the approximated
log likelihood can be written as

n∑
i=1

δi1log{Br1(Yi1)
Tα1}+ {(1− δi1)δi2}log{Br2(Yi1)

Tα2}+ δi1δi2log{Br3(Yi2)
Tα3}

×δi1βT
1 Xi + (1− δi1)δi2βT

2 Xi + δi1δi2β
T
3 Xi + δi1δi2log(1 + θ)− (1/θ + δi1 + δi2)

×log[1 + θ{IBr1(Yi1)
Tα1 exp(βT

1 Xi) + IBr2(Yi1)
Tα2 exp(βT

2 Xi)

+{IBr3(Yi2)− IBr3(Yi1)}Tα3 exp(βT
3 Xi)}].

After specifying the B-spline bases, our goal is to find βl,αl, l = 1, 2, 3 to maximize the log
likelihood.

4.1 Simulation study and real data analysis

We perform 100 simulation study with sample size 1000 by using the proposed simulation
procedure introduced in Section 2. We generate three covariates from normal distribution.
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We specify h1 = 1, h2 = 0.5, h3 = 1, κ = 1/2. The estimation standard deviations are
obtained by using the sandwich estimator. The parameter estimation results are shown in
Table 1. The estimated cumulative hazards are shown in Figure 5 and 4.

Table 1 verifies that the proposed B–spline method provides reasonable estimators that
are close to the true values.

Further, we apply the B-spline method to analyze Pancreatic cancer data. To stabilize
the computation, we divide the patients’ survival time by 90 so that the survival times are
between 0, 1. We use total 11 covariates. We report the results for the β̂ and θ̂. We use sand-
wich estimator to obtain the estimation variance and the confidence intervals. We compare
the result with the one obtained by the Bayesian method develop by Lee et al. (2015). Table

2 shows the estimators β̂ by using the B-spline method. The frailty parameter estimator is
0.51 with 95% confidence interval (0.32, 0.72). Table 3 shows the estimation results from
the Bayesian method proposed by Lee et al. (2015). The corresponding frailty parameter
estimator is 0.56 with 95% Bayesian confidence interval (0.30, 0.86). The estimators from
the B–spline method and the Bayesian method are close to each other. Further, we compare
the estimated cumulative hazards in Figure 5 and 4. The figures show that the estimated
cumulative hazard are close to each other by using the two methods. These results suggest
that the B–spline method and the Bayesian method produce in similar results without prior
knowledge about the true parameters.

5 Conclusion

In this work, we develop the simulation and estimation procedures to implement Xu et al.
(2010)’s method. We show that the proposed data generating mechanism is consistent
with the likelihood introduced in Xu et al. (2010). We propose an EM algorithm and a B–
spline based approach to stabilize the estimation procedures. The simulation and estimation
are implemented in R. We use a simulation example to evaluate the proposed estimation
methods. The simulation results show that the proposed estimation procedures could obtain
estimators which are close to the truth. We also compare the results from using the B–spline
method with the one from the Bayesian method developed by Lee et al. (2015). Without
prior knowledge about the true parameters, the two methods give the similar estimation
results.
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Table 1: Results based on 100 simulation with 1000 sample sizes. The estimation standard
deviations is the empirical standard deviation derived from the 100 simulation runs.

True parameters Estimators Estimation standard deviations
θ 0.5 0.471 0.192
β11 0.2 0.206 0.068
β12 0.3 0.304 0.067
β13 0.2 0.193 0.057
β21 0.2 0.212 0.088
β22 0.2 0.201 0.076
β23 0.4 0.388 0.077
β31 0.3 0.301 0.059
β32 0.2 0.199 0.084
β33 0.4 0.412 0.082

Table 2: Results, estimators and 95% confidence intervals, for the B-spline method.
β̂1 β̂2 β̂3

β̂1 sd(β̂1) CI β̂2 sd(β̂2) CI β̂3 sd(β̂3) CI
-0.88 0.17 (-1.22, -0.56) -2.31 0.27 (-2.83, -1.79) -1.42 0.38 (-2.16. -0.68)
0.22 0.24 (-0.25, 0.69) 0.24 0.23 (-0.21, 0.70) 0.43 0.36 (-0.27, 1.13)
0.30 0.28 (-0.25, 0.84) -0.004 0.34 (-0.67, 0.66) 0.03 0.43 (-0.82, 0.87)
-0.01 0.12 (-0.25,0.23) 0.50 0.13 (-0.25,0.75) 0.26 0.21 (-0.15, 0.67)
-0.10 0.05 (-0.19, 0.01) 0.09 0.05 (-0.007, 0.20) 0.15 0.09 (-0.02, 0.33)
-0.16 0.12 (-0.39, 0.06) -0.31 0.13 (-0.56, -0.06) -0.58 0.22 (-1.02, -0.15)
0.10 0.07 (-0.05, 0.25) 0.002 0.08 (-0.15, 0.16) 0.02 0.13 (-0.23, 0.28)
0.02 0.14 (-0.24, 0.29) 0.92 0.16 (0.61, 1.22) 0.33 0.24 (-0.14, 0.81)
-0.85 0.52 (-1.86,0.17) 2.90 0.24 (2.43,3.36) 1.87 0.61 (0.68, 3.07)
-0.54 0.21 (-0.96, -0.12) 1.61 0.18 (1.27, 1.96) 1.47 0.49 (0.51, 2.43)
0.28 0.29 (-0.30, 0.86) 1.43 0.34 (0.78, 2.09) 0.34 0.56 (-0.76, 1.43)

Table 3: Estimators, estimation standard deviations (sd) 95% confidence intervals, for the
Bayesian method.

β̂1 β̂2 β̂3

β̂1 sd(β̂1) CI β̂2 sd(β̂2) CI β̂3 sd(β̂3) CI
-0.92 0.19 (-1.29, -0.56) -2.36 0.30 (-2.95, -1.81) -1.50 0.35 (-2.27. -0.85)
0.21 0.27 (-0.33, 0.73) 0.25 0.24 (-0.21, 0.71) 0.37 0.40 (-0.49, 1.11)
0.27 0.29 (-0.30, 0.82) -0.022 0.31 (-0.64, 0.57) -0.06 0.44 (-0.98, 0.74)
-0.01 0.14 (-0.29,0.26) 0.49 0.14 (-0.24,0.77) 0.27 0.22 (-0.17, 0.71)
-0.10 0.05 (-0.20, -0.003) 0.10 0.05 (-0.004, 0.20) 0.16 0.08 (0.002, 0.31)
-0.17 0.13 (-0.43, 0.08) -0.31 0.14 (-0.57, -0.04) -0.62 0.22 (-1.05, -0.32)
0.10 0.08 (-0.05, 0.25) 0.001 0.09 (-0.18, 0.17) 0.03 0.13 (-0.23, 0.28)
0.02 0.15 (-0.28, 0.32) 0.91 0.20 (0.52, 1.29) 0.34 0.25 (-0.15, 0.83)
-1.01 0.55 (-2.19,-0.024) 2.85 0.25 (2.35,3.36) 1.84 0.70 (0.48, 3.17)
-0.56 0.23 (-1.01, -0.12) 1.61 0.21 (1.17, 2.02) 1.48 0.50 (0.70, 2.38)
0.27 0.31 (-0.34, 0.88) 1.42 0.35 (0.75, 2.10) 0.29 0.54 (-0.77, 1.32)
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Figure 1: Concave likelihood function
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Figure 2: Concave likelihood function: data with left truncation.
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Figure 3: Monotone likelihood function
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Figure 4: Estimation cumulative baseline hazard using the Bayesian method method.
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Figure 5: Estimation cumulative baseline hazard using the B–spline method.
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