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Regression modeling of longitudinal binary
outcomes with outcome-dependent

observation times

Kay See Tan, Andrea B. Troxel, Stephen E. Kimmel, Kevin G. Volpp, and
Benjamin French

Abstract

Conventional longitudinal data analysis methods assume that outcomes are inde-
pendent of the data-collection schedule. However, the independence assumption
may be violated, for example, when adverse events trigger additional physician
visits in between prescheduled follow-ups. Observation times may therefore be
associated with outcome values, which may introduce bias when estimating the
eect of covariates on outcomes using standard longitudinal regression methods.
Existing semi-parametric methods that accommodate outcome-dependent obser-
vation times are limited to the analysis of continuous outcomes. We develop new
methods for the analysis of binary outcomes, while retaining the exibility of semi-
parametric models. Our methods are based on counting process approaches, rather
than relying on possibly intractable likelihood-based or pseudo-likelihood-based
approaches, and provide marginal, population-level inference. In simulations, we
evaluate the statistical properties of our proposed methods. Comparisons are made
to ‘naive’ GEE approaches that either do not account for outcome-dependent ob-
servation times or incorporate weights based on the observation-time process. We
illustrate the utility of our proposed methods using data from a randomized con-
trolled trial of interventions designed to improve adherence to warfarin therapy.
We show that our method performs well in the presence of outcome-dependent
observation times, and provide identical inference to ’naive’ approaches when ob-
servation times are not associated with outcomes.
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Regression modeling of longitudinal binary outcomes with outcome-dependent observation times 1

1. Introduction

Longitudinal studies typically focus on an explicit outcome of interest collected over time.

The data-collection schedule may constitute an implicit outcome (Rizopoulos, 2012), in that

the timing or frequency of data collection may communicate information regarding features

of the study design or patient-level characteristics. Consider the use of warfarin, a commonly

prescribed oral anticoagulant. A patient on warfarin requires frequent monitoring, based

on the international normalized ratio (INR), due to the drug’s narrow therapeutic range.

Anticoagulation levels above or below the therapeutic range increase the risk of bleeding or

thromboembolism, respectively (Hylek et al., 1996). An out-of-range INR typically triggers

a dose change (Brigden et al., 1998); a physician may request multiple closely spaced follow-

up visits to monitor the impact of the dose change on INR response (Figure 1). In such

settings, the intensity of events such as follow-up visits may depend on previous outcomes

and measured or unmeasured covariates. If interest lies in estimating the effect of observed

covariates on the probability of being out of therapeutic range, then it is necessary to

incorporate the data-collection schedule in the estimation procedure. We focus on a marginal

mean regression model to estimate the association between observed covariates and a binary

outcome of interest. We refer to the longitudinal outcomes as the outcome process and the

occurrence of data collection over time as the observation-time process.

[Figure 1 about here.]

If the probability of having a follow-up visit depends upon previous outcomes and measured

or unmeasured covariates, then the outcome and observation-time processes are dependent

and conventional longitudinal data analysis methods such as generalized estimating equations

(GEE) (Liang and Zeger, 1986) that ignore the observation-time process may provide biased

estimates of covariate-outcome associations (Sun et al., 2005; French and Heagerty, 2009).

We have introduced a framework to describe the potential relationship between the outcome
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and observation-time processes based on assumptions regarding conditional independence

(Tan et al., under review). Specifically, we assume that the outcome and observation-time

processes are conditionally independent given past observed covariates in the outcome model,

past observed covariates in the observation-time model, and/or shared, unobserved latent

variables.

Various methods have been proposed to account for potential dependence between the

observation-time process and longitudinal binary outcomes. Fitzmaurice et al. (2006) pro-

posed a pseudolikelihood estimator utilizing a linear approximation of the conditional dis-

tribution of the binary outcomes. The estimator requires strong assumptions about the

observation-time process (e.g., that the conditional distribution of the outcome process at

time t is independent of the observation-time process given the most recent observed value of

response prior to t) and does not allow for explicit specification of the observation-time model.

Other authors have adopted an estimating equations approach, explicitly specifying the

observation-time models to be incorporated into the estimation of the outcome model (Lin,

Scharfstein, and Rosenheck, 2004; Bůžková and Lumley, 2007). Although these estimating

equations approaches allow weaker assumptions about the observation-time process, they

require a parametric structure for the mean trajectory of the outcomes over time.

Several authors have proposed semi-parametric estimation procedures that assume a non-

parametric structure for the mean trajectory of the longitudinal outcomes and a parametric

structure for covariate effects (Lin and Ying, 2001; Bůžková and Lumley, 2009; Liang, Lu,

and Ying, 2009; Sun, Song, and Zhou, 2011). These models provide flexibility when the focus

is on the effect of a particular covariate of interest, while the effect of time is considered

a nuisance. Closed-form solutions for the mean trajectory and the parameters of interest

are derived using the properties of mean-zero processes. These proposed semi-parametric
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Regression modeling of longitudinal binary outcomes with outcome-dependent observation times 3

estimation procedures allow for more flexible modeling of the longitudinal outcomes, but are

currently limited to continuous and count outcomes.

We consider a joint model approach to semi-parametric marginal regression to accommo-

date outcome-observation dependence in longitudinal studies with binary outcomes. Through

the incorporation of observation-level visit-intensity weights and shared latent variables,

our proposed joint model approach provides flexibiliy to accommodate the assumptions of

conditional independence given observed covariates and/or subject-level latent variables,

while not imposing a parametric assumption on the mean trajectory of the longitudinal

binary outcomes.

In Section 2, we detail assumptions regarding conditional independence between the out-

come and observation-time processes. In Section 3, we introduce a comprehensive estimation

procedure for regression modeling of binary outcomes in the presence of outcome-dependent

observation times. We present simulation studies to evaluate the performance of our proposed

procedure under alternative outcome-observation dependence mechanisms in Section 4, and

illustrate its application to data from a warfarin study in Section 5. Section 6 provides

discussion and concluding remarks.

2. Model formulation and assumptions

We consider a longitudinal study with n independent subjects in the study interval [0, τ ],

for which τ is the maximum study duration. For subject i, i = 1, . . . , n, let Yi(t) denote

a binary outcome of interest at time t, and Xi(t) denote a p × 1 vector of possibly time-

dependent covariates. Unless otherwise specified, we consider only external covariates, such

that any time-dependent covariate process at time t is conditionally independent of all

previous outcomes, given the history of the covariate process (Kalbfleisch and Prentice, 2002).

Yi(·) is measured at mi observation times 0 ≤ Ti1 < Ti2 < · · · < Timi
≤ τ , for which mi

denotes the number of follow-up measurements on the ith individual. Using counting process
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notation, let Ni(t) =
∑

s≤t dNi(s) denote the number of observations on the ith subject by

time t ≤ Ci, in which Ci is the censoring time. The indicator variable dNi(t) equals 1 if a

follow-up visit occurred on the ith individual at time t and equals 0 otherwise. We assume

non-informative censoring, such that Pr[Yi(t) = 1 | Xi(t), Ci ≥ t] = Pr[Yi(t) = 1 | Xi(t)].

That is, the covariate-outcome associations are the same in those who are censored at Ci as

those who have survived beyond Ci.

2.1 Semi-parametric outcome model

We assume that primary scientific interest lies in a semi-parametric regression model for

the longitudinal binary outcomes. We extend the semi-parametric linear regression model

for continuous outcomes proposed by Lin and Ying (2001) to binary outcomes Yi(t) under

independent or dependent observation times:

Pr[Yi(t) = 1 | Xi(t)] = expit{µ(t) + β′Xi(t)} =
µ(t) + β′Xi(t)

1 + exp{µ(t) + β′Xi(t)}
, (1)

for which µ(t) is an arbitrary function of time and β is a p×1 vector of regression parameters

of interest.

The semi-parametric outcome model assumes a parametric structure for the effect of Xi(t)

and a non-parametric structure for µ(t) (Lin and Carroll, 2001; Sun et al., 2005). Model

(1) describes the marginal mean of Yi(·) without specifying its correlation structure and

distributional form; hence, it is appealing if the effects of Xi(t) are of interest, but the effect

of time is considered a nuisance.

The parameter β in model (1) represents the primary target of inference: the marginal

association between a set of covariates and an outcome of interest among a population of

individuals. Model (1) does not condition on the entire covariate process or on past outcomes.

Instead, it conditions on covariate information available at time t, which may include baseline

covariates, covariates measured at or before t, or summaries of the covariate history, i.e., a

partly conditional mean regression model (Pepe and Couper, 1997).
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2.2 Observation-time model

The observation-time process describes the timing and intensity of follow-up visits and is

characterized by a standard recurrent events model. We introduce a non-negative latent

variable ηi with mean 1 and unknown variance σ2. Given observation-time model covariates

Zi(t) and ηi, the recurrent event process Ni(·) is a non-homogeneous Poisson process with

intensity function (Pepe and Cai, 1993; Lin et al., 2000):

λi(t) = ηiλ(t) exp{γ′Zi(t)}, t ∈ [0, τ ] (2)

for which γ is a vector of unknown parameters and λ(t) is an arbitrary baseline intensity

function with Λ(t) =
∫ t
0
λ(u)du. Model (2) implies that the occurrence of observations follows

a proportional intensity model, in which ηi inflates or deflates the visit intensity. If the

censoring time is independent of the observation-time process, then the parameter γ can be

consistently estimated by γ̂ from the following estimating function (Lin et al., 2000):

U(γ) =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t; γ)}dNi(t), (3)

for which:

Z̄(t; γ) =

∑n
i=1 ξi(t) exp{γ′Zi(t)}Zi(t)∑n

i=1 ξi(t) exp{γ′Zi(t)}
,

and ξi(t) = I(Ci > t). The parameter γ provides information regarding the observation-time

model, but is considered a nuisance because our interest is in estimating the association

parameter β from the outcome model. However, incorporating the observation-time process

into estimation of β in a joint model facilitates reliable estimation under outcome-observation

dependence, which we detail in the next section.

2.3 Assumptions regarding conditional independence

We identify the source of dependence between the outcome and observation-time processes

using one of three outcome-observation dependence mechanisms:

(M1) Conditional independence given past outcome-model covariates;

http://biostats.bepress.com/upennbiostat/art38
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(M2) Conditional independence given past observation-time model covariates;

(M3) Conditional independence given shared latent variables.

For the remainder of the paper, conditional independence given covariates implies condi-

tional independence given past observed covariates.

(M1) Conditional independence given outcome-model covariates

The first mechanism assumes that the outcome process is conditionally independent of the

observation-time process given outcome-model covariates Xi(t), or a subset of Xi(t):

E[dNi(t) | Xi(t), Yi(t), Ci ≥ t] = E[dNi(t) | Xi(t)].

The probability of observation at time t depends on Xi(t), Yi(t), and Ci only through

outcome-model covariates Xi(t), hence is plausible if the occurrence of a follow-up visit

is due to the features of the study design, rather than subject-specific behaviors.

(M2) Conditional independence given observation-time model covariates

The second mechanism assumes that the occurrence of a follow-up visit depends on observation-

time model covariates Zi(t):

E[dNi(t) | Xi(t), Zi(t), Yi(t), Ci ≥ t] = E[dNi(t) | Zi(t)].

The probability of observation at time t depends on Xi(t), Zi(t), Yi(t), and Ci only through

observation-time model covariates Zi(t). Zi(t) includes the full or partial subset of the

outcome-model covariates and any additional measured covariates at or before time t, as

well as previous outcomes. Note that (M1) ⊂ (M2) because Xi(t) ⊂ Zi(t).

(M3) Conditional independence given shared latent variables

The third mechanism assumes that the outcome process is conditionally independent of the

observation-time process given outcome-model covariates Xi(t), and an unmeasured mean-

one subject-specific latent variable ηi:

E[dNi(t) | Xi(t), Yi(t), ηi, Ci ≥ t] = E[dNi(t) | Xi(t), ηi].
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ηi conveys information regarding subject-specific unmeasured confounders and propensity

for physician visits.

Our outcome-observation dependence mechanisms provide a framework for reliable esti-

mation of covariate-outcome associations. Mechanisms (M2) and (M3) allow the probability

of an observation to depend on unmeasured patient characteristics in addition to measured

observation-time model covariates, and hence place fewer restrictions on the probability of

having a visit than (M1); these are reasonable assumptions in most observational studies.

However, (M2) and (M3) may require more advanced analysis methods to provide valid

inference, which we introduce in the following section.

3. Estimation and inference

In this section, we detail a new estimation procedure to estimate covariate-outcome associa-

tions with binary outcomes in a joint modeling approach under any combination of the three

outcome-observation dependence mechanisms described in the previous section.

3.1 Estimators

3.1.1 Estimator under M1. Given the semi-parametric outcome model (1), and the observation-

time model E[ dNi(t) | Xi(t)] = exp{γ′Xi(t)} dΛ(t), we can define the zero-mean stochastic

process for binary outcomes as:

Mi(t; β, γ) =

∫ t

0

[
Yi(s)ξi(s) dNi(s)− expit{µ(s) + β′Xi(s)}ξi(s) exp{γ′Xi(s)} dΛ(s)

]
. (4)

Mi(t; β, γ) is appropriate if it is assumed that the occurrence of a follow-up visit is a feature

of the study design or known patient characteristics and not due to previous outcomes or

unmeasured patient characteristics.

3.1.2 Estimator under M2. For continuous outcomes, Bůžková and Lumley (2009) pro-

posed a method that relaxes the assumption of (M1) and accommodates (M2) by applying

http://biostats.bepress.com/upennbiostat/art38
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observation-level weights to the estimating equation to account for dependence through

covariates in the observation-time model, Zi(t). Recall that Zi(t) may include the outcome-

model covariates Xi(t) and summaries of past outcomes.

Given the marginal semi-parametric regression model (1), the observation-level weights

standardize the observed data to the time-specific underlying population under the propor-

tional rate model for observation times E[dNi(t) | Zi(t)] = exp{γ′Zi(t)}dΛ(t). One particular

observation-level weight with variance-stabilizing properties is:

ρi(t; γ, δ) =
exp{γ′Zi(t)}
exp{δ′Xi(t)}

,

for which δ is estimated by δ̂ using (3) conditioning on Xi(t). The zero-mean process

Mi(t; β, γ) from (4) can then be extended as:

Mi1(t; β, γ, δ) =

∫ t

0

1

ρi(s, γ, δ)

[
Yi(s)ξi(s) dNi(s)

− expit{µ(s) + β′Xi(s)}ξi(s) exp{γ′Zi(s)} dΛ(s)

]
. (5)

3.1.3 Estimator under M2 and M3. To allow outcome-observation dependence through

observed covariates and unobserved latent variables, the outcome model (1) can be extended

to:

Pr[Yi(t) = 1 | Xi(t)] = expit{µ(t) + β′Xi(t) + η′i1Qi(t)}, (6)

in which Qi(t) is a q × 1 subvector of Xi(t) and ηi1 is a q-dimensional vector of subject-

specific latent variables that represent subject-level propensity for visit (Liang et al., 2009).

The observation-time model can be expressed as:

E[dΛi(t) | Zi(t)] = ηi2 exp{γ′Zi(t)} dΛ(t), (7)

in which ηi2 is a mean-one, non-negative latent variable. The distribution of ηi2 may depend

on observed time-independent outcome-model covariates Vi with E[ηi2 | Vi] = 1. Discussion

regarding covariate-dependent latent variables or frailties can be found in recent literature

(Heagerty and Kurland, 2001; Neuhaus and McCulloch, 2006; Liu et al., 2011; McCulloch
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and Neuhaus, 2011). The latent variables from models (6) and (7) are assumed to be linearly

linked through E[ηi1 | ηi2] = θ(ηi2 − 1). The parameter θ describes the association between

the outcome and observation-time processes. Thus, to ensure that β retains a marginal

interpretation with the inclusion of the latent variable, we define Bi(t) = E[(ηi2 − 1) |

mi, Ci]Qi(t) as a fixed covariate that incorporates the subject-specific propensity for visit.

The outcome model (6) can be re-expressed as:

Pr[Yi(t) = 1 | Xi(t), Bi(t)] = expit{µ(t) + β′Xi(t) + θ′Bi(t)}. (8)

Next, we re-express the observation-time model. Let Zi(t) = {Zi(s) : 0 ≤ s < t} denote

the covariate history of Zi up to t. Following the results from Huang et al. (2010), the

event times (ti1 < ti2 < · · · < timi
) of the ith subject conditional on {Ci,mi, ηi2,Z(Ci)} are

order statistics of a set of independent and identically distributed random variables with the

density function:

p{ti1 < ti2 < · · · < timi
| Ci,mi, ηi2,Z(Ci)} =

exp{γ′Zi(t)}dΛ(t)∫ Ci

0
exp{γ′Zi(s)}dΛ(s)

.

Define π(t;Zi) =
∫ t
0

exp{γ′Zi(s)}dΛ(s). It follows that:

E[dNi(t) | Ci,mi, ηi2,Z(Ci)] = ξi(t)mi
dπ(t;Zi)

π(Ci;Zi)
.

Using both re-expressed outcome and observation-time models, the zero-mean process

Mi1(t; β, γ, δ) from (5) can then be extended as:

Mi2(t; β, θ, γ, δ) =

∫ t

0

1

ρi(s, γ, δ)

[
Yi(s)ξi(s) dNi(s)

− expit{µ(s) + β′Xi(s) + θ′B̂i(s)}ξi(s)mi
dπ(s, Zi)

π(Ci, Zi)

]
(9)

in the presence of both (M2) and (M3).

To estimate Bi(t), we first estimate ηi2 from the observation-time model. We utilize the

property that given {ηi2, Ci,Z(Ci)}, mi follows a Poisson distribution with mean ηi2π(Ci, Zi)

to obtain η̂i2 = { mi

π(Ci,Zi)
−1}, so B̂i(t) = { mi

π(Ci,Zi)
−1}Qi(t). (9) is the most general formulation

of the joint model and can accommodate (M1), (M2), and (M3); that is, provide valid
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estimation of β under any combination of the three conditional independence mechanisms.

Given a specific mechanism of (M1), (M2) or (M3), Mi2(t; β, θ, γ, δ) can be reduced to (4)

and (5). In subsequent sections, we proceed with estimation of β via the estimation equation

(9), which we refer to as the ‘proposed estimator.’

3.2 Estimation procedure

Unlike for continuous or count outcomes, there is no closed-form solution for µ(t) and β

for binary outcomes based on the zero-mean process (9), by setting Mi2(t; β, θ, γ, δ) = 0.

Computational issues may arise because µ(t) is infinite dimensional, and iterative procedures

may be difficult with sparse data resulting from few subjects with visits at each unique

observation time. To overcome these computational burdens, we impose a flexible structure

on µ(t) using basis approximations. Generalizing the notation from Huang, Zhang, and Zhou

(2007), suppose the smooth function µ(·) can be approximated by a spline function such that

µ(t) ≈
∑Kn

k=1 ϕkGk(t) = ϕ′G(t) in which {Gk(·), k = 1, . . . , Kn} is a basis system of B-splines,

ϕ = (τ1, . . . , τKn)′ and G(t) = (G1(t), . . . , GKn(t))′. Let H̃i(t) = Gi(t) or H̃ij = G(Tij). (8)

can thus be approximated by Pr[Yi(t) = 1 | Xi(t), Bi(t)] = expit{ϕH̃i(t)+β′Xi(t)+θ′Bi(t)}.

Let s1 < s2 < · · · < sJ denote the J distinct ordered observation times from all subjects

{tik, i = 1, . . . , n; k = 1, . . . ,mi}. We propose to estimate β from (9) by the estimating

equation:

n∑
i=1

mi∑
k=1


H̃i(tik)

Xi(tik)

B̂i(tik)

 Yi(tik)

ρi(tik, γ, δ)
ξi(tik) dNi(tik) (10)

−
J∑

j=1

n∑
i=1


H̃i(sj)

Xi(sj)

B̂i(sj)

 1

ρi(sj , γ, δ)
expit{ϕ′H̃i(sj) + β′Xi(sj) + θ′B̂i(sj)}ξi(sj)mi

dπ(sj , Zi)

π(Ci, Zi)
= 0.

γ and Λ(t) can be estimated by γ̂ from (3) and Λ̂(t) =
∑n

i=1

∫ t
0
dNi(s)

/∑n
j=1 ξj(s) exp{γ′Zj(s)} .

The number of equations represented by H̃i(·) reflects Kn, the number of knots selected.
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Regression modeling of longitudinal binary outcomes with outcome-dependent observation times 11

µ̂(·) = ϕ̂′G(·) estimates the non-parametric portion of the outcome model and β̂ estimates the

parametric portion of the outcome model, while θ̂ incorporates the effect of the visit process

into the outcome model. Standard error estimation for our proposed estimation procedure

can be obtained using a cluster bootstrap, in which subjects are sampled with replacement

(Field and Welsh, 2007). Bootstrapping ensures that uncertainty from estimating µ and θ

are accounted for in standard error estimate for β̂.

3.3 Parameter interpretation

The inclusion of the fixed covariate Bi(t) in (8) ensures that β retains a marginal interpre-

tation. Consider a model with a binary treatment indicator Xi1 and a confounder Xi2:

Pr[Yi(t) = 1 | Xi, B̂i] = expit{µ(t) + β1Xi1 + β2Xi2 + θB̂i}, (11)

such that B̂i = (η̂i2 − 1)Qi(t) and β1 is the parameter of interest. We examine four possible

configurations of (11):

(i) Pr[Yi(t) = 1 | Xi] = expit{µ(t) + β1Xi1 + β2Xi2};

(ii) Pr[Yi(t) = 1 | Xi, B̂i] = expit{µ(t) + β1Xi1 + β2Xi2 + θ(η̂i2 − 1)};

(iii) Pr[Yi(t) = 1 | Xi, B̂i] = expit{µ(t) + β1Xi1 + β2Xi2 + θ(η̂i2 − 1)Xi2};

(iv) Pr[Yi(t) = 1 | Xi, B̂i] = expit{µ(t) + β1Xi1 + β2Xi2 + θ(η̂i2 − 1)Xi1};

In (i), corresponding to the outcome models in Sections 3.1.1 and 3.1.2, β1 represents the

difference in log odds of the response between two populations of treated and untreated

individuals, regardless of their visit propensity. In (ii) and (iii), β1 represents the difference

in log odds of the response between two populations of treated and untreated individuals

with the same value of Xi2 and visit propensity. In (iv), the interpretation of β1 is similar to

the interpretation of the main effect in the presence of an interaction. The log odds for each

treatment group can be expressed as:

logit Pr[Yi(t) = 1 | Xi1 = 1, Xi2] = β0 + β1 + β2Xi2 + θ(η̂i2 − 1);

http://biostats.bepress.com/upennbiostat/art38
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logit Pr[Yi(t) = 1 | Xi1 = 0, Xi2] = β0 + β2Xi2.

Thus the comparison of the treatment groups results in the coefficient β1 + θ(η̂i2 − 1).

Therefore, β1 represents the difference in log odds of the response between two populations of

treated and untreated individuals with the same value of Xi2 and an average visit propensity

(i.e., ηi2 = 0).

4. Simulation study

We conducted simulation studies to evaluate the statistical properties of our proposed

method under two outcome-observation dependence settings: (i) (M2) and (ii) (M2) and

(M3). All simulations were conducted in R 2.13.1 (R Development Core Team, Vienna,

Austria). For all simulations, we generated 1000 simulated datasets, each with n = 100

or 200 independent subjects. For comparison, we fit a GEE with a working independence

correlation structure (IEE). We also fit an IEE that incorporated observation-level weights

ρi(t; γ, δ) and B̂i(t) as a covariate (weighted-IEE). All outcome models used B-splines with

four degrees of freedom to approximate µ(t).

4.1 Setting 1: Simulations under (M2)

4.1.1 Parameters. In setting 1, we used covariates to induce correlation between the

outcome and observation-time processes to satisfy (M2). We specified the outcome model as:

Pr[Yi(t) = 1 | Xi(t)] = expit{µ(t) + β1Xi1(t) + β2Xi2}, (12)

for which µ(t) = −1 + 0.5t−1/2, εi(t) ∼ Normal(0,1), and (β1, β2) were the parameters of

interest. The time-dependent covariate of interest Xi1(t) took the form Xi1log(t), in which

Xi1 ∼ Uniform[0,1], and Xi2 ∼ Bernoulli(0.5). We included an additional covariate Xi3

drawn from a mixture distribution, for which Xi3 ∼ Normal(2,1) if Xi1 ≤ 0.5 and Xi3 ∼

Normal(0,4) if Xi1 > 0.5.
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Following the simulation procedure of Bůžková and Lumley (2009) based on a probit link

approximation, we generated binary outcomes based on the following equation:

Yi(t) = I

[
f ∗(t) + β∗1Xi1(t) + β∗2Xi2 + β3Xi3 + φi + εi(t) > 0

]
, (13)

for which f ∗(t) = µ(t)M − β3E[Xi3 | Xi1], β
∗
1 = β1M , β∗2 = β2M , and

M =
√
σ2
ε + σ2

φ + β2
3Var[Xi3 | Xi1]/1.7. φi was a subject-specific latent variable that induced

an exchangeable correlation structure on the outcomes from the same subject. We assumed

φi was normally distributed with mean 0 and variance σ2
φ = 0.25.

Model (13) describes the case when Xi3 affects the covariate-outcome association by Xi1(t).

Proper marginalization over the additional covariate Xi3, the random effect, and the error

term in (13) results in the marginal semi-parametric outcome model (12).

We generated observation times Tik from a non-homogeneous Poisson process with intensity

function λi(t) = ηiλ(t) exp{γ1Xi1(t) + γ2Xi2 + γ3Xi3}, in which λ(t) =
√
t

2
. Note that Xi3

induced additional correlation between the outcome and observation-time processes, and Xi3

was specified in the observation-time model but not in the marginal outcome model (12). The

latent variable ηi was generated from a Gamma distribution with mean 1 and variance σ2
η =

0.5. The independent censoring time Ci was generated from Uniform[5,10]. To examine the

performance of our proposed estimators under (M2), we considered various combinations of

outcome parameters β1 = log(1.5), β2 = log(1.2), β3 = {0, log(0.5)} and intensity parameters

γ1 = 0.3, γ2 = 0.2, γ3 = (0, 0.2, 0.3). When γ3 = 0, the outcome-observation dependence

model satisfied (M1); when β3 6= 0 and γ3 6= 0, the outcome-observation dependence model

satisfied (M2).

4.1.2 Results. Table 1 provides the estimated bias, empirical standard error estimates,

and mean squared error estimates for estimation of β1 in model (12) by the IEE, weighted-

IEE, and our proposed method. If (M1) was satisfied (γ3 = 0), i.e., the outcome and

observation-time processes were conditionally independent given outcome-model covariates
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Xi1(t) and Xi2, then all three methods performed well. Biases in the estimates of β1 were

negligible. However, if (M1) was violated (γ3 6= 0 and β3 6= 0), i.e., the two processes had

additional correlation induced by Xi3, then the bias under the proposed method was smaller

than the bias under IEE. IEE estimates β1 without accounting for the additional covariate

Xi3 in any manner, whereas the proposed method incorporates the effect of Xi3 through

observation-level weights. Thus, IEE provided biased estimates. The performance of the

weighted-IEE was comparable to the proposed method; both methods provided comparable

bias and mean squared errors of the covariate effects.

Because Xi2 was independent of Xi3, the biases for β2 were negligible under all three

methods for all scenarios. This indicated that when the additional covariate is independent

of an outcome-model covariate, the performance of IEE is comparable to the weighted-IEE

and proposed methods.

[Table 1 about here.]

4.2 Setting 2: Simulation under (M2) and (M3)

4.2.1 Parameters. In setting 1, we focused on (M2). In setting 2, we examined the

performance of our proposed estimator under (M3) when (M2) was satisfied. Following (6),

the model of interest for binary outcomes in the presence of a latent variable representing

visit propensity was:

P[Yi(t) = 1 | Xi(t)] = expit{µ(t) + β1Xi1(t) + β2Xi2 + ηi1Qi(t)}, (14)

in which µ(t), εi(t), Xi1(t) and Xi2 were as defined in Section 4.1.1, and (β1, β2) were the

parameters of interest. We introduced an additional covariate Xi3, defined as the mixture

distribution as in Section 4.1.1, which affected the covariate-outcome association of Xi1(t)

through (M2). Extending (13), we generated data under both (M2) and (M3) with the

following equation:
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Yi(t) = I

[
f ∗(t) + β∗1Xi1(t) + β∗2Xi2 + β3Xi3 + η∗i1Qi + εi(t) > 0

]
, (15)

for which f ∗(t), β∗1 and β∗2 were as defined in Section 4.1.1. With the inclusion of ηi1, we

defined η∗i1 = ηi1M and M =
√
σ2
ε +Q2

iσ
2
φ + β2

2var[Xi2 | Xi1]/1.7.

The observation times Tik were generated from a non-homogeneous Poisson process with

intensity function λi(t) = ηi2λ(t) exp{γ1Xi1(t) + γ2Xi2 + γ3Xi3}, with λ(t) =
√
t

2
. The

independent censoring time Ci was generated from Uniform[5,10]. The latent variable ηi1

was defined as E[ηi1 | ηi2] = θ(ηi2 − 1) + φi, for which φi ∼ Normal(0, σ2
φ) and σ2

φ = 1.

We generated the latent variable ηi2 in the observation-time model under two scenarios:

(1) ηi2 from Gamma distribution with mean 1 and variance 0.5; hereby η
(1)
i2 .

(2) ηi2 from a mixture distribution, following Uniform[0.5,1.5] if Xi2 = 1 and Gamma

distribution with mean 1 and variance 0.7 if Xi2 = 0; hereby η
(2)
i2 .

η
(2)
i2 would imply covariate-dependent latent variable, as introduced in Section 3.1.3.

The coefficients were defined as (β1, β2, β3) = log(1.5, 1.2, 0.5), (γ1, γ2, γ3) = (0.3, 0.2, 0.3),

and θ = 1. θ 6= 0 in model (14) introduced correlation between the outcome and the

observation-time processes through latent variables.

We let Qi = 1 or Qi = Xi1. When Qi = 1, the effect of the latent variable ηi1 was not

modified by any covariates in the outcomes process. When Qi = Xi1, the effect of the latent

variable ηi1 was modified by the value of Xi1. By varying Qi = (1, Xi1) and ηi2 = (η
(1)
i2 , η

(2)
i2 ),

we considered different ways the latent variables induced a relationship between the outcome

and observation-time processes.

4.2.2 Results. Table 2 provides the estimated bias, empirical standard error estimates,

and mean squared error estimates for the estimation of β1 and β2 in model (14). From

Section 4.1.2, the inclusion of Xi3 in the observation-time model satisfied (M2) and induced

http://biostats.bepress.com/upennbiostat/art38
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additional correlation and biases the covariate-outcome association of Xi1(t). The inclusion

of ηi1 in the outcome model satisfied (M3).

We focus on the performance of the methods under various combinations of ηi2 (η
(1)
i2 or

η
(2)
i2 ) and Qi (1 or Xi). If ηi1 was unrelated to any of the outcome-model covariates, (i.e.,

η
(1)
i2 and Qi = 1), then all three methods performed well for β2, while IEE provided heavily

biased estimates of β1, consistent with the results from Section 4.1.2. Under η
(2)
i2 , in which

the distribution of ηi2, and hence value of ηi1, depended on the status of Xi2, IEE provided

biased estimates of β2, while the weighted-IEE and the proposed method provided unbiased

estimates. If the effect of ηi1 was modified by the value of Xi1 (i.e., Qi = Xi1), then the

bias for β1 under the weighted-IEE and proposed method was smaller than IEE. Under the

(M1) or (M2)-only assumption (θ = 0, ηi1 = 0), the proposed method is expected to be less

efficient than IEE because the estimation procedure attempts to estimate θ, which results in

loss of efficiency.

[Table 2 about here.]

4.3 Summary

The preceding simulation results quantified the potential for bias in estimated covariate-

outcome associations under various outcome-observation dependence mechanisms. Under

(M1), all three methods performed well. Under (M2), only the weighted-IEE and our pro-

posed method performed well. Under (M3) when (M2) was satisfied, both the weighted-IEE

and our proposed method performed well in the presence of a latent variable representing

visit propensity in the outcome model, especially when the latent variables were associated

with outcome-model covariates either (i) if the distribution of the latent variables was

covariate-dependent, or (ii) the effect of the latent variable was modified by an outcome-

model covariate. In all simulations, the weighted-IEE and the proposed method were the most
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reliable and provided estimates with negligible biases under any combination of outcome-

observation dependence mechanisms.

5. Application

5.1 Background

In this section, we apply our proposed joint model approach to data from a randomized

controlled trial among patients on warfarin therapy. The goal of the trial was to determine

the effectiveness of interventions designed to increase adherence to therapy, and thus improve

anticoagulation control (Kimmel et al., 2007). The study randomized 362 subjects into four

treatment arms, which we are unable to reveal in this preliminary analysis. The study

protocol specified monthly follow-up visits, at which INR was measured. Physicians also

scheduled as-needed visits in between protocol-required visits based on the patient’s INR

response.

The outcome Yi(t) in the outcome model was binary: 1 if the INR was outside the thera-

peutic range (out-of-range) at time t, and 0 otherwise. The primary exposure was treatment

assignment. Descriptive analyses (data not shown) revealed several baseline covariates that

were imbalanced across the four treatment groups (P < 0.2), and were thus adjusted for in

the outcome model: employment status (working, disabled, or retired/unemployed), baseline

age, race, Medicare insurance, education, history of diabetes, target INR range, and sub-

therapeutic INR at baseline.

We considered two outcome models:

Model 1: Pr[Yi(t) = 1 | Xi, Bi] = expit{µ(t) + β′Xi + θBi}

Model 2: Pr[Yi(t) = 1 | Xi, Bi] = expit{µ(t) + β′Xi + θ1Bi,disabled + θ2Bi,retired/unemployed}.

Recall thatBi includes the latent variable from the observation-time model, andBi,Qi
=(η̂i2−

1)Qi. Model 1 assumed that the effect of the latent variable was not modified by any of the
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outcome-model covariates. Model 2 assumed that the effect of subject-specific latent variables

was different based on employment status.

The observation-time model was defined as: E[dΛi(t) | Zi(t)] = ηi2 exp{γ′Zi(t)}dΛ(t),

in which Zi(t) included whether the INR was out-of-range at the previous visit. Thus,

the observation-time model mirrored the clinical management of patients with suboptimal

anticoagulation status who required additional follow-up. Outcome-model covariates were

also screened for inclusion in the observation-time model. Univariable recurrent event models

were used to assess unadjusted covariate associations with the observation times.

Censoring time Ci was defined as the time of the last follow-up visit at the study site. To

estimate 95% confidence intervals (CI), we performed a cluster bootstrap in which subjects

were sampled with replacement. The sampling procedure was repeated 1000 times and

the 95% bootstrap CI was obtained from the 2.5th and 97.5th percentile of the empirical

distribution produced from these 1000 estimates of β. The β estimates and 95% CI from

the outcome models were exponentiated to obtain the odds ratios and corresponding 95%

CI. Odds ratios less than 1 indicated decreased odds of out-of-range INR. For comparison,

we fit a GEE with a working independence correlation structure (IEE) and an IEE that

incorporated observation-level weights ρi(t; γ̂, δ̂) and B̂i(t) as a covariate (weighted-IEE).

All outcome models used B-splines with 4 degrees of freedom to approximate µ(t).

5.2 Results

The estimates of γ from the observation-time model indicated that employment status was

significantly associated with the observation times (Table 3). Patients who were disabled

or retired/unemployed were more likely to have a visit compared to patients who were

working. The median number of visits for those in the ‘working’ group was 6 (range, 3–11),

while the median number of visits in the ‘disabled’ and ‘retired/unemployed’ groups were 8

(range, 2–16) and 7 (range, 1–24), respectively. Employment status may be a proxy for other
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factors such as access to care and availability of time for physician visits. Patients were also

significantly more likely to have a visit if the INR was out-of-range at the previous visit [γ̂,

0.40; 95% CI:(0.37, 0.49)]. We found no significant interaction between employment status

and out-of-range INR. The observation-level weights applied to the estimation procedures

had a median of 1.21 and ranged from 0.88 to 1.71.

[Table 3 about here.]

The odds ratios (ORs) and 95% CIs from the outcome models are presented in Table 4.

Under Model 1, the estimate of Bi was positive, implying that the outcome and observation-

time processes were positively associated, such that patients with greater odds of being out-

of-range (i.e., poorer anticoagulation status) had more frequent visits. With both observation-

level weights and a latent variable, the OR estimates from weighted-IEE and the proposed

method shifted toward the null for those disabled and retired/unemployed. Here, β for each

employment status represents the difference in log odds of an out-of-range INR between

populations of ‘disabled’ or ‘retired/unemployed’ individuals and ‘employed’ individuals with

the same visit propensity.

[Figure 2 about here.]

Model 2 investigated whether the latent variable was associated with employment status.

Based on the empirical distribution of ηi2 by employment status (Figure 2), there was

little evidence that the distribution of ηi2 from the observation-time model differed by

employment status. The OR estimates for those in the ‘disabled’ group were similar between

Model 1 and 2, but the estimates for those in the ‘retired/unemployed’ group further

attenuated, even though the confidence intervals were wide. Both the ‘disabled’ and the

‘retired/unemployed’ groups had more frequent visits compared to the working group, hence

the incorporation of the observation-level weights and effects of latent variables based on

employment status adjusted for potential outcome-observation dependence. Here, β for each
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employment status represents the difference in log odds of an out-of-range INR between

populations of ‘disabled’ or ‘retired/unemployed’ individuals and ‘employed’ individuals, all

with average visit propensity.

[Table 4 about here.]

6. Discussion

In this paper, we presented a new approach to analyze longitudinal binary outcomes in

the presence of outcome-dependent observation times. We introduced three mechanisms to

describe the dependence between the outcome and observation-time processes, and showed

that our proposed method is applicable under any combination of the mechanisms. Our

proposed method performed as well as the weighted-IEE that incorporates observation-level

weights and latent variables. Both methods performed better than the näıve IEE when the

dependence between outcomes and observation times is parameterized using observation-time

model covariates and/or latent variables.

The advantage of our proposed method over the weighted-IEE would be apparent in

the case of more complicated data-collection schedules, such as when the censoring times

are not independent of the outcome and observation-time processes. In addition, our pro-

posed method allows explicit specification of separate models for the outcome and the

observation-time processes. Although not our primary target of inference, the parameters in

the observation-time model provide relevant information to clinicians regarding the timing

of care provided to patients. The ability of our proposed method to explicitly specify the

secondary model for the observation-time process can be extended to accommodate more

complex data-collection schedules. For example, discontinuous risk intervals (i.e., patients

may be in or out of the risk set based on disease status or treatment washout periods) may

be incorporated in the observation-time model and therefore warrants future research.
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Several key features of our approach are worth noting. First, we applied our proposed

method to the analysis of binary outcomes, but our approach can be extended to other

types of outcomes given an appropriate link function, such as the generalized logit link for

a multinomial outcome. Second, we modeled the effect of time with B-splines instead of

assuming a parametric structure. The potential gain in computational ease from the smooth

spline approximation of µ(t) is countered by the potential loss in efficiency of estimation of

the parameters of interest. Third, the validity of the proposed estimator is contingent upon

correct specification of the observation-time model. One could utilize a Wald test for the

importance of the additional covariates in Zi(t) to guide model building. Fourth, the model

is able to accommodate censoring times that are dependent on the outcome and observation-

time processes by estimating γ following the procedure in Huang et al. (2010). Finally, we note

that in our application, patients were nested within physicians who made scheduling decisions

based on the patient’s anticoagulation status. Therefore, in addition to unmeasured patient

characteristics, we may need to account for physician-level characteristics. Incorporating

multiple sources of correlation, such as in a multi-level model, warrants future research.
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Figure 1: Observation times for four selected patients on warfarin and the corresponding
observed outcomes: INR below, within, or above the therapeutic range.
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Figure 2: The empirical distribution of ηi2 by employment status.
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Table 1: Simulation results for β1 = log(1.5): Bias, β̂1−β1; ESE, empirical sample error; MSE,
mean squared error

β3 n γ3 Weighted- Proposed
IEE IEE method

Bias ESE MSE Bias ESE MSE Bias ESE MSE

0 100 0 −0.02 0.25 0.06 −0.02 0.24 0.06 −0.01 0.26 0.07
0.2 −0.04 0.24 0.06 −0.05 0.23 0.05 −0.04 0.24 0.06
0.3 −0.04 0.24 0.06 −0.05 0.24 0.06 −0.05 0.27 0.08

200 0 −0.02 0.18 0.03 −0.02 0.17 0.03 −0.02 0.18 0.03
0.2 −0.04 0.18 0.03 −0.05 0.17 0.03 −0.05 0.18 0.03
0.3 −0.04 0.17 0.03 −0.05 0.16 0.03 −0.05 0.20 0.04

log(0.5) 100 0 0.01 0.38 0.14 0.01 0.37 0.14 0.02 0.38 0.14
0.2 −0.32 0.38 0.25 −0.06 0.36 0.13 −0.06 0.37 0.14
0.3 −0.42 0.39 0.33 −0.04 0.36 0.13 −0.04 0.39 0.15

200 0 −0.02 0.25 0.06 −0.01 0.25 0.06 −0.01 0.25 0.06
0.2 −0.33 0.26 0.18 −0.07 0.25 0.07 −0.07 0.26 0.07
0.3 −0.45 0.27 0.28 −0.06 0.25 0.07 −0.06 0.28 0.08

∗ All outcome models were fitted with B-splines with 4 degrees of freedom.
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Table 2: Simulation results for β1 = log(1.5), β2 = log(1.2), θ = 1: Bias, β̂ − β; ESE, empirical
sample error; MSE, mean squared error

n η2 Qi Weighted- Proposed
IEE IEE method

Bias ESE MSE Bias ESE MSE Bias ESE MSE

100 η
(1)
2 1 β1 −0.40 0.47 0.38 −0.05 0.42 0.18 −0.05 0.44 0.20

β2 −0.01 0.46 0.21 0.03 0.44 0.19 0.03 0.44 0.20

Xi1 β1 −0.11 0.41 0.18 −0.05 0.34 0.12 −0.05 0.39 0.15
β2 0.00 0.38 0.15 0.02 0.34 0.12 0.02 0.35 0.12

η
(2)
2 1 β1 −0.42 0.43 0.36 −0.08 0.39 0.16 −0.08 0.41 0.17

β2 −0.39 0.41 0.32 −0.09 0.38 0.15 −0.09 0.39 0.16

Xi1 β1 −0.24 0.38 0.20 −0.09 0.33 0.12 −0.09 0.36 0.14
β2 −0.19 0.34 0.15 −0.03 0.32 0.10 −0.03 0.33 0.11

200 η
(1)
2 1 β1 −0.42 0.33 0.29 −0.06 0.30 0.09 −0.05 0.30 0.10

β2 −0.02 0.31 0.10 0.02 0.30 0.09 0.02 0.30 0.09

Xi1 β1 −0.12 0.29 0.10 −0.06 0.24 0.06 −0.06 0.26 0.07
β2 0.00 0.27 0.07 0.02 0.24 0.06 0.02 0.24 0.06

η
(2)
2 1 β1 −0.42 0.30 0.27 −0.07 0.27 0.08 −0.07 0.27 0.08

β2 −0.40 0.29 0.25 −0.08 0.26 0.08 −0.08 0.26 0.08

Xi1 β1 −0.24 0.27 0.13 −0.08 0.23 0.06 −0.08 0.24 0.06
β2 −0.20 0.24 0.10 −0.02 0.22 0.05 −0.02 0.22 0.05

∗ All outcome models were fitted with B-splines with 4 degrees of freedom.
a Latent variable distributions: η

(1)
i2 : ηi2 ∼ Gamma(mean=1, σ2 = 0.5);

η
(2)
i2 : ηi2 ∼ I[X2 = 1]Uniform[0.5, 1.5] + I[X2 = 0]Gamma(1, 0.5)
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Table 3: Parameter estimates and 95% CI of γ from the
observation-time model

γ̂ (95% CI)

Employment Status
Working −
Disabled 0.13 ( 0.04, 0.29)
Retired/Unemployed 0.09 ( 0.00, 0.27)

Out-of-range INR at previous visit 0.40 ( 0.37, 0.49)

http://biostats.bepress.com/upennbiostat/art38
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