
 

Can 3D Multiparametric Ultrasound Imaging Predict Prostate
Biopsy Outcome?
Citation for published version (APA):
Chen, P., Turco, S., Wang, Y., Jager, A., Daures, G., Wijkstra, H., Zwart, W., Huang, P., & Mischi, M. (2024).
Can 3D Multiparametric Ultrasound Imaging Predict Prostate Biopsy Outcome? Ultrasound in Medicine and
Biology, 50(8), 1194-1202. https://doi.org/10.1016/j.ultrasmedbio.2024.04.007

Document license:
CC BY

DOI:
10.1016/j.ultrasmedbio.2024.04.007

Document status and date:
Published: 01/08/2024

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jul. 2024

https://doi.org/10.1016/j.ultrasmedbio.2024.04.007
https://doi.org/10.1016/j.ultrasmedbio.2024.04.007
https://research.tue.nl/en/publications/fe93e99b-57ee-4223-9370-51ffbf8e0139


Ultrasound in Medicine& Biology 50 (2024) 1194−1202

Contents lists available at ScienceDirect

Ultrasound in Medicine& Biology

journal homepage: www.elsevier.com/locate/ultrasmedbio
Original Contribution
Can 3D Multiparametric Ultrasound Imaging Predict Prostate Biopsy
Outcome?

Peiran Chena,*, Simona Turcoa, Yao Wangb, Auke Jager c, Gautier Dauresd, Hessel Wijkstra a,c,
Wim Zwartd, Pintong Huangb, Massimo Mischi a

a Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
b Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
c Department of Urology, Amsterdam University Medical Centers, Amsterdam, Netherlands
d Angiogenesis Analytics, JADS Venture Campus, Netherlands
A R T I C L E I N F O
* Address correspondence to: Peiran Chen Depa
E-mail address: p.chen1@tue.nl (P. Chen).

https://doi.org/10.1016/j.ultrasmedbio.2024.04.00
Received 28 November 2023; Revised 16 March 202

0301-5629/© 2024 The Author(s). Published by Else
the CC BY license (http://creativecommons.org/licen
A B S T R A C T

Objectives: To assess the value of 3D multiparametric ultrasound imaging, combining hemodynamic and tissue
stiffness quantifications by machine learning, for the prediction of prostate biopsy outcomes.
Methods: After signing informed consent, 54 biopsy-naïve patients underwent a 3D dynamic contrast-enhanced
ultrasound (DCE-US) recording, a multi-plane 2D shear-wave elastography (SWE) scan with manual sweeping
from base to apex of the prostate, and received 12-core systematic biopsies (SBx). 3D maps of 18 hemodynamic
parameters were extracted from the 3D DCE-US quantification and a 3D SWE elasticity map was reconstructed
based on the multi-plane 2D SWE acquisitions. Subsequently, all the 3D maps were segmented and subdivided
into 12 regions corresponding to the SBx locations. Per region, the set of 19 computed parameters was further
extended by derivation of eight radiomic features per parameter. Based on this feature set, a multiparametric
ultrasound approach was implemented using five different classifiers together with a sequential floating forward
selection method and hyperparameter tuning. The classification accuracy with respect to the biopsy reference
was assessed by a group-k-fold cross-validation procedure, and the performance was evaluated by the Area Under
the Receiver Operating Characteristics Curve (AUC).
Results: Of the 54 patients, 20 were found with clinically significant prostate cancer (csPCa) based on SBx. The 18
hemodynamic parameters showed mean AUC values varying from 0.63 to 0.75, and SWE elasticity showed an
AUC of 0.66. The multiparametric approach using radiomic features derived from hemodynamic parameters only
produced an AUC of 0.81, while the combination of hemodynamic and tissue-stiffness quantifications yielded a
significantly improved AUC of 0.85 for csPCa detection (p-value < 0.05) using the Gradient Boosting classifier.
Conclusions: Our results suggest 3D multiparametric ultrasound imaging combining hemodynamic and tissue-stiff-
ness features to represent a promising diagnostic tool for biopsy outcome prediction, aiding in csPCa localization.
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Prostate cancer
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Ultrasound shear-wave elastography
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Computer-assisted diagnosis
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Introduction

Prostate cancer (PCa) is the most frequently occurring type of non-
skin cancer and is the second-leading cause of cancer-related death in
men [1].

In recent years, multiparametric MRI (mpMRI) has emerged as a key
diagnostic tool and is increasingly being utilized for the detection of
clinically significant PCa (csPCa) [2]. In the current European Associa-
tion of Urology (EAU) guidelines on PCa, performing mpMRI before
biopsy is strongly recommended for biopsy naïve patients [3]. When the
MRI shows suspicious lesions, an MRI-targeted biopsy can be conducted
for PCa detection. The MRI-targeted biopsy is typically performed by
fusing the MRI images to the real-time B-mode ultrasound imaging,
either by registration software or cognitively, and then guiding biopsies.
Literature shows that MRI-targeted and transrectal ultrasound (TRUS)-
guided biopsies do not differ in overall PCa detection, but that MRI-tar-
geted biopsy has a higher rate of csPCa detection and a lower rate of
insignificant PCa detection compared to TRUS-guided biopsy [4]. The
ability of MRI to distinguish between indolent or insignificant PCa and
csPCa is a key aspect. Notably, the lower sensitivity of MRI to insignifi-
cant over significant PCa may be beneficial in preventing overdiagnosis,
as it may lead to overtreatment, thereby imposing an increased burden
on patients [5]. Yet, mpMRI suffers from a poor reproducibility and
specificity [6]. Moreover, limitations inherent to MRI-based diagnosis
include high cost, limited availability, and impracticality for bedside
use. In particular, MRI cannot provide real-time diagnosis and guidance
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for urologists, making the biopsy procedure complex and lengthy [7]. As
reported in the latest EAU guidelines online [8], an MRI diagnostic path-
way, in which patients with a positive MRI undergo only MRI-targeted
biopsy, or patients with a negative MRI do not undergo biopsy, is appeal-
ing, as it could decrease the number of biopsy procedures. However,
MRI findings must be interpreted in the light of the a priori risk of csPCa,
and this diagnostic pathway has only been evaluated in patients whose
risk of csPCa was judged high enough for biopsy referral based on stan-
dard clinical assessment [8].

As a cost-effective, widely available, practical, and real-time diagnos-
tic tool for PCa, TRUS imaging comprises various imaging modalities
such as B-mode, Doppler mode, dynamic contrast-enhanced ultrasound
(DCE-US) and shear-wave elastography (SWE). Current B-mode and
Doppler TRUS are not sufficiently accurate for TRUS-targeted biopsy
and PCa detection due to the low sensitivity and specificity of B-mode
and the limited sensitivity to microvascular flow of Doppler [9].

DCE-US imaging allows for the real-time visualization of blood flow
and analysis of vascularization with the help of intravenously injected
ultrasound contrast agents (UCAs). Tumor-driven angiogenesis is a rec-
ognized hallmark of cancer growth, which is characterized by a complex
and irregular microvascular architecture [10]. Cancer-associated
changes in the microvascular network can lead to tumor perfusion pat-
terns that are distinguishable from those in normal tissue; this can be
highlighted by DCE-US imaging. Hemodynamic quantifications based
on DCE-US can thus be used for the characterization of cancer angiogen-
esis [11].

Typically, blood perfusion parameters are extracted from DCE-US
time-intensity curves (TICs) to characterize malignant tissues in the
prostate [12−15]. TICs can be obtained at each pixel by collecting the
pixel intensity variations over the DCE-US loops, reflecting the temporal
evolution of the UCA concentration. TIC linearization is usually per-
formed prior to the analysis to compensate for the nonlinearities intro-
duced by the scanner, such as the typical log-compression [16,17].

More recently, contrast-ultrasound dispersion imaging (CUDI) has
been developed to quantify DCE-US acquisitions by modeling the spatio-
temporal evolution of the UCA concentration as a convective-dispersion
process. This allows for the extraction of blood perfusion and contrast
dispersion parameters. As reported in [18−22], dispersion parameters
reflect more effectively than perfusion parameters those changes in the
underlying microvascular architecture that are associated with cancer
angiogenesis. The obtained CUDI parameters can be further extended by
derivation of radiomic features; their combination have indeed shown
promising results for the localization of PCa [23−25]. The recent advan-
ces in 3D DCE-US imaging provide the possibility to acquire the UCA
perfusion across the full prostate gland in one examination using a single
bolus injection. Based on this, 3D CUDI has been developed, enabling
the hemodynamic quantifications in the whole prostate [25−27]. More-
over, 3D imaging allows for a better definition of the boundary condi-
tions for directly modeling the 3D behavior of the UCA spreading
through the prostate as a convective-dispersion process [28].

In addition to cancer angiogenesis, tissue stiffness has also proven to
be an effective biomarker for assessing PCa. In the prostate, tissue
stroma reacts to the invasion of cancer cells by eliciting a wound repair
mechanism. This results in elevated collagen deposition in tumor
regions, leading to increased stiffness compared to normal tissues
[29,30]. Several studies have shown the clinical value of ultrasound
SWE for PCa detection by quantifying tissue stiffness [31−34]. Cur-
rently, TRUS-based SWE scanning is still limited to 2D acquisitions for
most ultrasound scanners, although a novel application of 3D SWE in
the detection of csPCa was investigated [35].

As different imaging modalities may contribute to PCa diagnosis
complementally [36], several studies have reported on multiparametric
ultrasound imaging, aiming at improving the diagnosis performance by
combining B-mode imaging and power/color Doppler imaging [37], by
combining B-mode imaging, color Doppler, real-time elastography, and
enhancement patterns extracted from DCE-US acquisitions [38], by
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combining B-mode imaging, acoustic radiation force impulse imaging
and shear wave elasticity imaging based on elasticity, as well as quanti-
tative ultrasound imaging based on the spectral content of the backscat-
tered ultrasound signals [39], or by combining B-mode imaging, SWE
elasticity, and hemodynamic quantifications of DCE-US acquisitions
[24]. These studies have shown that multiparametric ultrasound outper-
forms a single imaging modality in localizing PCa. However, these stud-
ies are limited to 2D acquisitions and lack quantitative DCE-US analysis.

In this work, a 3D multiparametric ultrasound imaging approach,
combining hemodynamic quantifications represented by CUDI parame-
ters with tissue-stiffness (elasticity map) measured by SWE, was imple-
mented and evaluated for csPCa classification. To overcome the
unavailability of 3D SWE, which hampers the fusion of SWE and 3D
DCE-US, here we implement a 3D reconstruction of SWE elasticity maps
based on multi-plane 2D acquisitions on the same prostate. Individual
parameters along with their multiparametric combination by machine
learning and radiomics, were evaluated for their ability to detect the
presence of csPCa in regions corresponding to the systematic biopsy
(SBx) samples, using the biopsy outcomes as a reference.

Materials and methods

Data acquisition

At the Second Affiliated Hospital of Zhejiang University (Hangzhou,
China), 54 biopsy-naïve patients underwent a multi-plane 2D SWE scan
with manual sweeping from base to apex of the prostate using an
Aixplorer scanner (SuperSonic Imagine, France) equipped with a SE12-3
endocavity probe. During the multi-plane 2D SWE scan, an experienced
ultrasound examiner first swept the probe from the base to the apex of
the prostate, evaluating the prostate size; then, the ultrasound examiner
started acquiring 2D SWE images with minimal compression from base
to apex in an equal-angle sampling fashion. A 10-s stabilization period
was taken after the acquisition of each plane. In the end, 10 planes of 2D
SWE images were obtained for each prostate, except for few large pros-
tate glands. Five to ten minutes were usually taken for a whole SWE
scan. For each scan, the range of shear wave elastic modulus was set to 0
−70 kPa, which enabled distinguishing between normal and malignant
tissues as the typical elastic modulus for normal tissue is about 30 kPa.
Subsequently, the same patients underwent a 2-min 3D DCE-US record-
ing using a LOGIQ E9 scanner (GE HealthCare, USA) equipped with an
RIC5-9-D transrectal probe following the intravenous administration of
a 2.4-mL SonoVue® (Bracco, Italy) UCA bolus. For the 3D DCE-US
acquisitions, the image quality “BQ” was set to “low,” maximizing the
temporal resolution to about 0.3 Hz. A low mechanical index of 0.09
was adopted by setting the output power (AO%) to “10,” to avoid disrup-
tion of UCA microbubbles. The dynamic range and gain were set such
that the measured TICs had no saturation. After ultrasound scanning,
the same patients received a 12-core transrectal SBx procedure under
TRUS guidance by the same ultrasound examiner using a Philips iU22
ultrasound system (Philips Healthcare, Bothell, WA, USA) equipped
with a 2D transrectal probe (C9-5ec) in a dedicated operation room. The
total procedure took about an hour including preparations, DCE-US
imaging, SWE imaging, and the following biopsy, and all the patients
were conscious during this period. The SBx cores were then histopatho-
logically classified by a pathologist with 10 y of experience as benign,
clinically insignificant PCa with Gleason score 3+3=6, or csPCa with
Gleason score > 3+3. In total, 639 biopsies were performed (Note that
one or more biopsies were missing from three patients, for a total of
nine. Of the 639 biopsies, the Gleason scores of six biopsies were not
given as two Gleason patterns to be added together to obtain the Gleason
score. Four biopsies were given the Gleason score of 6. One biopsy was
given a Gleason score of 8. And one biopsy was without a score. These
biopsies are not included in Table 1). In this study, the inclusion criteria
were age > 18 y and the patients had elevated prostate-specific antigen
(PSA) levels above 4 ng/mL. The procedure was approved by the local



Table 1
Characteristics of the patient group

Characteristics [unit] Value

Number of patients [-] 54
Benign
Clinically significant cancer

34
20

Age, median (IQR) [years] 68 (65−73)
PSA, median (IQR) [ng/mL] 7.6 (5.4−14.4)
Biopsy results [-]
Benign 473 (74.0%)

Gleason score
3 + 3= 6 45 (7.0%)
3 + 4= 7 45 (7.0%)
4 + 3= 7 21 (3.3%)
4 + 4= 8 16 (2.5%)
> 4 + 4= 8 33 (5.2%)

IQR, interquartile range; PSA, prostate-specific antigen.
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ethics committee (Institutional Review Board from The Second Affili-
ated Hospital of Zhejiang University, No. IR2019001226) and all
patients signed informed consent. The patient and tumor characteristics
are summarized in Table 1.

Ultrasound data processing and multiparametric ultrasound imaging

Figure 1 presents an overview of the proposed multiparametric ultra-
sound imaging for PCa localization at the biopsy-region level. The
details are given in the following sections.

DCE-US: Pre-processing
The DCE-US data were obtained by using the RIC5-9-D intracavital

probe consisting of a wobbling curved array, resulting in the speckles in
the ultrasound images being highly anisotropic and depth-dependent.
To avoid the anisotropy and depth-dependency impacting on the TIC
analysis, we performed a speckle size regularization to achieve an isotro-
pic spatial resolution of 0.8 mm in all directions (axial, lateral, and ele-
vational) [26]. Next, the data were spatially downsampled by a factor of
3, and cropped according to the prostate boundaries that were delin-
eated in consensus by two urologists with 5 y of experience. To mitigate
residual tissue clutter and noise signals in the spatiotemporal domain, as
needed by part of the CUDI analysis, singular value decomposition
(SVD) was applied to filter the DCE-US data [40].

DCE-US: CUDI analysis
In the classical work of Taylor, the transport of an indicator along an

infinitely-long tube is described as a combination of convection along
the flow direction, producing a parabolic flow profile in the case of lami-
nar flow, and molecular diffusion in the radial direction due to
Figure 1. An overview of the proposed multiparametric ultraso
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concentration gradient [41]. These phenomena combined contribute to
the so-called apparent diffusion [20,21,42,43]. In the case of flow
through a distributed network, diffusion is dominated by the distribu-
tion of transit times determined by the multipath trajectories within the
network, and it can more appropriately be referred to as dispersion
[44]. The transport dynamics of UCAs in the prostate microvascular net-
works can thus be interpreted as a convective dispersion process. This
builds the basis of CUDI techniques. In CUDI, the evolution of the UCA
concentration in the prostate is modeled by the mono-dimensional con-
vective-dispersion equation:

∂tC z; t� � � D∂2t C z; t� � � v∂zC z; t� �; �1�
where C�z; t� is the UCA concentration at position z and time t, defining
the TIC at position z; D is the dispersion coefficient; v is the convective
velocity. D is assumed to be locally constant.

A modified local density random walk (mLDRW) model, as an analyt-
ical solution of the convective-dispersion equation [18], can be fitted to
individual TICs measured at each voxel of the DCE-US data. The model
is described as

C t� � � α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ
2π t � t0� �

r
exp � κ t � t0 � μ� �2

2 t � t0� �
� �

; �2�

where the scale factor α, representing the temporal integral of C�t�, is
related to the UCA dose and blood flow; μ is the mean transit time, repre-
senting the average time that the UCA bolus takes to travel from the
injection to the detection site; t0 is the theoretical bolus injection time
and κ is the local dispersion-related parameter. A mean squared error
minimization procedure was performed when fitting TICs by the model,
enabling the estimation of α, μ; and κ [25]. This method is named model-
fit analysis. Moreover, typical perfusion parameters can also be extracted
from the fitted TICs, including wash-in-time (WIT), wash-in-rate (WIR),
and appearance time (AT) of the UCA bolus, as well as peak intensity
(PI) of the curves [12−15].

The multipath trajectories of UCAs through a microvascular network
determine the dispersion kinetics of UCAs [44]. In addition, by a finite-
difference simulation of the mono-dimensional convective-dispersion
equation, different values of D result in changes in TIC shapes [21].
Thus, in a local region, the shape similarity between TICs can reflect the
local degree of dispersion, and further reflect the underlying changes in
the microvascular architecture. The spatiotemporal similarity analysis
allows the assessment of the similarity between neighboring TICs in a
shell-shaped kernel by calculating similarity measures, such as the spec-
tral coherence (ρ), temporal similarity (r) and mutual information (MI)
[19−21,45]. Taking into account the spatial resolution of the imaging
system and the scale at which angiogenesis occurs, the inner and outer
kernel radius were set to 1.0 and 2.5 mm, respectively.

Instead of modeling the individual TICs, the microvascular network
can be considered as a dynamic dilution system, whose impulse response
und imaging for PCa localization at the biopsy-region level.
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can be locally identified by input-output analysis of TICs measured from
two voxels with a certain distance L. As the UCA flow through the micro-
vascular network is governed by eqn (1), its Green’s function represents
spatiotemporally the impulse response of the system [22]:

g t

����L; v;D
� �

� H t� �ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p exp � L � vt� �2
4Dt

� �
; �3�

where H�t� is the Heaviside step function. Based on that, the input-out-
put analysis can be performed by minimizing the sum of the squared dif-
ference between the output TIC and the convolution of the input TIC
with g�tjL; v;D�, providing local estimates of v and D. A measure of the
relative contribution between the dispersion and convection processes,
the P�eclet number (Pe), can also be derived based on the estimated v and
D. For the 3D DCE-US acquisitions, the system-identification method is
implemented in a shell-shaped kernel that moves over the whole pros-
tate region. The kernel has an inner and outer radius of 1 and 2 mm,
respectively, in which the TIC extracted from the central voxel is used as
the input TIC and the output TIC is extracted from the shell. Prior to the
system identification, cross-correlation analysis is performed for selec-
tion of those TICs within the kernel that satisfy causality [22].

By directly modelling the 3D behavior of the UCA bolus spreading
through the whole prostate as a convective-dispersion process, we can solve
eqn (1) as a linear system in a 3D kernel to estimate the convective
velocity and dispersion. The 3D spherical kernel has a diameter of 7 vox-
els, within which the local least-squares problem is solved in an L2-regu-
larization fashion [27]. Here, the obtained v and D are the convective
velocity vector field and the convective dispersion tensor, respectively.
Subsequently, they are quantified by the magnitude of velocity usingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2x � v2y � v2z
q

, and by the convective dispersion coefficient using
j Dxx�Dyy�Dzz

3 j, respectively, where vx; vy, and vz are the velocity vector com-
ponents in space and Dxx, Dyy, and Dzz are the diagonal elements of the
convective dispersion tensor. Based on the obtained convective velocity
vector fields, the entropy (Entropy) and conditional entropy (CEntropy) of
the vector field are also calculated using the 3D extension of the method
described in [46]. The entropy analysis aims at providing a measure of
vascular heterogeneity.

Moreover, a geometrical measure of the vascular architecture is real-
ized by the fractal dimension analysis, which builds on the relation
between the fractal dimension (FD) and the relative dispersion of local
blood flow [25,47].

As such, 3D parametric maps of the 18 resulting CUDI parameters
that quantify the prostate hemodynamics can be generated.
3D reconstruction of SWE
Ultrasound SWE elasticity offers a quantitative way to characterize

tissue stiffness, enabling us to discriminate between benign and malig-
nant prostate tissue [31−34]. To combine the SWE elasticity and the
CUDI parameters introduced above, a 3D SWE elasticity map was recon-
structed based on multi-plane 2D SWE acquisitions on the same prostate.
During the acquisition, regular sampling of the SWE imaging planes at
equal-angle intervals from the base to the apex of the prostate was per-
formed. For each prostate, the longitudinal-plane ultrasound B-mode
image was employed to determine the angle of the base and apex image
planes, and the other angles were calculated subsequently. From these
angles, the 3D coordinates of each SWE plane were calculated and the
elasticity values in the 2D planes were assigned to their corresponding
positions in the 3D space. The assigned elasticity values were then inter-
polated between planes using the nearest neighbor method.
Biopsy-region-wise radiomic features
First, the prostate model in the 3D CUDI parametric maps and SWE

elasticity map was segmented based on the delineated prostate contour.
Second, each prostate model was subdivided into 12 regions correspond-
ing to SBx locations. The regions extended approximately 22 mm in the
anterior direction, which is the length of the biopsy needle [25]. This
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length ensured that the regions were located in the peripheral zone.
Moreover, the regions were constructed under slight lateral angles and
with an inter-region interval [25], according to the SBx template as
described in [48]. Third, in each region, the radiomic features of each
CUDI parameter and SWE elasticity were derived, comprising the
median, 10th-percentile, 90th-percentile, mean, skewness, kurtosis, var-
iance, and entropy [49].

Finally, for each prostate, 152 region-wise radiomic features (12 SBx
regions, 18 CUDI parameters and 1 SWE elasticity, 8 radiomic features
per parameter per region) were computed and used for multiparametric
ultrasound imaging.

Machine-learning

A machine learning framework was implemented to process the
biopsy-region-wise radiomic features, realizing multiparametric ultra-
sound imaging for PCa prediction. Five classifiers were used as model
candidates: Support Vector Machine (SVM) with a Gaussian kernel, SVM
with a linear kernel (LSVM), Random Forest (RF), Gradient Boosting
(GB) and extreme Gradient Boosting (XGB). Firstly, the hyperparameters
of the classifiers were optimized by a grid search based on all the 152
radiomic features. This aims at providing a preliminary optimal set of
hyperparameters. Secondly, given the classifiers and their respective
hyperparameters, feature selection was performed using a sequential
floating forward selection (SFFS) [50]. At each step forward, the SFFS
method evaluates the performance and adds or removes features when
this improves the performance. For each classifier, the feature selection
procedure was run separately, setting the maximum number of selected
features to 18. As such, the best subset of biopsy-region-wise radiomic
features was found for each classifier. Thirdly, Bayesian-optimization-
based hyperparameter tuning was applied to these classifiers, aiming
not only at finding the final optimal hyperparameters per classifier but
also at determining the classifier holding the best csPCa classification
performance [51]. At each of the three steps above, biopsy-region-level
group-k-fold cross-validation was employed to evaluate the perfor-
mance. The 54 patients were divided into 9 folds using the group-k-fold
method, ensuring that biopsies from the same patients were not in two
different folds (grouping by patient). At each rotation of the grouped
cross-validation procedure, region-wise radiomic features from 6
patients were used for validation (1-fold), while data from patients in
the remaining 8 folds were used as the training set. The SBx outcomes
were used as the reference. In the cross-validation procedure, the Area
Under the Receiver Operating Characteristics Curve (AUC) was used to
evaluate the classification performance. The mean and standard devia-
tion (std) of the AUC over the folds were also calculated. The machine-
learning procedure was implemented on a Linux server with the AMD
Ryzen™ 9 3950X 16-Core Processor, which took about 2 h for training
and cross-validation steps.

Results

Classification performance with individual features

An example of all the 18 3D CUDI parametric maps and a 3D SWE
elasticity map in the same csPCa patient is depicted in Figure 2. To eval-
uate the classification performance of multiparametric ultrasound imag-
ing, Table 2 demonstrates the diagnostic potential of individual CUDI
parameters and SWE elasticity to distinguish between benign tissue and
csPCa.

Classification performance with the multiparametric approach

Figure 3 is the feature selection ranking plot obtained when imple-
menting the multiparametric approach. In this plot, for each feature, the
number of classifiers selecting it (regardless of AUC) as a member of
their best feature subset is expressed by the height as well as the color



Figure 2. Example of all 18 3D CUDI parametric maps and a 3D SWE elasticity map in the same PCa patient. The SBx outcomes reveal that csPCa happens in the left
part of the prostate. The SBx results are shown in Figure 4.
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Table 2
Classification performance of individual parameters

Feature AUC (mean ± std)

Model-fit analysis
κ 0.70 ± 0.12
µ 0.72 ± 0.14
α 0.68 ± 0.08

Typical perfusion analysis
WIT 0.72 ± 0.14
WIR 0.73 ± 0.11
PI 0.71 ± 0.10
AT 0.73 ± 0.13

Spatiotemporal similarity analysis
r 0.70 ± 0.13
ρ 0.74 ± 0.10
MI 0.75 ± 0.11

System identification
v 0.69 ± 0.07
D 0.70 ± 0.10
Pe 0.63 ± 0.10

3D convective-dispersion modelling
vCD 0.74 ± 0.08
DCD 0.72 ± 0.09

Entropy analysis
Entropy 0.71 ± 0.12
CEntropy 0.69 ± 0.06

Fractal dimension analysis
FD 0.66 ± 0.07

Ultrasound shear-wave elastography
SWE 0.66 ± 0.12

Table 3
Classification performance of the multiparametric approach

Multiparametric approach AUC (mean ± std)

CUDI 0.81 ± 0.12
CUDI and SWE 0.85 ± 0.11
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shade of the bar. The maximum number of selections is five due to total
number of classifiers. In the end, the number of features selected by the
classifiers, SVM, LSVM, RF, XGB, and GB, is 10, 7, 13, 14, and 11, respec-
tively. FD and SWE elasticity are selected by all the classifiers. Among
the five classifiers, the GB classifier gave the best performance for csPCa
classification with an AUC value of 0.85 using the following features:
"median of r; } "90th-percentile of μ; } "90th-percentile of FD," "entropy
of Pe," "entropy of vCD," "entropy of κ," "entropy of CEntropy," "variance
of v," "skewness of ρ," "skewness of WIT," "skewness of FD," "kurtosis of
CEntropy" and "90th-percentile of SWE." As a comparison, we also com-
puted the performance when using only the CUDI parameters by the pro-
posed multiparametric procedure. This resulted in an AUC of 0.81, with
GB remaining the best classifier as well. It is higher than all the AUC val-
ues using individual CUDI parameters, but significantly lower than the
AUC value obtained by the proposed multiparametric procedure using
the combination of CUDI and SWE with a p-value of 0.002 (p-value <
0.05), as shown in Table 3. The significance of the difference (p-value)
Figure 3. Multiparametric feature selection ranking plot. The number of classifiers s
expressed by the height as well as the color shade of the bar.
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was assessed by the single-tailed Wilcoxon signed-rank test with the 9-
fold AUC values obtained in the cross-validation procedure as the two
groups of input. The employment of the Wilcoxon signed-rank test was
due to the non-normality of the two groups of the input that was
assessed by the Shapiro-Wilk test [52] as well as due to the two groups
of the input being paired.

Figure 4 shows an example of the SBx outcomes and the csPCa pre-
diction results obtained by the proposed multiparametric approach com-
bining CUDI parameters and SWE elasticity. Indeed, most regions
predicted to have cancer correspond to the regions with histopathologi-
cally confirmed csPCa.
Discussion

Considering the multi-focal nature of PCa and the low detection rate
of csPCa by SBx [53−55], reliable techniques that can guide targeted
biopsies are essential to identify cancer foci.

mpMRI scanning and subsequent mpMRI-targeted biopsy have been
shown to produce accurate csPCa detection, and this procedure is
strongly recommended by the European Association of Urology [3].
However, as MRI cannot provide urologists with real-time guidance for
performing biopsies, a mpMRI-TRUS fusion has been proposed to guide
targeted biopsy by combining the accuracy of mpMRI and the flexibility
of TRUS [56]. The mpMRI-TRUS fusion includes a visual/cognitive way
and a software-assisted way [57]. Many uncertainties such as patient
position, probe position, as well as knowledge and experience of the
urologists still hamper the widespread use of the fusion. As an alterna-
tive to mpMRI-TRUS fusion, in-bore MRI-targeted biopsy can be per-
formed. However, the high cost, lengthy procedure, and difficulty in
scheduling should be considered [57].

To achieve an ultrasound-only method, in the past decade, we have
already developed CUDI techniques for hemodynamic quantification in
the prostate by 2D and 3D DCE-US acquisitions, and have shown the effi-
cacy of CUDI in detecting cancer angiogenesis [18,21−25,27]. Based on
our previous experiences with both 2D and 3D imaging, although 2D
DCE-US imaging is more widely available and today the established clin-
ical standard, 3D DCE-US imaging can provide comprehensive
electing a feature (regardless of AUC) as a member of their best feature subset is



Figure 4. (a) shows the 12-core SBx regions that we segmented to compute the biopsy-region-wise radiomic features. (b) and (c) show an example of the results of the
SBx ground truth and the corresponding csPCa prediction. Note that the prediction is given in terms of probability of being malignant.
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information on the hemodynamics of the full prostate, describing more
accurately the intrinsic behavior of blood flow and UCA perfusion; as a
result, 3D imaging allows for a better definition of the boundary condi-
tions for directly modeling the 3D behavior of UCA transport through
the prostate as a convective-dispersion process. Moreover, 3D imaging
enables the three-dimensional regional subdivision corresponding to
SBx locations and allows for full-prostate pathology registration, which
facilitates the validation of any proposed quantitative analysis. Finally, a
3D approach allows for DCE-US quantitative analysis of the full prostate
by injection of a single UCA bolus, shortening the clinical workflow and
facilitating its clinical translation. In this work, we considered tissue
stiffness as a complementary biomarker to the tumor angiogenic bio-
markers. Hence, we proposed a 3D multiparametric ultrasound imaging
approach by combining CUDI-based hemodynamic quantifications and
3D ultrasound SWE-based tissue stiffness assessment to predict prostate
biopsy outcomes, aiming at csPCa localization. The csPCa classification
performance of the proposed approach was assessed by AUC in a group-
k-fold cross-validation fashion. Moreover, the AUC value was compared
to the csPCa localization performance using individual parameters and a
multiparametric approach using CUDI parameters only. In general, a
combination of multiple hemodynamic parameters, reflecting e.g., dis-
persion and perfusion characteristics, is more powerful than each indi-
vidual parameter for PCa diagnostics. Furthermore, the multiparametric
approach combining complementary biomarkers performs better than
the multiparametric approach using hemodynamic (CUDI) parameters
alone. In particular, the AUC value (0.85) achieved by the multiparamet-
ric approach combining complementary biomarkers is numerically supe-
rior to the AUC value (0.78) obtained by mpMRI for csPCa detection as
reported in [58].

By looking at the performance of individual parameters, it was
shown that flow kinetics parameters such as velocity and dispersion
obtained by 3D convective-dispersion modeling have high AUC values.
This implies that tumor-driven angiogenesis is strongly associated with
the local blood flow patterns [10]. The higher velocity found in tumor
regions is also confirmed by the increased blood perfusion parameters,
such as WIR. Moreover, the classification performance of the spatiotem-
poral similarities between neighboring TICs and the local dispersion
parameter κ extracted from the model-fitting analysis evidence that can-
cer-related changes in the microvasculature architecture indeed influ-
ence the local dispersion kinetics, and further influence the shape of
TICs according to the convective-dispersion process.

For each classifier, region-wise radiomic features of each parameter
were used as the input. Therefore, the classifiers could select different
radiomic features of the same parameter. However, in the feature selec-
tion ranking plot, we show the results only at the parameter level,
regardless which and how many radiomic features derived from the
same parameter were selected. The feature selection ranking plot reveals
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that the most frequently selected features are reflecting different tissue
properties, such as the geometry of the vascular architecture (fractal
dimension) and tissue stiffness, while these features do not necessarily
show a good individual classification performance. This may emphasize
the importance and efficacy of combining complementary biomarkers
for PCa classification.

In this multiparametric approach, we implemented five classifiers as
prediction model candidates and the one having the best performance
was determined after feature selection and hyperparameter tuning.
Compared to using one specific classifier, this strategy provides more
flexibility in finding the best model. In the future, the choice of the best
model would depend on the new datasets. Although five classifiers were
implemented as candidates, the number of frequently selected (≥3 clas-
sifiers) features is 11 out of 19. This reflects that the best feature subset
remains rather insensitive to changes in the employed prediction model
(classifier), underpinning the objective diagnostic value of the provided
complementary ultrasound biomarkers. Moreover, the frequently
selected features cover the geometrical measure of the vascular architec-
ture (fractal dimension), tissue stiffness, wash-in perfusion parameters,
TIC spatiotemporal similarities, and flow velocity and contrast disper-
sion, which confirm the relevance of hemodynamic quantifications and
tissue stiffness for PCa diagnostics.

There are several limitations in this study. In this work, only 54
patient datasets from a single center were used to validate the proposed
method. Due to the limited sample size, we did not implement nested
cross-validation based on the 9 folds, in which a dedicated partition of
the data is used to test the optimal model; this may lead to overfitting.
Prior to feature selection, we did not remove highly correlated features
based on a feature correlation matrix (e.g., the linear Pearson correlation
coefficient). Despite this, the classifiers have selected complementary
parameters as shown in the feature selection ranking plot. Furthermore,
the proposed method is based on biopsy regions by subdividing each 3D
prostate into 12 regions according to the SBx template shown by Uki-
mura et al. [48]. However, the biopsy track is difficult to evaluate; there-
fore, the actual SBx locations may mismatch the template, which to
some extent influences the accuracy of the adopted ground truth. More-
over, biopsies may intrinsically miss cancer regions, leading to underdi-
agnosis and an overestimated number of false positives by the proposed
approach.

To solve these limitations, we have recently started a multicenter
trial to build a larger patient cohort [59]. Firstly, including more
patients allows for further validation of the results and optimization of
the machine-learning procedure using nested cross-validation. In this
trial, we are collecting full-prostate pathology samples after radical pros-
tatectomy, and are performing DCE-US and SWE scans using the same
probe and the same scanner, facilitating the clinical workflow and
reducing possible registration errors. As such, a voxel-level



P. Chen et al. Ultrasound in Medicine& Biology 50 (2024) 1194−1202
multiparametric approach by correlating the 3D CUDI parameters and
SWE elasticity to the full-prostate pathology model can be investigated.
This will alleviate the limitation of biopsies missing cancer regions.
Moreover, more ultrasound biomarkers can be added as feature candi-
dates in the multiparametric ultrasound approach; for instance, tissue
texture features extracted from ultrasound B-mode images and DCE-US
recordings [60−62], blood flow velocity obtained from ultrasound
power Doppler image [63,64], and microvasculature structural informa-
tion provided by DCE-US tractography [65]. These can all be integrated
in the proposed multiparametric approach and evaluated for their con-
tribution to PCa detection. From a technical point of view, these meas-
ures may further improve the performance of the proposed
multiparametric approach and enhance the reliability of the trained clas-
sification model. From a clinical point of view, given that this new clini-
cal trial will exclusively involve patients referred for radical
prostatectomy, there is a susceptibility to selection bias. Consequently,
the diagnostic performance observed in this study may not be generaliz-
able to the broader population. This bias can be mitigated by adjusting
the voxel prevalence in the training set of the classifier. Yet, to establish
the definitive efficacy of 3D multiparametric ultrasound imaging for
PCa diagnosis in biopsy naïve patients, a further prospective study of
image-based biopsy targeting is also planned. Along with the new clini-
cal trial, the feasibility of embedding multiparametric ultrasound imag-
ing in the clinical workflow, enabling PCa prediction and localization
immediately after acquiring all the data, is being investigated. As CUDI
analysis is one of the current bottlenecks, solutions for fast execution are
currently being pursued. Once the CUDI parameters are obtained, other
ultrasound features together with the CUDI parameters will be input
into a trained classification model to localize PCa and predict its aggres-
siveness, providing urologists with a reference for e.g., targeting biop-
sies.

Conclusions

In conclusion, the proposed biopsy-region-based multiparametric
ultrasound imaging approach yields promising results for the prediction
of biopsy outcome, enabling csPCa localization, which underlines the
importance of combining complementary ultrasound biomarkers for
cancer detection. These results also establish a basis for further develop-
ments towards prostate biopsy targeting by a multiparametric ultra-
sound approach. We believe that our ongoing multicenter trial will
further support these results and improve the performance of the pro-
posed method.
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