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Abstract

It is common to assess disability of stroke patients using standardized scales,
such as the Rankin Stroke Outcome Scale (RS) and the Barthel Index (BI). The
Rankin Scale, which was designed for applications to stroke, is based on assessing
directly the global conditions of a patient. The Barthel Index, which was designed
for more general applications, is based on a series of questions about the patient’s
ability to carry out 10 basic activities of daily living. As both scales are commonly
used, but few studies use both, translating between scales is important in gaining
an overall understanding of the efficacy of alternative treatments, and in developing
prognostic models that combine several data sets.

The objective of our analysis is to provide a tool for translating between BI and
RS. Specifically, we estimate the conditional probability distributions of each given
the other. Subjects consisted of 459 individuals who sustained a stroke and who
were recruited for the Kansas City Stroke Study from 1995 to 1998. Patients were
assessed with BI and RS measures 1, 3 and 6 months after stroke. In addition, we
included data from the Framingham study, in the form of a table cross—classifying
patients by RS and coarsely aggregated BI.

Our statistical estimation approach is motivated by several goals: (a) overcoming
the difficulty presented by the fact that our two sources report data at different
resolutions; (b) smoothing the empirical counts to provide estimates of probabilities
in regions of the table that are sparsely populated; (c) avoiding estimates that would
conflict with medical knowledge about the relationship between the two measures
and (d) estimating the relationship between RS and BI at three months after the
stroke, while borrowing strength from measurements made at one and six months.
We address these issues via a Bayesian analysis combining data augmentation and

constrained semiparametric inference.
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Our results provide the basis for (a) comparing and integrating the results of
clinical trials using different disability measures, and (b) integrating clinical trials
results into comprehensive decision model for the assessment of long term implica-
tions and cost-effectiveness of stroke prevention and acute treatment interventions.
In addition, our results indicate that the degree of agreement between the two mea-
sures is less strong than commonly reported, and emphasize the importance of trial
designs that include multiple assessments of outcome.

Key words Stroke, cerebrovascular disease, local odds ratio, totally positive de-

pendence, longitudinal contingency tables, outcome measures, constrained MCMC.
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1 Introduction

1.1 Background

Stroke is a common event that frequently disables its victims. Two of the most com-
mon measures of disability used in stroke studies are and Rankin Stroke Outcome
Scale (RS) and the Barthel Activity of Daily Living (ADL) Index (BI). The Rankin
Scale (Rankin 1957), which was designed for applications to stroke, uses a global
approach to assessment in which disability categories are ordered from 0 (no symp-
toms) to 5 (severe disability). Currently, it is common to use the Modified Rankin
Stroke Outcome Scale (van Swieten, Koudstaal, Visser, Schouten, and van Gigin
1988) described in Table 1. The Barthel ADL Index (Mahoney and Barthel 1965)
was designed for measuring general disability in a broad spectrum of applications.
Patients are asked about their ability to carry out 10 basic activities of daily living,
listed in Table 2. For each item, patients receive a score of 0 if entirely unable to
carry out the activity, a maximum score if able to perform the activity indepen-
dently, and a partial score if able to perform the activity with assistance. Possible
values are assigned in increments of 5. The totals can range from 0 to 100. The BI
is often treated as comparable to the RS, and various authors have suggested bench-
marks for the overall score. For example, one such benchmark is 0-55 (dependent);
60-85 (moderately disabled); 90-95 (slightly disabled); 100 (independent) (Duncan,
Goldstein, Divine, Feussner, and Matchar 1992).

Although ad hoc translations between RS and BI are helpful for qualitative pur-
poses, an explicit quantitative translation would permit comparisons among clinical
trials using either disability measure, and would contribute to generating prog-
nostic estimates of stroke outcome such as those generated by the Stroke Policy
Model (Matchar, Samsa, Matthews, Ancukiewicz, Parmigiani, Hasselblad, Wolf,

D’Agostino, and Lipscomb 1997). The objective of our analysis is to provide a
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method for translating between the RS and BI. Specifically, we provide estimates of
the conditional probability distributions of RS given BI and BI given RS. By weight-
ing results according to these conditional probabilities one can electively translate
research results based on BI and RS, while accounting for the additional uncer-
tainty introduced by the conversion. A secondary goal of our analysis is to provide

an overall measure of the degree of association between the measures.
1.2 Statistical Approach

Our data sources included 2 studies. The Kansas City Stroke Study provided 3
cross—tabulations of BI versus RS from data taken at 1, 3, and 6 months post—
stroke. The Framingham Study provided one, coarsely grouped, cross—tabulation of
BI versus RS at 3 months post—stroke. In our analysis we estimate the conditional
probability distributions of each of the scores given the other, at its natural level of
resolution. Our estimation approach is motivated by the following goals: (a) over-
coming the difficulty presented by the different resolutions of our two data sources;
(b) interpolating the empirical counts to provide estimates of probabilities in re-
gions of the tables that are sparsely populated; (c) avoiding estimates that would
conflict with medical knowledge about the relationship between the two scales and
(d) estimating the relationship between RS and BI at three months after the stroke,
while borrowing strength from measurements made at one and six months.

We handled (a) via data augmentation (Tanner and Wong 1987; Tanner 1991),
now common both in missing data problems and multiresolution analyses. The main
thrust of data augmentation in this context is to develop a statistical analysis based
on data at full resolution from one study, and on the unobserved full resolution
data that would have been obtained in the other study if the data had not been
aggregated. The entries in the latter table are not known with certainty and are

treated as unknown nuisance parameters.
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Regarding (b) and (c), we addressed both via a constrained nonparametric ap-
proach that recognizes the natural negative dependence in the data, and captures
it without making any restrictive parametric assumptions about the relationship
among the cell probabilities. Specifically, we assume that any two-by-two sub-table
will show association (in this case negative) among the scores. This condition also
imposes smoothness of the cell counts.

Finally, we addressed (d) by postulating an autoregressive stochastic process for
the cell probabilities. The probability table at each time is modeled as a constrained
Dirichlet distribution whose mean is given by the probability table at the previous
time point. The Dirichlet distribution also includes a dispersion parameter which,
in our context, controls the average amount of variation of the table entries from
one time interval to the next.

Computationally, the data augmentation, the constrained analysis, and the au-
toregressive matrix process all fit naturally in the framework of Markov Chain Monte
Carlo (Gilks, Richardson, and Spiegelhalter 1996). Our implementation includes an
innovative technical device to handle the constrained analysis of the contingency

table.

2 Data Sources

2.1 Purpose

Recovery from stroke is typically rapid during the first thirty days post—stroke,
than slows and reaches a plateau within three to six months (Duncan, Goldstein,
Horner, Landsman, Samsa, and Matchar 1994). Our goal was not to describe this
pattern of recovery per se but rather to develop a translation between two measures
of functional status. Accordingly, we sought population—based studies of patients

with stroke, reflecting heterogeneity in both BI and RS, in which BI and IS were
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cross—classified at one or more time points. The Kansas City Stroke Study and the
Framingham Study met these criteria, and are described in brief in the remainder

of this Section.
2.2 Kansas City Stroke Study

The participants in this study were 459 individuals who sustained a stroke and
who were recruited for the Kansas City Stroke Study, or KCSS (Duncan, Lai, and
Keighley 2000; Duncan, Jorgensen, and Wade 2000). Case ascertainment for the
KCSS occurred from October of 1995 through March 1998. Participants were re-
cruited from any of 12 hospitals in the greater Kansas City area. FEligible stroke
patients were identified by 1) a review of daily admission records, 2) referrals from
physicians, clinical nurse specialists and therapists on medical neurology, and reha-
bilitation units, and 3) review of discharge codes. To be accepted into this study, a
subject had to have a stroke confirmed by clinical assessment and/or by a CT/MRI
scan. A stroke was defined according to the World Health Organization Criteria as
”rapid onset and of vascular origin reflecting a focal disturbance of cerebral func-
tion excluding isolated impairments of higher function and persisting longer than
24 hours.” (World Health Organization 1993) Patients included adults with strokes
of all severity. They were evaluated at enrollment and again at 1, 3, and 6 months
post-stroke. All testing was performed by a study nurse or physical therapist.
Table 3 summarizes the basic demographic characteristics of the 459 patients.
Table 4 displays the cross classification of patient by RS and BI at one, three and
six months in the KCSS. In all cases both measurements were taken by the same
rater, although more than one rater was used. Although recovery of function can
continue for a year or more post—stroke, for most patients the majority of gains
occur during the first 30 days, with the elements of functional status measured by

the RS and BI having more or less stabilized at 3-6 months after the initial event.
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Indeed, the follow-up period for many randomized trials of acute stroke treatments
has been 3 months, arguing that this approximates functional recovery in the long-
term. Although the marginal distribution of BI and RS may change over time, for
example reflecting functional recovery over time, it is reasonable to assume that
the conditional distribution of RS given BI (BI given RS) will be relatively stable,
regardless of time since stroke. Also, as expected, little change is observed in Table 4

between 3 and 6 months.
2.3 The Framingham study

In addition, to increase the sample size of measurements at 3 months, and to improve
the generalizability of results, we incorporated a published 4x4 table cross—classifying
patients by aggregate RS and BI. This is from a commonly cited study by Wolfe,
Taub, Woodrow, and Burney 1991, investigating the relationship between the two
scales in 50 patients diagnosed clinically as having suffered a stroke (as defined by
WHO) at least 3 months previously. Three nurses independently rated each patient’s
RS and BI. The authors used a generalized linear model approach to account for
rater variability, and estimated the joint probability distribution of RS and BI,
accounting for rater effects. Their published estimates are reproduced in Table 5.
Wolfe et al. aggregated the two scores into categories that would provide greater
correspondence between the two measures. After aggregation, the association of the
two measurements is high.

We applied the same aggregation to the 3-months data from the KCSS and com-
pared it to Table 5. The marginal distributions differ substantially, with the KCSS
including a lower percentage of highly disabled individuals. However, the condi-
tional distributions are similar, suggesting that the two studies can be combined in

developing conversion tables.
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3 Methods

We use the notations 7 and x(*) to denote the matrices of cell probabilities and
cell counts at time ¢. In the KCSS, t = 1,2, 3 correspond to 1, 3 and 6 months after
stroke. We use subscripts 7 = 1,...R and b = 1,..., B to remind of a combina-
tion of RS and BI, although the discussion of this section applies to any longitudi-
nal sequence of rectangular ordinal categorical tables. We begin by describing our
methodology for a single time point, omitting the (¢) superscript, and then move to
the longitudinal case. The main goal of our analysis is to obtain conditional distri-
butions of RS given BI and BI given RS. Both of these distributions are functions
of the cell probabilities m —the joint distribution of RS and BI. We will develop our
modeling and inference approaches in terms of this joint distribution, and derive
inferences on the conditionals from the joint. Because inference is performed using

simulation, it is straightforward to carry out the necessary transformations.
3.1 Negative Dependence via Local Odds Ratios

In our sampling scheme, only the table total is fixed. A simple and popular approach
to making inferences on the joint probability distribution 7 is to assume a multino-
mial model for the cell counts. This would lead to maximum likelihood estimates
equal to the empirical frequencies, and to Bayesian posterior inferences closely ap-
proximating empirical frequencies, at least under independent uniform priors on the
cells. This approach is reasonable but not fully adequate to the situation at hand,
where, many cells are empty or have small counts, and where some smoothness, rec-
ognizing the ordered structure of the categories and the likely negative dependence
of the variables, is clinically plausible.

For example, consider cell BI=90 and RS=1 at month 3, in Table 4. Estimates

of cell probabilities close to the empirical frequencies in this and the neighboring
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cells would lead to a clinically implausible overall result. To illustrate, focus on the
two-by-two table formed by the patients with RS of 1 and 2 and BI of 85 and 90.
Within this table, the odds of having a BI of 90 vs 85 are even in the RS=1 column
and are 9 to 4 in the RS=2 column. So the odds in favor of a higher BI increase
with RS, which is contrary to the fact that both scales measure disability, and do
so inversely to one another.

Here we are interested in using this simple condition on the odds to produce
inferences that a) avoid results that would be contrary to clinical knowledge and b)
sharpen our estimate of cell probabilities in regions of the table where the counts
are small. We are going to assume that any two-by-two table like the one defined
above will show association (in this case negative) among the scales. More formally,

we will consider all subtables of the form:

Tr—1,b—1 Tr—1,b

Trbp—1  Trp

forr=2,...R and b= 2,...B. The local odds ratio for this table is defined as

Tr—1,b—1 Trb
Tr—1,b Tprbp—1

We can impose a negative association between the two scales by constraining the
prior to the set of #n’s such that all the local odds ratios are smaller than one, or,
equivalently, that

Tr—1,p—1Trp < Tp—1pTrh—1- (1)
If the association were positive, that is if the inequality were reversed, the condition
would be the so-called Total Positivity of order 2 (Karlin 1969). Following Douglas,
Fienberg, Lee, Sampson, and Whitaker 1991 we will refer to condition (1) as Total

Negativity of order 2, or TNs.
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For matrices of cell probabilities that satisfy the TNo constraint, the likelihood
function for a single table has the same form as the one based on multinomial sam-
pling. Therefore, assuming a uniform prior in the region satisfying the constraint,
Hr,b ot if wis TNy

p(m|x) o
0 if 7 1s not TNy

where x and 7 are the matrices of counts and cell probabilities, respectively.

There is an extensive literature on modeling dependence in IxJ contingency
tables, reviewed by Etzioni, Fienberg, Gilula, and Haberman 1994. Among the
conditions that have been proposed, TNy is among the most directly interpretable
and computationally tractable, as we will see later in the section. Compared to
other notions of negative dependence, TNy is strong, as it implies other well known
notions of dependence such as stochastic dominance of the conditional distributions,
for both sets of conditionals, and monotonicity of both the conditional expectation
functions. See Douglas, Fienberg, Lee, Sampson, and Whitaker 1991 for a detailed
discussion of dependence models and their relations to log-linear and generalized
linear models, and Johnson and Albert 1999 for a general discussion of modeling
relationships between ordinal measurements.

3.2 Sampling from the Posterior Distribution of 7 Under the TN,
constraint

Sampling from the posterior distribution of 7 for an individual table under the
TNy constraint requires a tailored approach because of the numerous constraints
and the relatively small portion of the hypercube supporting 7 that satisfies those
constraints. The following implementation is simple and proved reliable in our ap-
plication. It is based on augmenting the table with one additional auxiliary cell that
we term the “daemon cell”, and sampling each cell probability in turn, conditional

on all other cells probabilities in the table, except the daemon’s. Computationally,
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advantages of using the daemon cell over choosing an existing cell in the table in-
clude that: a) none of the TNy constraints apply to the daemon cell probability, so
that one only has to deal with the constraints that apply to cell probability cur-
rently sampled; and b) when the chain is away from convergence, the daemon cell
probability acts as a conduit for redistributing mass from cells that have too much
to cells that have too little. The daemon approach gives us the opportunity to tune
the capacity of the conduit, which would be fixed, and likely to be small, if we chose
a cell in the table.

Let z* and 7* be the count and cell probability for the demon cell. Here 7*
is an unknown parameter, and z* can be set arbitrarily. The chosen value of z*
has some effect on the speed of convergence of the chain, and small values should
be avoided. In particular, if n* is small, the conduit provided by the daemon cell
could be too narrow. Values around n/3 to n/2 have worked well in our application.
Performance of the chain shows little sensitivity in that range.

Our first step is to reparameterize the cell probabilities so that they sum to one

in the table including the daemon cell or augmented table. Formally, we define
Gro = Tpp x (1 — 7%).

We then consider the one-dimensional full conditional distribution of ¢, given all

other cell probabilities except 7*, under the constraint

7r*—|—Zqu: 1.
T,b

This distribution is a truncated Beta and can be easily simulated. After the simu-
lation, the portion of the augmented table corresponding to the original 7 can be
renormalized to sum to one, and the daemon cell can be ignored.

The upper limit ¢, and lower limit g; of the full conditional distribution of 7,

are derived from the local dominance condition, by considering all the constraints
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that apply to cell r,b. There are four such constraints for cells inside the boundary
of the table, two for cells on the boundary, but away from the corners, and one for
cells on the corners.

Formally, for cells inside the boundary, that is for 1 <r < R, and 1 < b < B, we

have:

—1,b 9r,b+1 1,6 9r,b—1
o = mal_{Qr b grbtl Greip dr, }

b
qr—1,b+1 dr+1,6—1
. Qr—1,6 Qrp—1 49r+1,b 9rp+1
q’u = mzn b b
qr—1,b—1 qr4+1,b+1

while for cells on the boundary:

1 — — — _ G1,242,1
if r=1,b=1 =0 qu =12t
if r=1.b=RB q = g1,B-1 42,B Gu = 1

! g2,B-1 u
if =R, b=1 q = ®B29r-11 g

? qr-1,2 u
3 — . _ __ 9qr,B—1 qr—-1,B
if r=R,b=21B q=0 e
3 — _ G1,b6—10Q2p _ G1,b41 G2,
if r=1,b>1,b<B ¢q= e qu =T
: _ _ Qqr,b+1 gqr—1p __ Q4r,b—1 gr—1,b
if r=R,b>1,b<B q = fppdiis g, = =t
: _ _ Gr-1,1Gr2 _ Gr41,1 Gr2
if r>1,r<R, b=1 ¢q= e qu = TR
3 _ __ 4gr+1,B gr,B—1 __ gr—1,B @r,B—1
if r>1,r<R,b=B ¢q= TeREnAs gy = A

These constraints are much smaller in number than the constraints implied by
stochastic dominance, adding to the computational convenience of the TPy ap-
proach.

If a set of ¢’s satisfies the TPy constraints above, that is if ¢ < ¢ < qu,
than the subsequent ¢’s drawn in the Markov chain will also satisfy the constraints.
Therefore, if the Markov chain is started at a value satisfying the constraint, all
subsequent values will also. The closer the empirical counts are to satisfying the
TN, constraints, the faster the convergence of this Markov chain implementation will

be. Autocorrelation of the chain will increase with the mass that the untruncated

10
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Beta functions assign to the regions outside the truncation points. R software for
fitting this model to an arbitrary rectangular table with either a TNy or a TP,
constraint, is available from the author’s website at url

http://www.jhsph.edu/Departments/Biostats/research/parmigiani.html.
3.3 A Markov Model for Contingency Tables

Data is available at successive time points after a stroke, and individual’s disabilities
are likely to be correlated over time, so we considered a first—-order Markov process
for the contingency tables. We specified a prior distribution for the cell probabilities
at time 1, p(ﬂ(l)), and a conditional prior distribution for the cell probabilities at
time t given the previous times, p(ﬂ(t)\ﬂ(t_l),ﬂ, t > 1. The parameter 7 controls
the dependence in the conditional distribution, as described later.

A practical approach is to model cell probabilities as a Dirichlet distribution and
assume that after time 1, the mean is given by the cell probability at the previous
time point. The Dirichlet distribution also includes a dispersion parameter which,
in our context, controls the average amount of variation that occurs in the table
from one time interval to the next. Indicate by D(a) a Dirichlet distribution with

parameter vector a. Then:

p(rWal=0) = D(x"V7 4 1) (2)

Because the mean of () a posteriori is a weighed average of (7(*~Y + 1)/
and the observed relative frequencies, with weight 7/(r +n(®) on the former, 7 is
interpretable as a prior weight, or “prior sample size”. In our application, 7 reflects
the degree of change in the joint distribution from one period to the next. This
change is mainly attributable to improvements in the ability to carry out activities

of daily living that are sufficient to increase BI, but not to decrease RS.

11
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We assume that 7 is the same in both the 1-3 month interval and the 3-6 month
interval. As the earlier months are likely to be associated with more rapid change
in the distribution, the overall amount of change in the two intervals is likely to
be similar. In a different application, a simple adjustment for the unequal spacings
could be carried out by multiplying 7 by the length of the interval.

In our application, 7(!) is a priori uniform within the TN, subspace. Analyses
based on informative Dirichlet priors can proceed in the same manner. The prior on
the autoregression parameter 7 is a normal with mean 50 and standard deviation
10, truncated to the range (10,200) and discretized in 5—unit intervals. In short

longitudinal studies, inference will be sensitive to the prior distribution on 7.
3.4 Sampling from the Overall Posterior Distributions

Parameter inference in our model uses a Markov Chain Monte Carlo (Gilks, Richard-
son, and Spiegelhalter 1996) method that alternates between 1) drawing a sample
of the unobserved cross classification for the Framingham Study given the observed
Table 5 and the cell probabilities, and 2) drawing the cell probabilities given the
complete tables, the neighboring probabilities and the constraints, and 3) drawing
the autoregression parameter 7.

Our overall approach to sampling from the posterior distribution of the parame-
ters 7(*) and 7 is as follows. We sample each table given the others. Table ¢ depends
on both table ¢t — 1 (via the prior on 7(Y)), and table ¢ 4 1 (via the prior on 7(*+1),
The term coming from the prior on 7(®) combines with the likelihood for (Y in a
conjugate fashion. If one ignores the contribution of the prior on 7(**1), the method
of Section 3.2 can be used to draw samples from 7(*) after a minor adaptation
to update the posterior hyperparameters. We use such samples to draw proposed
values in a Metropolis update. Because the contribution of the prior on 7{*t1) is

typically not overwhelming, this approach is efficient.

12
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The full conditional distribution of the ¢, associated with 7 in the autoregres-
sive case is:

t—1
nrb+7—7r£b )

" (1=gpp)™ OF7 =D [ D107 [ (44.1)) (A=) D g,y 74+ 1) T ((A—grp) 7+1),

for ¢; < grp < ¢, and where

A=1-— Z Q’I",b"

(r',b")#(r,b)

4 Results

Table 6 presents the posterior means of the cell probabilities. Comparing the esti-
mated means to the empirical counts of Table 4, it is evident that the TNy condition
contributed to smoothing the cell probabilities and to providing information, via a
clinically compelling structural condition, about the sparsely populated cells in the
table. IN this application, an additional factor contributing to smoothing of the
cell probabilities is the coarseness of the categories of the cross—classification in the
Framingham study.

Posterior means are a useful summary of each cell probability’s marginal distri-
bution. However, the overall table has limitations as a synthetic representation of
the joint distribution. While this is always the case when dealing with correlated
parameters, in this case, one additional caveat applies. Even though each sampled
set of cell probabilities satisfies the TNy constraints, the table made of the cell-
specific averages does not necessarily satisfy them. An alternative summarization
strategy that does not suffer from this limitation is the mode of the joint distribu-
tion. While the mode would be our recommended summarization strategy in smaller
dimensional tables, in this application its evaluation is unfortunately not practical.

Tables 7 and 8 summarize the conditional distributions of RS given BI, and that

of BI given RS, respectively. These are the distribution that are directly relevant in

13
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translating results of clinical studies from one scale to the other.

To illustrate how the translation may be carried out, consider the results of a
trial comparing a treatment to a control group, with samples of 100 patients in each
group. Hypothetical distributions of RS in the two groups are shown in Table 9.
Using Table 8 one can convert the two distributions in Table 9 in terms of BIL.
For example the 10 patients in the treatment group receiving a RS of 3 would be
reallocated to the BI categories proportionally to the probabilities in the column
labeled 3 in Table 8, and so forth. More generally, defining by 7, the conditional
probabilities of BI given RS, any marginal distribution 7, of RS can be converted

into BI by the law of total probability:

5
Ty = E Tp| T+
r=0

Figure 1 portrays the uncertainty in the cell estimates, by presenting samples
of cumulative distribution functions (CDF) of representative conditional distribu-
tions of each of the two kinds. The samples also highlight the flexibility of the
nonparametric approach adopted here in capturing the shape of the conditional dis-
tributions, and also the effects of the constraints, seen especially in the lower range
of the distribution on the left. Using samples of curves such as those of Figure 1,
is is straightforward to develop probability intervals and standard deviations on the
results of conversions such as those illustrated in the previous hypothetical example.

When investigating the relationship between two clinical classifications of the
same patients using different scales, it is common to examine overall measures of
association. Goodman and Kruskal developed the index X, expressly for situations
in which the goal is to predict the category for the row (column) variable from the
category of the column (row) variable. The index A is based on the proportional
reduction in error (PRE) and measures the relative improvement in predicting one

scale when the other is known, as is germane in this application. See Goodman

14
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and Kruskal 1954 and Bishop, Fienberg, and Holland 1975 for discussion. Figure 2
summarizes the posterior distributions of the measures of association Ag|g and Ag|p
between the two scales. Values of App are significantly smaller than thoses of Ay p.
This is partly to be expected, in view of the much larger number of BI categories.
In this case additional problems arise. For example the conditional distribution of

BI for RS category 4 is extremely diffuse.

5 Discussion

Measures of outcomes after stroke will typically be correlated but not perfectly so.
The correlation results from the measures’ common emphasis on functional status,
particularly those components of functional status involving physical function. The
divergence results from the focus on somewhat different elements of functional sta-
tus, different resolution of the scales (e.g. the RS has fewer categories than the
BI), different background of the respondents (e.g. the RS assessment is typically
performed by a clinician, while the BI accommodates reports by the patient, clin-
ician or proxy), different question formats, and so forth. Recognizing these diver-
gences, some trials of acute stroke treatment have measured stroke outcomes using
multiple scales, and assessed the efficacy of interventions using a global outcome
measure, which simultaneously includes multiple dimensions (Tilley, Marler, Geller,
Lu, Legler, Brott, Lyden, and Grotta 1996).

However, the vast majority of the literature reports either the RS or the BI
but not both, and thus a methodology for translating the results of one scale into
the other would be of practical value. In this article we developed an approach
and estimated tables for comparing and integrating the results of clinical trials of
stroke treatments using the RS and the BI, and for integrating clinical trials results

into comprehensive decision model for the assessment of long term implications and
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cost—effectiveness of stroke prevention and acute treatment interventions. While we
combined two high—quality studies, we could

Our results indicate that substitution of one scale for the other at full resolution
involves substantial uncertainty. In particular, prediction of BI values based on
RS is not generally reliable because of the larger number of BI categories. The
effect of this uncertainty on the practical ability to translate results from one scale
to the other in both clinical trial and cost—effectiveness modeling applications will
vary with the specific application, depending on the strength of the relationship
between disability category and primary outcome of interest. For example, survival
may depend mostly on aspects of the two scale that correlate well with one another
(Wolfe, Taub, Woodrow, and Burney 1991) and may be translated reliably, while
quality adjusted survival is more likely to be sensitive to specific aspects of the two
scale that are difficult to translate.

We developed a tailored statistical approach to the analysis, that takes into ac-
count the negative dependence between the RS and the BI scale, the time variation
of the cross-classification, and the different resolutions of our two data sources.
We adopted a Bayesian implementation, because it provided a practical solution to
many of the challenges posed by the application: combination of information from
different sources, multiresolution analysis, estimation in presence of complex con-
straints, lack of reliable asymptotic approximations to the variance of the estimated
parameters, and need to make inferences on complex functions of the parameters,
such as conditional distributions and the \’s.

In the joint distribution reported in Section 4, the variability in one scale given
the other is within rater, and reflects the different degree to which patients can be
classified into categories according to the two scales. The result of the conversion

is interpretable as an estimate of the distribution that would have been obtained if
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the same set of raters had measured BI instead of RS. In practice, one may be also
be interested in modeling the variability across raters, arising from different raters
applying the categorization differently. This can be critical when the goal of the
conversion is combining evidence across trials, each of which uses a different set of
raters. Depending on the study design, multi-—level models could be used for this
purpose (Johnson and Albert 1999).

A joint analysis of two related indices can be also useful in the framework of
a single study in which both indices are collected, by providing additional power
to detect intervention effects. In the two—arms case the null hypothesis could be
that the joint distribution is the same across groups. An image display of, say, the
cell-specific log odds ratios across groups, would provide a map of the intervention
effects.

Approaches to multiresolution analysis using multiple imputations or MCMC
approaches to recreate the lowest resolution in all subsets of the problem have been
previously explored. For example Heitjan and Rubin 1990 considered it in the con-
text of age heaping. We are not aware of existing Bayesian approaches to inference
and computing in contingency tables under the TNy or similar constraints. How-
ever, alternative Bayesian approaches to modeling dependence in ordinal categorical
data are numerous (Erkanli, Stangl, and Miiller 1993; Cowles, Carlin, and Connett
1996; Johnson 1996; Johnson and Albert 1999). A common strategy is to postulate
the existence of individual-level latent continuous variables, whose binning leads
to the observed ordinal categories, and to express conditional models in terms of
the latent variables. in this vein Cargnoni, Miller, and West 1997 utilize a latent
dynamic linear model to model a sequence of one-dimensional multinomial tables
over time. Advantages of the approach developed here over those based on latent

variables include that a) there is no need to model/simulate latent variables at the
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individual patient level; computing takes place in much lower dimensions, and it
is expedited and stabilized; and 2) model parameters are more directly related to
contingency tables are more natural to interpret. For example in our framework
it is simpler to incorporate clinical requirements such as the TNy constraint, and
to assign meaningful vague prior distribution, such as our uniform within the TNy
constraint. A disadvantage in other applications is that the latent variables may
themselves carry important scientific information.

Ordered categorical scales for measuring disability and severity of disease are
common in all areas of medicine (Potparic and Gibson 1993), and arise from many
clinical trials and epidemiological studies. Scales are constantly revised and im-
proved. Also, general scales like the BI coexist with disease—specific ones. As a
result, the issue of cross—calibration of different, monotonically related, scales is com-
monly encountered. More generally, inference on cell probabilities of contingency
tables when there is knowledge about the monotonicity of the relationship between
the two variables being classified is common. Our strategy is relatively simple com-
putationally, compared to alternative full Bayesian analyses, it is straightforward to
interpret and communicate to a non—statistical audience, and it is especially attrac-
tive in sparse tables because the “shingle” effect of the constraints, which induces a
smooth fit without the need for parametric assumptions. Our approach to sampling
from contingency tables under a constraint using a daemon cell is applicable irre-
spective of the type of constraint considered and could be useful outside the area of
categorical data analysis. Our general strategy is scalable to contingency tables of

moderately high dimension.

18

Hosted by The Berkeley Electronic Press



References

Bishop, Y. M. M., S. E. Fienberg, and P. W. Holland (1975). Discrete Multivariate

Analyses: Theory and Practice. MIT Press.

Cargnoni, C., P. Miiller, and M. West (1997). Bayesian forecasting of multinomial
time series through conditionally Gaussian dynamic models. Journal of the

American Statistical Association 92, 640—647.

Cowles, M. K., B. P. Carlin, and J. E. Connett (1996). Bayesian Tobit mod-
eling of longitudinal ordinal clinical trial compliance data with nonignorable

missingness. Journal of the American Statistical Association 91, 86-98.

Douglas, R., S. E. Fienberg, M.-L. T. Lee, A. R. Sampson, and L. R. Whitaker
(1991). Positive dependence concepts for ordinal contingency tables. pp. 189

202. Institute of Mathematical Statistics.

Duncan, P. W., L. B. Goldstein, G. W. Divine, J. R. Feussner, and D. B. Matchar
(1992). Measurement of motor recovery following stroke: Outcome assessment

and sample size requirements. Stroke 23, 1084-1089.

Duncan, P. W., L. B. Goldstein, R. D. Horner, P. B. Landsman, G. P. Samsa, and
D. B. Matchar (1994). Similar motor recovery of upper and lower extremities

after stroke. Stroke 25, 1181-1188.

Duncan, P. W., H. S. Jorgensen, and D. T. Wade (2000). Outcome measures in
acute stroke trials: A systematic review and some recommendations to improve

practice. Stroke 31(6), 1429-1438.

Duncan, P. W.; S. M. Lai, and J. Keighley (2000). Defining post-stroke recov-
ery: implications for design and interpretation of drug trials. Neuropharma-

cology 39(5), 835-841.

Erkanli, A., D. Stangl, and P. Miiller (1993). A Bayesian analysis of ordinal data

19

http://biostats.bepress.com/jhubiostat/paper2



using mixtures. In ASA Proceedings of the Section on Bayesian Statistical

Science, pp. 51— 56.

Etzioni, R. D., S. E. Fienberg, Z. Gilula, and S. J. Haberman (1994). Statistical
models for the analysis of ordered categorical data in public health and medical

research. Statistical Methods in Medical Research 8, 179-204.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (Eds.) (1996). Markov Chain
Monte Carlo in Practice. London: Chapman and Hall.
Goodman, L. A. and W. H. Kruskal (1954). Measures of association for cross

classifications. Journal of the American Statistical Association 49, 732—764.

Heitjan, D. F. and D. B. Rubin (1990). Inference from coarse data via multiple
imputation with application to age heaping. Journal of the American Statistical

Association 85, 304-314.

Johnson, V. E. (1996). On Bayesian analysis of multirater ordinal data: An ap-
plication to automated essay grading. Journal of the American Statistical As-

sociation 91, 42-51.
Johnson, V. E. and J. Albert (1999). Ordinal Data Modeling. Berlin: Springer.
Karlin, S. (1969). Total positivity. Stanford, California: Stanford University Press.

Mahoney, F. I. and D. W. Barthel (1965). Functional evaluation: the barthel

index. Maryland State Medical Journal 14, 61-65.

Matchar, D. B., G. P. Samsa, J. R. Matthews, M. Ancukiewicz, G. Parmigiani,
V. Hasselblad, P. A. Wolf, R. B. D’Agostino, and J. Lipscomb (1997). The
stroke prevention policy model (SPPM): Linking evidence and clinical deci-

sions. Annals of Internal Medicine 127(8S), 704-T711.

Potparic, O. and J. Gibson (1993). Dictionary of Clinical Tests: A Concise Guide

to Tests, Scales and Scores in Medicine. Boca Raton: CRC Press—Parthenon

20

Hosted by The Berkeley Electronic Press



Publishers.

Rankin, J. (1957). Cerebral vascular accidents in patients over the age of 60: II.

prognosis. Scottish Medical Journal 2, 200-215.

Tanner, M. A. (1991). Tools for Statistical Inference — Observed Data and Data
Augmentation Methods, Volume 67 of Lecture Notes in Statistics. New York:
Springer-Verlag.

Tanner, M. A. and W. H. Wong (1987, June). The calculation of posterior dis-
tributions by data augmentation. Journal of the American Statistical Associ-
ation 82(398), 528-550.

Tilley, B., J. Marler, N. Geller, M. Lu, J. Legler, T. Brott, P. Lyden, and J. Grotta
(1996). Use of a global test for multiple outcomes in stroke trials with applica-
tion to the national institute of neurological disorders and stroke t-pa stroke
trial. Stroke 27(11), 2136-2142.

van Swieten, J., P. F. Koudstaal, M. C. Visser, H. J. A. Schouten, and J. van
Gigin (1988). Interobserver agreement for the assessment of handicap in stroke

patients. Stroke 19, 604—-607.

Wolfe, C. D. A., M. S. C. Taub, E. J. Woodrow, and P. G. J. Burney (1991).
Assessment of scales of disability and handicap for stroke patients. Stroke 22,

1242-1244.

World Health Organization (1993). Proposal for multinational monitoring and
determinants in cerebrovascular disease. Monica Project WHO /MNC82, World

Health Organization.

21

http://biostats.bepress.com/jhubiostat/paper2



Score Interpretation

0 no symptoms

1 no significant disability (i.e., minor symptoms which do not interfere with the pa-
tient abilities to carry out their usual activities of daily living)

2 slight disability (i.e., unable to carry out some previous activities, but able to look
after own affairs without assistance)

3 moderate disability (i.e., requiring some assistance with activities, but able to walk
without assistance)

4 moderately severe disability (i.e., unable to walk without assistance, unable to at-
tend to bodily needs without assistance)

5 severe disability (i.e, bedridden, incontinent, requiring constant nursing care and
attention).

Table 1: Verbal description of the six categories defining the Modified Rankin Stroke Out-

come Scale (RS).

Item Maximum Score
feeding 10
transferring 15
grooming 5
toileting 10
bathing 5
walking 15
stairs 10
dressing 10
bowel continence 10
bladder continence 10

Table 2: The 10 activities of daily living considered by the Barthel ADL Index (BI).

GENDER 214 Male, 245 Female

MEAN AGE 70.5 (+/- 11.4)

RACE 366 White, 78 Black, 15 Other
TIME SINCE STROKE (MEAN) 8.5 Days (+/- 3.6)

STROKE SEVERITY (ORPINGTON) 51 Major, 227 Moderate, 179 Minor

Table 3: Demographic characteristics of the 459 patients enrolled in the Kansas City Stroke

Study
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| Month 1 | Month 3 | Month 6
Rankin 0 1 2 3 4 5 | Rankin 0 1 2 3 4 5| Rankin 0 1 2 3 4 5
Barthel Barthel Barthel

010 O 0 O 1 10 010 O 0O 0 1 7 0 0 0O 0 0 0 5

510 0 0O 0 O 9 510 0 0O 0 0 2 5 0 0O 0 0 1 2
10/0 O 0o 0 3 1 10/0 O 0O 0 0 2 10 0 0O 0 0 1 1
150 O 0 O 2 1 15/0 O 0 0 5 0 15 0 0O 0 0 3 0O
2000 0 0 O 5 3 2000 O 0O 0 3 0 20 0 0O 0 0 3 2
2510 O 0 O 7 1 2510 O 0O 0 7 0 25 0 O 0 0 4 1
300 O 0 0 7 0 300 O 0 0 6 0 30 0 0O 0 0 4 0
35|10 0 0 0 8 0 35|10 O 0O 0 7 0 35 0 0 0 1 3 0
4010 O 0 2 14 0 4010 O 0 0 3 0 40 0 0O 0 0 4 0
45|10 0 0O 0 4 0 4510 O 0O 0 3 0 45 0 0O 0 0 2 0
5010 0 0 1 8 0 500 O 0 1 6 0 50 0 0 O 2 3 0
5% [0 0 0 1 9 0 55|10 O 0O 0 5 0 55 0 0O 0 3 5 0
60| 0 O 1 5 9 0 60| 0 O 0 3 6 1 60 0 0O 0 3 4 0
650 O 1 5 3 0 650 O 0 4 3 0 65 0 0 1 0 5 0
710 0 1 12 3 0 710 0 1 11 8 0 70 0 0O 0 6 1 0
w0 0 1 19 6 0 w0 0 0 5 0 0 75 0 0 0 12 2 0
8 |0 O 1 18 3 0 80 |0 O 6 12 0 O 80 0 0O 0 9 0 0
8 |0 0 4 26 O 0 8 | 0 2 4 21 0 O 85 0 0 3 18 0 O
90 | 1 0 7 24 1 0 9 | 1 2 9 23 0 0 90 0 3 11 13 0 0
95 | 1 4 31 13 0 0 95 | 1 4 24 20 0 O 95 2 6 3 16 0 O
100 | 2 17 62 11 0 0 100 | 7 44 72 9 0 0 100 | 11 57 62 11 0 O

Table 4: Cross classification of patients by BI (rows) and RS (columns) at one, three, and
six months after stroke in the Kansas City Stroke Study

Rankin
0,12 3 4 5
0-35 0 0 6 25
Barthel 40-65 0 5 21 3
70-90 5 16 2 0
95-100 17 0 0 O

Table 5: Estimated joint probability distribution of patients by RS (rows) and BI (columns)
at three months after stroke, as reported by Wolfe et al (1991). Counts are normalized to a
total of 100 patients. The sample size in the study was 50.
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Barthel

Rankin

0 1 2 3 4 )

0 0 0 1 12 75 255
5 0 0 1 11 55 118
10 0 0 1 6 27 41
15 0 1 6 32 110 75
20 0 1 8 35 105 52
25 0 2 14 57 149 58
30 0 3 16 60 144 47
35 0 4 16 58 125 35
40 0 4 16 54 105 25
45 1 4 15 47 87 18
50 1 8 29 8 139 25
95 1 8 25 72 102 16
60 3 U4 44 117 138 18
65 4 19 54 136 112 13
70 8§ 31 86 207 128 12
75 727 69 155 49 4
80 | 13 46 111 232 44 3
8 | 23 75 170 328 41 2
90 | 38 112 241 402 36 1
95| 79 213 422 395 24 1
100 | 339 818 1390 235 8 0

Table 6: Estimated joint distribution of RS and BI at three months after stroke, for 10,000
hypothetical patients. Entries correspond to posterior means of MCMC samples, rounded

to sum to 10,000.
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Barthel

Rankin

0 1 2 3 4 )

0 0 0 30 338 2179 7453
5 1 0 71 597 2985 6346
10 0 0 121 846 3617 5416
15 1 23 259 1418 4932 3367
20 2 50 382 1740 5221 2605
25 6 81 490 2023 5326 2074
30 9 111 579 2210 5347 1744
35 15 147 688 2442 5255 1453
40 23 188 794 2622 5146 1227
45 32 228 880 2763 5045 1052
30 45 276 996 2967 4845 871
95 61 342 1132 3186 4558 721
60 85 428 1317 3500 4119 551
65 | 120 556 1605 4025 3316 378
70 | 160 667 1829 4382 2701 261
75| 235 862 2226 4979 1572 126
80 | 295 1020 2470 5177 974 64
8 | 365 1164 2659 5133 646 33
90 | 460 1352 2899 4842 430 17
95 | 700 1874 3723 3486 212 )
100 | 1214 2931 4983 842 30 0

Table 7: Estimated conditional distributions of RS given BI, for 10,000 hypothetical patients

in each BI category.
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Rankin

0 1 2 3 4 )

0 0 0 4 42 414 3115
5 0 0 5 40 307 1436
10 0 0 3 23 150 494
15 0 4 21 116 611 917
20 1 7 28 128 581 638
25 3 16 50 207 828 710
30 ) 22 57 218 801 575
35 7 25 60 212 692 421
40 9 28 59 196 583 306
Barthel 45 10 28 55 173 480 220
50 25 57 1056 312 772 306
55 26 55 93 261 567 198
60 55 103 161 428 765 225
65 78 135 197 495 619 155
70 | 146 227 316 757 708 150
75| 141 194 254 568 272 48
80 | 254 329 405 848 242 35
85 | 450 537 622 1201 229 26
90 | 736 809 880 1470 198 17
95 | 1530 1531 1543 1446 134 7
100 | 6524 5893 5082 859 47 1

Table 8: Estimated conditional distributions of BI given RS, for 10,000 hypothetical patients
in each RS category. The conditional distributions are dispersed, indicating that conversion
may involve significant uncertainty.
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Rankin

0 1 2 3 4 5
Treatment | 0 40 50 10 0 0
Control | 0 O 0 10 40 50

Table 9: Observed distributions of RS in the hypothetical trial.

Barthel
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100
Treatment 0.1 0.1 0 02 03 05 06 06 06 06 1.1 09 1.6 2 32 26 42 6.5 9.1 153 49.8
Control | 17.3 84 3.1 7.1 56 7.1 63 51 41 32 49 35 46 3.7 43 1.9 2 22 23 2 1.1

Table 10: Estimated distributions of BI in hypothetical trial

. Each entry is computed from

the marginal distribution 7, using the estimated conditional probabilities of BI given RS

and the law of total probability.
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Figure 1: Posterior samples of cumulative distribution functions of RS given BI = 80 (left)
and BI given RS = 4 (right). Aside from the TN» condition, no constraints are posed on
the jumps of these CDF’s. Some of the lower probabilities show higher uncertainty than
those closer to .5. Also, higher uncertainty is associated with jumps in less smooth parts of
the CDF.
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ASSOCIATION MEASURES LAMBDA

Figure 2: Samples from the posterior distributions of association measures A for P(B|R)
(left) and P(R|B) (right). Distributions concentrate on relatively low values. The difference
in the two indices in attributable to the much larger number of BI categories as well as some
diffuse conditional distribution, such as that of BI for RS category 4.
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