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Abstract

Screening for changes in gene expression across biological conditions using microarrays is now

a common tool in biology. Efficient use of these data for identifying important biological

hypotheses is inherently a statistical problem. In this paper we present a broad Bayesian

multilevel framework for developing computationally fast shrinkage-based screening tools for

this purpose. Our scheme makes it easy to adapt the choice of statistics to the goals of the

analysis and to the genomic distributions of signal and noise. We empirically investigate the

extent to which these shrinkage-based statistics improve performance, and the conditions

under which such improvements takes place. Our evaluation uses both extensive simulations

and controlled biological experiments. The experimental data include a so-called spike-in

experiment, in which the target biological signal is known, and a two-sample experiment,

which illustrates the typical conditions in which the methods studied are applied.

Our results emphasize two important practical concerns that are not receiving sufficient

attention in applied work in this area. First, while shrinkage strategies based on multilevel

models are able to improve selection performance, they require careful verification of the

assumptions on the relationship between signal and noise. Incorrect specification of this

relationship can negatively affect a selection procedure. Because this inter-gene relationship

is generally identifiable in genomic experiments, we suggest a simple diagnostic plot to assist

model checking. Secondly, no statistic performs optimally across two common categories

of experimental goals: selecting genes with large changes, and selecting genes with reliably

measured changes. Therefore, careful consideration of analysis goals is critical in the choice

of the approach taken.
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1 Background

Many genomics investigations using expression arrays take the form of searching for genes

whose expression level is different across experimental conditions or phenotypes. The list

of gene transcripts produced by a microarray analysis is usually the starting point for ex-

tensive additional biological work, including independent validation, and both in-silico and

laboratory work on sequences and proteins related to the transcripts selected. In this con-

text, microarray experiments are screening, not testing, experiments. Because of the wide

range of important questions that can be explored using these arrays, and the costs involved,

comparisons across conditions are often made using a limited number of replications. Effi-

cient use of data is critical in improving a laboratory’s ability to correctly identify important

biological hypotheses and proceed to test them by appropriate further experimentation.

Specific screening goals vary with the study. Two simple but representative situations

are the selection of genes that are changed by a large amount, and the selection of genes

that are changed by a reliably measured amount. In either case, the comparison of gene

expression across two conditions based on replicated experiments requires a trade-off of

signal, the variation of expression across the two conditions, versus noise, the variation

of expression within each condition. Therefore the problem is statistical in nature (Kohane

et al. 2002, Speed 2003, Parmigiani et al. 2003). In this paper we discuss a Bayesian multilevel

framework for developing screening tools that adapt to the goals of the analysis and to the

genomic distributions of signal and noise. We evaluate a representative set of these tools

using both extensive simulations and controlled biological experiments in which the set of

altered genes is known.

A variety of approaches for selecting differentially expressed genes have been proposed (see

Pan (2002) for a review). The simplest and still the most widely used is to set a threshold on

a measure of signal alone, for example an estimated fold–change. This can be motivated by

the desire to identify large changes, although often it is used by simple analogy with other

gene expression essays that have much less noise. Upper and lower thresholds of two and

one half are often seen in applications. One limitation of this approach is that it does not

consider how reliably gene-specific changes are measured. That is, it implicitly assumes that

all genes are subject to the same level of noise. This may not be the case because even after

appropriate preprocessing of the data, the within–gene variation in expression can be highly

gene–dependent.

A straightforward way to account for both signal and noise is to select genes based on

statistics motivated by two–sample testing, such as the T-ratio or the Wilcoxon statistic.

For each gene, the T–ratio is an estimate of the signal–to–noise ratio. Because it requires
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estimating two or three parameters instead of one, when the number of replicates is small,

the T–ratio does not necessarily perform better than fold–change, even when the goal is

point-null-like. Gains in efficiency over both fold–change and T–ratios can be obtained by

considering the ensemble of gene expression measures at once, rather than each gene in

isolation. This occurs for at least two reasons. First, genes measured on the same array type

in the same laboratory are all affected by a number of common sources of noise. Secondly,

many changes in expression are part of common biological mechanisms.

A widely used approach that uses genome–wide information is “significance analysis of

microarrays” or SAM (Tusher et al. 2001). SAM involves transforming the signal–to–noise

ratios so that they are approximately independent of noise across genes. The type of trans-

formation used by SAM is designed to protect against false discoveries generated by very

small denominators in the t–ratios. The denominators that are really small are highly likely

to be so by chance, because genes share many sources of variability, and a certain amount

of variation is to be expected from all of them.

More broadly, joint estimation of many related quantities is often approached by multilevel

modeling, and the associated Empirical Bayesian (Robbins 1956, Efron and Morris 1973)

and Hierarchical Bayesian (Lindley and Smith 1972) estimation techniques. See Carlin and

Louis (2000) for a detailed discussion. In genomics, these may represent variation in two

stages. The first stage defines summaries at the gene level, for example test statistics, or

estimates of fold change and noise. These describe variability of samples within each gene.

The second stage posits a “genomic” distribution for these gene–level summaries. Such

multilevel modeling provides tools for borrowing strength from other genes when making

inference on each gene. Some examples of implementations in microarrays are provided by

Baldi and Long (2001), Newton, Kendziorski, Richmond, Blattner and Tsui (2001), Efron,

Tibshirani, Storey and Tusher (2001), Lönnstedt and Speed (2002), Ibrahim, Chen and Gray

(2002), Parmigiani, Garrett, Anbazhagan and Gabrielson (2002), among others.

In practice, a question often raised by genomics practitioners is the extent to which simple,

real-time, shrinkage statistics motivated by multilevel models would outperform single-gene-

at-a-time analysis or SAM. In this paper we set out to systematically address this question.

To this end, we found it necessary to develop a general framework for developing and eval-

uating these fast shrinkage statistics. Our answer will turn out to be that shrinkage can

furnish substantial improvement over single-gene-at-a-time analysis or SAM, provided that

the statistics chosen will a) take into account the goals of the screening experiments and b)

will be chosen based on examination of the properties of the genomic distribution of signal

and noise. Even though we considered an extensive collection of statistics, the goal was not

that of providing an exhaustive comparison of all approaches that have been proposed, but
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rather that of highlighting the critical role of the signal–to–noise trade–off and of providing

tools to choose among alternative approaches based on the genome–wide behavior of signal

and noise. We compared the performance of these statistics using both extensive simulations

and real data sets in which fold changes were known.

2 Methods

2.1 Multilevel Models for Two-group Comparisons

We consider a design in which two biological types are compared on a microarray that probes

G genes. Each type is measured on n arrays using either technical or biological replicates.

Here technical replicates refer to experiments that have multiple aliquots of the same RNA,

while biological replicates refer to experiments that have multiple subjects from a population.

Each situation requires a different interpretation of the array-to-array variability, but the

formal structure is the same. We do not consider both levels of replication at the same time

here. We denote by X1gj the expression for gene g in sample j in the first group, and by X2gj

the expression for gene g in sample j in the second group. Expression levels are assumed to

be centered around an overall experiment-wise mean.

Recall our interest lies in studying approaches for selecting genes that are differentially

expressed between groups. We begin by describing an additive group effect and indepen-

dent Gaussian errors. That is we assume that the observed expressions are conditionally

independent draws from

X1gj|µg, σ
2
g , δg ∼ N

(

µg −
1

2
δg, σ

2
g

)

X2gj|µg, σ
2
g , δg ∼ N

(

µg +
1

2
δg, σ

2
g

)

.

Here, δg is the difference in expression level for gene g across groups, µg is an overall expression

level for gene g, also referred to as abundance, or intensity, and σ2
g is the variance of expression

level for gene g in both groups. We refer to δg as true signal, and to σg as true noise. in

a multilevel setting, our parameterization is different from that assuming E{X1gj} = µg

E{X2gj} = µg + δg, which would lead to two different marginal variances in the two groups.

The fit of the normal distribution can often be improved by a suitable transformation of the

data. Departures from normality and unequal variance across groups are not considered in

this manuscript.

Multilevel models postulate a distribution for the abundance, signal, and noise parameters

across genes. A common assumption to many of the multilevel models used in microarray

analysis is that of conjugate distributions for the second stage of the statistical model, in
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Data Level

X1gj |µg, σ
2
g , δg ∼ N

(

µg −
1

2
δg, σ

2
g

)

X2gj |µg, σ
2
g , δg ∼ N

(

µg +
1

2
δg, σ

2
g

)

.

II. Independence CI. Independence of Signal and Noise

µg|τ2 ∼ N(0, τ2)

δg|λ2 ∼ N(0, λ2)

σ−2
g |ν, β ∼ Ga(ν, β)

µg|τ2, σ2
g ∼ N(0, σ2

gτ2)

δg|λ2 ∼ N(0, λ2)

σ−2
g |ν, β ∼ Ga(ν, β)

IC. Independence of Abundance and Noise CC. Complete Conjugacy

µg|τ2 ∼ N(0, τ2)

δg|λ2, σ2
g ∼ N(0, σ2

gλ2)

σ−2
g |ν, β ∼ Ga(ν, β)

µg|τ2, σ2
g ∼ N(0, σ2

gτ2)

δg|λ2, σ2
g ∼ N(0, σ2

gλ2)

σ−2
g |ν, β ∼ Ga(ν, β)

Table 1: The four classes of multilevel models investigated. The array-to-array variation is modeled in the
same way in all four cases. In all cases, j = 1, 2, . . . , n and g = 1, 2, . . . , G. All quantities denoted by Greek
letters are unknown. A further set of prior distributions for the hyperparameters is described in the text.

short a “conjugate model”. In the case of Gaussian data, the conjugate model implies that

the gene–specific signal–to–noise ratios and abundance-to-noise ratios are independent of the

corresponding gene–specific noise (Raiffa and Schleifer 1961, Ando and Kaufman 1965). This

assumption leads to convenient mathematical representations for many of the steps required

by the data analysis, and is sometimes adopted solely for this reason. In practice, however,

some microarray experiments follow this independence pattern closely, while others depart

from it substantially. The loss of efficiency of screening based on the conjugate model in the

latter case can be large.

Here we broaden the conjugate scheme and we investigate four model varieties, that

result from the combination of two factors: (i) whether the gene-specific signal is indepen-

dent of the gene-specific noise, (ii) whether the gene-specific abundance is independent of

the gene-specific noise. Formally, for (i) the independence models assumes that δg and σg

are independent, while the conjugate model assumes that δg/σg and σg are independent.

The remainder of our distributional assumptions are standard for normal multilevel models

(Lindley and Smith 1972, Gelman et al. 1995). The models are summarized in Table 1.

4
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We use the notation dg for the mean difference of expression across two groups, ag for

the overall mean expression, and sg for the pooled estimate of the standard deviation. No-

tationally:

ag =
1

2
(X̄1g + X̄2g)

dg = X̄2g − X̄1g

s2
g =

RSS

n− 1
=

1

n− 1

n
∑

j=1

(X1gj − X̄1g)
2 +

1

n− 1

n
∑

j=1

(X2gj − X̄2g)
2.

In all four models of Table 1, these statistics are independent conditional on gene-specific

parameters and have distributions

ag ∼ N

(

µg,
1

2n
σ2

g

)

dg ∼ N

(

δg,
2

n
σ2

g

)

n− 1

σ2
s2

g ∼ χ2
2(n−1).

conditional on gene-specific parameters. All four combinations of Table 1 occur commonly

in practice. For example, our two experimental data sets show two markedly different rela-

tionships between signal and noise.

The vector of unknown parameters will be denoted by ξ = (ν, β, λ, τ). There are several

estimation approaches available for models of this kind. State-of-the art, computationally

intensive approaches are usually based on MCMC (Gilks et al. 1996). Instead we focus on a

faster and simpler empirical Bayesian approach based on estimating ξ by method of moments

from the empirical distributions of s−2
g , dg’s. The resulting estimators are computationally

cheap and may include shrinkage of the signal, of the noise, or both. Several method of

moments alternatives are available, and results can be strongly affected by this choice. For

example, in our experience, the method of moments applied to the distribution of s2
g, which

is inverse gamma, performs poorly, while the same applied to s−2
g performs well.

We approach the task of generating a list of candidate genes by ranking genes according

to a one-dimensional statistic, and then selecting all genes whose statistic is above a certain

cutoff. This is the norm in practice. While more general decision theoretic approaches

evaluating the trade-off between false and missed discoveries are available (Müller et al.

2003, Lin et al. 2003), these are complex, and would have been prohibitive in our vast

simulation study. The cutoff is often determined by the ability of a laboratory to perform

validatory analyses, or, more inferentially, by false discovery rates (Benjamini and Hochberg

1995, Genovese and Wasserman 2001, Storey 2002, Storey and Tibshirani 2003). In our
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MOTIVATING MODEL ANALYSIS GOAL

Large change Reliably measured change

Independence/Normality of Genes Difference in Expression (F) T–statistic (T)

Exchangeability of Genes Significance Analysis of Microarray (SAM)

Complete Conjugacy
Signal (CC.F)

Tail probability (CC.TP)

Standardized Signal (CC.T)

Bayes factor (CC.BF)

Independence of Abundance and Noise
Signal (CI.F)

Tail probability (CI.TP)

Standardized Signal (CI.T)

Bayes factor (CI.BF)

Independence of Signal and Noise
Signal (IC.F)

Tail probability (IC.TP)

Standardized Signal (IC.T)

Bayes factor (IC.BF)

Independence
Signal (II.F)

Tail probability (II.TP)

Standardized Signal (II.T)

Bayes factor (II.BF)

Table 2: Summary of statistics examined, by goal and motivating model structure.

presentation, to simplify the comparison of approaches, we focus on the ranking of genes

implied by the statistics, and the ability of each statistic of identifying the top g genes.

Throughout, we draw a distinction between the selection of genes that are changed by

a large amount, and genes that are changed by a reliably measured amount. Accordingly

we consider two broad families of statistics, ones that estimate the signal, δg, and ones

that estimate the signal to noise ratio, δg/σ
2
g . Because we use statistics as ranking devices

and compare them based on ROC curves, we only need to define statistics up to constants

that are not gene-specific. A proportionality sign will indicate omission of such constants.

Table 2 summarizes the statistics we examined, organizing them by goal and motivating

model structure. Table 3 summarizes the expressions of statistics motivated by multilevel

models.

2.2 Statistics

In this subsection we enumerate and briefly comment on each of the statistics we considered.

The remainder of this section is provided as a reference for future sections. Details of the

derivation are given in the Appendix.

Difference in Expression (F). This is the observed average difference dg. Usually

expression data are analyzed in the logarithmic scale, in which case F corresponds to an

estimate of the log fold change across conditions.

T–statistic (T). This is the common statistics T ∝ dg/sg used for testing the null

hypothesis of δg = 0 one gene at the time.

Significance Analysis of Microarrays (SAM). This was proposed by Tusher, Tib-

shirani and Chu (2001) and is based on the change of gene expression relative to an adjusted
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Model Statistics
F T BF TP

Pr(δg > D|dg, ag, s
2
g, ξ̂)

CC.m dg
dg√
σ̂2

g









1+ 1
β̂

0

@

(n−1)
2 s2

g+ n
4 d2

g+

a2
g
2

1
2n

+τ̂2

1

A

1+ 1
β̂

0

@

(n−1)
2 s2

g+

d2
g
2

2
n

+λ̂2 +

a2
g
2

1
2n

+τ̂2

1

A









−(n+ν̂)

δg|dg, ag, s
2
g, ξ̂ ∼ St

(

n
2 dg

n
2 + 1

λ̂2
,
(

n
2 + 1

λ̂2

)

νn

βn
, 2(ν̂ + n)

)

Pr(δg > D|dg, σ̂
2
g , ξ̂)

CC.c dg
dg√
σ̂2

g

e

−

n
2

d2
g+

d2
g

2
n

+λ̂2

2σ̂2
g δg|dg, σ̂

2
g , ξ̂ ∼ N

(

n
2 dg

n
2 + 1

λ̂2
,

σ̂2
g

n
2 + 1

λ̂2

)

Pr(δg > D|dg, σ̂
2
g , ξ̂)

IC dg
dg√
σ̂2

g

e

−

n
2

d2
g+

d2
g

2
n

+λ̂2

2σ̂2
g δg|dg, σ̂

2
g , ξ̂ ∼ N

(

n
2 dg

n
2 + 1

λ̂2
,

σ̂2
g

n
2 + 1

λ̂2

)

Pr(δg > D|dg, σ̂
2
g , ξ̂)

CI

ndg

2σ̂2
g

n

2σ̂2
g

+ 1
λ̂2

ndg

2σ̂2
g

r

n

2σ̂2
g
+ 1

λ̂2

√

( 2
n

σ̂2
g+λ̂2)
σ̂2

g
e
−

n
2

d2
g

2σ̂2
g

+
d2

g

2( 2
n

σ̂2
g+λ̂2) δg|dg, σ̂

2
g , ξ̂ ∼ N

(

ndg

2σ̂2
g

n

2σ̂2
g

+ 1
λ̂2

, 1
n

2σ̂2
g

+ 1
λ̂2

)

Pr(δg > D|dg, σ̂
2
g , ξ̂)

II

ndg

2σ̂2
g

n

2σ̂2
g

+ 1
λ̂2

ndg

2σ̂2
g

r

n

2σ̂2
g
+ 1

λ̂2

√

( 2
n

σ̂2
g+λ̂2)
σ̂2

g
e
−

n
2

d2
g

2σ̂2
g

+
d2

g

2( 2
n

σ̂2
g+λ̂2) δg|dg, σ̂

2
g , ξ̂ ∼ N

(

ndg

2σ̂2
g

n

2σ̂2
g

+ 1
λ̂2

, 1
n

2σ̂2
g

+ 1
λ̂2

)

Table 3: Summary of functional forms of all the statistics motivated by multilevel models. For the complete
conjugacy case (CC) we consider both statistics that use analytic integration with respect to σg (labeled
CC.m) and statistics that use plug-in estimates of σg (labeled CC.c).

standard deviation. For the two group case considered here, the SAM statistic for gene g is

SAM =
dg

sg + s0

where s0 is the so-called “exchangeability factor”. This factor is estimated using information

from the entire set of genes to transform the values of SAM so that noise and SAM are

approximately independent.

Statistics for Complete Conjugacy (CC). In the Complete Conjugacy model the

conditional posterior distribution of δg given hyperparameters ξ can be written as

δg|dg, σ
2
g , ξ ∼ N

( n
2
dg

n
2

+ 1
λ2

,
σ2

g

n
2

+ 1
λ2

)

(1)

A set of computationally cheap statistics is derived by considering empirical Bayes esti-

mates of this distribution, obtained by replacing hyperparameters ξ with an estimate ξ̂. A

regularized estimate of signal δg is

CC.F =
n
2
dg

1

λ̂2
+ n

2

∝ dg.
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Regularization is independent of the gene, so for any given experiment CC.F will be pro-

portional to F. For this reason we only consider F, although we keep this correspondence in

mind when interpreting the results.

A standardized estimate of signal is derived as the ratio of the conditional posterior mean

and standard deviation of δg from expression (1),

CC.T ∝ dg
√

σ̂2
g

.

The denominator incorporates a linear shrinkage estimate of the gene-specific variance with

gene-varying coefficients, penalizing more heavily genes whose signal or abundance are outly-

ing. For this reason, it is critical that the conjugacy assumption be checked, or very valuable

information may be lost. On the other hand, when the assumption is met, an increase in

efficiency is gained from estimating the denominator.

An empirical Bayes estimate of the Bayes factor (Kass and Raftery 1995) for the null

hypothesis of no gene-specific differential expression, δg = 0, is:

CC.BF ∝











1 + 1

β̂

(

(n−1)
2

s2
g + n

4
d2

g +
a2

g
2

1
2n

+τ̂2

)

1 + 1

β̂

(

(n−1)
2

s2
g +

d2
g
2

2
n

+λ̂2
+

a2
g
2

1
2n

+τ̂2

)











−(n+ν̂)

.

Finally, we consider the empirical Bayes approximation,

CC.TP = Pr(δg > D|dg, ag, s
2
g, ξ̂),

of the probability that the true change δg exceeds D. Here, D represents a target change

across conditions. This tail probability reflects the observed change, its variability and the

likely magnitude of biologically significant changes.

Statistics for Independence of Abundance and Noise (IC). In this model the

posterior distribution of δg given σg and hyperparameters ξ can be written as

δg|dg, σ
2
g , ξ ∼ N

( n
2
dg

n
2

+ 1
λ2

,
σ2

g

n
2

+ 1
λ2

)

(2)

Unlike in the complete conjugate case, a closed form marginalization with respect to σ is

not possible. Therefore we derive results assuming σ2
g is known. In the actual calculations,

to obtain a real-time statistics, σ2
g is estimated by the posterior mode of the distribution of

σ2
g |s2

g, ξ. Then our estimate of the normalized signal is

IC.F =
n
2
dg

n
2

+ 1

λ̂2

∝ dg.
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As with CC.F, IC.F is proportional to F, so we only consider F in our results section.

A standardized estimate of signal based on regularized estimates of signal is the the ratio

of the marginal posterior mean and standard deviation of δg from expression (2), that is

IC.T ∝ dg
√

σ̂2
g

.

The Empirical Bayes estimate of the Bayes factor, conditional on gene specific variance

is:

IC.BF ∝ e

−

n
2 d2

g+
d2
g

2
n +λ̂2

2σ̂2
g .

Finally, we consider the empirical Bayes tail probability

IC.TP = Pr(δg > D|dg, σ̂
2
g , ξ̂).

Statistics for Independence of Signal and Noise (CI). In this model the posterior

distribution of δg given σg and hyperparameters ξ can be written as

δg|dg, σ
2
g , ξ ∼ N





ndg

2σ2
g

n
2σ2

g
+ 1

λ2

,
1

n
2σ2

g
+ 1

λ2



 (3)

Again, to obtain a real-time statistic we develop results conditional on σ2
g and estimate it

with its posterior mode in actual calculation. The estimate of the signal is

CI.F =

ndg

2σ̂2
g

n
2σ̂2

g
+ 1

λ̂2

.

A standardized estimate of signal based on regularized estimates of signal is the the ratio of

the marginal posterior mean and standard deviation of δg from expression (3), that is

CI.T =

ndg

2σ̂2
g

√

n
2σ̂2

g
+ 1

λ̂2

.

The Empirical Bayes estimate of the Bayes factor is:

CI.BF ∝

√

√

√

√

(

2
n
σ̂2

g + λ̂2
)

σ̂2
g

e
−

n
2 d2

g

2σ̂2
g

+
d2
g

2( 2
n σ̂2

g+λ̂2) ,

while the tail probability approximation is

CI.TP = Pr(δg > D|dg, σ̂
2
g , ξ̂).
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Statistics for Complete Independence (II). In this model the posterior distribution

of δg given σg and hyperparameters ξ can be written again as

δg|dg, σ
2
g , ξ ∼ N





ndg

2σ2
g

n
2σ2

g
+ 1

λ2

,
1

n
2σ2

g
+ 1

λ2



 (4)

A regularized estimate of δg, motivated by the independence model is obtained by replacing

ξ with ξ̂ and σ2
g with its conditional posterior mode evaluated at ξ̂, and approximating the

posterior mean by

II.F =

ndg

2σ̂2
g

n
2σ̂2

g
+ 1

λ̂2

.

Unlike IC.F and CC.F, both II.F and CI.F imply a linear shrinkage which depends on the

genomic variability of the signal. Dividing II.F by the square root of the variance of δg, and

approximating as before, we obtain

II.T =

ndg

2σ̂2
g

√

n
2σ̂2

g
+ 1

λ̂2

.

The Empirical Bayes estimate of the Bayes factor is:

II.BF ∝

√

√

√

√

(

2
n
σ̂2

g + λ̂2
)

σ̂2
g

e
−

n
2 d2

g

2σ̂2
g

+
d2
g

2( 2
n σ̂2

g+λ̂2) ,

while the empirical Bayes approximation to the tail probability is

II.TP = Pr(δg > D|dg, σ̂
2
g , ξ̂).

Notice that the definitions of statistics for the CI and II cases would be the same if σ2
g

was known. Hence the only difference in practice is the posterior mode for σ2
g . It should not

then be a surprise that the performance of these two are very close. For the same reason,

this is also true for statistics in the CC and IC settings conditional on σ2
g .

The empirical Bayes estimators, both standardized and not, have functional similarities

to the SAM score, although shrinkage of the noise in the denominators are determined

differently. In empirical Bayes analyses, the shrinkage is driven by the parameters of the

genomic distributions of signal and noise, in a form that depends on whether or not conjugacy

is assumed. In SAM one applies linear shrinkage to the standard deviation rather than the

variance, and the shrinkage intercept s0 is chosen to approximate independence of SAM

ratios from noise.
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3 Simulation Results

3.1 Design of simulation study

We study simulated data sets from each of the four models of Table 1. We considered

three sample sizes: 3, 10 and 100 per group. Use of samples as small as 3 is a common

scenario in the gene screening experiments taking place during the routine activities of many

laboratories, while 10 per group is a common scenario in comparisons across conditions for

systematic genomic studies. Sample size as large as 100 per group are rare and considered

here mostly as a check.

For each combination of scenario and sample size, we simulated data from 2009 models,

resulting in a total of 24108 datasets. The 2009 combinations of hyperparameters are based

on the grid:

E[σ−2
g ] ∈

(

1

100
,

1

25
,
1

5
, 1, 5, 25, 100

)

var[σ−2
g ] ∈

(

1

100
,

1

25
,
1

5
, 1, 5, 25, 100

)

E[σ−2
g ]

λ2 ∈
(

1

100
,

1

25
,
1

5
, 1, 5, 25, 100

)

E[σ−2
g ]

τ 2 ∈
(

1

100
,

1

25
,
1

5
, 1, 5, 25, 100

)

E[σ−2
g ].

For each combination we derive ν and β from E[σ−2
g ] and var[σ−2

g ]. Here the total number

of combinations is 2009 rather than 2401 because some expectation/variance combinations

lead to unrealistic settings for ν yielding potentially numerically unstable results.

We applied simple real-time shrinkage statistics in the analysis to avoid time consuming

numerical integration. Whenever there is no close form analytically, we use the conditional

estimation by plugging in the posterior mode of σ2
g . To verify how reasonable these real-

time statistics are, we considered the Complete Conjugacy model where closed forms are

available for all the statistics. We performed another set of simulation with exactly the same

hyperparameters comparing the results based on CC.TP and CC.BF in two cases: one based

on the conditional posterior of δg with posterior mode of σ2
g plugged in, the other based on

the marginal posterior of δg integrating out σ2
g .

3.2 Summary of Simulation Results

Mining the massive information generated by the 24 thousand scenarios required drastic

summarization. Our approach has been to identify a subset of changes “of interest” based

on the simulated parameters, and computing, for each statistic, the area under the ROC

curve obtained when using the statistic as a diagnostic of change (Egan 1975, National
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Research Council; Panel on Discriminant Analysis Classification and Clustering 1988). In

the analyses presented here we considered two perspective: in one the genes of interest are

the top genes by absolute change δg. In the other the genes of interest are the top genes

by signal-to noise ratio δg/σg. We considered the top 1%, 2% and 10%, with 1% being

the baseline case. For a given threshold on a statistic, some of the genes declared to be

changed are truly changed (true positives) while others are not (false positives). We analyze

this correspondence by an ROC curve is a graph of the true positive fraction versus the

false positive fraction for varying thresholds. As a summary, we consider the area under

the ROC curve (Pepe et al. 2000). We prefer this measure to others incorporating δg and

σg/δg explicitly for two reasons: the goal of the microarray experiments we are trying to

models is screening rather then estimation; interest usually lies in a relative small fraction

of important findings.

Based on these criteria, our simulations suggest two general conclusions about the alter-

native approaches for identifying differential genes: i) simple, real-time, shrinkage statistics

motivated by multilevel modes can outperform alternatives based on analyzing each gene

separately, in some cases by a large margin; ii) the same statistics can perform better than

the commonly used SAM (Tusher et al. 2001) statistic, provided careful checking of the

multilevel modeling assumptions.

In more detail, Figure 1 gives the signal-to-noise (SN) plots (Tusher et al. 2001, Dudoit

et al. 2002) in examples from each of the four model settings, II, IC, CI and CC. We graph

boxplots of signal by noise deciles. An SN plot in which the location and dispersion of

signal are stable across noise levels suggests the use of an independence model, while one

in which the location and dispersion of signal increase with noise level suggests the use of a

conjugate model. Thus, a constant box size indicates independence while an increasing box

size indicates conjugacy. For these four data sets, the diagnostic plot clearly distinguishes

conjugacy with respect to signal and noise as well as conjugacy with respect to abundance

and noise.

Figure 2 illustrates the ROC curves for a single simulation from the complete independence

model for identifying genes with large signals. The areas under these curves constitute the

data used to graph a single point in the subsequent plots. For this particular data set, we

see a large separation in the performance of the statistics, both in the statistics motivated

by different models and the different statistics within a given model. For this simulation,

the tail probability statistics are the clear winners regardless of the motivating model.

Figure 3 summarizes the 2009 simulated data sets from the complete independence model

with three replicates. Each point represents the paired areas under the curve for two statistics

for a simulated data set. In the plots above the diagonal, we report the ROC curves for
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identifying genes with large reliably measured changes, while in plots below the diagonal

we report the ROC curves for identifying genes with large signal. Here the the T and SAM

statistics are compared to the four statistics motivated by the complete independence model.

The II.BF and II.F statistics, have the best performance for detecting reliably measured

differentially expressed genes and large signal genes respectively. Note that it is important

to compare the summary statistics in this plot as over-plotting points leads to visually

misleading results in some cases.

If this figure were repeated on the same simulated data sets using the statistics motivated

by the IC model, the IC.BF statistic is preferred for detecting reliably measured differen-

tial expression while the IC.F statistic is preferred for detecting raw differential expression

(signal). To summarize, for the data simulated from the complete independence model, the

best statistics from each of the four motivating model were II.BF, IC.BF, CI.BF and CC.T

for detecting large signal to noise ratios and II.F, IC.F, CI.F and CC.F for detecting large

signals. Note that the CC.T statistic invokes the same ranking of genes as the CC.BF statis-

tic as shown in the Appendix. The areas under the ROC curves for these statistics for the

complete independence simulation data sets are plotted against one another in

Figure 4. Also plotted are results for the SAM statistic and the T ratio. Two important

features are present in this plot. First, the SAM statistic generally performs reasonably well

across models, but worse than any of these optimal multilevel modelling statistics within a

model. Secondly, the model for the abundance and noise has little effect on the performance

of the statistic. For example, the II.F and CI.F and statistics behave similarly for detecting

large signals. The best performing statistics assume independence of the signal and the

noise. Finally, Figure 5, presents a comparison with best performing statistics from other

models as well.

The discussion above concerns only simulation from the complete independence model.

Rather than reproducing these plots for each of the simulation scenarios, Figures 6, 7, 8, and 9

summarize the results for the four simulation settings, using “heat maps” that synthesize

pairwise comparisons of estimators. Furthermore, the best performing statistics from the

heat maps for sample sizes 3, 10 and 100 replicates are summarized in Tables 4, 5 and 6.

To see the impact of parameter estimation, the results obtained by plugging in the true

parameter values are also given. A wildcard ”*” indicates the statistic from either the

conjugate or independence model was the best performer. For example, the ”*C.F” in Table 4

indicates that the CC.F and IC.F statistics were roughly equivalent best performers for data

simulated from the complete independence model with three replicates. These tables indicate

that accounting for the experimental goal is important for all sample sizes. Fold changes

and tail probabilities appear to be the best statistics for estimating large signals changes.
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In contrast the modified t ratios and Bayes factors appear to be optimal for estimating

reliably measured differential expression. Moreover, accounting for the appropriate modelling

assumptions becomes increasingly important with the number of replicates.

We investigate the differences between the CC.TP and CC.BF statistics calculated exactly

by integrating over σ2
g (marginal) versus the real time approximation obtained by plugging in

the posterior mode of σ2
g (conditional). Results are shown in Figure 11. Real-time statistics

generally perform as well as the exact statistics in most cases, although there is a minority of

cases in which the exact statistics does much better than real-time approximation, especially

for tail probabilities.

Finally, we further investigated the seemingly counterintuitive result where the best per-

forming statistic for the data simulated from the Complete Conjugacy model are the IC.TP,

IC.BF for genes ranked by both signal alone and signal-to-noise ratio. This behavior persists

at larger sample sizes. Figure 10 focuses on the comparison between IC.TP and CC.TP

for data simulated from the complete conjugacy model. The reason for the counterintuitive

behavior is that some of the hyperparameter combinations lead to simulated dataset that

have diagnostic plots consistent with an IC model, in which case IC statistic performs well

while the abundance-based shrinkage applied by the CC statistics leads to loss of some of

the signal.

4 Experimental Results

4.1 Two-group comparison

The first data set we study was reported by Tusher, Tibshirani and Chu (2001) in the context

of comparing radiated and unirradiated cell lines. A subset of the genes’ changes, identified

based on the SAM statistic, were subsequently validated by independent essays. While

the experiment includes some blocking, we analyze it here as though it were a two–class

comparison with 4 replicates.

We begin by investigating the relationship between signal and noise. Figure 12 reports

the diagnostic plots for the Tusher data. Because results are sensitive to the type of transfor-

mation applied to the data, we consider both the original scale and the cube root. Untrans-

formed data show a pattern consistent with the conjugate model, while data transformed

using the cube root appear consistent with the independent model.

Figure 14 shows pairwise scatterplots of the statistics CC.TP, II.F, and SAM for the two

transformations in Figure 12. CC.TP and II.F are the two best statistics among all shrinkage

estimators to identify genes with large signal. We focus on these two statistics and compare

them to SAM. The two best statistics based on multilevel modeling for selecting reliably
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measured genes, CC.BF and II.T, are also plotted against SAM in Figure 15. In evaluating

these results, one must keep in mind that only genes that exceeded a certain SAM threshold

were validated independently in the study. Therefore, direct performance comparisons with

SAM are not reliable here.

4.2 Spike-in Data Set

The second data set is from an experiment reported by Dudley, Aach, Steffen and Church

(2002). They performed a so called “spike-in” experiment to study how to measure absolute

expression with a calibrated reference sample and an extended signal intensity range. Their

experiment used cDNA microarrays and included a total of 6307 genes. They selected 9 genes

with very low expression and “spiked-in” Cy3-labeled gene-specific oligos in increments from

0.5 fold to 200 fold. The experiment had two replicates. We work from ratios of Cy3-to-Cy5

channels, after normalization (Dudoit and Yang 2003). While spike in experiments are useful

in that true fold changes are known, both the magnitudes of the changes, and the sparsity

of changes in the genome are unrealistic.

Figure 13 investigates the relationship between signal and noise using three transforma-

tions. The original scale shows a marked positive relationship between estimated signal and

noise, the cube root scale a mild positive relationship, and the logarithm an almost stable

relationship, with some indication of larger variation in the signal at lower noise level. These

figures do not inform us about absolute intensity, so the larger variation of signal at the low

end after the log transformation is not the same as the well known “fishtail” effect observed

in MVA plots.

In this data set the cube root transformation is the most effective in helping identify

the truly differentially expressed genes, performing better than the commonly used log. In

practical application one does not have the advantage of knowing the true changes when

choosing a transformation. The important lesson here is, however, that choosing transfor-

mations based on convenient statistical properties such as variance stabilization does not

necessarily improve, and could prejudice, our ability to detect signal.

These two datasets stress that both the independence of signal and noise and indepen-

dence of signal-to-noise ratio and noise may need to be tackled in real applications. While

transformation of the measured intensities may allow one to achieve independence, it is not

clear that such transformations would be optimal in terms of gene screening.

Figures 17 and 18 compare statistics. For the log transformed spike-in data, we would

expect a better performance from II.F than CC.TP based on the SN plot. In fact, the

II.F statistics shrinks the effects excessively and gives a less efficient ranking. For the cube

root transformed spike-in data we would expect and, in fact, see a better performance from
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CC.TP than II.F in Figure 17. For the untransformed spike–in data, Figure 17 confirms

the intuition from the exploratory plots that the conjugacy model should outperform the

independence model. Figure 17 does show this result. In a close view of comparison between

CC.TP and SAM on raw data (Figure 19), CC.TP also clearly picks up all the spiked genes,

while SAM does not. Spiked genes are genes have large signals, so that poor performance of

II.T and CC.BF is no surprise in Figure 18.

This data warns of a danger in the use of multilevel modelling. Assuming that the signals

follow a Gaussian law assumes that all genes are differentially expressed to some extent,

and the goal is to either detect the largest signals or the largest reliably measured signals.

This is realistic in case-control comparisons and in experiments in which the experimental

intervention changes a large portion of the expression, as during cell division. In contrast, in

this spike-in experiment, the distribution of signals is in fact degenerate at 0 for all but the 8

spiked in genes. Therefore, the statistics motivated by the Gaussian law on the signal are not

validated from the data. While extreme, the spike-in situation may be relevant in practice

when experimental intervention modifies a small set of genes involved in a very specialized

pathway.

Diagnosing empirically whether the signal distribution is a mixture is difficult. Appropri-

ate weight should be given to the biological circumstances of the experiment. For example,

here an independence relationship is suggested for the signal and noise for the cubic and log

transformed data. However, as the majority of the genes are biologically known to have no

signal, these plots do not inform us on the question of interest. Furthermore, Figures 17

and 18 show that the best complete independence statistics for identifying large signal and

reliably measured signal changes, II.F and II.T, perform poorly for detecting the spiked-in

genes. In summary, aggressively modelling the distribution of signals when the overwhelming

majority of genes have no signal can produce poor results.

Finally, we note that an alternative visualization for the SN plot is a scatterplot of signal

versus noise. A limitation of this approach is that it can be difficult to establish whether

increased variation in signal at different level of noise is due to a true relationship or simply

to a higher number of genes at that noise level. Figure 16 shows the scatterplot of signal

versus noise for the two data sets with no transformation. It is more difficult to identify a

relationship between signal and noise in these graphs than it was in the boxplot. On the

other hand, in the spike-in data, it is easier to assess the position of the changed genes using

the scatterplot. Therefore it may be useful to use both in practice.
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5 Conclusion

In identifying differentially expressed genes using microarrays, improvements in efficiency

over simple fold–change have been pursued in two main directions: consideration of noise

in addition to signal, and borrowing of strength from the genomic distribution. Systematic

approaches for achieving these goals are being developed using multilevel models, fit using

either hierarchical Bayes or empirical Bayes methods. In this article we present a framework

for interpreting, selecting, and estimating shrinkage-based screening statistics for identifying

differentially expressed genes. We also evaluated a representative set of these tools using

both extensive simulations and controlled biological experiments in which the set of altered

genes is known or partially known.

Our results emphasize two important practical concerns that are not receiving sufficient

attention in applied work in this area. First, while shrinkage strategies based on multilevel

models are able to improve selection performance, they require careful verification of the

assumptions on the relationship between signal and noise. Incorrect specification of this

relationship can negatively affect a selection procedure. Because this inter-gene relationship

is generally identified in genomic experiments, we suggest a simple diagnostic plot to assist

model checking. Secondly, no statistic performs optimally across two common categories

of experimental goals: selecting genes with large changes, and selecting genes with reliably

measured changes. Therefore, careful consideration of analysis goals is critical in the choice

of the approach taken.

The commonly used SAM statistics emerges as a reasonable compromise between the

two goals above and is, to some extent, automatically adaptive to different relationships

between signal and noise. Improving on SAM is possible but requires careful validation of

the assumptions about the upper level distribution. The assumption of conjugacy in the

abundance dimension requires careful attention as it is not robust. In particular, estimators

based on the CC assumption can be outperformed even on data generated under CC.

Our simulation analysis relies on the assumed normality of data. In practice, two as-

pects of it are critical. At the first state, in small samples, the functional form of the

error distribution across samples is hard to assess. Normality at the second stage can be

checked, and transformations may help, although the caveats discussed in Section 4.2 should

be considered. Alternative multilevel models have been studied, for example by Newton

and Kendziorski (2003) who consider gamma models, and Müller, Parmigiani, Robert and

Rousseau (2003), who extend those to mixtures of gamma models. While these alternatives

are worth serious consideration, here we focus on Gaussian models and statistics motivated

by the Gaussian setting, primarily because in this way we can practically investigate a va-
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riety of relevant statistics on a massive number of simulation scenarios. Other interesting

multilevel approaches have been proposed to analyze designs that are more complex than the

two-group comparisons considered here. We refer the reader to Kerr, Martin and Churchill

(2000), Wolfinger, Gibson, Wolfinger, Bennett, Hamadeh, Bushel, Afshari and Paules (2001)

and Kooperberg, Sipione, LeBlanc, Strand, Cattaneo and Olson (2002) for further details.

In our analysis we assumed that all genes on the array are potentially changed. This is

realistic in case control designs across populations or comparison of cells at different stages

of the cell cycle, regulation can be expected in the majority of genes, although differences

will vary randomly and many genes will be changed by amounts that are smaller than noise.

In tightly controlled experiments, such as a comparison of wildtype versus mutant mice,

or treated and untreated cell lines, can result in differential expression in a small number

of pathways and genes. While this situation can be reasonably handled in the framework

considered here, it would be more accurately modeled by assuming that only a fraction of the

genes are differentially expressed across groups A multilevel model could assume assume that

a fraction of the δg are identically zero, while the rest are normally distributed (Lönnstedt

and Speed 2002). In a separate manuscript, we are pursuing approaches that rely on the

assumption that the distribution of signals is a mixture of a point mass at 0 and a continuous

component.

Our focus here has been on simple and easy-to-compute statistics for gene selection.

Multilevel models were used only to provide motivation and a conceptual framework for

the derivation of the shrinkage statistics. More generally, multilevel models give raise to

potentially more efficient strategies than those considered here, at the price of increased

computational expense, for example MCMC of MCEM. Systematic exploration of those

in the thousands of data sets considered here would have been impractical. However, our

results suggest that that appropriate shrinkage is a critical part of gene selection and this will

hopefully encourage practitioners to consider these more computing intensive approaches as

well.
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Model II CI IC CC
top % 1 2 10 1 2 10 1 2 10 1 2 10

MM S/N CI.T CI.T CI.T CI.T CI.T CI.T IC.TP

CI.TP

IC.TP

CI.TP

IC.TP

CI.TP

IC.TP

CI.TP

IC.TP

CI.TP

IC.TP

CI.TP
Signal CI.F

*C.F

CI.F

*C.F

CI.TP

IC.TP

CI.F

*C.F

CI.F

*C.F

IC.TP *C.TP *C.TP IC.TP *C.TP *C.TP *C.TP

TT S/N CI.T CI.T

T

CI.T

T

CI.T

T

CI.T
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CI.BF
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IC.TP

CC.TP CC.TP CC.TP CC.TP CC.TP CC.TP

Table 4: Best statistics for each simulation scenario with three replicates. Here “model” corresponds to the
true model used for simulation. Statistics were differentiated in their ability to identify the top 1%, 2% and
10% of genes with large signals (labeled Signal) and large signal-to-noise ratios (S/N). The rows labeled MM
correspond to parameter estimation using the method of moments. Results using the actual true parameter
values (labeled TT) are also given. Instances where the best statistic did not matching the appropriate true
model and goal are highlighted in red. Instances where the best statistic did not match the model but was
consistent with goal are highlighted in blue. The results highlight the importance of matching the statistic
to the goal; in only one case did a T statistic out-perform other statistics to identify high signal changes
while in no cases did a fold change out-perform other statistics to identify high SNRs.

Model II CI IC CC
top % 1 2 10 1 2 10 1 2 10 1 2 10

MM S/N *I.T *I.T II.T CI.T CI.T CI.T IC.BF

*I.TP

IC.BF

*I.TP

IC.BF

CI.TP
*I.TP IC.BF

*I.TP

IC.BF

*I.TP
Signal *I.TP

CI.F

*I.TP

CI.F

CI.F

CI.TP
IC.TP

II.TP

IC.TP

CI.F

II.TP
IC.TP

*I.TP

*.F
IC.TP

*C.TP *C.TP *C.TP *C.TP CC.TP *C.TP

TT S/N *I.T *I.T II.T CI.T CI.T CI.T IC.BF

*I.TP

IC.BF

*I.TP

IC.BF

CI.TP
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*I.TP

IC.BF

*I.TP
CI.BF

IC.BF

CI.TP

Signal *I.TP

CI.F

*I.TP

CI.F

CI.F

CI.TP

II.TP

IC.TP

*I.TP *I.TP

*.F
IC.TP

CC.TP CC.TP CC.TP CC.TP CC.TP CC.TP

Table 5: Best statistics for each simulation scenario with ten replicates. Here “model” corresponds to the
true model used for simulation. Statistics were differentiated in their ability to identify the top 1%, 2% and
10% of genes with large signals (labeled Signal) and large signal-to-noise ratios (S/N). The rows labeled MM
correspond to parameter estimation using the method of moments. Results using the actual true parameter
values (labeled TT) are also given. Instances where the best statistic did not matching the appropriate true
model and goal are highlighted in red. Instances where the best statistic did not match the model but was
consistent with goal are highlighted in blue. The results highlight the importance of matching the statistic
to the goal; in no cases did a T statistic out-perform other statistics to identify high signal changes nor
did a fold change out-perform other statistics to identify high SNRs. In most cases statistics based on the
appropriate conjugacy assumptions outperformed the other competitors.
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Model II CI IC CC
top % 1 2 10 1 2 10 1 2 10 1 2 10

MM S/N II.T II.T

IC.BF

II.T CI.T

IC.BF

CI.T

IC.BF

CI.T IC.BF IC.BF IC.BF IC.BF

*I.BF

IC.BF IC.BF

Signal *I.F

*I.TP

*I.F

*I.TP

*I.F

*I.TP

*I.TP *I.TP

*.F

*I.TP
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IC.TP IC.TP IC.TP IC.TP IC.TP IC.TP

TT S/N II.T II.T

IC.BF

II.T CI.T
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IC.BF

CI.T IC.BF IC.BF IC.BF IC.BF

*I.BF

IC.BF

*I.BF

IC.BF

Signal *I.F

*I.TP

*I.F

*I.TP

*I.F

*I.TP

*I.TP *I.TP

*.F

*I.TP

*.F

IC.TP IC.TP IC.TP IC.TP IC.TP IC.TP

Table 6: Best statistics for each simulation scenario with one hundred replicates. Here “model” corresponds
to the true model used for simulation. Statistics were differentiated in their ability to identify the top 1%,
2% and 10% of genes with large signals (labeled Signal) and large signal-to-noise ratios (S/N). The rows
labeled MM correspond to parameter estimation using the method of moments. Results using the actual
true parameter values (labeled TT) are also given. Instances where the best statistic did not matching the
appropriate true model and goal are highlighted in red. Instances where the best statistic did not match
the model but was consistent with goal are highlighted in blue. The results highlight the importance of
matching the statistic to the goal; in no cases did a T statistic out-perform other statistics to identify high
signal changes nor did a fold change out-perform other statistics to identify high SNRs. In most cases
statistics based on the appropriate conjugacy assumptions outperformed the other competitors.
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Figure 1: Diagnostic plots for data simulated from the four models. Red points are the genes with the largest
fold changes. The hyper parameter values used to simulate the data were ν = 2, β = 1, γ = 1 and τ = 1.
Each simulation included 5 replicates and 1,000 genes. The plots on the left depict the abundance versus
the noise while the plots on the right depict the signal. Here the conjugate versus independence relationship
is very apparent in each of the plots.
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Figure 2: ROC curves for all of the statistics under study for a single simulation with 5 replicates and 1000
genes. The hyperparameter values used to simulate the data were ν = 2, β = 1, γ = 1 and τ = 1. The ROC
curves are grouped by statistical model. The areas under the curve for each statistic represent the values
used in subsequent plots.
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Figure 3: Comparison of performance in II data for T, SAM and the II statistics. Each point represents the
paired areas under the curve for two statistics for a simulated data set. Plots above the diagonal base the
ROC curves on identifying genes with large reliably measured changes while plots below the diagonal are
based on identifying large signal genes. Results for the standard T statistic, SAM and the statistics based
on the independence model are given. The summary statistics PU and PL are the percentage of points
lying above and below the diagonal respectively while MX and MY are the average of the averages for the
horizontal and vertical variables respectively. Here the II.BF statistic is the winner for identifying reliably
measured genes while the II.F statistic apparently is preferable for identifying large signal changes.
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Figure 4: Comparison of performance in II data for T, SAM and the best performing statistics by model
class. Each point represents the paired areas under the curve for two statistics for a simulated data set. Plots
above the diagonal base the ROC curves on identifying genes with large reliably measured changes while plots
below the diagonal are based on identifying large signal genes. Included are results for the T statistic, SAM
and overall best performing statistic motivated by any of the multilevel models. Note that as the statistics
performed differently across the two goals, some diagonal cells cells are labeled with two statistics. The
summary statistics PU and PL are the percentage of points lying above and below the diagonal respectively
while MX and MY are the average of the horizontal and vertical variable respectively. Note that the CC.T
statistic invokes the same ranking of genes as the CC.BF statistic. ROC results of II and CI statistics are
nearly identical and so are results of CC and CI models.
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Figure 5: Comparison of performance in II data for T, SAM and the overall best performing statistics. Each
point represents the paired areas under the curve for two statistics for a simulated data set. Plots above the
diagonal base the ROC curves on identifying genes with large reliably measured changes while plots below the
diagonal are based on identifying large signal genes. Included are results for the T statistic, SAM and best
performing statistic motivated from the multilevel models. Note that as the statistics performed differently
across the two goals, some diagonal cells cells are labeled with two statistics. The summary statistics PU
and PL are the percentage of points lying above and below the diagonal respectively while MX and MY are
the average of the horizontal and vertical variable respectively.
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Figure 6: Heat map of the result for data simulated from the Complete Independence model with three
replicates. This plot picks the difference between PU and PL for all of the statistics and labeled with colors.
Green indicates PU<PL, red indicates PU>PL, while yellow indicates those cases where the difference was
negligible, less than 0.05. The best statistics to identify genes with large signal are labeled with purple,
while the best statistics to identify reliably measured differentially expressed genes are labeled with blue.
The results are summarized in Table 4.
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Figure 7: Heat map of the result for data simulated from the Independence of Signal and Noise model
with three replicates. This plot picks the difference between PU and PL for all of the statistics and labeled
with colors. Green indicates PU<PL, red indicates PU>PL, while yellow indicates those cases where the
difference was negligible, less than 0.05. The best statistics to identify genes with large signal are labeled
with purple, while the best statistics to identify reliably measured differentially expressed genes are labeled
with blue. The results are summarized in Table 4.
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Figure 8: Heat map of the result for data simulated from the Independence of Abundance and Noise model
with three replicates. This plot picks the difference between PU and PL for all of the statistics and labeled
with colors. Green indicates PU<PL, red indicates PU>PL, while yellow indicates those cases where the
difference was negligible, less than 0.05. The best statistics to identify genes with large signal are labeled
with purple, while the best statistics to identify reliably measured differentially expressed genes are labeled
with blue. The results are summarized in Table 4.
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Figure 9: Heat map of the result for data simulated from the Complete Conjugacy model with three repli-
cates. This plot picks the difference between PU and PL for all of the statistics and labeled with colors.
Green indicates PU<PL, red indicates PU>PL, while yellow indicates those cases where the difference was
negligible, less than 0.05. The best statistics to identify genes with large signal are labeled with purple,
while the best statistics to identify reliably measured differentially expressed genes are labeled with blue.
The results are summarized in Table 4.
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Figure 10: Further investigation of the counterintuitive result that IC.TP outperforms CC.TP on data
simulated from the Complete Conjugacy model. The first graph is the scatter plot of IC.TP versus CC.TP.
Cases where IC.TP does significantly better CC.TP are highlighted in red. The next two plots depict the
hyperparameter space for the mean and variance of the inverse gamma prior and λ and τ respectively. In
the first plot, note that all of the discrepant cases fall in 4 small neighborhoods. The diagnostic plot of the
most discrepant point, labeled in green, are given in the final two plots. Note that the relationship strongly
support the Complete Independence despite the fact that the data were simulated from Complete Conjugacy
model.
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Figure 11: For data simulated from Complete Conjugacy model, a comparison of the performance of the
CC.TP and CC.BF statistics calculated exactly by integrating over σ2

g (marginal) versus the real time
approximation obtained by plugging in the posterior mode of σ2

g (conditional). In the bottom row, genes
were ranked by signal change, while in the top row, genes were ranked by signal to noise ratio. Encouragingly,
the real time statistics performs similarly to their exact counterparts.
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Figure 12: Signal to noise plot for the Tusher two class data under two transformations. Genes identified
by SAM are highlighted in red. The horizontal axis is the binned gene specific variances while the vertical
axis for the plots in the left column is the average expression across the two groups (abundance) while it
is the the average difference in expression (signal) for the right column. Conjugacy appears appropriate for
the raw data, and independence relationship appears more appropriate for the cubic transformed data.
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Figure 13: Signal to noise plot for the spike-in data under three transformations. Spiked-in genes are
highlighted in red. The horizontal axis is the binned gene specific variances while the vertical axis for
the plots in the left column is the average expression across the two groups (abundance) while it is the
the average difference in expression (signal) for the right column. The apparent relationships between
abundance and noise and signal and noise clearly change dependent on the transformation used. While
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Figure 14: Comparisons of the II.F, CC.TP and SAM statistics on the Tusher data. Genes selected by SAM
are highlighted in red for reference. Here the CC.F and II.TP statistics were chosen from Tables 4,5 and 6
as the optimal statistics for detecting large signal changes for the II and CC models. For this data set, the
II model is supported under the cubic transformations while the CC model is supported for the raw data.
A zoomed-in view of the comparison between CC.TP and SAM the raw data case is in Figure 19.
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Figure 15: Comparisons of the II.T, CC.BF and SAM statistics on the Tusher data. Genes selected by SAM
are highlighted in red. Here the CC.BF and II.T statistics were chosen from Tables 4,5 and 6 as the optimal
statistics for detecting large signal to noise ratio changes for the II and CC models. For this data, the II
model is supported under the log transformations while the CC model is supported for the raw and cubic
transformed data.
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Figure 16: Scatterplot of the gene specific average difference in expression (signal) versus the gene specific
variances for the spike-in and Tusher data under various transformations of the signal. The red highlighted
genes correspond to the spiked in genes and the ones identified by SAM respectively.
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Figure 17: Comparisons of fold change statistics II.F and CC.TP with SAM in the spike-in data. Spiked-in
genes are highlighted in red. Here the CC.F and II.TP statistics were chosen from Tables 4,5 and 6 as the
optimal statistics for detecting large signal changes for the II and CC models. For this data, the II model is
supported under the log transformations while the CC model is supported for the raw and cubic transformed
data. The II.F statistic shrinks conservatively even for the log transformed data while SAM and CC.TP
perform well for both transformed data sets. No statistic performs well on the original scale. A zoomed-in
view of the comparison between CC.TP and SAM the raw data case is in Figure 19.

40

http://biostats.bepress.com/jhubiostat/paper34



−20 0 20 40 60

−
60

−
20

20
60

Raw data

SAM

II.
T

−20 0 20 40 60
5

10
15

Raw data

SAM

C
C

.B
F

5 10 15

−
60

−
20

20
60

Raw data

CC.BF

II.
T

−4 −2 0 2 4

−
40

−
20

0
20

40

cubic transformation

SAM

II.
T

−4 −2 0 2 4

5
10

15
20

cubic transformation

SAM

C
C

.B
F

5 10 15 20

−
40

−
20

0
20

40

cubic transformation

CC.BF

II.
T

−3 −2 −1 0 1 2

−
80

−
40

0
20

40

log transformation

SAM

II.
T

−3 −2 −1 0 1 2

5
10

15

log transformation

SAM

C
C

.B
F

5 10 15

−
80

−
40

0
20

40

log transformation

CC.BF

II.
T

Figure 18: Comparisons of signal-to-noise statistics II.T and CC.BF with SAM in the spike-in data. Spiked-
in genes are highlighted in red. Here the CC.BF and II.T statistics were chosen from Tables 4,5 and 6 as the
optimal statistics for detecting large signal to noise ratio changes for the II and CC models. For this data,
the II model is supported under the log transformation while the CC model is supported for the raw and
cubic transformed data. The II.T statistic shrinks conservatively even for the log transformed data, while
SAM and CC.BF perform well for both transformed data sets. No statistic performs well on the original
scale.
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Figure 19: Zoomed-in view of the comparison between CC.TP and SAM the raw data case in Figure 14 and
Figure 17.
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δg|λ2 ∼ N(0, λ2)

Posterior distribution of σ2
g

f(dg|δg, σ
2
g)f(δg|ξ̂) =

∫

1
√

2π 2
n
σ2

g

e
−

(dg−δg)2

2 2
n σ2

g
1√

2πλ2
e−

δ2g

2λ2 dδg

=

√

1

2π
(

2
n
σ2

g + λ2
)e
−

d2
g

2( 2
n σ2

g+λ2)

f(ag|µg, σ
2
g)f(µg|ξ̂) =

∫

1
√

2π 1
2n

σ2
g

e
−

(ag−µg)2

2 1
2n

σ2
g

1√
2πτ 2

e−
µ2

g

2τ2 dµg

=

√

√

√

√

1

2π
(

σ2
g

2n
+ τ 2

)e

−

a2
g

2

 

σ2
g

2n
+τ2

!

π(σ2
g |dg, ag, s

2
g, ξ̂) ∝ s

2(n−2)
g

σ
2(n+ν)
g

e
−

2β+(n−1)s2g

2σ2
g

√

1
(

2
n
σ2

g + λ2
)e
−

d2
g

2( 2
n σ2

g+λ2)

√

√

√

√

1
(

σ2
g

2n
+ τ 2

)e

−

a2
g

2
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g
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+τ2

!
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Define the point esitmate of σ2
g to be the posterior mode. For all the summary statistics,

plug in this point estimation of σ2
g .

The posterior distribution of δg conditional on σ2
g is

δg|dg, σ
2
g ∼ N





ndg

2σ2
g

n
2σ2

g
+ 1

λ2

,
1

n
2σ2

g
+ 1

λ2





Define

II.F =

ndg

2σ2
g

n
2σ2

g
+ 1

λ2

II.T = CI.F

√

n

2σ2
g

+
1

λ2
∝

ndg

2σ2
g

√

n
2σ2

g
+ 1

λ2

II.TP = Prob(δg > D|data, σ2
g)

based on the posterior distribution of δg conditional on σ2
g

The Bayes Factor of Independence model:

II.BF =
Pr(δg = 0|dg, ag, s

2
g, ξ̂)

Pr(δg 6= 0|dg, ag, s2
g, ξ̂)

=
Pr(dg, ag, s

2
g|δg = 0, ξ̂)

Pr(dg, ag, s2
g|δg 6= 0, ξ̂)

Pr(δg = 0|ξ̂)
Pr(δg 6= 0|ξ̂)

∝
Pr(dg, ag, s

2
g|δg = 0, ξ̂)

Pr(dg, ag, s2
g|δg 6= 0, ξ̂)

Pr(dg, ag, s
2
g|δg = 0, ξ̂) =

∫ ∫

f(dg|δg = 0, σ2
g)f(ag|µg, σ

2
g)f(µg|ξ̂)f(s2

g|σ2
g)f(σ2

g |ξ̂)dµgdσ2
g

Pr(dg, ag, s
2
g|δg = 0, ξ̂) ∝

∫

√

√

√

√

1
(

σ2
g

2n
+ τ 2

)e

−

a2
g

2

 

σ2
g

2n
+τ2

!

s
2(n−2)
g

σ
2(n+ν+ 1

2
)

g

e
−

2β+(n−1)s2g+ n
2 d2

g

2σ2
g dσ2

g

Pr(dg, ag, s
2
g|δg 6= 0, ξ̂) =

∫ ∫

f(dg|δg 6= 0, σ2
g)f(δg|λ2)f(ag|µg, σ

2
g)f(µg|ξ̂)f(s2

g|σ2
g)f(σ2

g |ξ̂)dµgdσ2
g

Pr(dg, ag, s
2
g|δg 6= 0, ξ̂) ∝

∫

√

√

√

√

1
(

σ2
g

2n
+ τ 2

)e

−

a2
g

2

 

σ2
g

2n
+τ2

!
√

1
(

2
n
σ2

g + λ2
)e
−

d2
g

2( 2
n σ2

g+λ2) s
2(n−2)
g

σ
2(n+ν)
g

e
−

2β+(n−1)s2g

2σ2
g dσ2

g
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The Bayes Factor of Independence model conditional on σ2
g is:

II.BF ∝
Pr(dg, ag, s

2
g|δg = 0, ξ̂, σ2

g)

Pr(dg, ag, s2
g|δg 6= 0, ξ̂, σ2

g)

=

√

(

2
n
σ2

g + λ2
)

σ2
g

e
−

n
2 d2

g

2σ2
g

+
d2
g

2( 2
n σ2

g+λ2)

CI: Independence of Signal and Noise

µg|τ 2, σ2
g ∼ N(0, σ2

gτ
2)

δg|λ2 ∼ N(0, λ2)

Posterior distribution of σ2
g

f(dg|δg, σ
2
g)f(δg|λ2) =

√

1

2π
(

2
n
σ2

g + λ2
)e
−

d2
g

2( 2
n σ2

g+λ2)

f(ag|µg, σ
2
g)f(µg|ξ̂) =

√

1

2π
(

1
2n

+ τ 2
)

σ2
g

e
−

a2
g

2( 1
2n

+τ2)σ2
g

π(σ2
g |dg, ag, s

2
g, ξ̂) ∝ s

2(n−2)
g

σ
2(n+ν+ 1

2
)

g

e
−

2β+(n−1)s2g+
a2

g
1
2n

+τ2

2σ2
g

√

1
(

2
n
σ2

g + λ2
)e
−

d2
g

2( 2
n σ2

g+λ2)

The posterior distribution of δg conditional on σ2
g is

δg|dg, σ
2
g ∼ N





ndg

2σ2
g

n
2σ2

g
+ 1

λ2

,
1

n
2σ2

g
+ 1

λ2





Define

CI.F =

ndg

2σ2
g

n
2σ2

g
+ 1

λ2

CI.T = CI.F

√

n

2σ2
g

+
1

λ2
∝

ndg

2σ2
g

√

n
2σ2

g
+ 1

λ2

CI.TP = Prob(δg > D|data, σ2
g)

based on the posterior distribution of δg conditional on σ2
g
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The Bayes Factor of Independence of Signal and Noise model:

CI.BF ∝
Pr(dg, ag, s

2
g|δg = 0, ξ̂)

Pr(dg, ag, s2
g|δg 6= 0, ξ̂)

Pr(dg, ag, s
2
g|δg = 0, ξ̂) =

∫ ∫

f(dg|δg = 0, σ2
g)f(ag|µg, σ

2
g)f(µg|ξ̂)f(s2

g|σ2
g)f(σ2

g |ξ̂)dµgdσ2
g

Pr(dg, ag, s
2
g|δg = 0, ξ̂) ∝ s2(n−2)

g

(

1 +
1

β

(

(n− 1)

2
s2

g +
n

4
d2

g +

a2
g

2
1
2n

+ τ 2

))
−(n+ν)

Pr(dg, ag, s
2
g|δg 6= 0, ξ̂) =

∫ ∫

f(dg|δg 6= 0, σ2
g)f(δg|λ2)f(ag|µg, σ

2
g)f(µg|ξ̂)f(s2

g|σ2
g)f(σ2

g |ξ̂)dµgdσ2
g

Pr(dg, ag, s
2
g|δg 6= 0, ξ̂) ∝

∫

√

1
(

2
n
σ2

g + λ2
)e
−

d2
g

2( 2
n σ2

g+λ2) s
2(n−2)
g

σ
2(n+ν+ 1

2
)

g

e
−

2β+(n−1)s2g+
a2

g

( 1
2n

+τ2)
2σ2

g dσ2
g

The Bayes Factor of Independence of Signal and Noise model conditional on σ2
g is:

CI.BF ∝
Pr(dg, ag, s

2
g|δg = 0, ξ̂, σ2

g)

Pr(dg, ag, s2
g|δg 6= 0, ξ̂, σ2

g)

=

√

(

2
n
σ2

g + λ2
)

σ2
g

e
−

n
2 d2

g

2σ2
g

+
d2
g

2( 2
n σ2

g+λ2)

IC: Independence of Abundance and Noise

µg|τ 2 ∼ N(0, τ 2)

δg|λ2, σ2
g ∼ N(0, σ2

gλ
2)

posterior distribution of σ2
g

f(dg|δg, σ
2
g)f(δg|λ2, σ2

g) =

√

1

2π
(

2
n

+ λ2
)

σ2
g

e
−

d2
g

2( 2
n +λ2)σ2

g

f(ag|µg, σ
2
g)f(µg|ξ̂) =

√

√

√

√

1

2π
(

σ2
g

2n
+ τ 2

)e

−

a2
g

2
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g
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+τ2

!

π(σ2
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√

√

√

√
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The posterior distribution of δg conditional on σ2
g is

δg|dg, σ
2
g ∼ N

( n
2
dg

n
2

+ 1
λ2

,
σ2

g

n
2

+ 1
λ2

)

Define

IC.F =
n
2
dg

n
2

+ 1
λ2

∝ dg

IC.T = IC.F

√

n
2

+ 1
λ2

σ2
g

∝ dg
√

σ2
g

IC.TP = Prob(δg > D|data, σ2
g)

based on the posterior distribution of δg conditional on σ2
g

The Bayes Factor of Independence of Abundance and Noise model:

IC.BF ∝
Pr(dg, ag, s

2
g|δg = 0, ξ̂)

Pr(dg, ag, s2
g|δg 6= 0, ξ̂)

Pr(dg, ag, s
2
g|δg = 0, ξ̂) =

∫ ∫

f(dg|δg = 0, σ2
g)f(ag|µg, σ

2
g)f(µg|ξ̂)f(s2

g|σ2
g)f(σ2

g |ξ̂)dµgdσ2
g

Pr(dg, ag, s
2
g|δg = 0, ξ̂) ∝

∫

√

√

√

√

1
(

σ2
g

2n
+ τ 2

)e

−

a2
g

2

 

σ2
g

2n
+τ2

!

s
2(n−2)
g

σ
2(n+ν+ 1

2
)

g

e
−

2β+(n−1)s2g+ n
2 d2

g

2σ2
g dσ2

g

Pr(dg, ag, s
2
g|δg 6= 0, ξ̂) =

∫ ∫

f(dg|δg 6= 0, σ2
g)f(δg|λ2, σ2

g)f(ag|µg, σ
2
g)f(µg|ξ̂)f(s2

g|σ2
g)f(σ2

g |ξ̂)dµgdσ2
g

Pr(dg, ag, s
2
g|δg 6= 0, ξ̂) ∝

∫

√

√

√

√

1
(

σ2
g

2n
+ τ 2

)e

−

a2
g

2

 

σ2
g

2n
+τ2

!

s
2(n−2)
g

σ
2(n+ν+ 1

2
)

g

e
−

2β+(n−1)s2g+
d2
g

2
n +λ2

2σ2
g dσ2

g

The Bayes Factor of Independence of Abundance and Noise model conditional on σ2
g is:

IC.BF ∝
Pr(dg, ag, s

2
g|δg = 0, ξ̂, σ2

g)

Pr(dg, ag, s2
g|δg 6= 0, ξ̂, σ2

g)

= e

−

n
2 d2

g+
d2
g

2
n +λ2

2σ2
g
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CC: Complete Conjugate

µg|λ2
µσ

2
g ∼ N(0, σ2

gλ
2
µ)

δg|λ2σ2
g ∼ N(0, σ2

gλ
2)

Posterior distribution of σ2
g

f(dg|δg, σ
2
g)f(δg|λ2, σ2

g) =

√

1

2π
(

2
n

+ λ2
)

σ2
g

e
−

d2
g

2( 2
n +λ2)σ2

g

f(ag|µg, σ
2
g)f(µg|ξ̂) =

√

1

2π
(

1
2n

+ τ 2
)

σ2
g

e
−

a2
g

2( 1
2n

+τ2)σ2
g

π(σ2
g |dg, ag, s

2
g, ξ̂) ∝ s

2(n−2)
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σ
2(n+ν)
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e
−

2β+(n−1)s2g

2σ2
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√

1
(

2
n

+ λ2
)

σ2
g

e
−

d2
g

2( 2
n +λ2)σ2

g

√

1
(

1
2n

+ τ 2
)

σ2
g

e
−

a2
g

2( 1
2n

+τ2)σ2
g

π(σ2
g |dg, ag, s

2
g, ξ̂) ∝ s

2(n−2)
g

σ
2(n+ν+1)
g

e
−

2β+(n−1)s2g+
d2
g

2
n +λ2

+
a2

g
1
2n

+τ2

2σ2
g

σ2
g |dg, ag, s

2
g, ξ̂ ∼ IG (νn, βn)

where νn = ν + n

βn = β +
(n− 1)

2
s2

g +
1

2

d2
g

2
n

+ λ2
+

1

2

a2
g

1
2n

+ τ 2

The posterior mode of σ2
g is βn

νn+1
.

The posterior distribution of δg conditional on σ2
g is

δg|dg, σ
2
g ∼ N

( n
2
dg

n
2

+ 1
λ2

,
σ2

g

n
2

+ 1
λ2

)

Define

CC.F =
n
2
dg

n
2

+ 1
λ2

∝ dg

CC.T = CC.F

√

n
2

+ 1
λ2

σ2
g

∝ dg
√

σ2
g

CC.TP = Prob(δg > D|data, σ2
g)

based on the posterior distribution of δg conditional on σ2
g
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The marginal posterior distribution of δg is

δg|dg, ag, s
2
g, ξ̂ ∼ St

( n
2
dg

n
2

+ 1
λ2

,

(

n

2
+

1

λ2

)

νn

βn

, 2(ν + n)

)

The marginal distribution of δg in this case has close form. The parameter for Student t

distribution are location, precision, and degree of freedom respectively. So the tail probability

could be defined based on the marginal distribution of δg. we also tried the conditional

posterior distribution of δg in this case to check how different the TP based on conditional

posterior distribution of δg is from the one based on marginal posterior distribution of δg.

The Bayes Factor of Complete Conjuagte model:

CC.BF ∝
Pr(dg, ag, s

2
g|δg = 0, ξ̂)

Pr(dg, ag, s2
g|δg 6= 0, ξ̂)

Pr(dg, ag, s
2
g|δg = 0, ξ̂) =

∫ ∫

f(dg|δg = 0, σ2
g)f(ag|µg, σ

2
g)f(µg|ξ̂)f(s2

g|σ2
g)f(σ2

g |ξ̂)dµgdσ2
g

Pr(dg, ag, s
2
g|δg = 0, ξ̂) ∝ s2(n−2)

g

(

1 +
1

β

(

(n− 1)

2
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g +
n

4
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g +

a2
g

2
1
2n

+ τ 2

))
−(n+ν)

Pr(dg, ag, s
2
g|δg 6= 0, ξ̂) =

∫ ∫

f(dg|δg 6= 0, σ2
g)f(ag|µg, σ

2
g)f(µg|ξ̂)f(s2

g|σ2
g)f(σ2

g |ξ̂)dµgdσ2
g

Pr(dg, ag, s
2
g|δg 6= 0, ξ̂) ∝ s2(n−2)

g

(

1 +
1

β

(
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2
s2

g +
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g
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n
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+
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2
1
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))
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CC.BF =











1 + 1
β

(

(n−1)
2

s2
g + n

4
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g +
a2

g
2

1
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+τ2

)

1 + 1
β

(

(n−1)
2

s2
g +

d2
g
2

2
n

+λ2 +
a2

g
2

1
2n

+τ2

)











−(n+ν)

The Bayes Factor of Complete Conjugacy model conditional on σ2
g is:

CC.BF ∝
Pr(dg, ag, s

2
g|δg = 0, ξ̂, σ2

g)

Pr(dg, ag, s2
g|δg 6= 0, ξ̂, σ2

g)

= e

−

n
2 d2

g+
d2
g

2
n +λ2

2σ2
g

49

Hosted by The Berkeley Electronic Press



CC.T is a function of CC.BF.

CC.BF =











1 + 1
β

(

(n−1)
2

s2
g + n

4
d2

g +
a2

g
2

1
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+τ2

)

1 + 1
β

(

(n−1)
2
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g +

d2
g
2

2
n

+λ2 +
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g
2

1
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+τ2

)











−(n+ν)

=









βn −
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g
2

2
n

+λ2 + n
4
d2

g

βn









−(n+ν)

=

(

1−
4
n
λ2

2
n

+ λ2

d2
g

βn

νn+1

1

νn + 1

)

−(n+ν)

=

(

1−K
d2

g

σ2
g

)
−(n+ν)

=
(

1−K × CC.T 2
)

−(n+ν)

Where K =
4
n

λ2

2
n

+λ2
1

νn+1
.

The ranking of genes based on CC.BF and absolute value of CC.T are the same.
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