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SUMMARY

In clinical decision making, it is common to ask whether, and how much, a

diagnostic procedure is contributing to subsequent treatment decisions. Sta-

tistically, quantification of the value of the information provided by a diag-

nostic procedure can be carried out using decision trees with multiple decision

points, representing both the diagnostic test and the subsequent treatments

that may depend on the test’s results. This article investigates probabilistic

sensitivity analysis approaches for exploring and communicating parameter

uncertainty in such decision trees. Complexities arise because uncertainty

about a model’s inputs determines uncertainty about optimal decisions at

all decision nodes of a tree. We present the expected utility solution strat-

egy for multistage decision problems in the presence of uncertainty on input

parameters, propose a set of graphical displays and summarization tools for

probabilistic sensitivity analysis in multistage decision trees, and provide an

application to axillary lymph node dissection in breast cancer.

KEY WORDS: Probabilistic Sensitivity Analysis; Decision Trees; Sequen-

tial decision making; Expected utility; Early Breast Cancer Treatment
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1 INTRODUCTION

Assessing uncertainty about decision models is emerging as a critical com-

ponent of sound medical decision making. Probabilistic sensitivity analysis

(PSA) provides a practical, flexible, and well founded approach for repre-

senting uncertainty about model inputs and for exploring its implications (1;

2; 3; 4). Monte Carlo simulation permits implementation of PSA in complex

multiparameter models, while accommodating for nonstandard distributions

and dependence among input parameters. PSA can be linked to statistical

inference procedures, for example by using output from Markov Chain Monte

Carlo exploration of posterior distributions (5) as the input of a PSA (6), or

via frequentist resampling techniques (7).

With rare exceptions (8), investigation of PSA in decision trees has fo-

cused on trees including a single, although possibly multi–branched, decision

node. This paper presents tools for probabilistic sensitivity analysis in mul-

tistage decision problems, that is problems in which several decisions are

made at different points in time, on the basis of different information. An

important example in medicine is deciding whether to perform a diagnostic

or staging procedure to support subsequent treatment decisions.

In multistage problems, the decision about whether or not to gather cer-

tain information has impact on the overall utility via its effect of future

decisions. The worthiness of the information can then be quantified by com-

paring the expected utility of the optimal solutions with and without it (9;

10; 11; 12; 8). The standard version of this quantification, also called “value

of information” analysis, relies on knowing with certainty the optimal deci-
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sion functions downstream. Uncertainty about model inputs, however, de-

termines uncertainty about optimal decisions at all stages of a multistage

problem. Because of this, in a PSA of the value of diagnostic information

it is important separately to quantify and convey the uncertainty deriving

directly from randomness in the input, and the uncertainty deriving from

randomness in the optimal future decisions. In clinical settings, this dis-

tinction becomes critical, as will be seen, because it has implication for the

appropriateness of a treatment.

This article is motivated by the controversy surrounding axillary lymph

node dissection (ALND), or the surgical removal of the axillary lymph nodes,

a common procedure in early breast cancer patients. ALND is routinely

performed as part of a mastectomy, but it is elective in breast conservation

patients, for whom it is a distinct procedure from the main surgery. It is used

primarily to guide the choice of systemic adjuvant therapy, to provide local

control of cancer and to give patients prognostic information for personal

use. ALND results in morbidity and minor but permanent problems (13)

and requires a significant use of resources (14).

Recent randomized trials have questioned the long held belief that the

relative benefits of hormonal versus cytotoxic adjuvant therapies depend on

nodal status (15; 16). The prognostic information conveyed by the results of

an ALND, however, may still be useful in decision making, as a patient with

a worse prognosis may be more inclined to undergo a more aggressive form

of treatment. The role of ALND in local control is also in question. Axillary

irradiation (XRT) appears to provide comparable local control and survival

benefits in patients with clinically uninvolved lymph nodes (17).
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This complex scenario has led to disagreement on the routine use of ALND

(18; 19; 20; 21; 22), and encouraged the use of decision analyses to evaluate

its worthiness (23; 24). The sources of disagreement reside in part in the

relatively large uncertainties that still involve the critical input parameters.

This makes ALND a good example for studying the effect of uncertainty on

measuring the value of diagnostic information.

Section 2 presents the solution of multistage decision problems in the pres-

ence of parameter uncertainty, discusses the type of Monte Carlo simulation

that is necessary for probabilistic sensitivity analyses, and proposes a set of

summaries and graphical displays to help understanding and communicating

uncertainty about the value of diagnostic information. Section 3 applies the

methodology of Section 2 to evaluating the diagnostic value of ALND.

2 GENERAL CONCEPTS

2.1 Setting

This Section introduces basic concepts and definitions for probabilistic sensi-

tivity analysis of multistage trees, using the context and language of diagnos-

tic testing. For conciseness of notation consider the binary, two–stage case.

A richer two–stage tree, with multiple treatment arms and test outcomes,

is illustrated in the application of Section 3. Figure 1 summarizes the tree

structure and the notation. There are two treatment options: A and B, and

a diagnostic test with binary outcome T, either positive (T+) or negative

(T-). The probability of a positive test result for the cohort under consid-

eration is φ, that is p(T+|φ) = φ. The parameters describing the medical

history of patients after treatment are collectively denoted by the vector θ.

5
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For example, θ could represent the vector of parameters of a survival model

incorporating an effect for treatment. Utilities associated with tree branches

are indicated as in Figure 1, with the notation emphasizing dependence on

the parameters as well as treatment and test outcome.

To simplify the presentation and focus on the diagnostic value of the test,

we assume that performing the test does not have any direct effect on the

utilities of the treatment branches. Most non–invasive tests based on blood

samples or simple tissue extraction are such. Also, we do not consider the

cost of the test explicitly. Under these assumptions, when the parameters φ

and θ are known, utilities for the “no test” branch are related to the utilities

for the test branch by the relationship

uRX(θ) = φ u+
RX

(θ) + (1 − φ) u−
RX

(θ),

where RX is either A or B. Then we can fold back the tree and compute the

difference in utility between the two arms, which is

∆∗(φ, θ) = φ max{u+

A(θ), u+

B(θ)}+(1−φ) max{u−
A(θ), u−

B(θ)}−max{uA(θ), uB(θ)}.

(1)

The treatment strategy maximizing utility conditional on knowledge of the

true parameter values will be called true optimal strategy.

2.2 Solving the tree when parameters are unknown

In practice, input parameters φ and θ are often unknown. The set of possi-

ble values of φ will typically be the interval (0, 1), while the set of possible

values of θ is more general and will be denoted by Θ. Information about all

unknowns can be represented by a joint probability distribution p(T, φ, θ),

6

http://biostats.bepress.com/jhubiostat/paper23



representing the decision analyst’s uncertainty about (T, φ, θ), formed based

on the studies and expert input used in developing the model. This distri-

bution is conveniently factored as

p(T, φ, θ) = p(φ)p(T |φ)p(θ|T, φ). (2)

The distribution p(T |φ) represents variation in test outcomes over individ-

uals in the cohort, while the distributions p(φ) and p(θ|T, φ) represent the

uncertainty about the model parameters. In a multistage situation it is crit-

ical to consider the joint distribution of parameters and test results, as test

results contain information about parameters that needs to be factored in

the analysis to obtain coherent inferences.

When parameters are unknown, decision making at the treatment stage in

the “test” branch proceeds by evaluating expected utilities, averaging over

unknown parameters conditional on the test’s outcome. To this end, we

use the distribution p(φ, θ|T ) = p(φ|T )p(θ|T, φ). The term p(φ|T ) can be

obtained using Bayes rule from the terms p(φ) and p(T |φ) in our original

factorization (2). Specifically, we evaluate

ūT
RX

=

∫ 1

0

∫

Θ

p(φ|T ) p(θ|T, φ) uT
RX

(θ) dθdφ, (3)

where RX is either A or B, and T is either + or –. These quantities can be

used to find the treatment strategy that maximizes expected utility for each

test outcome, which will be called current optimal strategy. Unlike the true

optimal strategy, the current optimal strategy is not conditional on knowing

the true parameter values. Rather, it represents the best that can be done,

in terms of expected utility, given the information available at the time of

the decision. It is consistent with the Bayesian principle that decisions at
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any point should be made by conditioning on all quantities that are known

and averaging over all those that are unknown.

In the “no test” branch, treatment arms are compared based on expected

utilities, averaging over both parameters and test outcomes. To this end we

use the joint distribution in equation (2). Specifically, we evaluate

ūRX =

∫ 1

0

∫

Θ

∑

T

p(φ)p(T |φ) p(θ|T, φ) uT
RX

(θ) dθdφ (4)

=

∫ 1

0

∫

Θ

p(φ)
[

φ p(θ|T+, φ) u+
RX

(θ) + (1 − φ) p(θ|T−, φ) u−
RX

(θ)
]

dθdφ.

There are eight possible configurations of solutions for the three decision

nodes at the treatment stage of the tree, depending on the rank order of the

ū’s. For the purpose of our analysis we only need to distinguish two types:

configurations in which the current optimal treatment is always the same,

and configurations in which it varies with the test result. Without losing

generality we can focus on two specific cases:

Case A A is always preferred;
Case B B is preferred if the test is negative and if it is not performed.

In case B the “test” arm is preferred to the “no test” arm if the expected

utility of the “test” arm, call it ¯̄u, is greater than the expected utility ūB

for the “no test” arm. Computationally, ¯̄u is obtained by averaging over all

unknowns, and assuming that the current optimal strategy will be followed

once the treatment node is reached. Therefore

¯̄u =

∫ 1

0

∫

Θ

∑

T

p(φ)p(T |φ) p(θ|T, φ) uT
current optimal

(θ) dθdφ (5)

=

∫ 1

0

∫

Θ

p(φ)
[

φ p(θ|T+, φ) u+
A
(θ) + (1 − φ) p(θ|T−, φ) u−

B
(θ)

]

dθdφ.
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The expected value of diagnostic information is the difference

∆̄ = ¯̄u − ūB =

∫ 1

0

∫

Θ

p(φ) p(θ|T+, φ) φ
[

u+
A
(θ) − u+

B
(θ)

]

dθdφ. (6)

This procedure provides a general way of evaluating the expected value of

diagnostic information in the presence of parameter uncertainty. Comparing

∆̄ the to the cost of the test gives a cost–effectiveness evaluation.

We assumed that there is no loss of utility from the test. Therefore,

when parameters are known, the information provided by the test may either

increase the average utility in the cohort, if therapy may be changed by the

result or the test, or leave it unchanged if the strategy is also left unchanged.

Mathematically, this is a simple corollary of the fact that ∆∗(φ, θ) cannot,

by construction, be negative. The connection between this mathematical

property of sequential decision making and the value of information has been

part of the foundations of Bayesian decision theory since its inception (9; 12;

25).

When the parameters are not known, it is still the case that the informa-

tion provided by the test will not decrease the average utility in the cohort,

as long as the distribution of the unknown parameters is correctly updated

upon knowing the results of the test, and the test has no direct effect on

utility. In two–stage binary trees for diagnostic tests, this is true if ∆̄ ≥ 0 in

cases A and B, as all other proceed along the same lines. In case A, ∆̄ = 0.

In case B, because therapy A is preferred to therapy B if the test is positive,

we have

ū+
A
− ū+

B
=

∫ 1

0

∫

Θ

p(φ|T+) p(θ|T+, φ)
(

u+
A
(θ) − u+

B
(θ)

)

dθdφ > 0.

Substituting p(φ|T+) = p(φ)p(T + |φ)/p(T+) = p(φ)φ/p(T+) and canceling

9
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the term p(T+) gives:

∫ 1

0

∫

Θ

p(φ) φ p(θ|T+, φ)
(

u+
A
(θ) − u+

B
(θ)

)

dθdφ > 0,

that is ∆̄ > 0. A similar argument holds for two–stage non–binary trees.

2.3 Monte Carlo Calculations

To solve the tree and implement a probabilistic sensitivity analysis by Monte

Carlo methods, we need to draw M samples

(φ1, θ
+
1 , θ−1 ), . . . , (φM , θ+

M , θ−M) (7)

where each φm, m = 1, . . . ,M , is drawn from p(φ), each θ+
m from p(θ|T+, φm),

and each θ−m from p(θ|T−, φm). Samples in (7) do not need to be indepen-

dent. For example, MCMC output after convergence is appropriate. We

assume also that the Monte Carlo sample size M is large enough that all the

expectations necessary for decision analysis are closely approximated by the

corresponding Monte Carlo averages.

Using (7) we can evaluate all ū’s, determine the current optimal strategy,

and evaluate the expected value of diagnostic information ∆̄. Specifically,

(3) is evaluated by

ūT

RX
≈

1

M

M
∑

m=1

uT

RX
(θT

m), (8)

where again RX is either A or B, and T is either + or –. Similarly, for the

no–test arm, (4) is evaluated by

ūRX ≈
1

M

M
∑

m=1

(

φmu+

RX
(θ+

m) + (1 − φm)u−

RX
(θ−m)

)

. (9)
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In case B the expected value of information (6) is evaluated by

∆̄ ≈
1

M

M
∑

m=1

∆(φm, θ+
m) =

1

M

M
∑

m=1

φm

(

u+

A(θ+
m) − u+

B(θ+
m)

)

. (10)

A critical aspect of Monte Carlo approaches to multistage problems is that

multiple (in this case two) sets of samples of θ are necessary, one for each

possible value of the test outcome.

Because the ū’s and ∆̄ are nonlinear functions of the parameters φ and

θ, it is recommended to solve the tree by evaluating (3), (4), and (6), rather

than using best estimates of φ and θ in a deterministic way.

2.4 Measuring uncertainty about the value of diagnos-

tic information

In a probabilistic sensitivity analysis, it is interesting to study how unknown

parameters affect the difference between the two arms. This difference de-

pends on parameters as well as the treatment strategy. This suggests to

consider two variants: ∆∗(φ, θ), as defined in (1), assumes that patients in

the “test” arm will be treated according to the true optimal strategy for the

specified φ and θ; and ∆(φ, θ) assumes that patients in the “test” arm will

be treated according to the current optimal strategy, independent of φ and

θ. In case A, ∆ is always 0 for all values φ and θ. In case B, we have

∆(φ, θ) = φ
(

u+

A(θ) − u+

B(θ)
)

. (11)

The functions ∆ and ∆∗ measure different aspects of the value of diag-

nostic information as a function of the unknown parameters. Understanding

uncertainty about the value of the diagnostic test requires joint considera-

tion of both. Our suggestions for a basic description of uncertainty is to a)
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graph the joint distribution of ∆ and ∆∗, and b) compute the three summary

quantities

PC = P (∆∗ = ∆)

PD = P (∆∗ > 0)

PE = P (∆ > 0).

Naturally, other quantities may also be of interest, but these can provide a

minimal core set.

PC is the probability that the current best and the true best treatment

strategies are the same, or, in other words, that the current treatment strat-

egy is correct. Because the value of the diagnostic test depends on the use

that will be made of the information, it is critical to quantify uncertainty

on its appropriateness. However, this alone is not sufficient. In problems

with multiple options, there are situations in which the current best is only

correct for a small fraction of the simulated values, but the true best is very

similar to it over a broad range of simulated values.

PD is the probability that the test would have diagnostic value if the true

parameter values were known. This quantity reflects the confidence with

which we may say that treatment should be based on this test, no matter

what the true strategy is. Computation of ∆∗ is predicated on the impos-

sible requirement of knowing the true parameter values and underestimates

uncertainty compared to what can be expected in a clinical implementation

of the solution. Therefore, PD is of interest for technology assessment and

research planning rather than clinical decisions to be made in the immediate

future.
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PE is the probability that the current best strategy does more good than

harm, or, we could say, is ethical. This is a quantity of direct clinical interest

that measures the confidence with which we can recommend the test and

subsequent therapy decision as a package. It is based solely on the knowledge

currently available. It does not, however, fully answer the question of whether

the test is of value. First, ∆ is identically zero in Case A even though

there may be substantial uncertainty about whether all patients should get

treatment A. Also ∆ could be positive in cases in which the test should not

be used, if the true parameters rank the treatments in the “no test” arm in

the opposite way as the current optimal strategy.

3 Axillary Lymph Node Dissection in Breast

Cancer

3.1 Model Assumptions and Data Sources

This section uses the model structure of Parmigiani and colleagues (24), up-

dating the values of the parameters wherever appropriate, and developing an

assessment of uncertainty for each. Consider a cohort of patients who are 60

years old at diagnosis, have an ER positive primary tumor of size between

0.5 and 1 cm, have a negative clinical exam of the axilla, and have elected

to receive breast conservation therapy. Nodal status information resulting

from ALND is classified in four categories, as described in Figure 2. Also

consider four alternatives for adjuvant therapy: Tamoxifen (T); combina-

tion chemotherapy (CT); combination chemotherapy followed by Tamoxifen

(CT+T); and no adjuvant systemic therapy (noRX). All suitable adjuvant

combination chemotherapy regimens are assumed to be equivalent, both in

13
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terms of long–term outcome and effects on quality of life. In practice, differ-

ences may exist, but are likely to be small and it is unlikely that the relative

risk reduction would be affected by nodal status.

Solving the tree requires a) a probability distribution of nodal involve-

ment, the vector equivalent of φ, and 2) a probability distribution of survival

times by nodal involvement category, adjuvant therapy, and ALND status,

whose parameters correspond to θ. Data sources were chosen seeking gener-

alizable registry or cohort data for describing the natural history of disease

under standard treatment, and meta–analyses for describing effects of treat-

ments. All inputs are based on primary data or published studies. Proba-

bility distributions describing parameter uncertainty reflect inferential uncer-

tainty, with minimal additional subjective input. Real valued parameters are

assigned normal distributions, while probabilities and percentage of risk re-

duction are assigned beta distributions, and probability vectors are assigned

Dirichlet distributions. Parameters of these distributions were based either

on the reported estimates and standard deviations in the original studies, or

on the estimates obtained directly from source data.

The probability distribution of the number of positive nodes for the given

tumor size, age, and ER status is based on two components. First we es-

timate probabilities of nodal involvement by category using data from the

NCI SEER cancer registries (26), considering both clinically negative and

clinically positive cases. Estimates of the probabilities of true-negative and

false-negative physical examinations (22) permit conditioning on a clinically

negative axilla, via Bayes’ rule. All parameters estimated using SEER data

were handled using Dirichlet posterior distributions obtained from uniform

14
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priors (27). Because of the very large sample size of the SEER registry,

sensitivity to the choice of priors is minimal in this case.

Survival distributions were also derived by combining several elements.

Survival of patients with positive nodes receiving chemotherapy was esti-

mated using a multivariate Cox regression model with age, ER status, pri-

mary tumor size, and nodal involvement as prognostic variables. Patient

level data for this purpose was drawn from four studise conducted within the

CALGB cooperative group. Study numbers are 7581, 8082 and 8541 (28; 29;

30). The simulation relative to the Cox proportional hazard component of

the model, kept the baseline hazard fixed, and drew only the coefficients at

random.

The maximum followup in these CALGB studies is 19 years. Rates be-

yond 19 years were extrapolated based on a constant hazard rate (set to the

average hazard rate in years 15 to 19). The hazard rate in the first 19 years

is not constant, accounting for greater hazard in the first few months follow-

ing adjuvant treatment. CALGB trials involved only node–positive women.

To derive a survival curve for node–negative women, the following strategy

was followed: a) For node–negative women with primary tumors larger than

1 cm, results from the EBCTCG overview (15) were used to estimate an

adjustment ratio between node-positive and node negative patients receiv-

ing chemotherapy. This ratio is 0.42 for the first 4 years and 0.61 for the

remainder (15). b) For node-negative women with primary tumor smaller

than 1 cm, the results of Rosen and colleagues (31) were used to derive an

adjustment. Mortality from causes other than breast cancer was taken from

US life tables in Splus (32).

15
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Survival curves of women undergoing adjuvant therapies other than chemother-

apy were derived from the previous analysis together with the results of

EBCTCG overviews (15; 33; 16). The results among node-positive patients

receiving chemotherapy were used as the baseline and then adjusted in ac-

cordance with the risk ratios reported in Table 1, to generate survival curves

for all treatment options. We assumed that none of the effects depend on

nodal status (15; 16). Recent evidence from the NSABP B-14 (34) trial also

shows a risk reduction for node-negative patients that is comparable with

that of previously observed node-positive patients.

There are a total of 15 parameters related to the prognostic model that

are being drawn at random. The distributions of the parameters within the

SEER analysis and within the Cox proportional hazard model are dependent,

but the two sets are independent of each other.

Decisions about adjuvant therapy depend on survival benefit as well as

loss of quality of life (QOL). We assumed the QOL adjustments described in

Table 2. While these choices do not reflect every woman’s experience, they

constitute a plausible illustration, consistent with clinical expertise as well

as published estimates (35). To focus on the diagnostic value of ALND, we

use the same QOL adjustment of .995 for the negative impact of both ALND

and XRT.

3.2 Probabilistic sensitivity analysis

Figure 2 shows the decision tree, the expected quality adjusted life years for

each arm, and the expected proportions of ALND outcomes. The “current

best” adjuvant treatment option is to administer Tamoxifen to XRT patients,

16
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whose nodal status is unknown, and to those ALND patients who are node–

negative, and to administer chemotherapy plus Tamoxifen to ALND patients

who are node–positive. The difference between the expected quality adjusted

life length in the ALND and XRT arms is about 3 days.

There is uncertainty on the correct adjuvant therapy, with PC = .33,

meaning that the current best strategy coincides with the correct one in

about one third of the simulated values. There is also concern on whether

the ALND arm will do better than the XRT arm under the chosen strategy,

with only PE = 52% of simulated parameter sets leading to a better outcome.

Finally the probability that ALND has diagnostic value is PD = 45%.

Overall, uncertainty is substantial, suggesting that the results of the de-

cision analysis, at least for this particular patient type, should not be used

in policy and clinical decision making without explicit consideration of the

uncertainty. From the point of view of an individual patient, the decision

model, which focusses on quantifiable endpoints, may not consider other as-

pects of the decision, such as the desire to know nodal status even though this

information may not change her course of action. In presence of so much un-

certainty about the recommendation emerging from the decision model, these

additional factors may become decisive.

A more detailed representation of uncertainty is provided by the joint

distribution of ∆ and ∆∗. Both quantities represent the difference between

the average QALYs in the ALND and XRT cohorts, with one critical differ-

ence. ∆ is calculated assuming that the adjuvant therapy choices are those

implied by the solution of the tree in Figure 2, while ∆∗ is calculated by

rederiving the optimal adjuvant therapy choice for each draw of simulated

17
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parameters. In a two stage–decision such as this, ignorance of the correct

value of the model parameters implies ignorance of the correct decision at

the second stage. This translates into uncertainty about the decision at the

first stage as well. ∆ incorporates this uncertainty, and realistically models

the actual state of knowledge, as parameter values will not be known when

the adjuvant therapy decision needs to be made.

Figure 3 shows the joint distribution of ∆ and ∆∗, based on 900 simulated

values of the model parameters. Because of the different implications of

different parts of the (∆, ∆∗) plane for decision making, it is useful to break

down the distribution into four regions:

∆ < 0, ∆∗ = 0 The test is of no diagnostic value, but under the current
best adjuvant strategy it would lead to a decrement of
utility for the cohort;

∆ > 0, ∆∗ = 0 The test is of no diagnostic value, but under the current
best adjuvant strategy it would lead to an increment of
utility for the cohort;

∆ = ∆∗ > 0 The test is of diagnostic value, the current best adjuvant
strategy is correct and administering the test would lead
to an increment of utility for the cohort;

∆ > ∆∗ > 0 The test is of diagnostic value, the current best adjuvant
strategy is incorrect but still leads to an increment of
utility for the cohort.

Of these regions, three are lines, so distributions of simulated values are

represented in Figure 3 as boxplots of size proportional to the frequencies of

simulated points along the corresponding lines. Overall, the variation of ∆,

attributable to lack of knowledge about the model parameters, far outweighs

the mean value of ∆.

The fraction of points on the diagonal boxplot of Figure 3 is PC. The

fraction of points above zero is PD and that to the right of zero is PE.
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Points in ∆ > ∆∗ ≥ 0 are to the right of the diagonal line and correspond

to parameter values for which ALND is of greater value under the current

optimal strategy than it is under the optimal strategy for the given θ. For

example, it is possible that the optimal strategy for the given θ may be to

administer Tamoxifen plus chemotherapy to all nodal status categories, and

therefore to women in the XRT are as well. This means that ∆∗ has no

information component. The current best adjuvant strategy, however, may

have an information advantage. In this case, by administering chemotherapy

to all women, while reducing the difference between the two arms, we would

increase QALYs in both.

4 Discussion

This article presents a solution strategy for multistage decision problems in

presence of uncertainty on input parameters, and proposes a graphical display

and summarization tools for probabilistic sensitivity analysis in multistage

decision trees. For simplicity of exposition, results are reported in terms of

the simplest two–stage binary decision tree. All the development of Section 2

can be straightforwardly rewritten in terms of trees with non–binary nodes.

This situation is in fact illustrated in Section 3. Extensions to more than

two stages can proceed along the same lines conceptually, but rapidly become

much more convoluted.

We focused on the value of diagnostic information and thus assumed

that the test does not have any direct effect on the utilities of the treat-

ment branches. Also, we do not consider the cost of the test explicitly. In

practical application, the test may affect utility in ways that are controlled
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by unknown parameters, and cost distributions may also contain unknown

parameters. The approach based on the joint distribution of ∆ and ∆∗ is

useful in those circumstances as well. There may not be accumulation of

values along the axes of Figure 3, and some values of ∆∗ may be negative.

The general interpretation of the graph and of the quantities PC, PD and

PE will, however, remain valid.

We provided an application to axillary lymph node dissection in breast

cancer. To keep the focus on measuring the diagnostic value of informa-

tion about nodal involvement, we did not consider potential direct effects

of ALND on survival, which could occur via differential local control com-

pared to XRT. These effects, however, are not likely to be strong (15), so our

analysis does provide estimates that are of clinical interest. In summary, the

uncertainty analysis presented in this section highlights the following points:

there is substantial uncertainty on whether the course of action chosen by

the decision tree is indeed the best —the probability of that being the case is

about one third. There is also a high (48%) probability that ALND is worse

than XRT for the cohort considered. Finally the probability of the param-

eter configuraions for which ALND carries valuable diagnostic inforamtion

is PD = 45%. This high level of uncertainty occurs even though the data

sources consist of large and well conducted studies or registries, and empha-

sizes the importance of systematically accounting for and communicating

uncertainty in decision analysis.
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Table 1: Effects of adjuvant treatments. Entries are mortality reductions for
alternative adjuvant therapies, compared to no adjuvant treatments. Values
in parentheses are the corresponding standard deviations. All values refer to
women older than 50 years of age.

ER+ ER-
No Rx 0 % 0 %
T 32 (10) % 0 %
CT 9 (5) % 17 (6) %
CT+T 40 (11) % 11 (4) %

Table 2: Illustrative quality adjustment factors, by treatment and month
since the beginning of treatment. Adjustment for either ALND or XRT is
applied for each subsequent year over and above any adjustment for adjuvant
systemic therapy. Quality adjustments for CT+T (not shown in the table)
are obtained using the adjustment factor for C for the first six months and
both adjustments thereafter.

Month: 1–6 7–12 13–24 25–60 >60

No Treatment 1 1 1 1 1
Tamoxifen 0.99 0.99 0.99 0.99 1
Chemotherapy 0.6 0.9 0.99 0.99 0.99
ALND .995 .995 .995 .995 0.995
XRT .995 .995 .995 .995 0.995
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Figure 1: Decision tree for the generic binary diagnostic test problem. Leaves
are utilities conditional on knowledge of the model parameters θ.
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Figure 2: Decision tree for the ALND application. Values attached to treat-
ment branches are averages of terminal utilities in QALYs. Values on ALND
outcome branches are average probabilities of nodal involvement categories
“NODES” refers to lymphnodes found to be positive. The current optimal
strategy is T if XRT, and if ALND and no positive nodes are found, and
CT+T otherwise.
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Figure 3: Joint distribution of ∆ and ∆∗, in days, after 900 simulations
of input parameters. Areas of boxes in boxplots are proportional to the
frequencies of simulated points along the corresponding lines.
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