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Estimation and Testing in Targeted Group
Sequential Covariate-adjusted Randomized

Clinical Trials

Antoine Chambaz and Mark J. van der Laan

Abstract

This article is devoted to the construction and asymptotic study of adaptive group
sequential covariate-adjusted randomized clinical trials analyzed through the prism
of the semiparametric methodology of targeted maximum likelihood estimation
(TMLE). We show how to build, as the data accrue group-sequentially, a sam-
pling design which targets a user-supplied optimal design. We also show how to
carry out a sound TMLE statistical inference based on such an adaptive sampling
scheme (therefore extending some results known in the i.i.d setting only so far),
and how group-sequential testing applies on top of it. The procedure is robust
(i.e., consistent even if the working model is misspecified). A simulation study
confirms the theoretical results, and validates the conjecture that the procedure
may also be efficient.



1 Introduction

This article is devoted to the construction and asymptotic study of adaptive group sequential
covariate-adjusted randomized clinical trials (RCTs) analyzed through the prism of the targeted
maximum likelihood estimation (TMLE) methodology. The considered observed data structure
writes as O = (W,A, Y ) where W is a vector of baseline covariates, A is the treatment assignment
and Y the primary outcome of interest. We assume that A is binary and that Y is one-dimensional.
Typical parameters of scientific interest are Ψ+ = E{E(Y |A = 1,W )−E(Y |A = 0,W )} (additive
scale, which we consider hereafter) or Ψ× = logE{E(Y |A = 1,W )} − logE{E(Y |A = 0,W )}
(multiplicative scale). Such parameters can be interpreted causally whenever one is willing to
assume the existence of a full data structure X = (W,Y (0), Y (1)) containing the vector of baseline
covariates and the two counterfactual outcomes under the two possible treatments, and such that
Y = Y (A) and A conditionally independent of X given W . If so indeed, Ψ+ = EY (1) − EY (0)
and Ψ× = logEY (1)− logEY (0). Let us now explain what we mean by adaptive group sequential
covariate-adjusted RCT.

Adaptive group sequential covariate-adjusted RCT.

By adaptive covariate-adjusted design, we mean in the setting of this article a clinical trial design
that allows the investigator to dynamically modify its course through data-driven adjustment of
the randomization probability based on data accrued so far, without negatively impacting the
statistical integrity of the trial. Moreover, the patient’s baseline covariates may be taken into
account for the random treatment assignment. This definition is slightly adapted from (Golub,
2006). In particular, we assume with a view to the definition of pre-specified sampling plans given
in (Emerson, 2006) that, prior to collection of the data, the trial protocol specifies the parameter
of scientific interest, the inferential method and confidence level to be used when constructing a
confidence interval for the latter parameter.

Furthermore, we assume that the investigator specifies beforehand in the trial protocol a cri-
terion of special interest which yields a notion of optimal randomization scheme that we therefore
wish to target. For instance, the criterion could translate the necessity to minimize the number
of patients assigned to their corresponding inferior treatment arm, subject to level and power
constraints. Or the criterion could translate the necessity that a result be available as quickly as
possible, subject to level and power constraints. The sole restriction on the criterion is that it
must yield an optimal randomization scheme which can be approximated from the data accrued
so far. The two examples above comply with this restriction.

We focus in this article on targeted maximum likelihood estimation, as introduced by van der
Laan and Rubin (2006) in the independent identically distributed (i.i.d) setting. The extension
to the setting of adaptive RCTs was first considered in (van der Laan, 2008), upon which this
article relies. In addition, we choose to consider specifically the second criterion cited above. Con-
sequently, the optimal randomization scheme is the so-called Neyman allocation, which minimizes
the asymptotic variance of the TMLE of the parameter of interest. We emphasize that there is
nothing special about targeting the Neyman allocation, the whole methodology applying equally
well to a large class of optimal randomization schemes derived from a variety of valid criteria.

By adaptive group sequential design, we refer to the possibility to adjust the randomization
scheme only by blocks of c patients, where c ≥ 1 is a pre-specified integer (the case that c = 1
corresponds to a fully sequential adaptive design). The expression also refers to the fact that group
sequential testing methods can be equally well applied on top of adaptive designs, an extension
that we do not consider here. Although all our results (and their proofs) still hold for any c ≥ 1,
we consider the case c = 1 in the theoretical part of the article for simplicity’s sake, but the case
that c > 1 is considered in the simulation study.
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Short bibliography.

The literature on adaptive designs is vast and our review is not comprehensive. Quite misleadingly,
the expression “adaptive design” has also been used in the literature for sequential testing and,
in general, for designs that allow data-adaptive stopping times for the whole study (or for certain
treatment arms) which achieve the wished type I and type II errors requirements when testing a
null hypothesis against its alternative.

Of course, data-adaptive randomization schemes have a long history that goes back to the
1930s, and we refer to Section 1.2 in (Hu and Rosenberger, 2006), Section 17.4 in (Jennison and
Turnbull, 2000) and (Rosenberger, 1996) for a comprehensive historical perspective.

Many articles are devoted to the study of “response adaptive designs”, an expression implicitly
suggesting that those designs only depend on past responses of previous patients and not on the
corresponding covariates. We refer to (Hu and Rosenberger, 2006; Chambaz and van der Laan,
2011) for a bibliography on that topic. On the contrary, covariate-adjusted response adaptive
(CARA) randomizations tackle the so-called issue of heterogeneity (i.e., the use of covariates in
adaptive designs), by dynamically calculating the allocation probabilities on the basis of previous
responses and current and past values of certain covariates. In this view, this article studies a
new type of CARA procedure. The interest in CARA procedures is more recent, and there is a
steadily growing number of articles dedicated to their study, starting with (Rosenberger et al.,
2001; Bandyopadhyay and Biswas, 2001), then (Atkinson and Biswas, 2005; Zhang et al., 2007;
Zhang and Hu, 2009; Shao et al., 2010) among others. The latter articles are typically concerned
with the convergence (almost sure and in law) of the allocation probabilities vector and of the
estimator of the parameter in a correctly specified parametric model ((Shao et al., 2010) is devoted
to the testing issue).

By contrast, the consistency and asymptotic normality results that we obtain in this article
are robust to model misspecification. Thus, they notably contribute significantly to solving the
question raised by the Food & Drug Administration (2006):

When is it valid to modify randomization based on results, for example, in a combined
phase 2/3 cancer trial?

Finally, this article mainly relies on (Chambaz and van der Laan, 2009, 2011; van der Laan,
2008), the latter technical report paving the way to robust and more efficient estimation based on
adaptive RCTs in a variety of other setting (including the case that the outcome Y is a possibly
censored time-to-event).

Organization.

We first set the statistical framework in Section 2. The rationale of our adaptive covariate-adjusted
designs is presented in Section 3, and we complete its formal definition in Section 4 where we also
detail how the TMLE methodology operates. The asymptotic study is carried out in Section 5
(estimation) and in Section 6 (group sequential testing). The simulation study is developed in
Section 7 (estimation) and in Section 8 (group sequential testing). The proofs are relegated to the
Appendix.

2 Statistical framework

We tackle the asymptotic study of adaptive group sequential designs in the case of RCTs with
covariate, binary treatment and one-dimensional primary outcome of interest. Thus, the observed
data structure writes as O = (W,A, Y ), where W ∈ W consists of some baseline covariates, A ∈
A = {0, 1} denotes the assigned binary treatment, and Y ∈ Y is the primary outcome of interest.
For example, Y can indicate whether the treatment has been successful or not (Y = {0, 1}); or
Y can count the number of times an event of interest has occurred under the assigned treatment
during a period of follow-up (Y = N); or Y can measure a quantity of interest after a given time
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has elapsed (Y = R). Although we will focus on the last case in this article, the methodology
applies equally well to each example cited above.

Let us denote by P0 the true distribution of the observed data structure O in the population
of interest. We see P0 as a specific element of the non-parametric set M of all possible observed
data distributions. Note that, in order to avoid some technicalities, we assume (or rather: impose)
that all elements ofM are dominated by a common measure. The parameter of scientific interest
is the marginal effect of treatment a = 1 relative to treatment a = 0 on the additive scale, or
risk difference: ψ0 = EP0 {EP0 [Y |A = 1,W ]− EP0 [Y |A = 0,W ]}. Of course, other choices such
as the log-relative risk (the counterpart of the risk difference on the multiplicative scale) could be
considered, and dealt with along the same lines. The risk difference can be interpreted causally
for instance in the counterfactual framework.

For all P ∈ M, let us introduce the shorthand notation QW (P )(W ) = P [W ], g(P )(A|W ) =
P [A|W ], QY |A,W (P )(O) = P [Y |A,W ]. We use the alternative notation P = PQ,g with Q =
Q(P ) ≡ (QW (P ), QY |A,W (P )) and g = g(P ). Equivalently, PQ,g is the data generating dis-
tribution such that Q(PQ,g) = Q and g(PQ,g) = g. In particular, we denote Q0 = Q(P0) =
(QW (P0), QY |A,W (P0)). We also introduce the notation Q = {Q(P ) : P ∈ M} for the non-
parametric set of all possible values of Q, and G = {g(P ) : P ∈M} for the non-parametric set of
all possible values of g. Setting Q̄(P )(A,W ) = EP [Y |A,W ] and Q̄0 = Q̄(P0) (with a slight abuse,
we also write sometimes Q̄(Q) instead of Q̄(PQ,g)), we define in greater generality

Ψ(P ) = EP
{
Q̄(P )(1,W )− Q̄(P )(0,W )

}
(1)

over the whole setM, so that ψ0 equivalently writes as ψ0 = Ψ(P0). This notation also emphasizes
the fact that Ψ(P ) only depends on P through Q̄(P ) and QW (P ), justifying the alternative
notation Ψ(PQ,g) = Ψ(Q). The following proposition summarizes the most fundamental properties
enjoyed by Ψ.

Proposition 1 (efficient influence curve). The functional Ψ is pathwise differentiable at every
P ∈ M relative to the maximal tangent space. The efficient influence curve of Ψ at PQ,g ∈ M is
characterized by

D?(PQ,g)(O) = D?
1(Q)(W ) +D?

2(PQ,g)(O), (2)

where

D?
1(Q)(W ) = Q̄(1,W )− Q̄(0,W )−Ψ(Q), and

D?
2(PQ,g)(O) =

2A− 1
g(A|W )

(Y − Q̄(A,W )).

The variance VarPD?(P )(O) is the lower bound of the asymptotic variance of any regular estimator
of Ψ(P ) in the i.i.d setting. Furthermore, even if Q 6= Q0,

EP0D
?(PQ,g)(O) = 0 implies Ψ(Q) = Ψ(Q0) (3)

when g = g(P0).

The implication (3) is the key to the robustness of the targeted maximum likelihood introduced
and studied in this article. It is another justification of our interest in the pathwise differentiability
of the functional Ψ and its efficient influence curve.

3 Data generating mechanism for adaptive design

The purpose of adaptive group sequential design as we consider it in this article is to adjust
the randomization scheme as the data accrue. We first formally describe in Section 3.1 the data
generating mechanism through the expression of the likelihood function and also in terms of causal
graphs. Then we discuss the general issue of choosing an optimal design to target in Section 3.2,
before specifically describing an optimal design of interest in Section 3.3 and showing how to target
it in Section 3.4.
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3.1 Data generating mechanism and related likelihood

In order to formally describe the data generating mechanism, we need to state a starting assump-
tion: During the course of the clinical trial, it is possible to recruit independently the patients
from a stationary population. In the counterfactual framework, this is equivalent to supposing
that it is possible to sample as many independent copies of the full data structure as required.
Let us denote by Oi = (Wi, Ai, Yi) the ith observed data structure. We also find convenient to
introduce On = (O1, . . . , On) and for every i = 0, . . . , n, On(i) = (O1, . . . , Oi) (with convention
O(0) = ∅). We denote by O the set where the observed data structure O takes its values.

By adjusting the randomization scheme as the data accrue, we mean that the nth treatment
assignment An is drawn from gn(·|Wn), where gn(·|W ) is a conditional distribution (or treatment
mechanism) given the covariate W which additionally depends on past observations On−1. Since
the sequence of treatment mechanisms cannot reasonably grow in complexity as the sample size
increases, we will only consider data-adaptive treatment mechanisms such that gn(·|W ) depends
on On−1 only through a finite-dimensional summary measure Zn = φn(On−1), where the mea-
surable function φn maps On−1 onto Rd for some fixed d ≥ 0 (d = 0 corresponds to the case
that gn(·|W ) actually does not adapt). For instance, Zn+1 = φn+1(On) ≡ (n−1

∑n
i=1 Yi1{Ai =

0}, n−1
∑n
i=1 Yi1{Ai = 1}) characterizes a proper summary measure of the past, which keeps track

of the mean outcome in each treatment arm. Another sequence of mappings φn will be at the core
of the adaptive methodology that we study in depth in this article, see (9).

Formally, the data generating mechanism is specified by the following factorization of the
likelihood of On:

n∏
i=1

{QW (P0)(Wi)×QY |A,W (P0)(Oi)} ×
n∏
i=1

gi(Ai|Wi),

which suggests the introduction of gn = (g1, . . . , gn), referred to as the design of the study, and
the expression “On is drawn from (Q0,gn)”. Likewise, the likelihood of On under (Q,gn) (where
Q = (QW , QY |A,W ) ∈ Q is a candidate value for Q0) is

n∏
i=1

{QW (Wi)×QY |A,W (Oi)} ×
n∏
i=1

gi(Ai|Wi), (4)

where we emphasize that the second factor is known. Thus we will refer with a slight abuse
of terminology to

∑n
i=1 logQW (Wi) + logQY |A,W (Oi) as the log-likelihood of On under (Q,gn).

Furthermore, given gn, we introduce the notation PQ0,gif ≡ EPQ0,gi
[f(Oi)|On(i − 1)] for any

possibly vector-valued measurable f defined on O.
Another equivalent characterization of the data generating mechanism involves the causal graph

of Fig. 1. It is seen again firstly that Wn is drawn independently from the past On−1; secondly that
An is a deterministic function of Wn, the summary measure Zn (which depends on On−1), and
a new independent source of randomness (in other words, it is drawn conditionally on (Wn, Zn)
and conditionally independently of the past On−1); thirdly that Yn is a deterministic function of
(An,Wn) and a new independent source of randomness (in other words, it is drawn conditionally
on (An,Wn) and conditionally independently of the past On−1); then that the next summary
measure Zn+1 is obtained as a function of On−1 and On = (Wn, An, Yn) (i.e., as a function of
On; here, the causal graph grants the access to a new independent source of randomness, but it
is useless in our setting), and so on.

Finally, it is interesting in practice to adapt the design group sequentially. This can be simply
formalized. For a given pre-specified integer c ≥ 1 (c = 1 corresponds to a fully sequential adaptive
design), proceeding c-group sequentially simply amounts to imposing φ(r−1)c+1(O(r−1)c) = . . . =
φrc(Orc−1) for all r ≥ 1. Then the c treatment assignments A(r−1)c+1, . . . , Arc in the rth c-group
are all drawn from the same conditional distribution g(r−1)c(·|W ). Yet, although all our results
(and their proofs) still hold for any c ≥ 1, we prefer to consider in the rest of this section and in
Sections 4 and 5 the case that c = 1 for simplicity’s sake. On the contrary, the simulation study
carried out in Section 7 involves some c > 1.
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Figure 1: A causal graph describing the data generating mechanism for adaptive
group sequential design. An arrow pointing from nodes Λ1, . . . ,Λr to node Υ means that
there exists a deterministic function f and an independent source of randomness U such that
Υ = f(Λ1, . . . ,Λr, U).

3.2 On the user-supplied design to target

One of the most important features of the adaptive group sequential design methodology is that
it targets a user-supplied specific design of special interest. This specific design is generally an
optimal design with respect to a criterion which translates what the investigator cares for the most.
Specifically, one could care the most for the well-being of the target population, wishing that a
result be available as quickly as possible and aspiring therefore to the highest efficiency (i.e., the
ability to reach a conclusion as quickly as possible subject to level and power constraints). Or one
could care the most for the well-being of the subjects participating to the clinical trial (therefore
trying to minimize the number of patients assigned to their corresponding inferior treatment arms,
subject to level and power constraints). Obviously, these are only two important examples from
a large class of potentially interesting criteria. The sole purpose of the criterion is to generate a
random element in G of the form gn = gZn , where Zn = φn(On−1) is a finite-dimensional summary
measure of On−1.

We decide to focus in this article on the first example, but it must be clear that the methodology
applies to a variety of other criteria (see (van der Laan, 2008) for other examples).

3.3 From the Neyman allocation to the optimal design

So, the objective is now clearly identified: we wish to adapt the design as the data accrue in order
to learn from the data then mimic a specific design which guarantees the highest efficiency, our
(user-supplied) optimal design.

By Proposition 1, the asymptotic variance of any regular estimator of the risk difference Ψ(Q0)
has lower bound VarPQ0,g

D?(PQ0,g)(O) if the estimator relies on data sampled independently from
PQ0,g. Now,

VarPQ0,g
D?(PQ0,g)(O) = EQ0(Q̄0(1,W )− Q̄0(0,W )−Ψ(Q0))2

+ EQ0

(
σ2(Q0)(1,W )

g(1|W )
+
σ2(Q0)(0,W )

g(0|W )

)
,

where σ2(Q0)(A,W ) denotes the conditional variance of Y given (A,W ) under Q0. We use the
notation EQ0 above (for the expectation with respect to the marginal distribution of W under P0)
in order to emphasize the fact that the treatment mechanism g only appears in the second term
of the right-hand side sum. Furthermore, it holds P0-almost surely that

σ2(Q0)(1,W )
g(1|W )

+
σ2(Q0)(0,W )

g(0|W )
≥ (σ(Q0)(1,W ) + σ(Q0)(0,W ))2,

5
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with equality if and only if

g(1|W ) =
σ(Q0)(1,W )

σ(Q0)(1,W ) + σ(Q0)(0,W )
(5)

P0-almost surely. Therefore, the following lower bound holds for all g ∈ G:

VarPQ0,g
D?(PQ0,g)(O) ≥ EQ0(Q̄0(1,W )− Q̄0(0,W )−Ψ(Q0))2

+ EQ0(σ(Q0)(1,W ) + σ(Q0)(0,W ))2,

with equality if and only if g ∈ G is characterized by (5). This optimal design is known in the
literature as the Neyman allocation (see (Hu and Rosenberger, 2006) page 13). This result notably
makes clear that the most efficient treatment mechanism assigns with higher probability a patient
with covariate vector W to the treatment arm such that the variance of the outcome Y in this arm
is the largest, regardless of the mean of the outcome (i.e., whether the arm is inferior or superior).

Due to logistical reasons, it might be preferable to consider only treatment mechanisms that
assign treatment in response to a subvector V of the baseline covariate vector W . In addition,
if W is complex, targeting the optimal Neyman allocation might be too ambitious. Therefore,
we will consider the important case where V is a discrete covariate with finitely many values in
the set V = {1, . . . , ν}. The covariate V indicates subgroup membership for a collection of ν
subgroups of interest. We decide to restrict the search of an optimal design to the set G1 ⊂ G of
those treatment mechanisms which only depend on W through V . The same calculations as above
yield straightforwardly that, for all g ∈ G1,

VarPQ0,g
D?(PQ0,g)(O) ≥ EQ0(Q̄0(1,W )− Q̄0(0,W )−Ψ(Q0))2

+ EQ0(σ̄(Q0)(1, V ) + σ̄(Q0)(0, V ))2,

where σ̄2(Q0)(a, V ) = EQ0 [σ2(Q0)(a,W )|V ] for a ∈ A, with equality if and only if g coincides
with g?(Q0), characterized by

g?(Q0)(1|V ) =
σ̄(Q0)(1, V )

σ̄(Q0)(1, V ) + σ̄(Q0)(0, V )
(6)

P0-almost surely. Hereafter, we refer to g?(Q0) as the optimal design.

3.4 Targeting the optimal design

Because g?(Q0) is characterized as the minimizer over g ∈ G1 of the variance under PQ0,g of the
efficient influence curve at PQ0,g, we propose to construct gn+1 ∈ G1 as the minimizer over g ∈ G1

of an estimator of the latter variance based on past observations On.
We proceed by recursion. We first set g1 = gb, the so-called balanced treatment mechanism

such that gb(1|W ) = 1
2 for allW ∈ W, and assume that On has already been sampled from (Q0,gn)

as described in Section 3.1, the sample size being large enough to guarantee
∑n
i=1 1{Vi = v} > 0

for all v ∈ V (if n0 is the smallest sample size such that the previous condition is met, then we set
g1 = . . . = gn0 = gb).

The issue is now to construct gn+1. Let us assume for the time being that we already know
how to construct an estimator Qn of Q0 based on On (hence the estimators Q̄n = Q̄(Qn) of Q̄0

6
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and Ψ(Qn) of Ψ(Q0) = ψ0).1 Then, for all g ∈ G1,

Sn(g) =
1
n

n∑
i=1

{(
D?

1(Qn)(Wi)2 + 2D?
1(Qn)(Wi)D?

2(PQn,g)(Oi)
g(Ai|Vi)
gi(Ai|Vi)

+D?
2(PQn,g)(Oi)

2 g(Ai|Vi)
gi(Ai|Vi)

)
−

(
1
n

n∑
i=1

D?
1(Qn)(Wi) +D?

2(PQn,g)(Oi)
g(Ai|Vi)
gi(Ai|Vi)

)2}

=
1
n

n∑
i=1

(Yi − Q̄n(Ai,Wi))2

g(Ai|Vi)gi(Ai|Vi)

+

{
1
n

n∑
i=1

D?
1(Qn)(Wi)2 + 2D?

1(Qn)(Wi)D?
2(PQn,gi)(Oi)

−

(
1
n

n∑
i=1

D?
1(Qn)(Wi) +D?

2(PQn,gi)(Oi)

)2}

estimates VarPQ0,g
D?(O;PQ0,g) (the weighting provides the adequate tilt of the empirical distri-

bution; it is not necessary to weight the terms corresponding to D?
1 because they do not depend on

the treatment mechanism). Now, only the first term in the rightmost expression still depends on
g. The same calculations as above straightforwardly yields that Sn(g) is minimized at g?n+1 ∈ G1

characterized by

gn+1(1|v) =
sv,n(1)

sv,n(1) + sv,n(0)
, (7)

for all v ∈ V, where for each (v, a) ∈ V ×A,

s2
v,n(a) =

1
n

∑n
i=1

(Yi−Q̄n(Ai,Wi))
2

gi(Ai|Vi) 1{(Vi, Ai) = (v, a)}
1
n

∑n
i=1 1{Vi = v}

.

Yet, instead of considering the above characterization, we find it more convenient to define

g?n+1(1|v) =
σv,n(1)

σv,n(1) + σv,n(0)
, (8)

for all v ∈ V, where for each (v, a) ∈ V ×A,

σ2
v,n(a) =

1
n

∑n
i=1

(Yi−Q̄n(Ai,Wi))
2

gi(Ai|Vi) 1{(Vi, Ai) = (v, a)}
1
n

∑n
i=1

1{(Vi,Ai)=(v,a)}
gi(Ai|Vi)

.

Note that s2
v,n(a) and σ2

v,n(a) share the same numerator, and that the different denominators
converge to the same limit. Substituting σ2

v,n(a) for s2
v,n(a) is convenient because one naturally

interprets the former as an estimator of the conditional variance of Y given (A, V ) = (a, v) based
on On, a fact that we use in Section 4.2. Finally, we emphasize that g?n+1 = gZn+1 for the summary
measure of the past On

Zn+1 = φn+1(On) ≡ ((σ2
v,n(0), σ2

v,n(1)) : v ∈ V). (9)

The rigorous definition of the design g?n = (g?1 , . . . , g
?
n) follows by recursion, but it is still

subject to knowledge about how to construct an estimator Qn of Q0 based on On. Because this
last missing piece of the formal definition of the adaptive group sequential design data generating
mechanism is also the core of the TMLE procedure, we address it in Section 4.

1The reasoning is not circular by virtue of the chronological ordering as it is summarized in Fig. 1 for instance.

7
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4 TMLE in adaptive covariate-adjusted RCTs

We assume hereafter that On has already been sampled from the (Q0,g?n)-adaptive sampling
scheme. In this section, we construct an estimator Qn (actually denoted by Q∗n) of Q0, therefore
yielding the characterization of g?n+1, and completing the formal definition of the adaptive design
g?n that we initiated in Section 3. In particular, the next observed data structure On+1 can be
drawn from (Q0, g

?
n+1), and it makes sense to undertake the asymptotic study of the properties of

the TMLE methodology based on adaptive group sequential sampling.
As in the i.i.d framework, the TMLE procedure maps an initial substitution estimator Ψ(Q0

n)
of ψ0 into an update ψ∗n = Ψ(Q∗n) by fluctuating the initial estimate Q0

n of Q0. The construction
of Q0

n is presented and studied in Section 4.1. In Section 4.2, a straightforward application of the
main result of Section 4.1 shows that the adaptive design converges. How to fluctuate Q0

n and
stretch it optimally to Q∗n is presented and studied in Section 4.3.

4.1 Initial maximum likelihood based substitution estimator

Working model.

In order to construct the initial estimate Q0
n of Q0, we consider a working model Qwn . With a slight

abuse of notation, the elements of Qwn are denoted by (QW (Pn), QY |A,W (θ)) for some parameter
θ ∈ Θ, where QW (Pn) is the empirical marginal distribution of W . Specifically, the working model
Qwn is chosen in such a way that

QY |A,W (θ)(O) =
1√

2πσ2
V (A)

exp
{
− (Y −m(A,W ;βV ))2

2σ2
V (A)

}
.

This notably implies that for any Pθ ∈ M such that QY |A,W (Pθ) = QY |A,W (θ), the conditional
mean Q̄(Pθ)(A,W ), which we also denote by Q̄(θ), satisfies Q̄(θ)(A,W ) = m(A,W ;βV ), the right-
hand side expression being a linear combination of variables extracted from (A,W ) and indexed
by the regression vector βV (of dimension b). Defining

θ(v) = (βv, σ2
v(0), σ2

v(1))> ∈ Θv ⊂ Rb × R∗+ × R∗+ (10)

for each v ∈ V, the complete parameter is given by θ = (θ(1)>, . . . , θ(ν)>)> ∈ Θ, where Θ =∏ν
v=1 Θv. We impose the following condition on the parameterization:

PARAM. The parameter set Θ is compact. Furthermore, the linear parameterization is iden-
tifiable: for all v ∈ V, if m(a,w;βv) = m(a,w;β′v) for all a ∈ A and w ∈ W (compatible
with v), then necessarily βv = β′v.

Characterizing Q0
n.

Let us set a reference fixed design gr ∈ G1. We now characterize Q0
n by letting

Q0
n = (QW (Pn), QY |A,W (θn)), (11)

where

θn = arg max
θ∈Θ

n∑
i=1

logQY |A,W (θ)(Oi)
gr(Ai|Vi)
g?i (Ai|Vi)

(12)

is a weighted maximum likelihood estimator with respect to the working model. Thus, the vth
component θn(v) of θn satisfies

θn(v) = arg min
θ(v)∈Θv

n∑
i=1

(
log σ2

v(Ai) +
(Yi −m(Ai,Wi;βv))2

σ2
v(Ai)

)
gr(Ai|Vi)
g?i (Ai|Vi)

1{Vi = v}
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for every v ∈ V. Note that this initial estimate Q0
n of Q0 yields the initial maximum likelihood

based substitution estimator Ψ(Q0
n) of ψ0:

Ψ(Q0
n) =

1
n

n∑
i=1

Q̄(θn)(1,Wi)− Q̄(θn)(0,Wi).

Studying Q0
n through θn.

For simplicity, let us introduce, for all θ ∈ Θ, the additional notations

`θ,0 = logQY |A,W (θ), ˙̀
θ,0 = ∂

∂θ `θ,0,
῭
θ,0 = ∂2

∂θ2 `θ,0.

The first asymptotic property of θn that we derive concerns its consistency (see Theorem 5 in
(van der Laan, 2008)).

Proposition 2 (consistency of θn). Assume that:

A1. There exists a unique interior point θ0 ∈ Θ such that θ0 = arg maxθ∈Θ PQ0,gr`θ,0.

A2. The matrix −PQ0,gr
῭
θ0,0 is positive definite.

Provided that O is a bounded set, θn consistently estimates θ0.

The proof of Proposition 2 is given in Section A.1.
The limit in probability of θn has a nice interpretation in terms of projection of QY |A,W (P0)

onto {QY |A,W (θ) : θ ∈ Θ}. Preferring to discuss this issue in terms of data generating distribution
rather than conditional distribution, let us set Qθ0 = (QW (P0), QY |A,W (θ0)) and assume that
PQ0,gr logQY |A,W (P0) is well defined (this weak assumption concerns Q0, not gr, and holds for
instance when | logQY |A,W (P0)| is bounded). Then A1 is equivalent to PQθ0 ,gr being the unique
Kullback-Leibler projection of PQ0,gr onto the set

{P ∈M : ∃ θ ∈ Θ s.t. QY |A,W (P ) = QY |A,W (θ), and QW (P ) = QW (P0), g(P ) = gr}.

In addition to being consistent, θn actually satisfies a central limit theorem if supplementary mild
conditions are met. The latter central limit theorem is embedded in a more general result that we
state in Section 4.3, see Proposition 5.

Furthermore, maximizing a weighted version of the log-likelihood is a technical twist that makes
the theoretical study of the properties of θn easier. Indeed, the unweighted maximum likelihood
estimator

tn = arg max
θ∈Θ

n∑
i=1

logQY |A,W (θ)(Oi)

targets the parameter

Tḡn(Q0) = arg max
θ∈Θ

n∑
i=1

PQ0,g?i
logQY |A,W (θ) = arg max

θ∈Θ
PQ0,ḡn`θ,0,

where ḡn = n−1
∑n
i=1 g

?
i and PQ0,ḡnf ≡ EPQ0 ,ḡn

[f(On)|On(n − 1)] for any measurable f defined
on O. Therefore, tn asymptotically targets the limit, if it exists, of Tḡn(Q0). Assuming that ḡn
converges itself to a fixed design g∞ ∈ G, then tn asymptotically targets parameter Tg∞(Q0). The
latter parameter is very difficult to interpret and to analyze, as it depends directly and indirectly
(through g∞) on Q0.

9
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4.2 Convergence of the adaptive design

Consider the mapping G? from Θ to G1 (respectively equipped with the Euclidean distance and,
for instance, the distance d(g, g′) =

∑
v∈V |g(1|v) − g′(1|v)|) such that, for any θ ∈ Θ, for any

(a, v) ∈ A× V,

G?(θ)(a|v) =
σv(a)

σv(1) + σv(0)
. (13)

Equation (13) characterizes G?, which is obviously continuous. Since g?n is adapted in such a way
that g?n = G?(θn) (see (8)), Proposition 2 and the continuous mapping theorem (see Theorem 1.3.6
in (van der Vaart and Wellner, 1996)) straightforwardly imply the following result (the convergence
in probability yields the convergence in L1 because g?n is uniformly bounded).

Proposition 3 (convergence of g?n). Under the assumptions of Proposition 2, the adaptive design
g?n converges in probability and in L1 to the limit design G?(θ0).

The convergence of the adaptive design g∗n is a crucial result. It is noteworthy that the
limit design G?(θ0) equals the optimal design g?(Q0) if the working model is correctly specified
(which never happens in real-life applications), but not necessarily otherwise. Furthermore, the
relationship g?n = G?(θn) also entails the possibility to derive the convergence in distribution of√
n(g?n − G?(θ0)) to a centered Gaussian distribution with known variance by application of the

delta-method (G? is differentiable) from a central limit theorem on θn (see Proposition 5 and
Theorem 3.1 in (van der Vaart, 1998)).

4.3 TMLE

Fluctuating Q0
n.

The second step of the TMLE procedure stretches the initial estimate Ψ(Q0
n) in the direction of

the parameter of interest, through a maximum likelihood step over a well-chosen fluctuation of
Q0
n. The latter fluctuation of Q0

n is just a one-dimensional parametric model {Q0
n(ε) : ε ∈ E} ⊂ Q

indexed by the parameter ε ∈ E , E ⊂ R being a bounded interval which contains a neighborhood
of the origin. Specifically, we set for all ε ∈ E :

Q0
n(ε) = (QW (Pn), QY |A,W (θn, ε)), (14)

where for any θ ∈ Θ,

QY |A,W (θ, ε)(O) =
1√

2πσ2
V (A)

exp
{
− (Y − Q̄(θ)(A,W )− εH∗(θ)(A,W ))2

2σ2
V (A)

}
, (15)

with
H∗(θ)(A,W ) =

2A− 1
G?(θ)(A|V )

σ2
V (A).

In particular, the fluctuation goes through Q0
n at ε = 0 (i.e., Q0

n(0) = Q0
n). Let P 0

n(ε) ∈ M be
a data generating distribution such that QY |A,W (P 0

n(ε)) = QY |A,W (θn, ε). The conditional mean
Q̄(P 0

n(ε)), which we also denote by Q̄(θn, ε), is

Q̄(θn, ε)(A,W ) = Q̄(θn)(A,W ) + εH∗(θn)(A,W ).

Furthermore, the score at ε = 0 of P 0
n(ε) equals

∂
∂ε logP 0

n(ε)[O]
∣∣
ε=0

=
2A− 1

G?(θn)(A|V )
(Y − Q̄(θn)(A,W )) = D?

2(PQ0
n,G

?(θn))(O),

the second component of the efficient influence curve of Ψ at PQ0
n,G

?(θn) = PQ0
n,g

?
n
, see (2) in

Proposition 1 (recall that g?n = G?(θn)).
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Characterizing Q∗n yields the TMLE.

We characterize the update Q∗n of Q0
n in the fluctuation {Q0

n(ε) : ε ∈ E} by

Q∗n = Q0
n(εn),

where

εn = arg max
ε∈E

n∑
i=1

logQY |A,W (θn, ε)(Oi)
g?n(Ai|Vi)
g?i (Ai|Vi)

(16)

is a weighted maximum likelihood estimator with respect to the fluctuation. It is worth noting
that εn is known in closed form (we assume, without serious loss of generality, that E is large
enough for the maximum to be achieved in its interior). Denoting the vth component θn(v) of θn
by (βv,n, σ2

v,n(0), σ2
v,n(1)), it holds that

εn =

∑n
i=1(Yi − Q̄(θn)(Ai,Wi)) 2Ai−1

g?i (Ai|Vi)∑n
i=1

σ2
Vi,n

(Ai)

g?n(Ai|Vi)gi(Ai|Vi)

.

The notation Q∗n for this first update of Q0
n is a reference to the fact that the TMLE procedure,

which is in greater generality an iterative procedure, converges here in one single step. Indeed,
say that one fluctuates Q∗n as we fluctuate Q0

n i.e., by introducing

Q1
n(ε) = (QW (Pn), QY |A,W (θn, εn, ε))

with QY |A,W (θ, ε′, ε) equal to the right-hand side of (15) where one substitutes Q̄(θ, ε′) for Q̄(θ).
Say that one then defines the weighted maximum likelihood ε′n as the right-hand side of (16)
where one substitutes QY |A,W (θn, εn, ε) for QY |A,W (θn, ε). Then it follows that ε′n = 0 so that the
“updated” Q∗n(ε′n) = Q∗n. The updated estimator Q∗n of Q0 maps into the TMLE ψ∗n = Ψ(Q∗n) of
the risk difference ψ0 = Ψ(Q0):

ψ∗n =
1
n

n∑
i=1

Q̄(θn, εn)(1,Wi)− Q̄(θn, εn)(0,Wi). (17)

The asymptotic study of ψ∗n relies on a central limit theorem for (θn, εn), which we discuss in
Section 5.3.

5 Asymptotics

5.1 Studying Q∗n through (θn, εn): consistency

We now state and comment on a consistency result for the stacked estimator (θn, εn) which com-
plements Proposition 2 (see Theorem 8 in (van der Laan, 2008)). For simplicity, let us generalize
the notation `θ,0 introduced in Section 4.1 by setting, for all (θ, ε) ∈ Θ× E ,

`θ,ε = logQY |A,W (θ, ε).

Moreover, let us set, for all (θ, ε) ∈ Θ× E ,

Qθ,ε = (QW (P0), QY |A,W (θ, ε)). (18)

Proposition 4 (consistency of (θn, εn)). Suppose that A1 and A2 from Proposition 2 hold. In
addition, assume that:

A3. There exists a unique interior point ε0 ∈ E such that ε0 = arg maxε∈E PQ0,G?(θ0)`θ0,ε.

(i) It holds that Ψ(Qθ0,ε0) = Ψ(Q0).

11
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(ii) Provided that O is a bounded set, (θn, εn) consistently estimates (θ0, ε0).

The proof of Proposition 4 is given in Section A.1.
We already discussed the interpretation of the limit in probability of θn in terms of Kullback-

Leibler projection. Likewise, the limit in probability ε0 of εn enjoys such an interpretation. Let
us assume that PQ0,G?(θ0) logQY |A,W (P0) is well defined (this weak assumption concerns Q0, not
G?(θ0), and holds for instance when | logQY |A,W (P0)| is bounded). Then A3 is equivalent to
PQθ0,ε0 ,G?(θ0) being the unique the Kullback-Leibler projection of PQ0,G?(θ0) onto the set

{P ∈M : ∃ ε ∈ E s.t. Q(P ) = Qθ0,ε and g(P ) = G?(θ0)}.

Of course, the most striking property that ε0 enjoys is (i): even if Q̄0 6∈ {Q̄(θ, ε) : (θ, ε) ∈ Θ×E},
it holds that Ψ(Qθ0,ε0) = Ψ(Q0). This remarkable equality and the convergence of (θn, εn) to
(θ0, ε0) are evidently the keys to the consistency of ψ∗n = Ψ(Q∗n). We investigate in Section 5.3
how the consistency result stated in Proposition 4 translates into the consistency of the TMLE.

5.2 Studying Q∗n through (θn, εn): central limit theorem

We now state and comment on a central limit theorem for the stacked estimator (θn, εn) (see also
Theorem 9 in (van der Laan, 2008)).

Let us introduce, for all (θ, ε) ∈ Θ× E ,

D(θ, ε)(O,Z) =
1

gZ(A|V )

(
˙̀>
θ,0(O)gr(A|V ), ∂∂ε`θ,ε(O)G?(θ)(A|V )

)>
, (19)

and D̃(θ, ε)(O) = gZ(A|V )D(θ, ε)(O,Z).

Proposition 5 (central limit theorem for (θn, εn)). Suppose that A1, A2 and A3 from Proposi-
tions 2 and 4 hold. In addition, assume that

A4. If a deterministic function F is such that F (O) = 0 PQ0,G?(θ0)-almost surely, then F = 0.

Then the following asymptotic linear expansion holds:

√
n((θn, εn)− (θ0, ε0)) = S−1

0

1√
n

n∑
i=1

D(θ0, ε0)(Oi, Zi) + oP (1), (20)

where

S0 = EQ0,G?(θ0)

(
῭
θ0,0(O)

gr(A|V )
G?(θ0)(A|V )

0h
∂2

∂θ∂ε
`θ,ε(O)G?(θ)(A|V )

i˛̨̨>
(θ,ε)=(θ0,ε0)

1
G?(θ0)(A|V )

∂2

∂ε2
`θ0,ε(O)|ε=ε0

)
(21)

is an invertible matrix. Furthermore, (20) entails that
√
n((θn, εn)− (θ0, ε0)) converges in distri-

bution to the centered Gaussian distribution with covariance matrix S−1
0 Σ0(S−1

0 )>, where

Σ0 = EQ0,G?(θ0)

(
D̃(θ0, ε0)D̃(θ0, ε0)>(O)

G?(θ0)(A|V )2

)
(22)

is a positive definite symmetric matrix. Moreover, S0 is consistently estimated by

Sn =
1
n

n∑
i=1

(
῭
θn,0(Oi)

gr(Ai|Vi)
gZi (Ai|Vi)

0h
∂2

∂θ∂ε
`θ,ε(Oi)G

?(θ)(Ai|Vi)
i˛̨̨>

(θ,ε)=(θn,εn)

1
gZi (Ai|Vi)

∂2

∂ε2
`θn,ε(Oi)|ε=εngZi (Ai|Vi)

)
and Σ0 is consistently estimated by

Σn =
1
n

n∑
i=1

D(θn, εn)D(θn, εn)>(Oi, Zi). (23)

The proof of Proposition 5 is given in Section A.2. We investigate in Section 5.3 how the above
central limit theorem translates into a central limit theorem for the TMLE.
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5.3 Consistency and asymptotic normality of the TMLE

In this section, we finally state and comment on the asymptotic properties of the TMLE ψ∗n.

TMLE is consistent and asymptotically Gaussian.

In the first place, the TMLE ψ∗n is robust: it is a consistent estimator even when the working
model is misspecified (which is always the case in real-life applications).

Proposition 6 (consistency of ψ∗n). Suppose that A1, A2, A3 and A4 from Propositions 2, 4
and 5 hold. Then the TMLE ψ∗n consistently estimates the risk difference ψ0.

If the design of the clinical trial was fixed (and consequently, the n first observations were i.i.d),
then the TMLE would be a robust estimator of ψ0: Even if the working model is misspecified,
then the TMLE still consistently estimates ψ0 because the treatment mechanism is known (or can
be consistently estimated, if one wants to gain in efficiency). Thus, the robustness of the TMLE
stated in Proposition 6 is the expected counterpart of the TMLE’s robustness in the latter i.i.d
setting: Expected because the TMLE solves a martingale estimating function that is unbiased for
ψ0 at misspecified Q and correctly specified gi, i = 1, . . . , n.

In the second place, the TMLE ψ∗n is asymptotically linear, and therefore satisfies a central
limit theorem. To see this, let us introduce the real-valued function φ on Θ×E such that φ(θ, ε) =
Ψ(Qθ,ε) (see (18) for the definition of Qθ,ε). The function φ is differentiable on the interior of
Θ× E , and we denote φ′θ,ε its gradient at (θ, ε). The latter gradient satisfies

φ′θ,ε = EQθ,ε,G?(θ)

{
D?(PQθ,ε,G?(θ))(O)

(
∂
∂θ `
>
θ,ε(O), ∂∂ε`θ,ε(O)

)>}
. (24)

Note that the right-hand side expression cannot be computed explicitly because the marginal
distribution QW (P0) is unknown. By the law of large numbers (independent case), we can build
an estimator φ′n of φ′θ0,ε0 as follows. For B a large number (say B = 104), simulate B independent
copies Õb of O from the data generating distribution PQ∗n,G?(θn), then compute

φ′n =
1
B

B∑
b=1

D?(PQ∗n,G?(θn))(Ob)
(
∂
∂θ `
>
θ,εn

(Ob)|θ=θn , ∂∂ε`θn,ε(Ob)|ε=εn
)>

. (25)

Proposition 7 (central limit theorem for ψ∗n). Suppose that A1, A2, A3 and A4 from Proposi-
tions 2, 4 and 5 hold. Then the following asymptotic linear expansion holds:

√
n(ψ∗n − ψ0) =

1√
n

n∑
i=1

IC(Oi, Zi) + oP (1), (26)

where
IC(O,Z) = D?

1(Qθ0,ε0)(W ) + φ′>θ0,ε0S
−1
0 D(θ0, ε0)(O,Z). (27)

Furthermore, (26) entails that
√
n(ψ∗n − ψ0) converges in distribution to the centered Gaussian

distribution with a variance consistently estimated by

s2
n =

1
n

n∑
i=1

D?
1(Q∗n)(Wi)2

+
2
n

n∑
i=1

D?
1(Q∗n)(Wi)φ′>n S

−1
n D(θn, εn)(Oi, Zi) + (φ′>n S

−1
n )Σn(φ′>n S

−1
n )>.

Proposition 7 is the backbone of the statistical analysis of adaptive group sequential RCTs
as constructed in Section 4. In particular, denoting the (1 − α)-quantile of the standard normal
distribution by ξ1−α, the proposition guarantees that the asymptotic level of the confidence interval[

ψ∗n ±
sn√
n
ξ1−α/2

]
(28)

for the risk difference ψ0 is (1− α). The proofs of Propositions 6 and 7 are given in Section A.3.
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Extensions.

We conjecture that the influence function IC computed at (O,Z), see (27), is equal to

D?
1(Qθ0,ε0)(W ) +D?

2(PQθ0,ε0 ,G?(θ0))(O)
G?(θ0)(A|V )
gZ(A|V )

.

This conjecture is backed by the simulations that we carry out and present in Section 7. We
will tackle the proof of the conjecture in future work. Let us assume for the moment that the
conjecture is true. Then the asymptotic linear expansion (26) now implies that the asymptotic
variance of

√
n(ψ∗n − ψ0) can be consistently estimated by

s?2n =
1
n

n∑
i=1

(
D?

1(Q∗n)(Wi) +D?
2(PQ∗n,G?(θn))(Oi)

G?(θn)(Ai|Vi)
gZi(Ai|Vi)

)2

,

another independent argument also showing that s?2n converges toward

VarQ0,G?(θ0)D
?(PQθ0,ε0 ,G?(θ0))(O)

i.e., the variance under the fixed design PQ0,G?(θ0) of the efficient influence curve at PQθ0,ε0 ,G?(θ0).
Furthermore, the most essential characteristic of the joint methodologies of design adaptation

and targeted maximum likelihood estimation is certainly the utmost importance of the role played
by the likelihood. In this view, the targeted maximized log-likelihood of the data

n∑
i=1

{logQW (Pn)(Wi) + log g?i (Ai|Wi) + logQY |A,W (θn, εn)(Oi)}

provides us with a quantitative measure of the quality of the fit (targeted toward the parameter
of interest). It is therefore possible, for example, to use that quantity for the sake of selection of
different working models for Q0. As with TMLE for i.i.d data, we can use likelihood based cross-
validation to select among more general initial estimators indexed by fine-tuning parameters. The
validity of such TMLEs for group sequential adaptive designs as studied here is outside the scope
of this article.

6 Application to group sequential testing

We derive in this section a group sequential testing procedure, that is a testing procedure which
repeatedly tries to make a decision at intervals rather than once all data are collected, or than
after every new observation is obtained (such a testing procedure would be said fully sequential).
We refer to (Jennison and Turnbull, 2000; Proschan et al., 2006) for a general presentation of
group sequential testing procedures. The TMLE group sequential testing procedure is formally
described in Section 6.1, and some arguments justifying why it should work well (as validated by
the simulation study carried out in Section 8) are exposed in Section 6.2.

6.1 Description of the TMLE group sequential testing procedure

The problem at stake is to test the null “Ψ(Q) = ψ0” against “Ψ(Q) > ψ0” with asymptotic type I
error α and asymptotic type II error β at some ψ1 > ψ0. We want to proceed group sequentially
with K ≥ 2 steps, based on the multi-dimensional t-statistic

(T ∗1 , . . . , T
∗
K) =

(√
Nk(ψ∗Nk − ψ0)

sNk

)
k≤K

. (29)

Here, N1, . . . , NK are random sample sizes whose realizations on a specific trajectory depend on
how fast the information accrues as the data are collected. In order to quantify this notion of
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information, we decide to consider the inverse n
s2n

of the estimated variance of the TMLE ψ∗n
based on the n first observations On (as a proxy to its true, finite sample, inverse variance).
Given a reference maximum committed information Imax and K increasingly order proportions
0 < p1 < . . . < pK = 1, we set for every k ≤ K

Nk = inf
{
n ≥ 1 :

n

s2
n

≥ pkImax

}
.

The characterization of Imax depends on how we wish to “spend” the type I and type II errors
at each step of the group sequential procedure and on how demanding is the power requirement
(i.e., how close ψ1 is to ψ0). Say that our spending strategies are summarized by the K-tuples of
positive numbers (α1, . . . , αK) and (β1, . . . , βK) such that

∑K
k=1 αk = α and

∑K
k=1 βk = β.

Now, let (Z1, . . . , ZK) be distributed from the centered Gaussian distribution with covariance
matrix C = (

√
pk∧l/pk∨l)k,l≤K . We assume that there exists a unique value I > 0, our Imax, such

that there exist a rejection boundary (a1, . . . , aK) and a futility boundary (b1, . . . , bK) satisfying
aK = bK , P (Z1 ≥ a1) = α1, P (Z1 + (ψ1 − ψ0)

√
p1I ≤ b1) = β1, and for every 1 ≤ k < K,

P (∀j ≤ k, bj < Zj < aj and Zk+1 ≥ ak+1) = αk+1,

P (∀j ≤ k, bj < Zj + (ψ1 − ψ0)
√
pjI < aj and Zk+1 + (ψ1 − ψ0)

√
pk+1I ≤ bk+1) = βk+1.

Note that the closer ψ1 is to ψ0, the larger is Imax (actually, ψ1 7→ ψ1

√
Imax is both upper

bounded and bounded away from zero). Heuristically, the closer ψ1 is to ψ0, the more difficult it
is to decide between the null and its alternative while preserving the required type II error at ψ1,
the more information is needed to proceed.

The targeted maximum likelihood group sequential testing procedure finally goes as follows:
starting from k = 1,

if T ∗k ≥ ak then reject the null and stop accruing data,
if T ∗k ≤ bk then fail rejecting the null and stop accruing data,
if bk < T ∗k < ak then set k ← k + 1 and repeat.

If (T ∗1 , . . . , T
∗
K) had the same distribution as (Z1, . . . , ZK), then the latter rule would yield a testing

procedure with the required type I error and type II error at the specified alternative parameter.
Clearly, our decision to target the optimal design G?(θ0) which reduces as much as possible

(over G1 and for our choice of working model) the asymptotic variance of the TMLE ψ∗n guarantees,
at least informally, that each Nk is stochastically smaller under (Q0,g?n)-adaptive sampling than it
would have been had another fixed design been used (or targeted). Thus, resorting to the (Q0,g?n)-
adaptive sampling is likely to result in an earlier conclusion than what would have yielded another
fixed (or targeted) sampling scheme.

6.2 Rationale of the TMLE group sequential testing procedure

The next proposition partially justifies the characterization of the TMLE group sequential testing
procedure of Section 6.1. First, let us define nk = dnpke (the smallest integer not smaller than
npk) for every k ≤ K, then

(T1, . . . , TK) =
(√

nk(ψ∗nk − ψ0)
snk

)
k≤K

.

This other multi-dimensional t-statistic is a substitute to (T ∗1 , . . . , T
∗
K) whose asymptotic study

is easier to carry out. In particular, it is possible to derive the limit distribution of (T1, . . . , TK)
under the null and under a sequence of contiguous alternatives. The limit distribution is called the
canonical distribution (see Theorems 11 in 12 in (van der Laan, 2008), Theorem 3 in (Chambaz
and van der Laan, 2011) and Theorem 2.1 in (Zhu and Hu, 2010), where a similar result is obtained
through a different approach based on the study of the limit distribution of a stochastic process
defined over (0, 1]).
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Proposition 8. Suppose that A1, A2, A3 and A4 from Propositions 2, 4 and 5 hold. Consider
f ∈ L2(PQ0,G?(θ0)), f 6= 0, with PQ0,G?(θ0)f = 0 and a fluctuation {Q0(h) : h ∈ H} ⊂ Q of Q0

with score f . Set Qf/√n = Q0(1/
√
n) for all n ≥ n0 (n0 is such that 1/

√
n0 ∈ H). Assume also that

A5. The score f is bounded, it is not proportional to D?(PQ0,G?(θ0)), EPQ0,G?(θ0) [f(O)|A,W ] = 0,
PQ0,G?(θ0)D

?(PQ0,G?(θ0))f > 0, and PQ0,G?(θ0)ICf > 0.

The sequence (Qf/√n)n≥n0 defines a sequence (ψn)n≥n0 of contiguous parameters (“from di-
rection f”, which only fluctuates the conditional distribution of Y given (A,W )), with ψn =
Ψ(Qf/√n) > Ψ(Q0) for n large enough. Introduce µ(f) = (

√
p1, . . . ,

√
pK) PQ0,G?(θ0)ICf√

PQ0,G?(θ0)IC
2 .

(i) Under (Q0,gn)-adaptive sampling, (T1, . . . , TK) converges in distribution to the centered
Gaussian distribution with covariance matrix C.

(ii) Under (Qf/√n,gn)-adaptive sampling, (T1, . . . , TK) converges in distribution to the Gaussian
distribution with mean µ(f) and covariance matrix C.

The proof of Proposition 8 is given in Section A.4.
The rationale follows. Say that one concludes from Proposition 8 that (i) (T ∗1 , . . . , T

∗
K) is

also approximately distributed as (Z1, . . . , ZK) under (Q0,g?n)-adaptive sampling. Likewise, say
that (

√
Nk(ψ∗Nk −ψ1)/sNk)k≤K is also approximately distributed as (Z1, . . . , ZK) under (Q1,g?n)-

adaptive sampling, with Ψ(Q1) = ψ1 > ψ0. Say that one is willing to substitute pkImax to
Nk/s

2
Nk

for each k ≤ K. Then (ii) (T ∗1 , . . . , T
∗
K) is approximately distributed as

√
Imax(ψ1 −

ψ0)(
√
p1, . . . ,

√
pK) + (Z1, . . . , ZK) under (Q1,g?n)-adaptive sampling. It appears that (i) and (ii)

suffice to guarantee the wished asymptotic control of type I and type II errors. The rationale is
validated by the simulation study undertaken in Section 8.

7 Simulation study of the performances of TMLE in adap-
tive covariate-adjusted RCTs

In this section, we carry out a simulation study of the performances of TMLE in adaptive group
sequential RCTs as exposed in the previous sections. We present the simulation scheme in Sec-
tion 7.1. The working model upon which the TMLE methodology relies is described in Section 7.2.
How the TMLE-based confidence intervals behave is considered in Section 7.3 (empirical coverage)
and in Section 7.4 (empirical width). An illustrating example is finally presented in Section 7.5.

7.1 Simulation scheme

We characterize the component Q0 = Q(P0) of the true distribution P0 of the observed data
structure O = (W,A, Y ) as follows:

• the baseline covariate W = (U, V ) where U is uniformly distributed over the unit interval
[0; 1] and the subgroup membership covariate V ∈ V = {1, 2, 3} (hence ν = 3) satisfies

P0(V = 1) =
1
2
, P0(V = 2) =

1
3

and P0(V = 3) =
1
6

;

• the conditional distribution of Y given (A,W ) is the Gamma distribution characterized by
the conditional mean

Q̄0(A,W ) = 2U2 + 2U + 1 + ρ

(
AV +

1−A
1 + V

)
(30)

with ρ = 1 (we will set ρ to another value in Section 8) and the conditional variance

VarP0(Y |A,W ) =
(
U +A(1 + V ) +

1−A
1 + V

)2

.
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Sampling scheme (Q0, g) Allocation probabilities Variance

g(1|v = 1) g(1|v = 2) g(1|v = 3) VarQ0,gD
?(O;PQ0,g)

(Q0, g
b)-balanced 1

2
1
2

1
2

23.864

(Q0, g
?(Q0))-optimal 0.707 0.799 0.849 18.181

Table 1: Numerical values of the allocation probabilities and variance of the efficient influence
curve under either the balanced gb or the targeted optimal g?(Q0) sampling schemes. The ratio
of the variances of the efficient influence curve under targeted optimal and balanced sampling
schemes satisfies R(Q0) = v?(Q0)/vb(Q0) ' 0.762.

In particular, the risk difference ψ0 = Ψ(Q0), our parameter of interest, is known in closed form:

ψ0 =
91
72
' 1.264,

and so is the variance
vb(Q0) = VarQ0,gbD

?(O;PQ0,gb)

of the efficient influence curve under balanced sampling. The numerical value of vb(Q0) is reported
in Table 1.

We target the design which (a) depends on the baseline covariate W = (U, V ) only through V
(i.e., belongs to G1) and (b) minimizes the variance of the efficient influence curve of the parameter
of interest Ψ. The latter treatment mechanism g?(Q0) and optimal efficient asymptotic variance

v?(Q0) = VarQ0,g?(Q0)D
?(O;PQ0,g?(Q0))

are also known in closed form, and numerical values are reported in Table 1.
Let n = (100, 250, 500, 750, 1000, 2500, 5000) be a sequence of sample sizes. We estimate M =

1000 times the risk difference ψ0 = Ψ(Q0) based on Om
n7

(ni), m = 1, . . . ,M , i = 1, . . . , 7, under

• i.i.d (Q0, g
b)-balanced sampling,

• i.i.d (Q0, g
?(Q0))-optimal sampling,

• (Q0,g?n7
)-adaptive sampling.

Finally, we emphasize that the observed data structure O = (W,A, Y ) is not bounded, whereas
O is assumed bounded in Propositions 2, 3, 4, 5, 6 and 7.

7.2 Specifying the working model, reference design and a few twists

On the working model.

For each v ∈ V, let us denote θ(v) = (βv, σ2
v(0), σ2

v(1)) ∈ Θv, Θv ⊂ R3 ×R∗+ ×R∗+ being compact,
where the regression vector βv = (βv,1, βv,2, βv,3) (b = 3 in (10)), then θ = (θ1, θ2, θ3) ∈ Θ =
Θ1 ×Θ2 ×Θ3.

Following the description in Section 4.1, the working model Qwn that the TMLE methodology
relies on is characterized by the conditional likelihood of Y given (A,W ):

QY |A,W (θ)(O) =
1√

2πσ2
V (A)

exp
{
− (Y −m(A,W ;βV ))2

2σ2
V (A)

}
,

with the specific choice of conditional mean Q̄(θ)(A,W ) of Y given (A,W ):

Q̄(θ)(a,w) = m(a,w;βv) = βv,1 + βv,2u+ βv,3a

for all a ∈ A and w = (u, v) ∈ W = R × V. As required, condition PARAM is met. Obviously,
the working model is heavily misspecified:

• a Gaussian conditional likelihood is used instead of a Gamma conditional likelihood,

• the parametric forms of the conditional expectation and variance are wrong too.
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On the reference design.

Regarding the choice of a reference fixed design gr ∈ G1 (see Section 4.1), we select gr = gb (the
balanced design). The parameter θ0 only depends on Q0 and the working model, but its estimator
θn depends on gr, which may affect negatively its performances. Therefore, we propose to dilute
the impact of the choice of gr as an initial reference design as follows.

For a given sample size n, we first compute a first estimate θ1
n of θ0 as in (12) but with dn/4e

(the smallest integer not smaller than n/4) substituted for n in the sum. Then θn is computed as
in (12) but this time with G?(θ1

n)(Ai|Vi) substituted for gr(Ai|Vi).
The proofs can be adapted in order to incorporate this modification of the procedure. We refer

the interested reader to Section 8.5 in (van der Laan, 2008).

On additional details.

We decide arbitrarily to update the design each time c = 25 new observations are sampled .
In addition, the first update only occurs when there are at least five completed observations in
each treatment arm and for all V -strata. Thus, the minimal sample size at first update is 30. It
can be shown that, under initialization using the balanced design, the expected sample size at
the first sample size at which there are at least 5 observations in each arm equals 75. Finally,
as a precautionary measure, we systematically apply a thresholding to the updated treatment
mechanism: Using the notation of Section 4, max{δ,min{1 − δ, g?i (Ai|Vi)}} is substituted for
g?i (Ai|Vi) in all computations. We arbitrarily choose δ = 0.01.

7.3 Empirical coverage of the TMLE confidence intervals

We now invoke the central limit theorem stated in Proposition 7 to construct confidence intervals
for the risk difference. Let us introduce, for all types of sampling and each sample size ni, the
confidence intervals

Ini,m =

ψ∗ni(Om
n7

(ni))±

√
vni(Om

n7
(ni))

ni
ξ1−α/2

 , m = 1, . . . ,M

where the definition of the variance estimator vn(Om
n7

(n)) based on the n first observations Om
n7

(n)
depends on the sampling scheme:

• under i.i.d (Q0, g
b)-balanced sampling, vn(Om

n7
(n)) is the estimator of the asymptotic vari-

ance of the TMLE Ψ(Q∗n,iid):

vn(Om
n7

(n)) =
1
n

n∑
i=1

D?(PQ∗n,iid,gb)(O
m
i )2, (31)

• under i.i.d (Q0, g
?(Q0))-optimal sampling, vn(Om

n7
(n)) is defined as in (31), replacing gb with

g?(Q0),

• under (Q0,g?n)-adaptive sampling, vn(Om
n7

(n)) = s?2n (Om
n7

(n)), the estimator of the conjec-
tured asymptotic variance of

√
n(ψ?n(Om

n7
(n)) − ψ0) computed on the n first observations

Om
n7

(n).

We are interested in the empirical coverage (reported in Table 2, top rows)

cni =
1
M

M∑
m=1

1{ψ0 ∈ Ini,m}

guaranteed for each sampling scheme and every i = 1, . . . , 7 by {Ini,m : m = 1, . . . ,M}. The
rescaled empirical coverage proportions Mcni should have a Binomial distribution with parameter
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Sampling scheme Sample size
n1 n2 n3 n4

i.i.d (Q0, g
b)-balanced 0.913 0.925 0.939 0.934

(p < 0.001) (p < 0.001) (0.067) (0.015)
i.i.d (Q0, g

?(Q0))-optimal 0.894 0.941 0.940 0.953
(p < 0.001) (0.111) (0.087) (0.688)

adaptive (Q0,g
?
n7) 0.934 0.939 0.956 0.945

(0.015) (0.067) (0.827) (0.253)

Sampling scheme Sample size
n5 n6 n7

i.i.d (Q0, g
b)-balanced 0.945 0.940 0.946

(0.253) (0.087) (0.300)
i.i.d (Q0, g

?(Q0))-optimal 0.954 0.947 0.947
(0.739) (0.351) (0.351)

adaptive (Q0,g
?
n7) 0.943 0.933 0.952

(0.172) (0.011) (0.634)

Table 2: Checking the adequateness of the coverage guaranteed by our simulated confidence inter-
vals. We test if the rescaled empirical coverage Binomial random variables Mcni have parameter
(M, 1 − α), the alternative stating that they have parameter (M, 1 − a) with a > α. We report
the values cni (top row) and corresponding p-values (bottom row, between parentheses) of the
Binomial test for each sample size and each sampling scheme.

(M, 1 − a) with a = α for every i = 1, . . . , 7. This property can be tested in terms of a standard
binomial test, the alternative stating that a > α. This results in a collection of 7 p-values for each
sampling scheme, as reported in Table 2 (bottom rows).

Considering each sampling scheme (i.e., each row of Table 2) separately, we conclude that

the (1− α)-coverage cannot be declared defective under

• i.i.d (Q0, g
b)-balanced sampling for any sample size ni ≥ n3 = 500,

• i.i.d (Q0, g
?(Q0))-optimal sampling for any sample size ni ≥ n2 = 250,

• (Q0,g?n7
)-adaptive sampling for any sample size ni ≥ n1 = 100,

adjusting for multiple testing in terms of the Benjamini and Yekutieli procedure for controlling
the False Discovery Rate at level 5%.

This is a remarkable result that not only validates the theory but also provides us with insight
into the finite sample properties of the TMLE procedure based on adaptive sampling. The fact
that the TMLE procedure behaves better under adaptive sampling scheme than under balanced
i.i.d sampling scheme at sample size n1 = 100 may not be due to mere chance only. Although the
TMLE procedure based on an adaptive sampling scheme is initiated under the balanced sampling
scheme (so that each stratum consists at the beginning of comparable numbers of patients assigned
to each treatment arm, allowing to estimate, at least roughly, the required parameters), it starts
deviating from it (as soon as every (A, V )-stratum counts 5 patients) each time 25 new observations
are accrued. The poor performance of the TMLE procedure based on optimal i.i.d sampling scheme
at sample size n1 is certainly due to the fact that, by starting directly from the optimal sampling
scheme (a choice we would not recommend in practice), too few patients from stratum V = 3 are
assigned to treatment arm A = 0 among the n1 first subjects. At larger sample sizes, the TMLE
procedure performs equally well under adaptive sampling scheme and under both i.i.d schemes in
terms of coverage.

7.4 Empirical width of the TMLE confidence intervals

Now that we know that the TMLE-based confidence intervals based on (Q0,g?n)-adaptive sampling
are valid confidence regions, it is of interest to compare the widths of the latter (Q0,g?n)-adaptive
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sampling confidence intervals with their counterparts obtained under i.i.d (Q0, g
b)-balanced or

(Q0, g
?(Q0))-optimal sampling schemes.

For this purpose, we compare on one hand, for each sample size ni, the empirical distribution of
{
√
vn(Om

n7
(ni)) : m = 1, . . . ,M} as in (31) (i.e., the empirical distribution of width of the TMLE-

based confidence intervals at sample size ni obtained under i.i.d (Q0, g
b)-balanced sampling, up

to the factor 2ξ1−α/2/
√
ni) to the empirical distribution of {s?n(Om

n7
(ni)) : m = 1, . . . ,M} (i.e.,

the empirical distribution of the width of the TMLE-based confidence intervals at sample size
ni obtained under (Q0,g?n)-adaptive sampling, up to the factor 2ξ1−α/2/

√
ni) in terms of the

two-sample Kolmogorov-Smirnov test, where the alternative states that the confidence intervals
obtained under adaptive sampling are stochastically smaller than their counterparts under i.i.d
balanced sampling. This results in 7 p-values, all equal to zero, which we nonetheless report in
Table 3 (bottom row). In order to get a sense of how much narrower the confidence intervals
obtained under adaptive sampling are, we also compute and report in Table 3 (top row) the ratios
of empirical average widths

1
M

∑M
m=1 s

?
n(Om

n7
(ni))

1
M

∑M
m=1

√
vn(Om

n7
(ni))

(32)

for each sample size ni. Informally, this shows a 12% gain in width.
On the other hand, we also compare, for each sample size ni, the empirical distribution of

{
√
vn(Om

n7
(ni)) : m = 1, . . . ,M} as in (31) but replacing gb by g?(Q0) (i.e., the empirical dis-

tribution of width of the TMLE-based confidence intervals at sample size ni obtained under i.i.d
(Q0, g

?(Q0))-optimal sampling, up to the factor 2ξ1−α/2/
√
ni) to the empirical distribution of

{s?n(Om
n7

(ni)) : m = 1, . . . ,M} (i.e., the empirical distribution of the width of the TMLE-based
confidence intervals at sample size ni obtained under (Q0,g?n)-adaptive sampling, up to the factor
2ξ1−α/2/

√
ni) in terms of the two-sample Kolmogorov-Smirnov test, where the alternative states

that the confidence intervals obtained under adaptive sampling are stochastically larger than their
counterparts under i.i.d optimal sampling. This results in 7 p-values that we report in Table 3
(bottom row). In order to get a sense of how similar the confidence intervals obtained under
adaptive and i.i.d optimal sampling schemes are, we also compute and report for each sample size
ni in Table 3 (top row) the ratios of empirical average widths as in (32) replacing again gb by
g?(Q0) in the definition (31) of vn(Om

n7
(n)). Informally, this shows that the confidence intervals

obtained under adaptive sampling are even slightly narrower in average than their counterparts
obtained under i.i.d optimal sampling.

7.5 Illustrating example

So far we have been concerned with distributional results, answering to the questions Does the
confidence interval [ψ∗n ± s?nξ1−α/2/

√
n] provide the wished coverage? (yes, even for moderate

sample size: see Section 7.3), How does its width compare with the width of the confidence interval
obtained under either i.i.d sampling scheme? (well: see Section 7.4). In this section, we focus on a
particular simulated trajectory (we select arbitrarily the first one, associated to O1

n7
) for the sake

of illustration.
Some interesting features of the selected simulated trajectory are apparent in Fig. 7.5 and

Table 4.
For instance, we can follow the convergence of the TMLE ψ∗n toward the true risk difference

ψ0 in the top plot of Fig. 7.5 and in the fifth column of Table 4. Similarly, the middle plot of
Fig. 7.5 and the second to fourth columns of Table 4 illustrate the convergence of g?n toward
G?(θ0), as stated in Proposition 3. What these plots and columns also teach us is that, in spite
of the misspecified working model, the learned design G?(θ0) seems very close to the optimal
treatment mechanism g?(Q0) for the chosen simulation scheme and working model used in our
simulation study. Moreover, the last column of Table 4 illustrates how the confidence intervals
[ψ∗n ± s?nξ1−0.05/2/

√
n] shrink around the true risk difference ψ0 as the sample size increases.

Yet, the bottom plot of Fig. 7.5 may be the most interesting of the three. It obviously illus-
trates the convergence of s?2n toward VarQ0,G?(θ0)D

?(PQθ0,ε0 ,G?(θ0))(O) i.e., toward the variance

20

http://biostats.bepress.com/ucbbiostat/paper278



Comparison Sample size
n1 n2 n3 n4

(Q0,g
?
n7) vs (Q0, g

b) 0.856 0.871 0.879 0.880
(0) (0) (0) (0)

(Q0,g
?
n7) vs (Q0, g

?(Q0)) 0.962 0.977 0.992 0.995
(0.144) (0.236) (0.100) (0.060)

Comparison Sample size
n5 n6 n7

(Q0,g
?
n7) vs (Q0, g

b) 0.878 0.877 0.876
(0) (0) (0)

(Q0,g
?
n7) vs (Q0, g

?(Q0)) 0.997 1.000 1.000
(0.407) (0.236) (0.144)

Table 3: Comparing the width of our confidence intervals. On one hand, we test for each sample
size ni if the TMLE-based confidence intervals obtained under (Q0,g?n)-adaptive sampling are
narrower stochastically than the TMLE-based confidence intervals obtained under i.i.d (Q0, g

b)-
balanced sampling in terms of the two-sample Kolmogorov-Smirnov test. On the other hand,
we test for each sample size ni if the TMLE-based confidence intervals obtained under (Q0,g?n)-
adaptive sampling are wider stochastically than the TMLE-based confidence intervals obtained
under i.i.d (Q0, g

?(Q0))-optimal sampling in terms of the two-sample Kolmogorov-Smirnov test.
We report the p-values (bottom rows, between parentheses). In addition, we report for each sample
size ni the ratios of average widths as defined in (32).

under the fixed design PQ0,G?(θ0) of the efficient influence curve at PQθ0,ε0 .G?(θ0). Hence, it also
teaches us that the latter limit seems very close to the optimal asymptotic variance v?(Q0) for the
chosen simulation scheme and working model used in our simulation study. More importantly, s?2n
strikingly converges to v?(Q0) from below. This finite sample characteristic may reflect the fact
that the true finite sample variance of

√
n(ψ∗n−ψ0) might be lower than v?(Q0). Studying further

this issue in depth is certainly very delicate, and goes beyond the scope of this article.

8 Simulation study of the performances of the TMLE group
sequential testing procedure

In this section, we resume the simulation study undertaken in Section 7 in order to investigate
the performances of the TMLE group sequential testing procedure presented in Section 6. We

Sample size Allocation probabilities TMLE Confidence interval
n g?n(1|1) g?n(1|2) g?n(1|3) ψ∗n [ψ∗n ± s?nξ1−0.05/2/

√
n]

n1 0.589 0.764 0.766 1.252 [0.722;1.783]
n2 0.624 0.775 0.707 1.388 [0.974;1.802]
n3 0.679 0.767 0.795 1.361 [1.037;1.685]
n4 0.677 0.757 0.813 1.341 [1.068;1.615]
n5 0.670 0.760 0.806 1.250 [1.012;1.488]
n6 0.677 0.788 0.835 1.288 [1.126;1.451]
n7 0.694 0.793 0.834 1.273 [1.157;1.389]

Table 4: Illustrating the TMLE procedure under (Q0,g?n)-adaptive sampling scheme. This table
illustrates how the TMLE procedure behaves (on a simulated trajectory) as the sample size in-
creases. We report, at each sample size ni, the updated adapted design g?n = G?(θn(O1

n7
(n)))

(columns two to four), current TMLE ψ∗n(O1
n7

(n)) (column five) and 95% confidence interval In,1
as in (28) with s?n(O1

n7
(n)) substituted to sn. The true risk difference ψ0 ' 1.264 belongs to all

confidence intervals. See also Fig. 7.5.
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Figure 2: Illustrating the TMLE procedure under (Q0,g?n)-adaptive sampling scheme.
These three plots illustrate how the TMLE procedure behaves (on a simulated trajectory) as
the sample size (on x-axis, logarithmic scale; the vertical grey lines indicate the sample sizes
ni, i = 1, . . . , 7) increases. Top plot: we represent the sequence ψ∗n(O1

n7
(n)) at intermedi-

ate sample sizes n. The horizontal grey line indicates the true value of the risk difference ψ0.
Middle plot: we represent the three sequences g?n(1|1) = G?(θn(O1

n7
(n)))(1|1) (bottom curve),

g?n(1|2) = G?(θn(O1
n7

(n)))(1|2) (middle curve) and g?n(1|3) = G?(θn(O1
n7

(n)))(1|3) (top curve) at
intermediate sample sizes n. The three horizontal grey lines indicate the optimal allocation prob-
abilities g?(Q0)(1|1) (bottom line), g?(Q0)(1|2) (middle line) and g?(Q0)(1|3) (top line). Bottom
plot: we represent the sequence s?2n of estimated asymptotic variance of

√
n(ψ∗n − ψ0) at interme-

diate sample sizes n. The horizontal grey line indicates the value of the optimal variance v?(Q0).
See also Table 4.
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ψ0 ψ1 Imax

1.264 1.664 57.927

Step k 1 2 3 4
Rejection boundary 2.734 2.305 2.005 1.715

α-spending 0.3125% 0.9375% 1.5625% 2.1875%

Step k 1 2 3 4
Futility boundary -0.976 0.132 0.961 1.715

β-spending 0.625% 1.875% 3.125% 4.375%

Table 5: Specifics of the TMLE group sequential testing procedure.

describe the simulation scheme in Section 8.1, then evaluate how the testing procedure behaves in
terms of empirical type I and type II errors in Section 8.2 and how it behaves in terms of empirical
distribution of sample size at decision in Section 8.3.

8.1 The simulation scheme, continued

We wish to test the null “Ψ(P ) = ψ0” against its alternative “Ψ(P ) > ψ0” (ψ0 = 91
72 ) with pre-

scribed type I error α = 5% and type II error β = 10% at the alternative ψ1 = ψ0 +0.4. Depending
on whether we want to investigate the empirical behaviors of the TMLE group sequential testing
procedure with respect to (i) type I or (ii) type II errors, we test M = 1000 times the above
hypotheses based on 3×M independent datasets obtained under

(i) empirical type I error study:

• i.i.d (Q0, g
b)-balanced sampling,

• i.i.d (Q0, g
?(Q0))-optimal sampling,

• (Q0,g?n)-adaptive sampling;

(ii) empirical type II error study:

• i.i.d (Q1, g
b)-balanced sampling,

• i.i.d (Q1, g
?(Q0))-optimal sampling,

• (Q1,g?n)-adaptive sampling,

where Q1 is defined as Q0 in Section 7.1 with ρ = ψ1/ψ0 (so that Ψ(Q1) = ψ1).
We decide to proceed in K = 4 steps, at proportions (p1, p2, p3, p4) = (0.25, 0.50, 0.75, 1).

We choose the α- and β-spending strategies characterized by the equalities
∑k
l=1 αl = p2

kα and∑k
l=1 βl = p2

kβ, k = 1, . . . ,K. This set of conditions characterizes the whole group sequential
testing procedure, see Table 5 for the resulting numerical values.

8.2 Empirical type I and type II errors of the TMLE group sequential
testing procedure

We report in Table 6 the empirical type I and type II errors obtained during the course of the
simulation study. The values are strikingly close to each other in both cases. Even better, the
empirical type I and type II errors obtained under (Q,g?n)-adaptive sampling are the lowest in
both cases.

Since the number of times the null was falsely rejected for its alternative is Binomial with
parameter (M,a), it is possible to test rigorously if a = α (as it should) against a > α. This yields
three p-values that we report in Table 6. Because there are less than 50 wrong decisions for all
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sampling schemes, we naturally get large p-values, confirming (if necessary) that the type I error
is under control.

Similarly, the number of times the null was falsely not rejected for its alternative is also
Binomial with parameter (M, b). Thus, it is possible to test rigorously if b = β (as it should)
against b > β. This yields three small p-values (p < 0.001 for the i.i.d balanced sampling scheme,
0.002 for the i.i.d optimal sampling scheme and 0.003 for the adaptive sampling scheme). This
confirms the impression that the number of wrong decisions are all significantly larger than what
random deviations from the reference distribution are likely to allow. Put bluntly, the type II
error is not under control. However, there is no real need to worry. Indeed, if one rather tests
b = 12% against b > 12%, then the three p-values (reported in Table 6) are large.

In summary, for the considered scenario, the TMLE group sequential testing procedure described
in Section 6.1 performs at least as well under the (Q,g?n)-adaptive sampling scheme as under both
i.i.d (Q, gb)-balanced and (Q, g?(Q))-optimal sampling schemes. The type I error control meets
the requirements. The type II error control is defective, but only slightly defective.

Type I error Type II error
(Q = Q0) (Q = Q1)

Sampling scheme Empirical error (p-value) Empirical error (p-value)
i.i.d (Q, gb)-balanced 0.040 (0.919) 0.132 (0.113)

i.i.d (Q, g?(Q))-optimal 0.043 (0.827) 0.128 (0.203)
adaptive (Q,g?n) 0.040 (0.919) 0.126 (0.261)

Table 6: Checking the adequateness of the type I and type II error controls on our simulated
TMLE group sequential testing procedures. We test if the Binomial random numbers of times the
null is falsely rejected have parameter (M,α), the alternative stating that they have parameter
(M,a) with a > α. We also test if the Binomial random numbers of times the null is falsely not
rejected have parameter (M, 12%), the alternative stating that they have parameter (M, b) with
b > 12%. We report the empirical type I and type II errors and corresponding p-values.

8.3 Empirical distribution of sample size at decision of the TMLE group
sequential testing procedure

Now that we know that the TMLE group sequential testing procedure performs at least as well
under adaptive sampling scheme as under both i.i.d sampling schemes, let us compare the perfor-
mances in terms of sample size at decision.

For this purpose, we simply report the average sample sizes at decision for each sampling
scheme when evaluating the type I and type II errors control, see Table 7. The gain in average
sample size at decision obtained by resorting to the (Q,g?n)-adaptive sampling scheme instead
of the i.d.d (Q, gb)-balanced sampling scheme is dramatic: In average, one needs approximately
16% less observations in order to reach a conclusion under the (Q,g?n)-adaptive sampling scheme
relative to the i.d.d (Q, gb)-balanced sampling scheme. Furthermore, it appears that it is even
more efficient to resort to the i.d.d (Q, g?(Q))-optimal sampling scheme: In average, one needs
approximately 6% more observations in order to reach a conclusion under the i.i.d (Q,g?n)-adaptive
sampling scheme relative to the i.d.d (Q, gb)-balanced sampling scheme.

In summary, for the considered scenario, the TMLE group sequential testing procedure described
in Section 6.1 reaches a decision more quickly under the (Q,g?n)-adaptive sampling scheme than
under the i.i.d (Q, gb)-balanced sampling scheme, with a gain in average sample size at decision of
approximately 16%. Furthermore, the TMLE group sequential testing procedure reaches a decision
more slowly under the (Q,g?n)-adaptive sampling scheme than under the i.i.d (Q, g?(Q))-optimal
sampling scheme, but the loss in average sample size at decision reduces to approximately 6%.
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Type I error Type II error
(Q = Q0) (Q = Q1)

Sampling scheme Average sample size Average sample size
i.i.d (Q, gb)-balanced 786.63 895.64

i.i.d (Q, g?(Q))-optimal 620.71 713.47
adaptive (Q,g?n) 661.14 746.72

Table 7: Comparing the average sample sizes at decision for each sampling scheme when evaluating
the type I and type II errors control.

A Proofs

Let us introduce for convenience the notations θε = (θ, ε), θε0 = (θ0, ε0) and θεn = (θn, εn).
Moreover, let us recall that if µ is a probability measure and f a measurable function, then µf
denotes the integral

∫
fdµ.

A.1 Proof of Propositions 2 and 4, and a useful remark on Proposition 3

Proof of Proposition 2.

The cornerstone of the proof is to interpret θn as the solution in θ of the martingale estimating
equation

∑n
i=1D1(θ)(Oi, Zi) = 0, where Zi (defined in (9)) is the finite dimensional summary

measure of past observation On(i− 1) such that g?i depends on On(i− 1) only through Zi (hence
the notation g?i = gZi) and D1(θ)(O,Z) = ˙̀

θ,0(O)gr(A|V )/gZ(A|V ).
Note first that, for all i ≤ n,

PQ0,g?i
D1(θ0) = EPQ0,gr

[ ˙̀
θ0,0(Oi)|On(i− 1)] = 0

by A1 (changing the order of differentiation and integration is permitted by the dominated con-
vergence theorem, because O is bounded and Θ is compact—see PARAM). Observe then that,
by definition of θn, we have:∥∥∥∥∥ 1

n

n∑
i=1

PQ0,g?i
D1(θn)

∥∥∥∥∥ =

∥∥∥∥∥ 1
n

n∑
i=1

D1(θn)(Oi, Zi)− PQ0,g?i
D1(θn)

∥∥∥∥∥
≤ sup

θ∈Θ

∥∥∥∥∥ 1
n

n∑
i=1

D1(θ)(Oi, Zi)− PQ0,g?i
D1(θ)

∥∥∥∥∥ ≡Mn.

Now, since (a) supθ∈Θ ‖D1(θ)‖∞ <∞ (because O is bounded and Θ is compact) and (b) the
standard entropy of F = {D1(θ) : θ ∈ Θ} for the supremum norm satisfies H(F , ‖ · ‖∞, ε) =
O(log 1/ε) (see (van der Vaart, 1998), example 19.7), we can apply (componentwise) the Kol-
mogorov strong law of large numbers for martingales as in Theorem 8 of (Chambaz and van der
Laan, 2009). This yields the almost sure convergence of Mn, hence of n−1

∑n
i=1 PQ0,g?i

D1(θn),
to 0.

By a Taylor expansion of θ 7→ PQ0,gr
˙̀
θ,0 at θ0 (changing the order of differentiation and

integration is permitted here too for the same reasons as above), it holds that, for all i ≤ n (recall
that PQ0,g?i

D1(θ0) = 0),

PQ0,g?i
D1(θn) = (PQ0,gr

῭
θ0,0)(θn − θ0) + oP (‖θn − θ0‖).

From this we deduce that (PQ0,gr
῭
θ0,0)(θn− θ0) converges in probability to 0. Because PQ0,gr

῭
θ0,0

is positive definite by A2, this implies the result.
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Proof of Proposition 4.

The proof of (i) is very simple and typical of robust statistical studies. Indeed,

0 = PQ0,G?(θ0)
∂
∂ε`θ0,ε|ε=ε0 ,

the latter expression also writing as

EQ0,G?(θ0)

{
2A− 1

G?(θ0)(A|V )
(Y − Q̄(θε0)(A,W ))

}
= EQ0,G?(θ0)

{
(Q̄0(1,W )− Q̄(θε0)(1,W ))− (Q̄0(0,W )− Q̄(θε0)(0,W ))

}
= Ψ(Q0)−Ψ(Qθε0 ),

hence the result.
The proof of (ii) fundamentally relies on the fact that θεn solves the martingale estimating

equation
∑n
i=1D(θε)(Oi, Zi) = 0, where D(θε) is the extension of D1(θ) defined in (19). Here too,

PQ0,g?i
D(θε0) = 0 for all i ≤ n, and applying the Kolmogorov strong law of large numbers for mar-

tingales (see Theorem 8 in (Chambaz and van der Laan, 2009)) yields that n−1
∑n
i=1 PQ0,g?i

D(θεn)
converges to zero almost surely. This entails the convergence in probability of θεn to θε0 by a Taylor
expansion of θε 7→ (PQ0,gr

˙̀>
θ,0, PQ0,G?(θ)

∂
∂ε`θ,ε) at θε0. Note that A3 is a clear counterpart to A1

from Proposition 2 but that there is no counterpart to A2 from Proposition 2 in Proposition 4. In-
deed, it automatically holds in the framework of the proposition that −PQ0,G?(θ0)

∂2

∂ε2 `θ0,ε|ε=ε0 > 0,
the proof requiring that the latter quantity be different from zero.

A useful remark on Proposition 3.

We deduce in Proposition 3 the convergence in probability and in L1 of the adaptive design g?n to
the limit design G?(θ0) from the convergence in probability of θn to θ0 as obtained in Proposition 2.
It is crucial for us that n−1

∑n
i=1 g

?
i and n−1

∑n
i=1(g?i )−1 also converge to G?(θ0) and 1/G?(θ0)

(with an obvious notational shortcut) in probability and in L1. Fortunately, this is true because
(a) the positive random variables g?i are uniformly bounded away from 0 and (b) if a sequence Xn

converges in L1 to 0 then n−1
∑n
i=1Xi also converges in L1 to 0 (by convexity of the L1-norm).

Let us put this in a lemma:

Lemma 1. For all (a, v) ∈ A× V, n−1
∑n
i=1 g

?
i (a|v) and n−1

∑n
i=1(g?i (a|v))−1 converge in prob-

ability and in L1 to G?(θ0)(a|v) and G?(θ0)(a|v)−1.

A.2 Proof of Proposition 5

The proof of Proposition 5 still relies on the facts that (a) θεn solves the martingale estimating
equation

∑n
i=1D(θε)(Oi, Zi) = 0 and (b) PQ0,g?i

D(θε0) = 0 for all i ≤ n.
Consider the following equality:

LHT ≡ 1
n

n∑
i=1

[D(θεn)(Oi, Zi)−D(θε0)(Oi, Zi)] = − 1
n

n∑
i=1

[D(θε0)(Oi, Zi)− PQ0,g?i
D(θε0)]. (33)

A Taylor expansion of LHT at θε0 first yields that

LHT =
1
n

n∑
i=1

∂
∂θεD(θε)(Oi, Zi)|θε=θε0 (θεn − θε0) + oP (‖θεn − θε0‖)

= An(θεn − θε0) +Bn(θεn − θε0) + oP (‖θεn − θε0‖)

whereAn = E[n−1
∑n
i=1

∂
∂θεD(θε)(Oi, Zi)|θε=θε0 ] andBn = n−1

∑n
i=1

∂
∂θεD(θε)(Oi, Zi)|θε=θε0−An.

The matrix An satisfies An = n−1E[
∑n
i=1 PQ0,g?i

∂
∂θεD(θε)|θε=θε0 ]. Now, for each i ≤ n,

PQ0,g?i
∂
∂θεD(θε)|θε=θε0 = S0 (34)
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where the latter matrix, defined in (21) and independent of i , is deterministic (this is due to the
weighting). Thus, An = S0. Moreover, An = S0 is invertible because its determinant equals the
product of PQ0,G?(θ0)

∂2

∂ε2 `θ0,ε|ε=ε0 < 0 and

detEQ0,G?(θ0)

[
῭
θ0,0(O)

gr(A|V )
G?(θ0)(A|V )

]
= detPQ0,gr

῭
θ0,0,

which is negative by A2. Furthermore, (34) and An = S0 (deterministic) also imply that Bn can
be rewritten as

Bn =
1
n

n∑
i=1

[ ∂
∂θεD(θε)(Oi, Zi)|θε=θε0 − PQ0,g?i

∂
∂θεD(θε)|θε=θε0 ],

and applying (componentwise) a standard law of large numbers for martingales (see for instance
Theorem 2.4.2 in (Sen and Singer, 1993)) yields that Bn converges to 0 almost surely (note that
supθε∈Θ×E ‖ ∂

∂θεD(θε)‖∞ < ∞). We emphasize that this proves the convergence in probability of
Sn to S0 as stated in the proposition. Consequently, LHT = S0(θεn− θε0) + oP (‖θεn− θε0‖) and (33)
entails √

n(θεn − θε0) = −S−1
0 Mn + oP (

√
n‖θεn − θε0‖) (35)

with Mn = n−1/2
∑n
i=1[D(θε0)(Oi, Zi)−PQ0,g?i

D(θε0)]. It mainly remains to show that Mn satisfies
a central limit theorem.

For this purpose, we apply Theorem 10 in (Chambaz and van der Laan, 2009). Define Cn =∑n
i=1 PQ0,g?i

D(θε0)D(θε0)>. It holds that

1
n
Cn =

1
n

n∑
i=1

EQ0,G?(θ0)

[
D̃(θε0)D̃(θε0)>(O)

g?i (A|V )G?(θ0)(A|V )

∣∣∣∣∣On(i− 1)

]

=
∑

(a,v)∈A×V

EQ0,G?(θ0)

[
D̃(θε0)D̃(θε0)>(O)
G?(θ0)(A|V )

1{(A, V ) = (a, v)}

]
1
n

n∑
i=1

1
g?i (a|v)

. (36)

Now, by Lemma 1, (36) implies that n−1ECn = Σ0(1+o(1)), where Σ0 (defined in (22)) is positive
definite when A4 is met. Indeed, assume on the contrary that there exists a vector u 6= 0 such
that u>Σ0u = 0. Then necessarily D̃(θε0)>u = 0 PQ0,G?(θ0)-almost surely, which contradicts A4.
Using (36) again, we also see that

1
n

(Cn − ECn) =
∑

(a,v)∈A×V

EQ0,G?(θ0)

[
D̃(θε0)D̃(θε0)>(O)
G?(θ0)(A|V )

1{(A, V ) = (a, v)}

]

×

(
1
n

n∑
i=1

1
g?i (a|v)

− E

[
1
n

n∑
i=1

1
g?i (a|v)

])

from which we deduce that n−1(Cn − ECn) converges to 0 in probability by Lemma 1. Con-
sequently, Mn converges in distribution to the centered Gaussian law with covariance matrix
Σ0. In addition, n−1

∑n
i=1D(θε0)D(θε0)>(Oi, Zi) converges in probability to Σ0. Since (a) θε 7→

D(θε)D(θε)> is differentiable at θε0, (b) its derivative is bounded, and (c) we already know that
‖θεn − θε0‖ = oP (1), yet another Taylor expansion allows to derive that Σn (defined in (23)) equals
Σ0(1 + oP (1)).

Let us go back to (35), knowing now that Mn satisfies a central limit theorem. We derive from
it that

√
n‖θεn− θε0‖ = OP (1) + oP (

√
n‖θεn− θε0‖) hence ‖θεn− θε0‖ = OP (1). Thus, (35) does entail

(20) since PQ0,g?i
D(θε0) = 0 for all i ≤ n. The stated central limit theorem on

√
n(θεn − θε0) readily

follows.
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A.3 Proof of Propositions 6 and 7

Proof of Proposition 6.

The proof of Proposition 6 is twofold and relies on the decomposition

ψ∗n − ψ0 = (ψ∗n −Ψ(Q∼n )) + (Ψ(Q∼n )− ψ0), (37)

where
Q∼n = (QW (P0), QY |A,W (θεn)). (38)

First, a continuity argument and the convergence in probability of the stacked estimator θεn
to θε0 entail the convergence in probability of Ψ(Q∼n ) to Ψ(Qθε0 ) = ψ0 (the equality holds by (i)
in Proposition 4). The conclusion follows because ψ∗n − Ψ(Q∼n ) converges almost surely to zero.
Indeed,

ψ∗n −Ψ(Q∼n ) = (PW,n − PW,0)qθεn (39)

where, for all θε ∈ Θ×E , qθε = Q̄(θε)(1, ·)− Q̄(θε)(0, ·) and, with a slight abuse of notation, PW,n
(respectively, PW,0) denotes the empirical (respectively, true) marginal distribution of W . Thus,

|ψ∗n −Ψ(Q∼n )| ≤ sup
θε∈Θ×E

|(PW,n − PW,0)qθε |, (40)

where (a) supθε∈Θ×E ‖qθε‖∞ < ∞ and (b) the standard entropy of F = {qθε : θε ∈ Θ × E} for
the supremum norm satisfies H(F , ‖ · ‖∞, ε) = O(log 1/ε) (see (van der Vaart, 1998), example
19.7). Therefore, the class F is PW,0-Glivenko-Cantelli and the right-hand side term of (40)
converges to 0 PW,0-almost surely by the Glivenko-Cantelli theorem (i.i.d framework; see for
instance Theorem 19.4 in (van der Vaart, 1998)).

Proof of Proposition 7.

The proof of (26) relies again on (37). It is easy to derive the asymptotic linear expansion of the
first term. Indeed, we can rewrite (39) as

√
n(ψ∗n −Ψ(Q∼n )) =

√
n(PW,n − PW,0)qθε0 +

√
n(PW,n − PW,0)(qθεn − qθε0 )

=
√
nPW,n(qθε0 − PW,0qθε0 ) + oP (1)

=
√
nPW,nD1(Qθε0 ) + oP (1), (41)

which holds subject to checking that
√
n(PW,n − PW,0)(qθεn − qθε0 ) = oP (1). Since the class F

introduced previously for the proof of Proposition 6 is also PW,0-Donsker, this is a consequence
of Lemma 19.24 in (van der Vaart, 1998), provided that Xn = PW,0(qθεn − qθε0 )2 converges in
probability to 0. Now, θεn converges to θε0 in probability, and the function (w, θε) 7→ qθε(w)
continuously maps W×Θ×E onto R (thus it is uniformly bounded). Consequently, Xn (which is
obviously non-negative) is upper bounded, so that it is equivalent to show that Xn converges to
0 in L1. By the Fubini theorem,

EXn =
∫
E[(qθεn(w)− qθε0 (w))2]dPW,0(w).

By the continuous mapping theorem (see Theorem 1.3.6 in (van der Vaart and Wellner, 1996)),
(qθεn(w)− qθε0 (w))2 converges to 0 in probability (hence in L1, the variables being bounded) for all
w ∈ W. Therefore, the integrand of the right-hand side integral in the previous display converges
pointwise to 0. Since it is also bounded, we conclude by the dominated convergence theorem that
EXn converges to 0. This completes the study of the first term of the decomposition (37).

Regarding the second term of the latter decomposition, we derive its asymptotic linear expan-
sion by the delta-method (see Theorem 3.1 in (van der Vaart, 1998)) from that of

√
n(θεn − θε0),

see (20). Specifically,

√
n(Ψ(Q∼n )− ψ0) =

√
n(φ(θεn)− φ(θε0)) = φ′>θε0 S

−1
0

1√
n

n∑
i=1

D(θε0)(Oi, Zi) + oP (1). (42)
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Combining (41) and (42) yields the wished asymptotic linear expansion (26) and the closed-form
expression of the related influence function IC as given in (27).

A central limit theorem for real-valued martingales (see Theorem 9 in (Chambaz and van der
Laan, 2009)) applied to (26) yields the stated convergence and validates the use of s2

n as an
estimator of the asymptotic variance. To see this, note that PQ0,g?i

IC = 0 for all i ≤ n and define
cn =

∑n
i=1 PQ0,g?i

IC2. Now we emphasize that, for every i ≤ n, firstly

PQ0,g?i
D?

1(Qθε0 )2 = PQ0,G?(θ0)D
?
1(Qθε0 )2,

secondly

2PQ0,g?i
D?

1(Qθε0 )φ′>θε0 S
−1
0 D(θε0) = 2φ′>θε0 S

−1
0 PQ0,g?i

D?
1(Qθε0 )D(θε0)

= 2φ′>θε0 S
−1
0 PQ0,G?(θ0)

[
D?

1(Qθε0 )D̃(θε0)
G?(θ0)

]
,

and thirdly

PQ0,g?i
(φ′>θε0 S

−1
0 D(θε0))2 = φ′>θε0 S

−1
0 (PQ0,g?i

D(θε0)D(θε0)>)(φ′>θε0 S
−1
0 )>.

By combining the last three equalities, we thus obtain that

1
n
cn = PQ0,G?(θ0)D

?
1(Qθε0 )2 + 2φ′>θε0 S

−1
0 PQ0,G?(θ0)

[
D?

1(Qθε0 )D̃(θε0)
G?(θ0)

]

+ φ′>θε0 S
−1
0

1
n
Cn(φ′>θε0 S

−1
0 )> (43)

where Cn was introduced in the proof of Proposition 5. Since we already showed in the latter
proof that n−1ECn = Σ0(1 + oP (1)), (43) notably yields the convergence of n−1Ecn toward

PQ0,G?(θ0)D
?
1(Qθε0 )2 + 2φ′>θε0 S

−1
0 PQ0,G?(θ0)

[
D?

1(Qθε0 )D̃(θε0)
G?(θ0)

]
+ φ′>θε0 S

−1
0 Σ0(φ′>θε0 S

−1
0 )>

= PQ0,G?(θ0)

(
D?

1(Qθε0 ) + φ′>θε0 S
−1
0

D̃(θε0)
G?(θ0)

)2

≡ s2,

which is positive when A4 is met. In addition, (43) also entails that n−1(cn−Ecn) converges to 0 in
probability, therefore implying the convergence in distribution of

√
n(ψ∗n−ψ0) to the centered Gaus-

sian distribution with variance s2 as well as the convergence in probability of n−1
∑n
i=1 IC(Oi, Zi)2

to s2. Since (a) θε 7→ D?
1(Qθε) and θε 7→ D(θε) are differentiable at θε0, (b) both with uniformly

bounded derivatives, (c) we already know that ‖θεn − θε0‖ = oP (1), and (d) φ′θε0 and S−1
0 are con-

sistently estimated by φ′n and S−1
n , yet another Taylor expansion (and the continuous mapping

theorem, see for instance Theorem 1.3.6 in (van der Vaart and Wellner, 1996)) finally yields the
stated convergence in probability of s2

n to s2, therefore completing the proof.

A.4 Proof of Proposition 8

The fact that Ψ(Qf/√n) > Ψ(Q0) for n large enough is a consequence of the expansion Ψ(Qf/√n) =
Ψ(Q0)+PQ0,G?(θ0)D

?(PQ0,G?(θ0))f/
√
n+o(1/

√
n), which holds because Ψ is pathwise differentiable

at PQ0,g (for any g) relative to the maximal tangent space, with efficient influence curve D?(Q0, g).
The rest of Proposition 8 is a corollary of the following lemma.

Lemma 2. Let Λn be the log-likelihood ratio of the (Qf/√n,g?n) experiment relative to the (Q0,g?n)
experiment. Under (Q0,g?n), the vector (

√
n1(ψ∗n1

− Ψ(Q0)), . . . , (
√
nK(ψ∗nK − Ψ(Q0)),Λn) con-

verges in law to the Gaussian distribution with mean (0, . . . , 0,− 1
2PQ0,G?(θ0)f

2) and covariance
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matrix (
PQ0,G?(θ0)IC

2 × C PQ0,G?(θ0)ICf × (
√
p1, . . . ,

√
pK)>

PQ0,G?(θ0)ICf × (
√
p1, . . . ,

√
pK) PQ0,G?(θ0)f

2

)
.

In particular, the (Qf/√n,g?n) and (Q0,g?n) experiments are mutually contiguous.

The limiting distribution of (T1, . . . , TK) under (Q0,g?n) is easily derived from Lemma 2. Le
Cam’s third lemma (see Example 6.7 in (van der Vaart, 1998)) solves the problem of obtaining
the limiting distribution of (T1, . . . , TK) under (Qf/√n,g?n) from that under (Q0,g?n). Only the
asymptotic means are different. We do not repeat the proof here, as it is exactly the same (up
to some minor variations in notation) as the proof of Lemma 5 in (Chambaz and van der Laan,
2011).

Proof of Lemma 2.

Since f is bounded and EPQ0 ,G
?(θ0)[f(O)|A,W ] = 0 (here, one could equivalently use the no-

tation EQ0), we can assume without loss of generality that the fluctuation {Q0(h) : h ∈ H} is
characterized by

dQ0(h)
dQ0

= (1 + hf(O))

for all h ∈ H = (−1/‖f‖∞, 1/‖f‖∞). Let us denote by qn and q0 the conditional densities of Y
given (A,W ) under Qf/√n and Q0.

The log-likelihood ratio Λn =
∑n
i=1 log qn/q0(Oi), by conditional independence of O1, . . . , On

given ((A1,W1), . . . , (An,Wn)) and because the marginal distribution of W is the same under
Qf/

√
n as under Q0, (see (4) and note that the g?i (Ai|Wi) factors cancel out). The fluctuation is

chosen in such a way that qn/q0 = (1+f/
√
n), hence Λn =

√
n
−1∑n

i=1 f(Oi)− 1
2n
−1
∑n
i=1 f

2(Oi)+
n−1

∑n
i=1 f

2(Oi)R(f(Oi)/
√
n), where the function R is characterized by log(1 + x) = x − 1

2x
2 +

x2R(x) (all x > −1). In particular, R is increasing and R(x)→ R(0) = 0 when x→ 0. Since f is
bounded, the expansion is valid for n large enough. Moreover, the last term satisfies∣∣∣∣∣ 1n

n∑
i=1

f2(Oi)R(f(Oi)/
√
n)

∣∣∣∣∣ ≤ 1
n

n∑
i=1

f2(Oi)×R(‖f‖∞/
√
n),

so that if n−1
∑n
i=1 f

2(Oi) = OP (1) then it is oP (1). Furthermore, the Kolmogorov law of large
numbers for martingales implies that n−1

∑n
i=1 f

2(Oi) = n−1
∑n
i=1 PQ0,g?i

f2+oP (1) = PQ0,ḡ?nf
2+

oP (1), where ḡ?n = n−1
∑n
i=1 g

?
i . Denote Var(f)(A,W ) = EQ0 [f2(O)|A,W ]. We have that

PQ0,ḡ?nf
2 ≡ EQ0,ḡ?n [f2(On)|On(n− 1)] = EQ0,ḡ?n

[Var(f)(A,W )(On)|On(n− 1)]
= EQ0 [ḡ?n(1|V )Var(f)(1,W ) + ḡ?n(0|W )Var(f)(1, V )|On(n− 1)]

for V the relevant subvector of W upon which each g?i depends. By Lemma 1, ḡ?n converges
in probability to G?(θ0). Consequently, the continuous mapping theorem (see Theorem 1.3.6 in
(van der Vaart and Wellner, 1996)) yields that PQ0,ḡ?nf

2 = PQ0,G?(θ0)f
2 + oP (1) = OP (1). In

summary, we obtain the following asymptotic linear expansion:

Λn =
1√
n

n∑
i=1

f(Oi)−
1
2
PQ0,G?(θ0)f

2 + oP (1). (44)

Introduce now Z ′i = (1{i ≤ n1}, . . . ,1{i ≤ nK}) and the bounded (and measurable) function
F such that F (Oi, Zi, Z ′i) = (Z ′iIC(Oi, Zi), f(Oi)). We show that Mn = n−1

∑n
i=1[F (Oi, Zi, Z ′i)−

PQ0,g?i
F ] = n−1

∑n
i=1 F (Oi, Zi, Z ′i) (since PQ0,g?i

F = PQ0,g?i
f = 0 for all i ≤ n) satisfies a central

limit theorem. The proof is very similar to the corresponding part of proof of Lemma 5 in
(Chambaz and van der Laan, 2011), hence we only give an outline, focusing on the differences.
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First, it holds for every 1 ≤ k, l ≤ K that n−1
∑nk
i=1 PQ0,g?i

ICf = pkPQ0,G?(θ0)ICf + oP (1),
n−1

∑nk∧nl
i=1 PQ0,g?i

IC2 = pk∧lPQ0,G?(θ0)IC
2 + oP (1), and n−1

∑n
i=1 PQ0,g?i

f2 = PQ0,G?(θ0)f
2 +

oP (1). This entails that the matrix En−1
∑n
i=1 PQ0,g?i

F>F converges to(
PQ0,G?(θ0)IC

2 × (pk∧l)k,l≤K PQ0,G?(θ0)ICf × (p1, . . . , pK)>

PQ0,G?(θ0)ICf × (p1, . . . , pK) PQ0,G?(θ0)f
2

)
,

which is positive definite if and only if its determinant is positive. The latter determinant equals a
positive constant times [PQ0,G?(θ0)f

2 − (PQ0,G?(θ0)ICf)2/PQ0,G?(θ0)IC
2], which is positive too by

the Cauchy-Schwarz inequality (f is not proporional to D?(PQ0,G?(θ0))). Therefore, Theorem 8 in
(Chambaz and van der Laan, 2011) applies and

√
nMn converges in law to the centered Gaussian

distribution with the covariance matrix given in the above display. The conclusion readily follows.
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