

Falcon/Kyber and Dilithium/Kyber Network Stack on Nvidia’s
Data Processing Unit Platform
Citation for published version (APA):
Lawo, D., Frantz, R., Cano Aguilera, A., Arnal I Clemente, X., Podleś, M., Imana, J. L., Tafur Monroy, I., & Vegas
Olmos, J. J. (2024). Falcon/Kyber and Dilithium/Kyber Network Stack on Nvidia’s Data Processing Unit Platform.
IEEE Access, 12, 38048-38056. Article 10462111. https://doi.org/10.1109/ACCESS.2024.3374629

Document license:
CC BY

DOI:
10.1109/ACCESS.2024.3374629

Document status and date:
Published: 07/03/2024

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 14. Jul. 2024

https://doi.org/10.1109/ACCESS.2024.3374629
https://doi.org/10.1109/ACCESS.2024.3374629
https://research.tue.nl/en/publications/798408cf-a13c-4ada-b578-5ddc4c2c633a

Received 17 February 2024, accepted 5 March 2024, date of publication 7 March 2024, date of current version 15 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3374629

Falcon/Kyber and Dilithium/Kyber Network Stack
on Nvidia’s Data Processing Unit Platform
D. C. LAWO 1,2, R. FRANTZ1,2, A. CANO AGUILERA1,2, (Graduate Student Member, IEEE),
X. ARNAL I CLEMENTE1, M. P. PODLEŚ1,2, JOSÉ L. IMAÑA 3,
I. TAFUR MONROY 1,2, (Senior Member, IEEE), AND J. J. VEGAS OLMOS 2
1Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
2Software Architecture, NVIDIA Corporation, Tel Aviv-Yafo 6121002, Israel
3Department of Computer Architecture and Automation, Complutense University of Madrid, 28040 Madrid, Spain

Corresponding author: D. C. Lawo (d.c.lawo@tue.nl)

This work was supported in part by the Quantum Resistant Communications (QUARC): Advance Learning in Applied PQC Training
Project by the European Union Horizon Europe Research and Innovation Program within the Framework of Marie Skłodowska-Curie
Actions under Grant 101073355, and in part by the Collaborative edge-cLoud continuum and Embedded AI for a Visionary industry of thE
futuRe (CLEVER) Project by the Key Digital Technologies Joint Undertaking Program under Grant 101097560.

ABSTRACT Commercially available quantum computers are expected to reshape the world in the near
future. They are said to break conventional cryptographic security mechanisms that are deeply embedded
in our today’s communication. Symmetric cryptography, such as AES, will withstand quantum attacks as
long as the key sizes are doubled compared to today’s key lengths. Asymmetric cryptographic procedures,
e.g. RSA, however are broken. It is therefore necessary to change the way we assure our privacy by
adopting and moving towards post-quantum cryptography (PQC) principles. In this work, we benchmark
three PQC algorithms, Falcon, Dilithium, and Kyber. Moreover, we present an implementation of a PQC
stack consisting of the algorithms Dilithium/Kyber and Falcon/Kyber which use hardware accelerators for
some key functions and evaluate their performance and resource utilization. Regarding a classic server-client
model, the computational load of the Dilithium/Kyber stack is distributed more equally among server and
client. The stack Falcon/Kyber biases the computational challenges towards the server, hence relieving the
client of performing costly operations. We found that Dilithium’s advantage over Falcon is that Dilithium’s
execution is faster while the workload to be performed is distributed equally among client and server,
whereas Falcon’s advantage over Dilithium lies within the small signature sizes and the unequally distributed
computational tasks. In a client server model with a performance limited client (i.e. Internet-of-Things - IoT
- environments) Falcon could proof useful for it constrains the computational hard tasks to the server and
leaves a minimal workload to the client. Furthermore, Falcon requires smaller bandwidth, making it a strong
candidate for deep-edge or IoT applications.

INDEX TERMS Data processing units, Dilithium, falcon, Kyber, post-quantum cryptography.

I. INTRODUCTION
Since several years now, quantum computing is a subject
of intense research [1]. A commercial quantum computer is
expected to be available within the upcoming years while
prototype systems [2] or digital annealers [3] as well as
quantum annealers [4] that operate on similar terms are
already available. That poses a severe thread to our nowadays

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Shu .

used communication systems based on classic cryptographic
infrastructure and methodologies. Asymmetric cryptography,
such as for example RSA, is said to be broken by a quantum
processor [5]. Symmetric cryptography, e.g. AES, is expected
to be quantum safe as opposed to asymmetric cryptography
as long as its key size is doubled [6]. The currently used
asymmetric cryptography algorithms need to be replaced
by quantum secure algorithms or so-called post-quantum
cryptography which are developed specifically to be resilient
against quantum computers.

38048

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0001-5966-0682
https://orcid.org/0000-0002-4220-4111
https://orcid.org/0000-0002-2935-7682
https://orcid.org/0000-0002-6796-1602
https://orcid.org/0000-0002-6700-9347

D. C. Lawo et al.: Falcon/Kyber and Dilithium/Kyber Network Stack on Nvidia’s DPU Platform

As a result of this reality, Fig. 1 shows the narrative
on which future communication networks will most likely
evolve: deep-edge [7] verticals that process data employing
confidential computing (CC) [8] techniques locally and
communicate securely to edge nodes using PQC. The
edge nodes employ not only confidential computing, but
software defined perimeters (SDP) [9], [10], [11] to isolate
processes, utilize quantum resilient communications and
smart orchestrators [12] to distribute workloads federatively.
When necessary, they connect to the cloud which also
operates under the same principles.

SDPs and CC are both related to improving the security
of cloud computing environments. SDPs are a security
architecture that creates a secure, isolated network connection
between the user and the application. This connection
is dynamically established using cryptographic techniques.
Access to the application is granted only to authorized users.
SDPs, which may include Trust Zones [13], are fundamental
in some verticals where the infrastructure is massively
shared by different, if not multiple, stakeholders. In cellular
networks, to give an example, SPDs are normally leveraged
to isolate data traffic from signalling traffic and Operation
and Maintenance (OAM) traffic [14], or to support multi-
tenancy [15]. This leads to the core of the issue investigated
in this work: provided that in some verticals PQC encryption
will run from the deep edge (mobile user) to the cloud, how
do we select the most suitable PQC algorithm depending
on the resources available by the owners of each of the
communication channels?

Confidential computing is a set of technologies and
practices that protect data in use, ensuring that sensitive
data is never exposed, not even to the cloud provider [8].
CC technologies use hardware-based encryption to isolate
and protect data in memory and prevent unauthorized
access. The technology therefore uses trusted execution
environments and dedicated hardware [16]. While we envi-
sion a transition from non-confidential computing towards
confidential computing, we include in Fig. 1 an intermediate
state where CC nodes and non-CC nodes coexist. SDPs and
CC can be used together to enhance the security of cloud
computing environments. SDPs can provide an additional
layer of security by ensuring that only authorized users can
access the application [11], while CC can protect the data
that is being processed within the application. Together,
these technologies can help mitigate the risks associated with
data breaches and other cyber-attacks. They need, however,
to integrate PQC systems, and that includes the possibility of
different PQC technologies co-existing on end-to-end links
that span from the deep edge all the way into the cloud data
center.

The overall goal of enabling quantum and cyber resilient
infrastructures offering an edge-cloud continuum [17] sup-
porting heavy AI-based workloads is achieved through
the interconnection of diverse processing building blocks.
A heterogeneous fabric that is dynamic, that changes over
time through upgrades and replacements. Figure 2 shows this

edge-cloud continuum: deep edge nodes are operating under
limited connectivity and low power conditions. Those can be
mobile devices supporting fintech applications, autonomous
robots in factory environments, or connected cars that operate
under similar terms like [18], to name a few examples.
However, this does not preclude local processing power
for AI processes and establishment of quantum resilient
links. These deep edge nodes contain both communication
accelerators as well as processing units upgradeable through
PQC-based processes. Since the processing capabilities of
those deep edge nodes are low, they can access edge
computing platforms. The edge computing platform may be
highly dense edge micro data centers or lite edge nodes;
regardless of the entrance point, processes can be offloaded
through light containers [19]. In addition, cloud fabrics can
be connected to the edge platform. All these links are based
on PQC principles, creating a quantum resilience for data-
in-transfer. At the edge platform, processing blocks operate
under confidential computing principles, in which trust is
secured at both HW/SW level. In addition, SDP can be
created to cluster CC-based processors.

In this work, we investigate experimentally different
PQC algorithms when deployed on high-capacity network
interface cards, including hardware accelerators to offload
some key functions. The herein presented comparison is
done in order to discern the resources needed for the PQC
algorithms Kyber [20], Dilithium [21], and Falcon [22].
Hence, designers can be equipped better for their choice of
system depending on the communication channel segment
they are deploying their application on. This is achieved
by implementing the PQC software stack for key sharing
between a server and a client. This stack consists of two
parts, a PQC signature algorithm for authentication of the
partners and a PQC key exchange mechanism (KEM). The
implemented signature algorithms are Dilithium [21] and
Falcon [22]. Furthermore, the PQC KEM is Kyber [20]
as it is the only KEM left in the NIST competition [23].
Fundamentally, Dilithium’s security is based on the hardness
of lattice problems over module lattices [24]. It builds on
learning-with-errors (LWE) and Short Integer Solution (SIS)
problems. Like Kyber, another algorithm used in this
work, Dilithium is a part of the Cryptographic Suite
for Algebraic Lattices (CRYSTALS). Similarly, Falcon’s
security roots on NTRU-lattices [22]. Kyber relies on the
challenge of solving learning-with-errors problems over
module lattices [20] in order to facilitate the secure digital key
exchange [25].

A. RELATED WORKS
There has been extensive work on different implementations
of PQC algorithms using a variety of different base platforms.
Some of the works focus on using special hardware platforms
such as FPGA [26], [27], GPU [28], RISC-V [29], [30] or
combination of platforms [31] to accelerate computationally
heavy mathematical parts of algorithms. Some parts of the
PQC algorithms, e.g. Number Theoretic Transform (NTT),

VOLUME 12, 2024 38049

D. C. Lawo et al.: Falcon/Kyber and Dilithium/Kyber Network Stack on Nvidia’s DPU Platform

FIGURE 1. Overall vision of the overlay of communication network segments and different emerging key applications. Cloud computing is foreseen to
massively employ confidential computing [8], including trusted execution environments [16], and software-defined perimeters [9], [10], [11] to isolate AI
workloads on shared infrastructure. We anticipate a shift from non-confidential computing to confidential computing, incorporating transitional stages
that encompass both non-confidential and confidential computing nodes. Cloud platforms are interconnected through edge computing platforms with
different degrees of processing power and are able to implement confidential computing too. Both cloud and edge computing platforms rely on a large
and dynamic number of point-to-point connections which will rely on PQC protocols.

can be parallelized and therefore benefit from platforms that
can provide heavy parallelization, such as GPUs or FPGAs.

In [32], the authors implement Falcon on a FPGA.
Deploying Falcon on a FPGA is a challenge because
Falcon uses floating point operations and recursive functions
which require modifications before they can be placed in
hardware. The authors state that their implementation of
Falcon’s key generation shows a high latency compared to
an Intel I7 software-based implementation while having a
high hardware utilization footprint [32]. They therefore state
that implementing Falcon’s key generation on a FPGA is not
attractive. Furthermore, they demonstrate that implementing
the signing process, as well as the verification process, on a
FPGA could be beneficial for the latency can be significantly
reduced compared to a pure software-based solution.

Other works focus on better software implementa-
tions that leverage special features of general purpose
computers [33], [34]. Dilithium and Kyber, for example,
offer implementations [20], [21] that take advantage of the
Advanced Vector Extensions operations (AVX2) [35]. The
optimized versions of Dilithium and Kyber that leverage
AVX2 achieve a significant speedup [20], [21].
This paper focuses on the reference implementations of the

PQC algorithms Falcon, Dilithium, and Kyber on Nvidia’s
data processing unit platform. Compared to mentioned work,
this paper presents the first in-line acceleration using DPUs
at data center linerates.

II. EXPERIMENTAL SETUP
This section describes the experimental setup with that
the herein presented results are obtained. It is similar to
the one presented in [36], but expanding the software
stack to the new PQC algorithms under evaluation. The
schematics of the experimental setup can be seen in Fig. 3.
Two Dell PowerEdge R7501 host each one NVIDIA Blue-
Field 2 MBF2M516A-CEEO2 data processing unit (DPU)
connected point-to-point via copper cable. Each DPU is
capable of transmitting and receiving data at 100 Gb/s
linerate. The DPUs are connected to their respective server
through peripheral component interconnect express (PCIe)
bridges. Eight on-board ARMv8 processor cores clocked
at 2750 MHz are part of each DPU. The goal of the
experiment is to share keys between server A / DPU A
and server B / DPU B shown in Fig. 3. For this purpose
we use Falcon/Kyber and Dilithium/Kyber software stacks.
Once both communicating parties have retrieved the key,
they communicate over symmetric encryption which is said
to be quantum resistant [6]. Both DPUs are equipped with
hardware accelerators for this purpose, and the software
stack employs them throughout the calling of the different
processes. It is worth pointing out that although there are

1https://i.dell.com/sites/csdocuments/Product_Docs/en/poweredge-r750-
spec-sheet.pdf

2https://docs.nvidia.com/networking/display/bluefield2DPUENUG/
specifications

38050 VOLUME 12, 2024

D. C. Lawo et al.: Falcon/Kyber and Dilithium/Kyber Network Stack on Nvidia’s DPU Platform

FIGURE 2. Confidential Computing processing blocks can be clustered
through Software Defined Perimeters while all blocks are securely
exchanging data using PQC protocols. These large cloud computing
platforms are then connected to edge computing platforms of different
sizes which are interconnected through communication channels using
PQC encrypted protocols as well. Depending on communication scenario,
the type of node, the devices used for communication, or other factors,
the ideally employed PQC algorithm can differ.

reports on implementations of hardware accelerators for
Dilithium [29] and Falcon [30], this paper presents the first
in-line acceleration at data center linerates.

A. IMPLEMENTATION
We first start the protocol by establishing a channel between
client and server using openssl [37]. For the initial step
of authentication we use self-signed certificates for both
client and server. In case the protocol was to be used
for real-world use cases, the self-signed certificates would

FIGURE 3. Experimental Setup for establishing a PQC encrypted
handshake based on either Dilithium/Kyber or Falcon/Kyber. Both DPUs,
A and B, are hosted in two separate servers and connected to them over
PCIe. The DPUs are interconnected point-to-point by a copper wire
connection capable of providing up to 100 Gb/s.

need to be replaced by real certificates provided by a
certificate authority [38]. Then, depending on the version of
the software stack, we use the PQC signature schemes Falcon
or Dilithium in order to benchmark them in their various
security levels. Subsequently, we exchange keys using Kyber.
For all three PQC schemes we use their reference imple-
mentation application programming interfaces (APIs) of
Falcon [39], Dilithium [40], and Kyber [41]. Both reference
implementations of Dilithium and Kyber are based on a
library that implements the FIPS-202 algorithms [42] such
as NTT for multiplication of polynomials with coefficients
mod integers and barret and montgomery reductions for
modular operations. We implement the software stack by
using the reference implementation of the algorithms. For
benchmarking purposes the algorithms Falcon, Dilithium,
and Kyber are executed repeatedly for 10.000 times to
gain statistically relevant results. In the real-world scenario,
the algorithms are executed only once. After the signature
scheme and the key exchange, we have the shared key from
the openssl session and the PQC key exchanged using Kyber.
Then we mix the openssl shared key with the PQC keys
by performing an XOR operation. This way we ultimately
retrieve a secure ephemeral 256-bit key that is used for
AES-256 symmetric key encryption [6] as explained in [43].

III. RESULTS
All algorithms consist of multiple processing intensive
parts. In this part we are analysing the main functions of
Falcon’s [22], Dilithium’s [21] and Kyber’s [20] reference
implementations. The main three steps of the signature algo-
rithms Falcon and Dilithium are key generation, verification,
and sign. Key generation and signing are done by the server.
It is the client’s responsibility to ensure the validity of the
server’s signature. This step is called verification.

A. BENCHMARK: FALCON
Figure 4 shows the reference implementation of Falcon
presented in [22], profiled in terms of cpu cycles that are

VOLUME 12, 2024 38051

D. C. Lawo et al.: Falcon/Kyber and Dilithium/Kyber Network Stack on Nvidia’s DPU Platform

required per execution. Falcon is one of three remaining sig-
nature algorithms in the NIST competition [23]. Falcon relies
on the theoretical foundation developed by Gentry, Peikert,
and Vaikuntanathan for lattice-based signature schemes [44].
This framework is applied to NTRU lattices, utilizing a
trapdoor sampler known as ‘‘fast Fourier sampling.’’ The
fundamental challenge addressed is the short integer solution
problem (SIS) over NTRU lattices [22], [45].
As signature algorithm Falcon comprises the three main

subroutines key generation, signing, and verification [22].
Falcon 512 has a public key size of 897 bytes and a signature
size of 666 bytes while achieving NIST security level 1.
Falcon 1024 satisfies NIST level 5 with a public key size
of 1793 bytes and a signature size of 1280 bytes [22].
Falcon 256 is not considered NIST secure. Regardless,
it is included in the reference implementation for research
purposes. Therefore, it is included in Fig. 4 as a reference
but excluded in the detailed comparison.

During the key generation the algorithm employs
AES-generated pseudo-random numbers as seeds to initialize
SHAKE-256 for calculating random polynomials with
a Gaussian distribution. If the squared norm of these
polynomials is beyond bounds, or if the orthogonalized vector
norms deviate, the algorithm discards them and generates
new polynomials. The Fast-Fourier Transform (FFT) is
utilized to compute orthogonalized vector norms. Using
the polynomials, the algorithm generates a public key
polynomial. The key generation component solves the NTRU
equation to compute the key polynomials.

As shown in Fig. 4, the computationally most challenging
part is the key generation. This procedure of Falcon is
by almost two orders of magnitude slower than all other
functions of the algorithm. Upgrading security from Falcon
512/NIST 1 to Falcon 1024/NIST 5 comes with a penalty
of a 93% increase of required cpu clock cycles for the key
generation. Signing takes 69% more clock cycles for Falcon
1024 compared to Falcon 512. The verification of a signature
requires 70% more clock cycles for the NIST 5 version of
Falcon confronted with the NIST 1 version. Moreover, it is
clear to see that the step of the key generation is subject to the
largest standard deviation compared to the other functions.

The functions A, B, C, D, E, and F benchmarked in Fig. 4
are performed by the server while the function G and H are
executed by the client.

B. BENCHMARK: DILITHIUM
Dilithium’s security standards 2, 3 and 5 vary in size of
their corresponding public key and signature size. Dilithium 2
has a public key size of 1312 bytes and a signature size of
2420 bytes. Using Dilithium 3 implies a public key size of
1952 bytes and a signature size of 3293 bytes. The highest
security level of the algorithm, Dilithium 5, has a 2592 bytes
public key and a 4595 bytes signature [21].
The herein tested implementation of Dilithium uses

SHAKE for matrix expansion, vector masking, and sampling
of the secret polynomials. A version of Dilithium’s reference

FIGURE 4. CPU performance of main Falcon functions conducted on DPU.
The functions’ names have been kept as in the reference implementation:
A = keygen, B = expand private key, C = sign without expanded key,
E = sign with expanded key, G = verify. Additionally, the functions D, F,
and H are respectively identical to the functions sign (C), sign with
expanded key (E), and verify (G) with constant-time hash-to-point.

FIGURE 5. Benchmark of Dilithium’s main functions in required cpu cycles
per execution. A = Verify, B = Sign, C = Keypair, D = poly_challenge,
E = poly_pointwise_montgomery, F = poly_ntt, G = poly_uniform_
gamma1, H = poly_uniform_eta, and I = polyvec_matrix_expand.

implementation using AES for the aforementioned steps
exists. However, this version is not considered here since it
requires AVX2 operations and the DPU’s ARM cores do not
support AVX2. Therefore, during the key generation SHAKE
is used. Moreover, NTT is employed during the signature
generation [21], [45].

As with Falcon in the previous section, here we benchmark
Dilithium’s reference implementation [21] in the unit cpu
cycles. The results of this experiment are shown in Fig. 5.
In terms of verification, upgrading the security level from
Dilithium 2 to Dilithium 3 comes with a 45% penalty. From
NIST level 3 to NIST level 5 the costs are increased further
by 47%. Signing rises the required clock cycles for upgrading
Dilithium 2 to Dilithium 3 by 46% and an even further 20%
increase from Dilithium 3 to 5.

Generating a key pair costs a 57% difference in required
clock cycles while increasing the security level from 2 to 3.
An additional 42% are needed if going up from Dilithium 3
to Dilithium 5. Signing is the function that has the largest
standard deviation compared to other functions of Dilithium.

38052 VOLUME 12, 2024

D. C. Lawo et al.: Falcon/Kyber and Dilithium/Kyber Network Stack on Nvidia’s DPU Platform

The functions A, and E benchmarked in Fig. 5 are executed
by the client. B, C and F are performed by the server. D, G,
and I are used by both the server and the client.

C. BENCHMARK: KYBER
Kyber is the only remaining KEM in the NIST compe-
tition [23] and it will most likely be the main algorithm
for the key exchange stage of PQC-based communication.
As such, the reference implementation includes Kyber 512,
768 and 1024 [20] where the user can select this segment’s
security level of the key exchange. The main routines of
Kyber are called key generation, key encapsulation, and
key decapsulation. During the key generation, a key pair
consisting of a public key and a private key is generated.
The public key is sent openly over a network while the
private key is kept privately at all time. The purpose of the
key encapsulation is to encrypt the key to be shared with
the public key. Ultimately, the key decapsulation serves for
retrieving the key that had been encrypted with the public key
in the encapsulation step.

Kyber’s three security levels employ different public key,
private key and cipher text sizes. The lowest security level,
Kyber 512, has a 1632 bytes private key, an 800 bytes public
key, and a 768 ciphertext. Kyber 768 requires a 2400 bytes
private key, a 1184 bytes public key, and a 1088 bytes
ciphertext. Kyber 1024, the highest security level, uses a
3168 bytes private key, a 1568 bytes public key, and a
1568 bytes cyphertext [20]. Like Dilithium, Kyber uses NTT
to achieve its security. The algorithm performs arithmetic
operations on 256 bit polynomials over a polynomial ring.
Regardless of the security level, the polynomials’ size and
modulus remain unchanged. Only the number of polynomials
involved grows with increasing security level [20].

The results of the benchmark test are shown in Fig. 6.
Comparing the three main routines of each Kyber NIST
level in terms of the key pair generation reveals a 47%
penalty when upgrading from Kyber 512 to Kyber 768.
Further enhancing the security to Kyber 1024 comes with
a cost of 41% more required clock cycles compared to
Kyber 768. Confronting the key encapsulation of Kyber
512 with Kyber 768 shows that 26% more cpu cycles are
needed for Kyber 768. Moreover, advancing towards Kyber
1024 requires 37% more clock cycles. A security level
upgrade of Kyber 512 to Kyber 768 costs 41% for the
key decapsulation routine. Choosing the highest NIST level
of Kyber is penalized with an additional 34% during the
decapsulation of a key compared to Kyber 768. The functions
A, C, and D benchmarked in Fig. 6 are executed by the server.
B and E are performed by the client. F, G, and H are used by
both the server and the client.

IV. COMPARISON: FALCON DILITHIUM
In Fig. 7, the main three functions of signature algorithms,
key generation, sign, and verify, have been repeatedly
executed over a given time. Generally speaking, the com-
putational load that needs to be performed for Dilithium

FIGURE 6. CPU performance of main Kyber functions. Using the labeling
of the reference implementation [20], the functions represented here
are: A = kyber_decaps, B = kyber_encaps, C = kyber_keypair,
D = indcpa_dec, E = indcpa_enc, F = polyvec_basemul_acc_montgomery,
G = INVNTT, and H = NTT.

FIGURE 7. Comparison between the main three parts, key generation,
sign, and verify, of Dilithium (blue) and Falcon (red). The step ‘verify’ is
performed by the client machine while the server executes the ‘keygen’
and the ‘sign’ steps. Dilithium has three NIST security levels, 2, 3 and 5
where Falcon has two Nist security levels, 1 and 5. Falcon’s key
generation is slower by several orders of magnitude compared to
Dilithium. Moreover, Falcon’s signing procedure is significantly slower
than Dilithium’s equivalent. The speed of Falcon’s verification procedure
is comparable to Dilithium’s verification.

by client and server is similar for both, server and client.
Regarding Falcon, however, the computational load distribu-
tion is different. Falcon’s server has to perform very intense
computational tasks, especially for the key generation. The
client only computes the verification that is computationally
less demanding compared to the key generation and signing
which are the server’s responsibility. This implies different
use cases for Dilithium compared to Falcon. It is notable that
increasing Dilithium’s security level from 2 to 3 to 5 comes
at a small computational penalty. Falcon’s key generation is
extremely slow compared to Dilithium. However, that step is
usually performed on a computationally powerful machine.
Moreover, that step does not need to be done very often as
the keys are generated once and then distributed to the client.
Both algorithms’ working principles, as well as their security
levels, are described in [46] in further detail.

VOLUME 12, 2024 38053

D. C. Lawo et al.: Falcon/Kyber and Dilithium/Kyber Network Stack on Nvidia’s DPU Platform

FIGURE 8. Network throughput of PQC algorithms Falcon, Dilithium, and
Kyber. A = Falcon 512, B = Falcon 1024, C = Dilithium 2, D = Dilithium 3,
E = Dilithium 5, F = Kyber 512, G = Kyber 768, and H represents Kyber
1024. The network load required by the execution of Falcon 512 and
Falcon 1024 is significantly lower than Dilithium’s and Kyber’s network
load. It is evident that Dilithium generastes a higher network throughput
than Falcon.

A. NETWORK LOAD
As presented, it is faster to execute Dilithium as signature
algorithm than Falcon. Hence, the generated network load
resulting from this is higher. This can be seen in Fig. 8.
The throughput of Falcon, however, is significantly lower by
about the factor of two orders of magnitude. In data centers
where the higher network load of Dilithium is negligible
compared to the available network capacity, Falcon is less
suitable thanDilithium.Moreover, in the data center scenario,
the equal computational load distribution has no impact since
client and server are likely to be both powerful machines.
Considering mobile or IoT applications where the systems’
priorities could be shifted towards lower network and pro-
cessing loads on the client side, Falcon offers an interesting
alternative to Dilithium. The computationally most expensive
parts of the algorithm, the key generation, and the signature,
are done on the server sidewhile the client only has to perform
the verification. The client requirements in terms of network
bandwidth or processing power are very small compared
to Dilithium. Especially in battery powered clients, the low
computational requirements of the verification combined
with a low network load is an advantage.

B. COMPARISON: IMPLEMENTATIONS ON
OTHER HARDWARE PLATFORM
In this section we compare the results that we are pre-
senting in this work to implementations reported on other
hardware platforms. This can be seen in Fig. 9. In [32]
the authors implement Falcon 512 and Falcon 1024 on a
Zynq Ultrascale+ FPGA ZCU1043 from AMD-Xilinx. The
authors use the Falcon reference C-code [22] submitted to
the NIST PQC standardization process [23] for their work.

3https://www.xilinx.com/products/boards-and-kits/zcu104.html#
information

TABLE 1. Number of clock cycles required per function reported in [32].
As the latency of the key_gen depends on a random seed, in [32], only the
latency including the standard deviation is indicated. However, the
thereof resulting number of clock cycles can be easily derived using the
operating clock frequency.

To achieve their results, the authors use the frameworks
Vivado and Vitis-HLS that are provided by AMD-Xilinx.
The execution time of the keypair generation, signature, and
verification is reported in the paper in the unit of ms. For
the purpose of comparability, we have converted the values
reported in [32] into executions per second. Moreover, as the
advantage of a hardware implementation lies not only within
the potential gain in speed but also in the deterministic
execution, Table 1 shows clock cycles required for the
execution of Falcon’s functions as presented in [32]. The
results in executions per seconds are shown in Fig. 9 in
red. It can be seen that verification achieves a speedup with
respect to the software-based implementation of the DPU and
the Raspberry Pi 4. However, implementing the signature and
the key generation of Falcon on a FPGA is a very hard task
since these parts of the algorithm uses floating-point numbers
and recursive functions which makes it a challenge from a
hardware design point of view [32]. Therefore, the obtained
results for the signature and key generation are considerably
slower compared to the DPU and the Raspberry PI 4 as it can
be seen in Fig. 9.

In [47], the authors present an implementation of Dilithium
and Kyber on a Xilinx Ultrascale+ ZCU102 platform.4 With
a performance-optimized strategy using the Vivado 2019.1
tool they achieve 270 MHz clock frequency on the FPGA.
The authors call the architecture that they propose KaLi.
It is specifically tailored for ASIC platforms and it can
perform all steps of all security levels of Dilithium and
Kyber. Table 2 shows their results for each Dilithium security
level and function in terms of clock frequency, required
clock cycles, and therefore resulting latency in µs. Their
results can be seen in Table 2. As the authors report the
latency in µs, we converted the latency into executions per
seconds for comparability and included the results in Fig. 9
in dark red. The hardware implementation presented in [47]
outperforms all software-based solutions presented in this
work. Comparing Table 1 with Table 2 demonstrates that
the implementation of Dilithium [47] yields more executions
per second with respect to the implementation of Falcon
presented in [32].

In [48] the authors report an implementation of Falcon 512,
Falcon 1024, Dilithium 2, Dilithium 3 and Dilithium 5 on

4https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.
html#information

38054 VOLUME 12, 2024

D. C. Lawo et al.: Falcon/Kyber and Dilithium/Kyber Network Stack on Nvidia’s DPU Platform

TABLE 2. Number of clock cycles required per function reported in [47].
The clock frequency is indicated to be 270MHz for all functions and
security levels. A higher clock frequency combined with a lower required
count of clock cycles per execution yields an overall lower latency per
execution compared to the implementation of Falcon presented in [32].

FIGURE 9. Comparison of implementation of the PQC signature
algorithms Falcon and Dilithium on different hardware platforms:
Raspberry Pi 4 [48], represented in blue, Nvidia’s DPU in cyan,
Falcon 512/1024 on a Xilinx Ultrascale+ ZCU 104 FPGA [32] in red, and
Dilithium 2/3/5 on a Xilinx Ultrascale+ ZCU 102 FPGA [47] in dark red.
F 512/1024 stands for Falcon 512/1024. D2/3/5 represent
Dilithium 2/3/5. In our software stack the key generation and sign
processes are performed by the server while the client executes the
verification.

a Raspberry Pi 4 board5 with an 1.5GHz Quad-core ARM
64-bit processor equipped with 4GB of RAM. As operating
system a 64-bit Ubuntu 21.04 is installed. The authors report
the execution time of the keypair generation, signature, and
verification in ms. To achieve their results, the authors use the
OpenQuantumSafe6 project with its C-library liboqs for their
PQC examinations. In their work, the authors do not disclose
the number of clock cycles that were required for each step.
However, this value can be deduced using the processor’s
clock frequency divided over the number of executions per

5https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
specifications/

6https://openquantumsafe.org/

second. For the purpose of comparability, we have converted
the results reported in [48] from latency in µs per execution
into operations per second. The Raspberry Pi 4 performs
well during Falcon’s key generation according to the values
denoted in [48] with respect to the Ultrascale+ ZCU104
FGPA and the DPU. Dilithium’s key generation is harder for
the Raspberry Pi 4 compared to the Ultrascale+ ZCU102
FPGA and the DPU. However, it outperforms the ZCU104
and the DPU during Falcon’s signing procedure. According
to the results shown in Fig. 9, Dilithium’s signature as well
as the verification for both algorithms, Falcon and Dilithium,
appears to be harder for the Raspberry compared to the DPU
and the Xilinx FPGAs.

V. CONCLUSION
In this work, we presented a secure network stack for
authentication and key exchange based on PQC algorithms
and benchmarked experimentally two strong contenders to
be used in deployed systems. As of now, Kyber remains the
only KEM left in the NIST competition [23], and hence,
it is included in both versions of the herein presented
network stack: Falcon/Kyber and Dilithium/Kyber. As to the
choice of signature algorithm added to the KEM, Dilithium
exceeds Falcon in environments where resources are fairly
available. E.g. in data centers the available network capacity
through processing capabilities and hardware accelerators
can easily provide for Dilithium’s higher network throughput.
Dilithium/Kyber is hence well positioned to be used in data
center environments, together with SDP technologies and
embedded with other CC technologies.

Falcon’s strengths, however, lie within an environment
where resources are restricted, devices’ capabilities are
limited as they are potentially battery powered, and the
available bandwidth might be low. In this kind of setting, the
server carrying out the majority of the computational tasks is
an advantage.

The results highlight a byproduct of the current PQC
algorithms development: multiple PQC algorithms are bound
to co-exist, each operating on a different segment of the
network depending on the processing power available and
network constraints.

REFERENCES
[1] A. Parra-Rodriguez, P. Lougovski, L. Lamata, E. Solano, and M. Sanz,

‘‘Digital-analog quantum computation,’’Phys. Rev. A, Gen. Phys., vol. 101,
no. 2, Feb. 2020, Art. no. 022305.

[2] L. Crippa, F. Tacchino, M. Chizzini, A. Aita, M. Grossi, A. Chiesa,
P. Santini, I. Tavernelli, and S. Carretta, ‘‘Simulating static and dynamic
properties of magnetic molecules with prototype quantum computers,’’
Magnetochemistry, vol. 7, no. 8, p. 117, Aug. 2021.

[3] P. Codognet, D. Diaz, and S. Abreu, ‘‘Quantum and digital annealing for
the quadratic assignment problem,’’ in Proc. IEEE Int. Conf. Quantum
Softw. (QSW), Jul. 2022, pp. 1–8.

[4] F. Hu, L. Lamata, C. Wang, X. Chen, E. Solano, and M. Sanz, ‘‘Quantum
advantage in cryptography with a low-connectivity quantum annealer,’’
Phys. Rev. Appl., vol. 13, no. 5, May 2020, Art. no. 054062.

[5] M. Sharma, V. Choudhary, R. S. Bhatia, S. Malik, A. Raina, and
H. Khandelwal, ‘‘Leveraging the power of quantum computing for
breaking RSA encryption,’’ Cyber-Phys. Syst., vol. 7, no. 2, pp. 73–92,
Apr. 2021.

VOLUME 12, 2024 38055

D. C. Lawo et al.: Falcon/Kyber and Dilithium/Kyber Network Stack on Nvidia’s DPU Platform

[6] X. Bonnetain, M. Naya-Plasencia, and A. Schrottenloher, ‘‘Quantum
security analysis of AES,’’ IACR Trans. Symmetric Cryptol., vol. 2019,
no. 2, pp. 55–93, Jun. 2019.

[7] Y. Gong, J. Wang, and H. Yao, ‘‘Distributed multi-agent empowered
resource allocation in deep edge networks,’’ inProc. Int.Wireless Commun.
Mobile Comput. (IWCMC), 2021, pp. 974–979.

[8] D. C. G. Valadares, N. C. Will, M. A. Spohn, D. F. de Souza Santos,
A. Perkusich, and K. C. Gorgánio, ‘‘Confidential computing in cloud/fog-
based Internet of Things scenarios,’’ Internet Things, vol. 19, Aug. 2022,
Art. no. 100543.

[9] A. Moubayed, A. Refaey, and A. Shami, ‘‘Software-defined perimeter
(SDP): State of the art secure solution for modern networks,’’ IEEE Netw.,
vol. 33, no. 5, pp. 226–233, Sep. 2019.

[10] J. Singh, A. Refaey, and J. Koilpillai, ‘‘Adoption of the software-defined
perimeter (SDP) architecture for infrastructure as a service,’’Can. J. Electr.
Comput. Eng., vol. 43, no. 4, pp. 357–363, Fall. 2020.

[11] M. Lefebvre, D. W. Engels, and S. Nair, ‘‘On SDPN: Integrating the
software-defined perimeter (SDP) and the software-defined network
(SDN) paradigms,’’ in Proc. IEEE Conf. Commun. Netw. Secur. (CNS),
Oct. 2022, pp. 353–358.

[12] A. Di Stefano, A. Di Stefano, and G. Morana, ‘‘Ananke: A framework
for cloud-native applications smart orchestration,’’ in Proc. IEEE 29th
Int. Conf. Enabling Technol., Infrastruct. Collaborative Enterprises
(WETICE), Sep. 2020, pp. 82–87.

[13] B. Han, S.Wong, C.Mannweiler,M. Dohler, andH. D. Schotten, ‘‘Security
trust zone in 5G networks,’’ in Proc. 24th Int. Conf. Telecommun. (ICT),
May 2017, pp. 1–5.

[14] A. Hakiri and P. Berthou, Leveraging SDN for the 5G Networks. Hoboken,
NJ, USA: Wiley, 2015, ch. 5, pp. 61–80.

[15] H. AlJahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau, and J. Xu,
‘‘Multi-tenancy in cloud computing,’’ in Proc. IEEE 8th Int. Symp. Service
Oriented Syst. Eng., Apr. 2014, pp. 344–351.

[16] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang, Y.
Zhang, J. Ying, L. Zhang, and D. Meng, ‘‘Enabling rack-scale confidential
computing using heterogeneous trusted execution environment,’’ in Proc.
IEEE Symp. Secur. Privacy (SP), May 2020, pp. 1450–1465.

[17] K. Oztoprak, Y. K. Tuncel, and I. Butun, ‘‘Technological transformation
of Telco operators towards seamless IoT edge-cloud continuum,’’ Sensors,
vol. 23, no. 2, p. 1004, Jan. 2023.

[18] U. Kumar, M. Garg, S. Kumari, and D. Dharminder, ‘‘A construction
of post quantum secure and signal leakage resistant authenticated
key agreement protocol for mobile communication,’’ Trans. Emerg.
Telecommun. Technol., vol. 34, no. 1, p. e466, Jan. 2023.

[19] J. Jang, K. Tulkinbekov, and D.-H. Kim, ‘‘Task offloading of deep learning
services for autonomous driving in mobile edge computing,’’ Electronics,
vol. 12, no. 15, p. 3223, Jul. 2023.

[20] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P.
Schwabe, G. Seiler, and D. Stehle, ‘‘CRYSTALS–kyber: A CCA-secure
module-lattice-based KEM,’’ in Proc. IEEE Eur. Symp. Secur. Privacy,
Apr. 2018, pp. 353–367.

[21] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, ‘‘CRYSTALS-dilithium: A lattice-based digital sig-
nature scheme,’’ IACR Trans. Cryptograph. Hardw. Embedded Syst.,
pp. 238–268, Feb. 2018.

[22] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. Fast-Fourier
Lattice-based Compact Signatures Over NTRU. Accessed: Oct. 15, 2023.
[Online]. Available: https://falcon-sign.info/

[23] M. V. Yesina, Y. V. Ostrianska, and I. D. Gorbenko, ‘‘Status report on
the third round of the NIST post-quantum cryptography standardization
process,’’ Radiotekhnika, no. 210, pp. 75–86, Sep. 2022.

[24] V. Lyubashevsky, C. Peikert, and O. Regev, ‘‘On ideal lattices and learning
with errors over rings,’’ J. ACM, vol. 60, no. 6, pp. 1–35, Nov. 2013.

[25] D. Chaudhary, U. Kumar, and K. Saleem, ‘‘A construction of three
party post quantum secure authenticated key exchange using ring
learning with errors and ECC cryptography,’’ IEEE Access, vol. 11,
pp. 136947–136957, 2023.

[26] E. Karabulut andA.Aysu, ‘‘A hardware–software co-design for the discrete
Gaussian sampling of falcon digital signature,’’ IACR Cryptol. ePrint
Arch., vol. 2023, p. 908, May 2023.

[27] J. Howe, T. Oder, M. Krausz, and T. Güneysu, ‘‘Standard lattice-based key
encapsulation on embedded devices,’’ IACR Trans. Cryptograph. Hardw.
Embedded Syst., vol. 2018, pp. 372–393, Aug. 2018.

[28] N. Gupta, A. Jati, A. K. Chauhan, and A. Chattopadhyay, ‘‘PQC
acceleration using GPUs: FrodoKEM, NewHope, and kyber,’’
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 3, pp. 575–586,
Mar. 2021.

[29] N. Gupta, A. Jati, A. Chattopadhyay, and G. Jha. (2022). Lightweight
Hardware Accelerator for Post-Quantum Digital Signature Crystals-
Dilithium. Cryptol. ePrint Arch., Paper 2022/496. [Online]. Available:
https://eprint.iacr.org/2022/496

[30] P. Karl, J. Schupp, T. Fritzmann, and G. Sigl. (2022). Post-Quantum
Signatures on RISC-V With Hardware Acceleration. [Online]. Available:
https://eprint.iacr.org/2022/538

[31] F. Yaman, A. C. Mert, E. Öztürk, and E. Savas, ‘‘A hardware accelerator
for polynomial multiplication operation of CRYSTALS-KYBER PQC
scheme,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Feb. 2021, pp. 1020–1025.

[32] M. Schmid, D. Amiet, J. Wendler, P. Zbinden, and T. Wei. (2023).
Falcon Takes Off—A Hardware Implementation of the Falcon Signature
Scheme. Cryptol. ePrint Arch., Paper 2023/1885. [Online]. Available:
https://eprint.iacr.org/2023/1885

[33] Y. Kim, J. Song, and S. C. Seo, ‘‘Accelerating falcon on ARMv8,’’ IEEE
Access, vol. 10, pp. 44446–44460, 2022.

[34] D. T. Nguyen and K. Gaj, ‘‘Fast falcon signature generation and
verification using ARMv8 NEON instructions,’’ in Proc. Int. Conf.
Cryptol. Afr., 2023, pp. 412–441.

[35] G. Seiler, ‘‘Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography,’’ IACR Cryptol. ePrint Arch., vol. 2018, p. 39,
Jul. 2018.

[36] A. C. Aguilera, X. A. I. Clemente, D. C. Lawo, I. T. Monroy,
and J. J. V. Olmos, ‘‘First end-to-end PQC protected DPU-to-DPU
communications,’’ Electron. Lett., vol. 59, no. 17, p. e1290,
Sep. 2023.

[37] OpenSSL Project. (2022). OpenSSL Toolkit. OpenSSL Softw. Found.
[Online]. Available: https://www.openssl.org/

[38] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley, A. Flores-
López, J. A. Halderman, J. Hoffman-Andrews, J. Kasten, E. Rescorla,
S. Schoen, and B. Warren, ‘‘Let’s encrypt: An automated certifi-
cate authority to encrypt the entire web,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., New York, NY, USA, Nov. 2019,
pp. 2473–2487.

[39] T. Pornin. (Sep. 2020). Fast-Fourier Lattice-Based Compact
Signatures Over NTRU. [Online]. Available: https://falcon-sign.
info/impl/falcon.h.html

[40] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, G. Seiler, P. Schwabe,
and D. Stehlé. (2021). Pq-Crystals/Dilithium. [Online]. Available:
https://github.com/pq-crystals/dilithium

[41] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé. (2021). Pq-Crystals/Kyber. [Online].
Available: https://github.com/pq-crystals/kybe

[42] FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions, National Institute of Standards and Technology (NIST),
Gaithersburg, MD, USA, 2015.

[43] K. Meher and D. Midhunchakkaravarthy, ‘‘New approach to combine
secret keys for post-quantum (PQ) transition,’’ Indian J. Comput. Sci. Eng.,
vol. 12, no. 3, pp. 629–633, Jun. 2021.

[44] C. Gentry, C. Peikert, and V. Vaikuntanathan. (2007). Trapdoors
for Hard Lattices and New Cryptographic Constructions.
Cryptology ePrint Archive, Paper 2007/432. [Online]. Available:
https://eprint.iacr.org/2007/432

[45] D. Soni, K. Basu, M. Nabeel, N. Aaraj, M. Manzano, and R. Karri,
Hardware Architectures for Post-Quantum Digital Signature Schemes.
Cham, Switzerland: Springer, 2021.

[46] M. Raavi, S. Wuthier, P. Chandramouli, Y. Balytskyi, X. Zhou, and
S.-Y. Chang, ‘‘Security comparisons and performance analyses of post-
quantum signature algorithms,’’ in Applied Cryptography and Network
Security, K. Sako and N. O. Tippenhauer, Eds. Cham, Switzerland:
Springer, 2021, pp. 424–447.

[47] A. Aikata, A. C. Mert, M. Imran, S. Pagliarini, and S. S. Roy, ‘‘KaLi:
A crystal for post-quantum security using kyber and dilithium,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 70, no. 2, pp. 747–758,
Feb. 2023.

[48] K. Jain and P. Krishnan, ‘‘Analysis of post-quantum cryptography for
Internet of Things,’’ in Proc. 6th Int. Conf. Intell. Comput. Control Syst.
(ICICCS), May 2022, pp. 387–394.

38056 VOLUME 12, 2024

