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Abstract: Data-driven predictive control has recently gained increasing attention, as it makes
it possible to design constrained controls directly from a set of data, without requiring an
intermediate identification step. In this paper, we focus on a Subspace Predictive Control (SPC)
scheme, with the aim of clarifying the sensitivity of the final closed-loop performance to its
main hyperparameters, namely the length of the past horizon and the regularization penalties.
Moreover, by delving deep into the structural properties of the control problem formulation,
we provide a set of guidelines for the choice of such hyperparameters. The effectiveness of the
resulting overall tuning strategy is assessed on two benchmark examples.
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1. INTRODUCTION

Data-driven control solutions allow to directly exploit
batches of data to design a controller for unknown
(and potentially complex) systems (see e.g., Formentin
et al. (2014)). Specifically, Data-Driven Predictive Con-
trol (DDPC) techniques combine the advantages of Model
Predictive Control (MPC) (see Rawlings (2000)), i.e., the
possibility to explicitly account for constraints, with the
direct mapping of data onto control actions Coulson et al.
(2019); Berberich et al. (2020). Among the others, Sub-
space Predictive Control (SPC) was first introduced in
Favoreel et al. (1999) and exploits the tools of subspace
identification (see Verhaegen and Verdult (2007); Mercère
(2013)) to handle noisy data directly in the definition of
the needed predictor (the connections between SPC and
more recent DDPC have been investigated in Fiedler and
Lucia (2020); Breschi et al. (2023)).

Along the footsteps of Favoreel et al. (1999), in this work
we provide a comprehensive overview of the theory and
procedures of subspace identification leveraged in the con-
struction of SPC schemes. This allows us to pinpoint that,
apart from the hyperparameters typical of MPC (e.g., the
penalties in the cost function, the prediction horizon etc.),
the only additional degree of freedom in classical SPC is
the past horizon used to construct the initialization for the
predictive control problem, from input/output data only.
Nonetheless, well-known results in subspace identification
allows us to indicate a set of guidelines for assembling
the initial conditions of the problem, without the need for

� This project was partially supported by the Italian Ministry of
University and Research under the PRIN’17 project “Data-driven
learning of constrained control systems”, contract no. 2017J89ARP.

tuning the past horizon with closed-loop experiments. As
briefly shown in Breschi et al. (2023), the applicability
of these guidelines extends beyond the subspace-based
control approach considered in this work, since also other
existing data-driven predictive control strategies estimate
the initial conditions in the same way (see e.g., Coulson
et al. (2019); Berberich et al. (2020)). We then shift to
the augmented SPC scheme proposed in Fiedler and Lucia
(2020), which comprises a set of slack variables used to
handle noise in the online data. The derivation of the
solution to this subspace predictive control problem in
closed-form (in a constrained case) allows us to discuss the
impact that the regularization penalties introduced along
with the slacks potentially have on the resulting optimal
control action. Our conclusions are supported by the re-
sults attained on two benchmark numerical examples.

The remainder of the paper is as follows. The considered
stochastic setting and the control problem of interest are
introduced in Section 2. In Section 3, we review the main
tools of subspace identification, which we rely upon in
Section 4 to shed light on some key hyperparameters of the
SPC scheme augmented with slacks proposed in Fiedler
and Lucia (2020). The new insights are numerically tested
in Section 5. Some closing remarks end the paper.

Notation. Given a rectangular matrix B ∈ Rm×n, B� ∈
Rn×m denotes its transpose and B† indicates its right
inverse. If Q � 0 (Q � 0), then the matrix Q ∈ Rn×n is
positive definite (positive semi-definite). Let x ∈ Rn, the
quadratic form x′Qx is compactly denoted as ‖x‖2Q, while
‖x‖2 denotes its 2-norm. For any vector xt ∈ Rn, with
t ∈ N, we define the finite past and future stack vectors as
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stochastic setting and the control problem of interest are
introduced in Section 2. In Section 3, we review the main
tools of subspace identification, which we rely upon in
Section 4 to shed light on some key hyperparameters of the
SPC scheme augmented with slacks proposed in Fiedler
and Lucia (2020). The new insights are numerically tested
in Section 5. Some closing remarks end the paper.

Notation. Given a rectangular matrix B ∈ Rm×n, B� ∈
Rn×m denotes its transpose and B† indicates its right
inverse. If Q � 0 (Q � 0), then the matrix Q ∈ Rn×n is
positive definite (positive semi-definite). Let x ∈ Rn, the
quadratic form x′Qx is compactly denoted as ‖x‖2Q, while
‖x‖2 denotes its 2-norm. For any vector xt ∈ Rn, with
t ∈ N, we define the finite past and future stack vectors as
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x−
ρ,t =




xt−ρ

...
xt−2

xt−1


 ∈ Rnρ, x+

L,t =




xt

xt+1

...
xt+L−1


 ∈ RnL, (1)

where ρ > 0 and L > 0 denotes the length of the
considered past and future windows. Accordingly, we can
define the associated Hankel matrices as:

X−
ρ,M =

[
x−
ρ,t · · · x−

ρ,t+M−1

]
∈ Rnρ×M , (2a)

X+
L,M =

[
x+
L,t · · · x+

L,t+M−1

]
∈ RnL×M . (2b)

Moreover, given a set of matrices (A,B,C,D) of appropri-
ate dimensions, we define the following block matrices:

Ω�(A,B) =
[
A�−1B · · · AB B

]
, (3a)

Γ�(A,C) =




A
CA
...

CA�−1


 , (3b)

H�(A,B,C,D)=




D 0 · · · 0
CB D · · · 0
...

. . .
. . .

...
CA�−2B · · · CB D


 , (3c)

where � > 0.

2. SETTING AND GOAL

Consider a linear time invariant (LTI) system S, with dy-
namics characterized by the following difference equations:

xt+1 = Axt +But + wt, (4a)

yt = Cxt +Dut + vt, (4b)

where xt ∈ Rn, ut ∈ Rm and yt ∈ Rp are the state, input
and output of the system, while wt ∈ Rn and vt ∈ Rp

are realizations of the process and measurement noises
at time t ∈ N. Assume that the latter are statistically
independent of the input (when the plant operates in open-
loop), and that they are mutually independent, zero-mean
white noises with joint covariance matrix:

E
{[

vt
wt

] [
v�j w�

j

]}
=

[
Rv S�

S Qw

]
δt,j � 0, (4c)

where Rv � 0, Qv � 0 and δt,j is the Kronecker delta

δt,j =

{
1 if t = j,

0 if t �= j.

Additionally, suppose that S is minimal, namely the
pair (A,C) is observable and the pair (A, [B, (Qw)1/2])
is controllable. By considering the typical data-driven
control setting, let us finally assume that the matri-
ces (A,B,C,D), along with (Qw, Rv, S) are unknown.
Nonetheless, suppose that we can collect a set of in-
put/output pairs DN = {ut, yt}Nt=0 from S. Our goal is to
steer the output of the system towards a reference target
r ∈ Rp, while guaranteeing that

ut ∈ U , yt ∈ Y, ∀t, (5)

with U ⊆ Rm and Y ∈ Rp formalizing convex limitations
on the actuators and desired bounds on the output.

3. SUBSPACE IDENTIFICATION TOOLS FOR SPC

We now review the main steps for the derivation of
the predictor used in SPC schemes, see e.g., Favoreel
et al. (1999); Fiedler and Lucia (2020). In particular,
given a sufficiently large set of input/output data DN ,
most linear regression-based subspace methods (see, e.g.,
Bauer (2003)) initially involve the estimation of the state

sequence {xt}N+1
t=0 . This step is crucial to recast the state-

space model of S as:

ωt = Θφt + νt, (6a)

with

ωt=

[
xt+1

yt

]
, Θ=

[
A B
C D

]
, φt=

[
xt

ut

]
, νt=

[
vt
wt

]
, (6b)

thus ultimately allowing for the identification of S by
solving a linear regression problem. For a comprehensive
summary of the main steps towards the derivation of the
data-based output predictor, we thus initially discuss how
this state estimate is derived from input/output data and,
then, we go through some preliminary model-based results,
finally retrieving the predictor used in SPC.

Based on our assumptions on S and the process and
measurement noises, it can be proven that (4) is equivalent
to the innovation form, namely

xt+1 = Axt +But +Ket, (7a)

yt = Cxt +Dut + et, (7b)

where K ∈ Rn×p is the steady-state Kalman gain, et ∈ Rp

is the so-called innovation vector. Because of the properties
of S, all eigenvalues of the matrix Ã = A − KC lay
inside the unit circle. By exploiting the output equation
(7b), this alternative representation of the system can be
manipulated as follows:

xt+1 = (A−KC)︸ ︷︷ ︸
Ã

xt + (B −KD)︸ ︷︷ ︸
B̃

ut +Kyt. (8)

Accordingly, the state at each time instant can be straight-
forwardly recast as the infinite sum of past inputs and
outputs

xt =

∞∑
j=1

Ãj−1B̃ut−j +

∞∑
j=1

Ãj−1Kyt−1, (9)

which can be further decomposed as

xt =

ρ∑
j=1

Ãj−1B̃ut−j +

ρ∑
j=1

Ãj−1Kyt−1 + δt

= Ωρ(Ã, B̃)u−
ρ,t +Ωρ(Ã,K)y−ρ,t + δt

= Ãρxt−ρ +Ωρ(Ã, B̃)u−
ρ,t +Ωρ(Ã,K)y−ρ,t. (10a)

with

δt =

∞∑
j=ρ+1

Ãj−1B̃ut−j +

∞∑
j=ρ+1

Ãj−1Kyt−1. (10b)

Provided that ρ is sufficiently large, the state at time t
can thus be consistently approximated by truncation as
(see Bauer (2003))

x̄t = Ωρ(Ã,K)y−ρ,t +Ωρ(Ã, B̃)u−
ρ,t. (11)

According to (4), we can now introduce the L-steps ahead
predictor of the system’s output, i.e.,
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ρ,t · · · x−
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Consider a linear time invariant (LTI) system S, with dy-
namics characterized by the following difference equations:

xt+1 = Axt +But + wt, (4a)

yt = Cxt +Dut + vt, (4b)

where xt ∈ Rn, ut ∈ Rm and yt ∈ Rp are the state, input
and output of the system, while wt ∈ Rn and vt ∈ Rp

are realizations of the process and measurement noises
at time t ∈ N. Assume that the latter are statistically
independent of the input (when the plant operates in open-
loop), and that they are mutually independent, zero-mean
white noises with joint covariance matrix:

E
{[

vt
wt

] [
v�j w�

j

]}
=

[
Rv S�

S Qw

]
δt,j � 0, (4c)

where Rv � 0, Qv � 0 and δt,j is the Kronecker delta

δt,j =

{
1 if t = j,

0 if t �= j.

Additionally, suppose that S is minimal, namely the
pair (A,C) is observable and the pair (A, [B, (Qw)1/2])
is controllable. By considering the typical data-driven
control setting, let us finally assume that the matri-
ces (A,B,C,D), along with (Qw, Rv, S) are unknown.
Nonetheless, suppose that we can collect a set of in-
put/output pairs DN = {ut, yt}Nt=0 from S. Our goal is to
steer the output of the system towards a reference target
r ∈ Rp, while guaranteeing that

ut ∈ U , yt ∈ Y, ∀t, (5)

with U ⊆ Rm and Y ∈ Rp formalizing convex limitations
on the actuators and desired bounds on the output.

3. SUBSPACE IDENTIFICATION TOOLS FOR SPC

We now review the main steps for the derivation of
the predictor used in SPC schemes, see e.g., Favoreel
et al. (1999); Fiedler and Lucia (2020). In particular,
given a sufficiently large set of input/output data DN ,
most linear regression-based subspace methods (see, e.g.,
Bauer (2003)) initially involve the estimation of the state

sequence {xt}N+1
t=0 . This step is crucial to recast the state-

space model of S as:

ωt = Θφt + νt, (6a)

with

ωt=

[
xt+1

yt

]
, Θ=

[
A B
C D

]
, φt=

[
xt

ut

]
, νt=

[
vt
wt

]
, (6b)

thus ultimately allowing for the identification of S by
solving a linear regression problem. For a comprehensive
summary of the main steps towards the derivation of the
data-based output predictor, we thus initially discuss how
this state estimate is derived from input/output data and,
then, we go through some preliminary model-based results,
finally retrieving the predictor used in SPC.

Based on our assumptions on S and the process and
measurement noises, it can be proven that (4) is equivalent
to the innovation form, namely

xt+1 = Axt +But +Ket, (7a)

yt = Cxt +Dut + et, (7b)

where K ∈ Rn×p is the steady-state Kalman gain, et ∈ Rp

is the so-called innovation vector. Because of the properties
of S, all eigenvalues of the matrix Ã = A − KC lay
inside the unit circle. By exploiting the output equation
(7b), this alternative representation of the system can be
manipulated as follows:

xt+1 = (A−KC)︸ ︷︷ ︸
Ã

xt + (B −KD)︸ ︷︷ ︸
B̃

ut +Kyt. (8)

Accordingly, the state at each time instant can be straight-
forwardly recast as the infinite sum of past inputs and
outputs

xt =

∞∑
j=1

Ãj−1B̃ut−j +

∞∑
j=1

Ãj−1Kyt−1, (9)

which can be further decomposed as

xt =

ρ∑
j=1

Ãj−1B̃ut−j +

ρ∑
j=1

Ãj−1Kyt−1 + δt

= Ωρ(Ã, B̃)u−
ρ,t +Ωρ(Ã,K)y−ρ,t + δt

= Ãρxt−ρ +Ωρ(Ã, B̃)u−
ρ,t +Ωρ(Ã,K)y−ρ,t. (10a)

with

δt =

∞∑
j=ρ+1

Ãj−1B̃ut−j +

∞∑
j=ρ+1

Ãj−1Kyt−1. (10b)

Provided that ρ is sufficiently large, the state at time t
can thus be consistently approximated by truncation as
(see Bauer (2003))

x̄t = Ωρ(Ã,K)y−ρ,t +Ωρ(Ã, B̃)u−
ρ,t. (11)

According to (4), we can now introduce the L-steps ahead
predictor of the system’s output, i.e.,

y+L,t = ΓL(A,C)xt +HL(A,B,C,D)u+
L,t

+HL(A,K, C, Ip)e
+
L,t. (12)

By defining the vector z−ρ,t ∈ R(m+p)ρ stacking the past ρ
outputs and the inputs at time t, namely

z−ρ,t =

[
y−ρ,t
u−
ρ,t

]
. (13)

and replacing it into (10a) into (12), we then obtain

y+L,t=ΓL(A,C)Ωρ(Ã,B)︸ ︷︷ ︸
LL,ρ

z−ρ,t+HL(A,B,C,D)︸ ︷︷ ︸
Hu

L

u+
L,t+η+L,t,

(14a)
with B = [K B̃] and

η+L,t = HL(A,K, C, Ip)︸ ︷︷ ︸
He

L

e+L,t + ΓL(A,C)Ãρxt−ρ. (14b)

Assume that the future horizon L and the hyperparameter
ρ are chosen to be greater or equal than the order of
the system n and sufficiently large to guarantee that Ã
is nilpotent of degree ρ, namely Ãi = 0 for all i ≥ ρ.
Based on this hypothesis and the ones on the process and
measurement noises, then: (i) Ãρxt−ρ is negligible: (ii) the
noise term He

Le
+
L,t is uncorrelated with both z−ρ,t and u+

L,t

and (iii) the following properties hold:

rank(ΓL,ρ) = n, (15a)

col(ΓL,ρ) = col(ΓL(A,C)). (15b)

We have now all the elements to translate (14a) into its
purely data-based counterpart as:

Y +
L,M = LL,ρZ

−
ρ,M +Hu

LU
+
L,M +N+

L,M , (16)

where Y +
L,M , U+

L,M and Z−
ρ,M ∈ R(m+p)L×M are Hankel

matrices constructed from the available data, while LL,ρ

and Hu
L are unknown. Since η+L,t is uncorrelated with

z−ρ and u+
L and this property can be extended to the

Hankel matrix N+
L,M , the unknown matrices in (16) can be

estimated by solving the following least squares problem

minimize
LL,ρ,Hu

L

∥∥∥∥Y +
L,M − [LL,ρ Hu

L]

[
Z−
ρ,M

U+
L,M

] ∥∥∥∥
2

F

. (17)

Whenever the following rank condition holds:

rank

(
lim

M→∞

[
Z−
ρ,M

U+
L,M

] [
Z−
ρ,M

U+
L,M

]�)
=m(ρ+L)+pρ, (18)

the unique solution of the optimization problem in (17)
can be solved in closed form, resulting in the following
estimates:

[
L̂L,ρ Ĥu

L

]
= Y +

L,M

[
Z−
ρ,M

U+
L,M

]†
, (19a)

with

lim
M→∞

1

M
N+

L,M

[
(U+

L,M )� (Z−
ρ,M )�

]
= 0. (19b)

As N+
L,M , U+

L,M and Z−
ρ,M satisfy (19b), the estimates L̂L,ρ

and Ĥu
L are asymptotically unbiased. While this feature

is directly exploited in SPC, the latter is neglected in
the behavioral predictors used in Coulson et al. (2019);
Berberich et al. (2020). Note that the rank condition in
(18) at the core of these results can be satisfied under
mild excitation conditions on the input sequence used
throughout data collection (see (Verhaegen and Verdult,
2007, Lemma 9.9)).

4. THE ROLE OF THE HYPERPARAMETERS

The estimates in (19a) in combination with (14a) allows
to formulate the SPC problem as follows:

minimize
ũ+
L,t

, σ

L−1∑
k=0

‖ỹk,t − r‖2Q+‖ũk,t‖2R+λu‖σu‖2+λy‖σy‖2

(20a)

s.t. ỹ+L,t = Y +
L,M

[
Z−
ρ,M

U+
L,M

]† [
z−ρ,t + σ
ũ+
L,t

]
, (20b)

ũk,t ∈ U , ỹk,t ∈ Y, k = 0, . . . , L− 1, (20c)

where r ∈ Rp is the constant reference we aim the system
to track, L ∈ N is the prediction and Q � 0 and R � 0
are the penalties associated with the tracking error and
the control effort, respectively. These hyperparameters are
assumed to be fixed a priori and based on the control
objectives. Note that, as for the classical SPC formulation
in Favoreel et al. (1999), z−ρ,t is obtained by stacking closed-
loop past inputs and outputs as in (13), while we retain
the deterministic part of the output predictor (14a) only.
As such, once the controller is deployed, the predictor is
simulated in open-loop (so, without noise) over the horizon
L to retrieve the optimal control sequence. With respect
to the SPC scheme presented in Favoreel et al. (1999),
here we look at its augmentation with additional slack
variables introduced in Fiedler and Lucia (2020). Indeed,

(20b) features a slack, i.e., σ =
[
σ�
y σ�

u

]� ∈ Rρ(m+p),

introduced to cope with noise potentially affecting z−ρ,t,
while λu, λy ≥ 0 in (20a) are two hyperparameters to be
tuned. As in standard MPC, the optimal control action,
to be fed to the unknown system S at each time instant
t, is still found by solving (20) to find the optimal input

sequence {ũ�
k,t}

L−1
k=0 , then retaining its first element only

and setting ut = ũ�
0. Since the prediction horizon L and the

weights Q and R in (20) are fixed based on the predictive
controller goals, the only hyperparameters left to be tuned
are ρ > 0, which characterizes the approximation in (11),
and λu, λy > 0, weighting the additional slacks.

As it can be seen in (11), ρ dictates the approximation of
the state as a combination of past inputs and outputs. Let
us indicate as ξt the error in the state reconstruction due
to the above approximation, namely,

ξt = xt − x̄t. (21)

As shown in Bauer (2003), ξt is orthogonal to z−ρ,t and it
satisfies the following:

‖ξt‖2 ≤ ‖Ãρ‖F ‖xt−ρ‖2. (22)

Based on the features of Ã (see Section 3), a direct
consequence of this inequality is that the approximation
error ξt becomes small if ρ is large enough, vanishing
in the ideal case of an infinite past window (i.e., ρ →
∞). At the same time, the variance of the predictor’s
parameters tends to increase for growing values of ρ.
Although here (14a) is not exploited for identification
purposes, this effect is still undesirable. Indeed, it implies
a lack of robustenss of the predictive controller to different
realizations of noise on the batch data used to construct
(20b). Another downside of augmenting ρ lays in the
increasing complexity of the optimization problem to be
solved, with higher dimension matrices that need to be
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inverted when ρ → ∞. A possible approach to trade-
off between reducing the approximation error ξt, the
parameters’ variance and the computational costs of data-
based control is to select ρ that minimizes specific Akaike
information criteria. Note that, this procedure can be
carried out offline, by exploiting the available batch of data
DN and without endangering the safety of the system.

Let us now recast the predictor in (20b) as follows:

ỹ+L = Hρz
−
ρ,t + [Hf Hρ,y Hρ,u]︸ ︷︷ ︸

Hα



ũ+
L,t

σy

σu




︸ ︷︷ ︸
αt

, (23a)

where

H = Y +
L,M

[
Z−
ρ,M

U+
L,M ,

]†
(23b)

and

Hρ = [H]1:ñ, Hf = [H]ñ+1:mL+ñ, (23c)

Hρ,y = [H]1:pρ, Hρ,u = [Hρ]pρ+1:ñ, (23d)

with ñ = (m + p)ρ. We now aim at shedding a light on
the impact that the additional slack variables, operating
as a sort of filter with respect to the noise affecting
measurements in closed-loop, have on the solution of the
final optimization problem. To this end, we aim at finding
a closed-form expression for the solution of the following
predictive control problem:

minimize
αt

‖αt‖2Wα
+ 2(Hρz

−
ρ,t − r)�cααt (24a)

s.t. [I 0 0]αt ∈ UL, (24b)

Hρz
−
ρ,t +Hααt ∈ YL, (24c)

where the new weights are

Wα = H�
αQHα +

[R 0 0
0 λyI 0
0 0 λuI

]
, (24d)

cα = QHα, (24e)

with Q = diag([Q, . . . , Q]) and R = diag([R, . . . , R]).
Since R � 0, it is straightforward to prove that R and,
thus, Wα is positive definite even when λu = λy = 0,
provided that also σ is set to zero (i.e., the classical SPC
scheme of Favoreel et al. (1999) is recovered). Indeed, the
first term in (24d) leads to a mutual dependence of the
optimal input sequence and slack variables.

For the sake of a better understanding, let us assume the
convex constraints in (24b)-(24c) to be polytopic 1 , so as
to recast them as follows:

Cααt + Czz−ρ,t ≤ G. (25)

Given the characteristics of (24), we can thus find its
unique solution via the Karush-Kuhn-Tucker (KKT) con-
ditions, i.e., by solving the following set of equalities:

Wααt + c�α (Hρz
−
ρ,t − r) + C�

α β = 0, (26a)

β� (
Cααt + Czz−ρ,t − G

)
= 0, (26b)

Cααt + Czz−ρ,t − G ≤ 0, (26c)

β ≥ 0, (26d)

where β is the vector of scaled Lagrange multipliers
associated with the polytopic constraints. To find a closed-
form expression for αt, let us focus on a single set of active
1 This assumption is commonly verified in linear predictive control,
see Rawlings (2000).

constraints, so as to split β into β̄ and β̃, respectively
denoting the Largange multipliers associated with inactive
and active constraints. While β̄ = 0 for (26b) to be

satisfied, β̃ is such that the following have to hold:

Wααt + c�α (Hρz
−
ρ,t − r) + C̃αβ̃ = 0, (27)

C̃ααt + C̃zz
−
ρ,t − G̃ = 0, (28)

where C̃α, C̃z and G̃ are the rows of Cα, Cz and G associated
to the considered set of active constraints, respectively.
By combining these relations, the optimal α�

t and the

associated β̃ are given by:

β̃ = −C̃α,W
[
C̃z,W z−ρ,t − G̃W

]
, (29a)

α�
t = −W−1

α

[
C̃�
α β̃ + c�αHρz

−
ρ,t + c�α r

]
, (29b)

where

C̃α,W = (C̃αW−1
α C̃�

α )−1,

C̃z,W = C̃αW−1
α c�αHρ − C̃z,

G̃W = C̃αW−1
α c�α r − G̃.

This closed-form solution only holds in the region identi-
fied by the following inequalities 2

C̃αα�
t + C̃zz−ρ,t − G̃ < 0, (29c)

− β̃ < 0. (29d)

This explicit expression of the local optimal solution high-
lights the dependence on the inverse of Wα, which is
shaped by λu and λy (see (24d)). At the same time, these
parameters regulate the strength of the shrinkage on the
slack variables. As such, high values of λu and λy tend
to steer σu and σy toward zero, while heavily impacting
on the value of Wα and, thus, influencing the resulting
optimal control action. On the contrary, smaller λu and λy

are likely to lead to slack variables that are not negligible,
that, in turn, shape the input fed to the system, while
having a reduced impact on the weight of (24a). Trading
off between these two behaviors thus becomes crucial for
the effect of the slack to eventually improve the robustness
with respect to additive noise acting in closed-loop, while
not excessively biasing the resulting optimal sequence.

By looking at the effect of the additional slack, it is clear
that for ρ sufficiently high (potentially ρ → ∞) the true
state of the system can be perfectly reconstructed from
noisy data. In such a case, the slack variables are thus not
needed. Although the selection of an infinite past horizon is
not feasible in practice, a proper choice of ρ, e.g., through
Akaike’s criteria, would once again make the introduction
of the slack potentially unnecessary.

It is worth to further point out that currently the effect
of the choice of λu and λy can be assessed only online. As
such, the calibration of these parameters has to be per-
formed once the predictive controller has been deployed,
possibly undermining the safety of S (e.g., in case the
controller destabilizes the system).

5. NUMERICAL CASE STUDIES

To assess the validity of the previous conjectures, we now
analyze the impact of ρ and the slacks on the SPC solutions
2 By following this procedure for all possible combinations of active
constraints, one can retrieve the explicit solution.
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inverted when ρ → ∞. A possible approach to trade-
off between reducing the approximation error ξt, the
parameters’ variance and the computational costs of data-
based control is to select ρ that minimizes specific Akaike
information criteria. Note that, this procedure can be
carried out offline, by exploiting the available batch of data
DN and without endangering the safety of the system.

Let us now recast the predictor in (20b) as follows:

ỹ+L = Hρz
−
ρ,t + [Hf Hρ,y Hρ,u]︸ ︷︷ ︸

Hα



ũ+
L,t

σy

σu




︸ ︷︷ ︸
αt

, (23a)

where

H = Y +
L,M

[
Z−
ρ,M

U+
L,M ,

]†
(23b)

and

Hρ = [H]1:ñ, Hf = [H]ñ+1:mL+ñ, (23c)

Hρ,y = [H]1:pρ, Hρ,u = [Hρ]pρ+1:ñ, (23d)

with ñ = (m + p)ρ. We now aim at shedding a light on
the impact that the additional slack variables, operating
as a sort of filter with respect to the noise affecting
measurements in closed-loop, have on the solution of the
final optimization problem. To this end, we aim at finding
a closed-form expression for the solution of the following
predictive control problem:

minimize
αt

‖αt‖2Wα
+ 2(Hρz

−
ρ,t − r)�cααt (24a)

s.t. [I 0 0]αt ∈ UL, (24b)

Hρz
−
ρ,t +Hααt ∈ YL, (24c)

where the new weights are

Wα = H�
αQHα +

[R 0 0
0 λyI 0
0 0 λuI

]
, (24d)

cα = QHα, (24e)

with Q = diag([Q, . . . , Q]) and R = diag([R, . . . , R]).
Since R � 0, it is straightforward to prove that R and,
thus, Wα is positive definite even when λu = λy = 0,
provided that also σ is set to zero (i.e., the classical SPC
scheme of Favoreel et al. (1999) is recovered). Indeed, the
first term in (24d) leads to a mutual dependence of the
optimal input sequence and slack variables.

For the sake of a better understanding, let us assume the
convex constraints in (24b)-(24c) to be polytopic 1 , so as
to recast them as follows:

Cααt + Czz−ρ,t ≤ G. (25)

Given the characteristics of (24), we can thus find its
unique solution via the Karush-Kuhn-Tucker (KKT) con-
ditions, i.e., by solving the following set of equalities:

Wααt + c�α (Hρz
−
ρ,t − r) + C�

α β = 0, (26a)

β� (
Cααt + Czz−ρ,t − G

)
= 0, (26b)

Cααt + Czz−ρ,t − G ≤ 0, (26c)

β ≥ 0, (26d)

where β is the vector of scaled Lagrange multipliers
associated with the polytopic constraints. To find a closed-
form expression for αt, let us focus on a single set of active
1 This assumption is commonly verified in linear predictive control,
see Rawlings (2000).

constraints, so as to split β into β̄ and β̃, respectively
denoting the Largange multipliers associated with inactive
and active constraints. While β̄ = 0 for (26b) to be

satisfied, β̃ is such that the following have to hold:

Wααt + c�α (Hρz
−
ρ,t − r) + C̃αβ̃ = 0, (27)

C̃ααt + C̃zz
−
ρ,t − G̃ = 0, (28)

where C̃α, C̃z and G̃ are the rows of Cα, Cz and G associated
to the considered set of active constraints, respectively.
By combining these relations, the optimal α�

t and the

associated β̃ are given by:

β̃ = −C̃α,W
[
C̃z,W z−ρ,t − G̃W

]
, (29a)

α�
t = −W−1

α

[
C̃�
α β̃ + c�αHρz

−
ρ,t + c�α r

]
, (29b)

where

C̃α,W = (C̃αW−1
α C̃�

α )−1,

C̃z,W = C̃αW−1
α c�αHρ − C̃z,

G̃W = C̃αW−1
α c�α r − G̃.

This closed-form solution only holds in the region identi-
fied by the following inequalities 2

C̃αα�
t + C̃zz−ρ,t − G̃ < 0, (29c)

− β̃ < 0. (29d)

This explicit expression of the local optimal solution high-
lights the dependence on the inverse of Wα, which is
shaped by λu and λy (see (24d)). At the same time, these
parameters regulate the strength of the shrinkage on the
slack variables. As such, high values of λu and λy tend
to steer σu and σy toward zero, while heavily impacting
on the value of Wα and, thus, influencing the resulting
optimal control action. On the contrary, smaller λu and λy

are likely to lead to slack variables that are not negligible,
that, in turn, shape the input fed to the system, while
having a reduced impact on the weight of (24a). Trading
off between these two behaviors thus becomes crucial for
the effect of the slack to eventually improve the robustness
with respect to additive noise acting in closed-loop, while
not excessively biasing the resulting optimal sequence.

By looking at the effect of the additional slack, it is clear
that for ρ sufficiently high (potentially ρ → ∞) the true
state of the system can be perfectly reconstructed from
noisy data. In such a case, the slack variables are thus not
needed. Although the selection of an infinite past horizon is
not feasible in practice, a proper choice of ρ, e.g., through
Akaike’s criteria, would once again make the introduction
of the slack potentially unnecessary.

It is worth to further point out that currently the effect
of the choice of λu and λy can be assessed only online. As
such, the calibration of these parameters has to be per-
formed once the predictive controller has been deployed,
possibly undermining the safety of S (e.g., in case the
controller destabilizes the system).

5. NUMERICAL CASE STUDIES

To assess the validity of the previous conjectures, we now
analyze the impact of ρ and the slacks on the SPC solutions
2 By following this procedure for all possible combinations of active
constraints, one can retrieve the explicit solution.
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Fig. 1. Benchmark example: oracle (black dashed line) vs
average input/output trajectories (red line) and their
standard deviation (shaded area) over 20 Monte Carlo
predictors and simulations, λ = 0 and ρ = 23.

for two benchmark case studies. To quantitatively assess
the capability of the SPC+slack controller, we consider the
following performance indexes:

J =
T−1∑
t=0

‖yt − r‖2Q + ‖ut‖2R, (30a)

Ju =

T−1∑
t=0

‖ut‖22, (30b)

reflecting the overall cost of the optimal input sequence
and the corresponding effort. These indexes are compared
with their oracle counterparts, i.e., those obtained by solv-
ing an MPC problem with the exact model of the system
and within a noise-free setting, respectively denoted as J o

and J o
u . To slightly simplify our analysis, in all case studies

we impose λu = λy = λ in (20a). Moreover, we always
assume the output of the system to be unconstrained,
namely we set Y = Rp.

Benchmark example. Consider the system

xt+1=

[
0.7326 −0.0861
0.1722 0.9909

]
xt+

[
0.0609
0.0064

]
ut+Ket (31a)

yt = [0 1.4142]xt + et, (31b)

taken from Bemporad et al. (2002), to which we have
added both process and measurement noise, with e ∼
N (0, 0.01) and K = [0.9089 0.4838]T , chosen at random,
yet guaranteeing that all eigenvalues of A−KC are inside
the unit circle. Our control objective in this case is steering
the output of the system to zero, namely r = 0, over a
closed-loop test of T = 50 steps, while limiting the required
control effort. To attain this goal, we impose Q = 1 and
R = 10−3 in (20a), and we fix the prediction horizon at
L = 10, which is here equal to M in (16). Meanwhile, the
inputs to the system need to be such that

−2 ≤ ut ≤ 2, ∀t (32)

which dictates the set of feasible inputs U in (20c).

In defining the predictor in (20b), we exploit a set compris-
ing N = 1000 input/output samples collected throughout
a single noisy open-loop experiment, performed by feeding
the system with a random input sequence, uniformly dis-
tributed in [−5, 5]. Nonetheless, to evaluate the robustness
of the approach with respect to different realization of this
batch dataset, we carry out all tests over 20 instances 3 of
DN . Fig. 1 shows the performance in closed-loop with on-

3 We consider 20 realizations of input and noise sequences.

(a) Indexes for ρ = 2

(b) Indexes for ρ = 8

(c) Indexes for ρ = 22

Fig. 2. Benchmark example: oracle indexes and average J ,
Ju over 20 Monte Carlo tests vs λ, for increasing ρ.

line noise, when ρ is fixed to 23, i.e., the past horizon min-
imizing Akaike’s final prediction error (FPE) over a the
set of autoregressive models with exogenous inputs (ARX)
estimated with the 20 datasets. Despite a variability in the
input, due to the unpredictability of future noises, overall
the SPC+slack scheme performs comparably to the oracle.
This corroborates the discussion in Section 4, showing
the advantages of incorporating subspace identification
insights within the control design problem. In addition,
the results in Fig. 2 highlight the existing intertwining
between the choice of λ and ρ. In particular, as soon
as ρ is sufficiently high, noise on the online data tends
to be correctly handled by the predictive control scheme,
without the need for additional slacks.

Flexible transmission. Consider now the stable bench-
mark single-input, single-output, 5th order, linear time-
invariant system of Dörfler et al. (2021). To gather the
data used to build the Monte Carlo predictors to be used in
(20b), we fed the system with 20 input sequences uniformly
generated at random within the interval [−5, 5] of length
N = 125. Meanwhile, by considering the innovation form
(see (7)), for each of the 20 dataset gathered in the data
collection phase and when closing the loop, the evolution
of the state and the measured output of the system are
affected by a different zero mean white noise et, with
standard deviation 0.01. The gain K in (7a) has instead
been chosen randomly, guaranteeing that A − KC has all
eigenvalues inside the unit circle. The SPC+ slack scheme
is designed by considering the constant output reference
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(a) |J̄ − J o|

(b) |J̄u − J o
u |

Fig. 3. Flexible transmission: absolute difference between
the oracle indexes and the average J and Ju over 20
Monte Carlo predictors and simulations vs λ and ρ.
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Fig. 4. Flexible transmission: oracle (black dashed line) vs
average input/output trajectories (red line) and their
standard deviation (shaded area) over 20 Monte Carlo
predictors and simulations, λ = 1.8 and ρ = 9.

r = 1, a prediction horizon L = 10, Q = 1 and R = 10−2,
while the input is constrained to lay within the interval
[−1, 1]. The SPC+slack scheme is deployed over an horizon
of length T = 50 time steps for different values of the past
horizon ρ and λ. As shown in Fig. 3, the average difference
between the SPC+slack indicators in (30) and their oracle
counterpart tends to consistently decrease for increasing
ρ, while reaching values close to zero for regularization
penalties λ that are not excessively high, nor extremely
small. These results thus support the conclusions drawn in
Section 4. Meanwhile, the effectiveness of the SPC+slack
scheme is clearly visible when comparing the closed-loop
input/output trajectories attained with this scheme and
the oracle ones, as shown in Fig. 3. The past horizon is
fixed to the average ρ minimizing Akaike’s final prediction
error (FPE) criterion over the 20 Monte Carlo predictors

in Fig. 4. Note that, in this case, the beneficial effect of
slacks can be linked not only to their filtering effect on the
incoming data, but also to the size of the dataset, which
limits the accuracy of the predictor without slack.

6. CONCLUSIONS

This work provides a deep insight into data-driven pre-
dictive control based on subspace identification tools. In
particular, we thoroughly elaborate upon the choice of
some hyperparameters, which are crucial to attain satisfac-
tory closed-loop performance. Our experimental outcomes
show the advantages of exploiting such an insight for
tuning the hyperparameters and the possible drawbacks of
introducing additional variables and regularization terms.

Future research will be devoted to extending this analysis
to other data-driven predictive control schemes.
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