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Higher-order Targeted Minimum Loss-based
Estimation

Marco Carone, Iván Dı́az, and Mark J. van der Laan

Abstract

Common approaches to parametric statistical inference often encounter difficul-
ties in the context of infinite-dimensional models. The framework of targeted
maximum likelihood estimation (TMLE), introduced in van der Laan & Rubin
(2006), is a principled approach for constructing asymptotically linear and effi-
cient substitution estimators in rich infinite-dimensional models. The mechanics
of TMLE hinge upon first-order approximations of the parameter of interest as
a mapping on the space of probability distributions. For such approximations to
hold, a second-order remainder term must tend to zero sufficiently fast. In prac-
tice, this means an initial estimator of the underlying data-generating distribution
with a sufficiently large rate of convergence must be available – in many cases,
this requirement is prohibitively difficult to satisfy. In this article, we propose a
generalization of TMLE utilizing a higher-order approximation of the target pa-
rameter. This approach yields asymptotically linear and efficient estimators when
a higher-order remainder term is asymptotically negligible. The latter condition is
often much less stringent than that arising in a regular first-order TMLE. Beyond
relaxing regularity conditions, use of a higher-order TMLE can improve inference
accuracy in finite samples due to its explicit reliance on a higher-order approxi-
mation. We provide the theoretical foundations of higher-order TMLE and study
its use for estimating a counterfactual mean when all potential confounders have
been measured. We show, in particular, that the implementation of a higher-order
TMLE is nearly identical to that of a regular first-order TMLE. Since higher-order
TMLE requires higher-order differentiability of the target parameter, a require-
ment that often fails to hold, we also discuss and study practicable approximation
strategies that allow us to circumvent this failure in applications.



1 Introduction

1.1 Motivation

Statisticians are generally concerned with making inference on a target parameter
of the data-generating distribution based on draws from a probability distribution
known only to lie in some model. Estimation and statistical inference is generally
straightforward in parametric and small semiparametric models. Unfortunately, these
models are often overly simplistic. Large semiparametric and nonparametric models
usually provide a more accurate reflection of the background knowledge available on
a given scientific problem. However, estimation and inference within these models is
a much more subtle matter. For example, maximum likelihood estimators often do
not exist, and even when they do, they may be inconsistent. If the target parameter
involves the unknown data-generating distribution via an intermediate quantity whose
estimation requires smoothing techniques, drawing statistical inference is especially
challenging. This is the case, for example, whenever the parameter involves inherently
local features of the data-generating distribution, such as a density or conditional mean
function. The implementation of smoothing techniques usually involves the selection
of tuning parameters that govern the bias-variance trade-off in practice. Performing
an optimal bias-variance trade-off for the involved intermediate quantity is generally
well understood and easy to accomplish. However, in general, this does not result in
an optimal bias-variance trade-off for the target parameter. Estimators of the target
parameter utilizing suboptimally tuned smoothing are usually not asymptotically linear
and common approaches for quantifying their uncertainty are not valid.

Several approaches have been proposed for tackling this challenge, including one-
step estimation (e.g., Bickel et al., 1997) and estimating equations methodology (e.g.,
van der Laan and Robins, 2003). More recently, targeted maximum likelihood (or
minimum loss-based) estimation, hereafter referred to as TMLE (e.g., van der Laan
and Rubin, 2006, van der Laan and Rose, 2011), was introduced as a general frame-
work for constructing asymptotically linear and efficient substitution estimators of
low-dimensional target parameters in rich infinite-dimensional models. Among other
features distinguish it from earlier approaches, TMLE also seeks to guarantee that con-
structed estimators have sound finite-sample behavior, as discussed below. This results
in a framework that facilitates the construction of estimators of target parameters that
are not only asymptotically linear and efficient under much weaker conditions than re-
quired in parametric or restrictive semiparametric models but also strive to have good
finite-sample performance.

The construction of these estimators heavily depends upon certain first-order asymp-
totic representations, as described below. For these representations to be useful, the
resulting second-order remainder term must tend to zero in probability faster than
n−1/2. This ensures that the first-order approximation suffices to guide the construc-
tion of estimators and to study their asymptotic limit theory. To satisfy this condition,
it must be possible to construct an estimator of the data-generating distribution, or
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any relevant portions thereof, that converges sufficiently fast. For example, when the
density of the data-generating distribution is directly involved in the target param-
eter, a density estimator converging in a suitable norm at a rate faster than n−1/4

is often required to guarantee that the second-order remainder term is negligible. In
many settings however, it is rather implausible for such a condition to hold, partic-
ularly when the data unit vector is high-dimensional. The remainder term will then
itself contribute to the first-order asymptotic behavior of the estimator and derail it
from asymptotic linearity. It is then natural to consider the construction of estima-
tors based on higher-order asymptotic expansions, allowing us to instead require that
a higher-order remainder term be asymptotically negligible. Minimal rate conditions
would then be significantly relaxed. For example, if a kth order expansion exists and
could be utilized, an estimator of the density function converging at a rate faster than
n−1/[2(k+1)] would suffice for the resulting remainder term to be negligible. More impor-
tantly, even when such higher-order expansions do not exist, approximate higher-order
expansions can generally be constructed, leading to concrete rate gains. In the latter
case however, describing the resulting minimal rate conditions in generality is more
difficult since these can be somewhat context-dependent.

The objective of this paper is to describe how the TMLE framework can be general-
ized to explicitly utilize higher-order rather than first-order asymptotic representations.
The practical significance of this is to provide guidelines for constructing estimators
that have sound behavior in finite samples and are asymptotically linear and efficient
under less restrictive conditions.

1.2 Brief review of the relevant literature

The building blocks of this generalization were set several decades ago, notably in the
works of J. Pfanzagl [Pfanzagl, 1985], wherein the notion of higher-order gradients was
introduced and higher-order expansions of finite-dimensional parameters over arbitrary
model spaces were formalized. Influence functions having originated in the field of ro-
bust statistics, it is no surprise that their higher-order extensions have been used to
produce a refined theory of robust statistics. La Vecchia et al. [2012] recently proposed
precisely such a refinement. Our approach, however, is very different in spirit: we seek
to utilize higher-order expansions to enable and guide the construction of regular and
asymptotically linear estimators of statistical parameters in rich infinite-dimensional
models. This is the perspective that motivated the seminal contributions of J. Robins,
L. Li, E. Tchetgen & A. van der Vaart (e.g., Robins et al., 2008, 2009, Li et al., 2011,
van der Vaart, forthcoming); these authors are the first to have provided a rigorous
framework for precisely addressing this problem. The first exposition is that of Robins
et al. [2008], where the focus resides primarily on the use of higher-order gradients to
derive optimal estimators in settings where regular estimation is not possible. Sub-
sequent works are concerned with the development of a higher-order analogue of the
one-step estimator introduced early on in Levit [1975], Ibragimov and Khasminskii
[1981], Pfanzagl [1982] and Bickel [1982], for example. The general approach is thus to
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identify the dominating terms of an asymptotic expansion for a naive plug-in estimator
and to perform, accordingly, an additive correction on this naive estimator. In Robins
et al. [2009], the authors carefully establish the required foundations of a second-order
extension of this approach and illustrate its use in the context of two problems, namely
that of estimating the square of a density function and of estimating the mean re-
sponse in missing data models. The latter problem is equivalent to estimating a mean
counterfactual outcome in the absence of unmeasured confounders. In Li et al. [2011],
the authors study in great detail the problem of inferring a treatment effect using this
approach and also establish minimax rate results for certain situations in which regular
inference is not possible.

An excellent review of the general higher-order extension of the one-step estimator
is provided in van der Vaart [forthcoming]. The one-step estimator is simple and easy
to describe. However, in finite samples, it is vulnerable to decreased performance since
it does not include any safeguard ensuring that the additive correction performed on
the naive plug-in estimator does not drive the estimator near and possibly beyond the
natural bounds of the parameter space. Rather than performing post-hoc bias correc-
tion in the parameter space, as does the one-step procedure, the TMLE framework,
which we focus on in this paper, provides guidelines for constructing an estimator of
the underlying data-generating distribution, or whichever portion of it is needed to
compute the parameter of interest, such that the resulting plug-in estimator enjoys
regular and asymptotically linear asymptotic behavior. As such, the correction step
is performed in the model space rather than in the parameter space. The appeal of
devising such an approach, even decades before its actual development, was highlighted
in Pfanzagl [1982]. Since the resulting estimator automatically satisfies bounds on the
parameter space, it never produces nonsensical output, such as a probability estimate
outside the unit interval, and can outperform in finite samples asymptotically equiv-
alent estimators that do not have a plug-in form. This issue arises when comparing
first-order TMLE and one-step estimators, but is likely to be of even greater importance
in higher-order inference due to the increased complexity of the correction process.

As is highlighted by Robins et al. [2009] and further discussed in this article, higher-
order gradients do not exist for several statistical parameters of interest. Nonetheless,
approximate higher-order gradients can be used to produce regular estimators. In prac-
tice, the notion of approximate higher-order gradients necessarily involves the selection
of certain tuning parameters. This requirement is discussed in Robins et al. [2009] but
practical guidelines are neither provided nor appear particularly easy to develop. An
advantage of using TMLE in this context, as we demonstrate, is that the selection of
such tuning parameters can be effortlessly embedded in the framework of collaborative
TMLE (e.g., van der Laan and Gruber, 2010, Gruber and van der Laan, 2010, Stitel-
man and van der Laan, 2010, Gruber and van der Laan, 2012, van der Laan and Rose,
2011), hereafter referred to as C-TMLE. Thus, the practical complications associated
with the need for carefully-tuned approximations in the context of inference based on
higher-order expansions can be tackled readily. Furthermore, as will be discussed, the
framework of TMLE also provides useful tools that aim to guarantee that the resulting
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higher-order estimator will not behave worse than the usual first-order TMLE.

1.3 Contributions and outline of this article

In this article we propose a novel kth order targeted minimum loss-based estimator of a
kth order pathwise-differentiable target parameter, based on n independent draws from
an unknown element of a given semiparametric model. We will refer to this estimator
as a k-TMLE, with 1-TMLE corresponding to the usual first-order TMLE. Analogously
to the large-sample properties of the usual TMLE requiring the asymptotic negligibility
of a second-order remainder term, the asymptotic normality and efficiency of this k-
TMLE will rely on the asymptotic negligibility of a (k + 1)th order remainder term.
As an illustration of the construction of this general k-TMLE, we develop a 2-TMLE
of the mean of a counterfactual outcome under fixed treatment based on observing n
independent and identically distributed copies of a random vector consisting of baseline
covariates, a binary treatment and a final binary outcome. It will indeed be the case
that we will often focus on the 2-TMLE to simplify the exposition. Nonetheless, a
description of the extension to the general k-TMLE will usually be provided as well.

We provide a general template for constructing a 2-TMLE and for establishing
its asymptotic efficiency. We show that this 2-TMLE can be constructed within the
standard framework of TMLE, notably by augmenting the least-favorable parametric
submodel used in the standard TMLE with an additional parameter. In addition, we
demonstrate that the statistical inference of this 2-TMLE can be based on a second-
order Taylor expansion, possibly providing some finite-sample improvements in the
construction of confidence intervals.

As mentioned above, in many problems, the target parameter is only first-order
pathwise-differentiable and a second-order gradient does not exist. As a solution, we
propose a 2-TMLE based on an approximate second-order gradient and present a cor-
responding theory. In the context of our running example, a second-order gradient
exists when the baseline covariates have finite support but not otherwise. We demon-
strate how our proposed remedy is constructed and studied in the latter case, where a
second-order gradient is replaced by a kernel-based approximation of the second-order
gradient found in the context of finitely-supported covariates. Unfortunately, this addi-
tional approximation yields an additional bias term for the resulting 2-TMLE, referred
to as the representation error in Robins et al. [2009]. As a result, the asymptotic
linearity and efficiency theorem of the 2-TMLE require this bias term to be asymp-
totically negligible as well. This requires careful study in any given application, as is
discussed in greater detail below.

As indicated previously, control of this bias term can be carried out within the
standard TMLE framework at no risk of losing the desirable properties of the first-
order TMLE. In our example, we demonstrate that, for an appropriate choice of kernel
and bandwidth rate, and provided the data-generating distribution satisfies certain
smoothness conditions, the asymptotic efficiency of the k-TMLE still only relies on the
asymptotic negligibility of a (k + 1)th order remainder term. We also propose a data-
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adaptive bandwidth selector based on the C-TMLE framework, essentially selecting
the bandwidth maximizing bias reduction in the targeting step of the TMLE.

We propose a concrete 2-TMLE for a mean counterfactual outcome, our running ex-
ample, and provide an asymptotic efficiency theorem including a closed-form expression
for the third-order remainder. In a companion article, we illustrate the behavior of this
estimator in a simulation study and data analysis, and provide R code implementing
the estimator with corresponding statistical inference.

This article is organized as follows. In Section 2, we provide the basic idea underly-
ing the development of the higher-order TMLE in terms of higher-order gradients and
we present the corresponding efficiency theory. This section should provide readers
with a rather succinct overview of the various ideas discussed in this article. In Section
3, we precisely define higher-order gradients and canonical gradients, and describe how
to calculate them. We perform these calculations in our running example, where we
wish to learn about a treatment-specific counterfactual mean EP0EP0(Y | A = 1,W )
using n independent copies of O = (W,A, Y ) ∼ P0, where P0 lies in a nonparametric
modelM and W is assumed to have a finite support. We formally establish the desired
second-order expansion of the target parameter in terms of the first-order canonical
gradient and second-order partial canonical gradient; this serves as the basis of the
asymptotic efficiency proof for the 2-TMLE. In Section 4, we propose the k-TMLE
for kth order pathwise-differentiable target parameters, provide a template for estab-
lishing asymptotic efficiency of this estimator, and illustrate the implementation of
a 2-TMLE in the context of our running example under the assumption that W is
finitely-supported. We suggest, in Section 5, a general template for the construction
of a k-TMLE when higher-order partial canonical gradients do not exist but can be
replaced by surrogate approximations depending on a tuning parameter h that de-
termines the bias due to the representation error. In addition, we present a general
asymptotic efficiency theorem and discuss strategies for selecting h data-adaptively us-
ing C-TMLE. We further discuss its use in the context of our running example when W
is not necessarily finitely-supported. We prove formal theorems establishing asymptotic
efficiency of these 2-TMLEs and explicitly provide the form of the involved remainders
so that the asymptotic negligibility of the third-order remainder term can be carefully
scrutinized and contrasted with the second-order remainder term arising in the usual
TMLE. We provide a discussion and concluding remarks in Section 6. The proofs of
our lemmas and theorems are gathered in the Appendix.

2 Overview of higher-order TMLE

2.1 Targeted maximum likelihood estimation

We consider the setting whereby n independent draws O1, . . . , On are obtained from
P0 ∈ M, where the statistical model M refers to the set of all possible probability
distributions for the prototypical data structure O. Let Pn be the empirical distribution
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of O1, . . . , On, defined as the discrete probability distribution assigning equal mass n−1

to each Oi, i = 1, 2, . . . , n. Define O := ∪P∈Msupp(P ) with supp(P ) denoting the
support of P ; in other words, denote by O the union of the support of O under each
P ∈ M. We are also given a statistical target parameter mapping Ψ : M → R
and are interested in inferring about the true parameter value ψ0 := Ψ(P0) from the
observed data. For simplicity, we focus on univariate target parameters in this article
but all the developments herein can immediately be extended to Euclidean-valued
target parameters with image in Rd as well.

We consider the case that Ψ is pathwise-differentiable at each P ∈ M with first-
order canonical gradient, also known as the efficient influence function, D(1)∗(P ), so
that a regular estimator of ψ0 is asymptotically efficient if and only if it is asymptotically
linear with influence function given byD(1)∗(P0) [Bickel et al., 1997]. Formally, a regular
estimator ψn of ψ0 is asymptotically efficient if and only if

ψn − ψ0 = (Pn − P0)D(1)∗(P0) + oP (n−1/2) ,

where for any function f we write Pf to denote
∫
f(o)dP (o).

TMLE provides a general template for constructing asymptotically efficient substi-
tution estimators ψ∗n := Ψ(P ∗n) of ψ0, whose asymptotic efficiency is in part a conse-
quence of the property

PnD
(1)∗(P ∗n) =

1

n

n∑
i=1

D(1)∗(P ∗n)(Oi) = 0 , (2.1)

and the general first-order expansion

Ψ(P )−Ψ(P0) = (P − P0)D(1)∗(P ) +R2(P, P0)

= −P0D
(1)∗(P ) +R2(P, P0) (2.2)

with R2(P, P0) a second-order term. What is intended here as a second-order term is
the obvious analogue from the finite-dimensional case. More formally though, we can
define a term Rk+1(P, P0) to be of (k + 1)th order if there exists a dissimilarity d such
that Rk+1(P, P0)/d(P, P0)k tends to zero as P tends to P0 in d. A second-order term
will often have the form∫

[f1(P )(o)− f1(P0)(o)] [f2(P )(o)− f2(P0)(o)] f3(P, P0)(o)dµ(o)

for some nuisance parameters f1, f2 and f3 and a measure µ. Identity (2.1) can be
combined with (2.2) evaluated at P = P ∗n to yield that

Ψ(P ∗n)−Ψ(P0) = (Pn − P0)D(1)∗(P ∗n) +R2(P ∗n , P0) . (2.3)

This forms the basis of any theorem establishing the asymptotic linearity and efficiency
of a TMLE. Provided it can be shown that
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(a) D(1)∗(P ∗n) falls in a P0-Donsker class with probability tending to one,

(b) P0

[
D(1)∗(P ∗n)−D(1)∗(P0)

]2
tends to zero in probability, and

(c) R2(P ∗n , P0) tends to zero in probability faster than n−1/2,

results from empirical process theory (e.g., van der Vaart and Wellner, 1996) imply the
desired asymptotic efficiency, notably that

ψ∗n − ψ0 = (Pn − P0)D(1)∗(P0) + oP (n−1/2) .

To construct an estimator P ∗n solving (2.1), TMLE relies on an initial estimator Pn,0
of P0, obtained, for example, using super learning for optimal performance, and a
so-called least-favorable parametric submodel {Pn,0(ε) : ε} ⊂ M such that

(i) Pn,0(0) = Pn,0, and

(ii) D(1)∗(Pn,0) lies in the closure of the linear span of all scores of ε at ε = 0.

A single update of TMLE is given by Pn,1 := Pn,0(ε0n), where ε0n := argmaxε Pn log pn,0(ε)
is the MLE in the parametric submodel constructed and pn,0(ε) := dPn,0(ε)/dµ is
the Radon-Nikodym derivative of Pn,0 with respect to some dominating measure µ.
Subsequently, the least-favorable submodel previously constructed using Pn,0 is con-
structed using Pn,1 and the process is repeated to map Pn,1 into a further update
Pn,2. This process is repeated until convergence, considered to have occurred at step
k provided εkn is approximately zero in some appropriate sense. The TMLE of P0 is
then defined as P ∗n := Pn,k(ε

k
n), while the TMLE of ψ0 is the corresponding substitu-

tion estimator ψ∗n := Ψ(P ∗n). At each step j, the MLE εjn of ε solves its score equation
0 = ∂

∂ε
Pn log pn,j(ε)

∣∣
ε=εjn

, where pn,j(ε) := dPn,j(ε)/dµ is the Radon-Nikodym derivative
of Pn,j relative to µ. Therefore, at step k, we obtain that

PnD
(1)∗(P ∗n) =

∂

∂ε
Pn log p∗n(ε)

∣∣∣∣
ε=0

=
∂

∂ε
Pn log pn,k(ε)

∣∣∣∣
ε=εkn

≈ 0

since the submodel {P ∗n(ε) : ε} has score D(1)∗(P ∗n) for ε at ε = 0, where pn,k and p∗n
are the Radon-Nikodym derivatives of Pn,k and P ∗n , respectively, relative to µ.

2.2 Extensions of TMLE

The above iterative algorithm relies on the loglikelihood loss, which directly motivates
the nomenclature targeted maximum likelihood estimator. However, provided an appro-
priate loss function can be identified, the same idea can be applied to any representation
of the target parameter as Ψ(P ) = Ψ1(Q) with Q := Q(P ), where Q(P ) represents the
relevant portion of P for the sake of computing Ψ(P ), provided D(1)∗(P ) := D(1)∗(Q, g)
can be written in terms of Q and a nuisance parameter g := g(P ). This gener-
alized algorithm, referred to as targeted minimum loss-based estimation, requires an
initial estimator (Qn,0, gn) of (Q0, g0), a loss function (o,Q) 7→ L(Q)(o) such that
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Q0 = argminQ P0L(Q), a least-favorable submodel {Qn,0(ε) : ε} ⊂ {Q(P ) : P ∈ M}
which generally depends on gn and is such that components of the generalized score

∂

∂ε
L(Qn,0(ε))

∣∣∣∣
ε=0

span D(1)∗(Qn,0, gn). An updating scheme directly analogous to that described above is
then defined and yields a targeted estimator Q∗n and corresponding targeted minimum
loss-based estimator Ψ1(Q∗n) of ψ0 such that

PnD
(1)∗(Q∗n, gn) = 0 ,

an integral requirement for asymptotic linearity and efficiency.
A simple but key observation is that, for the sake of ascribing additional proper-

ties to the TMLE, a targeted estimate g∗n of g0 can be constructed to solve specified
equations and Q∗n can easily be tailored to solve additional equations of interest. This
is accomplished notably by incorporating additional parameters in the least-favorable
parametric submodel through (Qn,0, gn). This generality of TMLE has been utilized
in several instances before (e.g., van der Laan and Rubin, 2006, Rubin and van der
Laan, 2011, van der Laan and Rose, 2011, Gruber and van der Laan, 2012, Lendle
et al., 2013, van der Laan, 2014) and plays a fundamental role in the construction of a
higher-order TMLE, as described in this article.

2.3 Construction of a higher-order TMLE

One of the main conditions in the proof of asymptotic efficiency for the TMLE is that
the second-order term R2(P ∗n , P0) must be oP (n−1/2). In this article, our goal is to
construct a TMLE in which this second-order remainder condition is replaced by a
third-order remainder condition, requiring instead that R3(P ∗n , P0) be oP (n−1/2). More
generally, with additional work, it will be possible to substitute this condition by a
(k+1)th order remainder condition requiring that Rk+1(P ∗n , P0) be oP (n−1/2). This will
facilitate the construction of estimators known to be asymptotically linear and efficient
under less stringent and therefore more realistic conditions on rates of convergence of
the initial estimators used in TMLE.

To achieve this, it will be necessary to include additional targeted fitting in the
construction of P ∗n so that R2(P ∗n , P0) behaves as a third-order term. Our approach
will be to expand

R2(P ∗n , P0) = −1

2
P 2

0D
(2)(P ∗n) +R3(P ∗n , P0) , (2.4)

where for a function f of a pair (o1, o2) defined on O×O, with O1 and O2 independent
variates distributed according to P0, we define P 2

0 f :=
∫
f(o1, o2)dP0(o1)dP0(o2) as the

expectation of f with respect to the product measure P 2
0 of (O1, O2), and R3(P ∗n , P0)
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is a third-order remainder term. The expansion in (2.4) is generally achieved by a so-
called second-order canonical gradient D(2)∗(P ) but possibly also by other functions.
In conjunction with (2.3), it yields the identity

Ψ(P ∗n)−Ψ(P0) = (Pn − P0)D(1)∗(P ∗n)− 1

2
P 2

0D
(2)(P ∗n) +R3(P ∗n , P0) .

Given this function D(2)(P ), we arrange that the TMLE not only solves PnD
(1)∗(P ∗n) =

0 but also the U -statistic equation

0 = P 2
nD

(2)(P ∗n) =
1

n2

n∑
i=1

n∑
j=1

D(2)(P ∗n)(Oi, Oj)

by including additional parameters in the least-favorable parametric submodel. This
allows us to obtain that

Ψ(P ∗n)−Ψ(P0) = (Pn − P0)D(1)∗(P ∗n) +
1

2
(P 2

n − P 2
0 )D(2)(P ∗n) +R3(P ∗n , P0) .

Lemmas 2 and 3 provide conditions under which (P 2
n −P 2

0 )D(2)(P ∗n) converges in prob-
ability to zero at a rate faster than n−1/2. Asymptotic efficiency is then established
as above but with the condition R2(P ∗n , P0) = oP (n−1/2) replaced by R3(P ∗n , P0) =
oP (n−1/2).

Our proposed 2-TMLE is based on a remarkably simple observation: if we denote
D̄

(2)
n (P ∗n)(Oi) := 1

n

∑n
j=1 D

(2)(P ∗n)(Oi, Oj), then D̄
(2)
n (P ∗n) can itself be perceived as a

score at P ∗n and furthermore we can write

P 2
nD

(2)(P ∗n) =
1

n

n∑
i=1

D̄(2)
n (P ∗n)(Oi) = PnD̄

(2)
n (P ∗n) .

As a consequence, we may simply augment our least-favorable parametric submodel
{P (ε1) : ε1} with score D(1)∗(P ) at ε1 = 0 in the 1-TMLE to also include a parameter
ε2 such that the expanded least-favorable submodel {P (ε1, ε2) : ε1, ε2} also generates

the score D̄
(2)
n (P ) at (ε1, ε2) = (0, 0). In this manner, the resulting 2-TMLE P ∗n solves

the collection of equations

0 = PnD
(1)∗(P ∗n)

0 = PnD̄
(2)(P ∗n) = P 2

nD
(2)(P ∗n) .

Thus, the proposed 2-TMLE is no more than a usual 1-TMLE with least-favorable
submodel extended in a particular manner.

2.4 Insufficiently differentiable target parameters

As has been noted in Robins et al. [2009], most statistical parameters of interest are
unfortunately not smooth enough as functions of the data-generating distribution to
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allow the required expansion for R2(P ∗n , P0). These second-order remainder terms often
involve squared differences between a density estimator and the true density. As a
consequence, while R2(P ∗n , P0) can often itself be expanded into second-order differences
between P ∗n and P0, these second-order terms cannot be represented as the expectation
under P0 of a second-order gradient D(2)(P ∗n). This is a significant hurdle for any
method aiming to carry out higher-order bias reduction; in particular, it is a challenge
we must face when constructing a higher-order TMLE.

In such cases, we will search for a surrogate D
(2)
h , indexed by a smoothing parameter

h, such that

R2(P ∗n , P0) = −1

2
lim
h→0

P 2
0D

(2)
h (P ∗n) +R3(P ∗n , P0)

for some third-order remainder R3(P ∗n , P0), thus leading to the representation

R2(P ∗n , P0) = −1

2
P 2

0D
(2)
h (P ∗n) +Bn(h) +R3(P ∗n , P0) .

Here, the representation error Bn(h) := [P 2
0D

(2)
h (P ∗n)− limh→0 P

2
0D

(2)
h (P ∗n)]/2 quantifies

the bias resulting from this approximation of a second-order gradient. We may therefore
write

Ψ(P ∗n)−Ψ(P0) = (Pn − P0)D(1)∗(P ∗n)− 1

2
P 2

0D
(2)
h (P ∗n) +Bn(h) +R3(P ∗n , P0) ,

which is analogous to (2.3). In order to preserve the validity of our general proof of
asymptotic efficiency of the 2-TMLE above, we will require that Bn(h) tend to zero
faster than n−1/2 for an appropriately chosen tuning parameter h = hn under appro-
priate smoothness conditions for P0. The representation error can also be recentered
as

Bn(h) =
1

2

{
P 2

0

[
D

(2)
h (P ∗n)−D(2)

h (P0)
]
− lim

h→0
P 2

0

[
D

(2)
h (P ∗n)−D(2)

h (P0)
]}

;

this form may facilitate its theoretical study. In our running example, provided higher-
order kernels are utilized and the density of the covariate vector W is sufficiently
smooth, Bn(h) can be bounded by terms of the type hm+1‖Q∗n−Q0‖, wherem represents
both the degree of smoothness of the underlying object and the degree of the kernel,
and ‖ · ‖ is some norm. Thus, if h = hn tends to zero fast enough, the representation
error will be oP (n−1/2).

Similarly as before, the construction of our proposed 2-TMLE guarantees that
PnD

(1)∗(P ∗n) = P 2
nD

(2)
hn

(P ∗n) = 0 for some value hn of the tuning parameter. That
these two score equations are solved by P ∗n follows from the use of a least-favorable

submodel whose score at ε = 0 spans both D(1)∗(P ) and D̄
(2)
hn

(P ). In practice, se-
lection of the tuning parameter hn requires great care. On one hand, to ensure that
(P 2

n − P 2
0 )D

(2)
hn

(P ∗n) converges to zero in probability faster than n−1/2, hn must gener-
ally tend to zero slowly enough. On the other hand, for the representation error to
be asymptotically negligible, it is required that hn tend to zero quickly enough. This
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constitutes the primary theoretical challenge this 2-TMLE must contend with as a re-
sult of the target parameter failing to be second-order pathwise differentiable: namely,
selection of hn necessarily involves a careful balance to ensure that

1

2
(P 2

n − P 2
0 )D

(2)
hn

(P ∗n) +Bn(hn) = oP (n−1/2) .

This involves a sensible trade-off between control of the U -statistic term and the rep-
resentation error.

Of course, this theoretical challenge translates directly into a fundamental practi-
cal challenge. Indeed, one algorithm within a large collection of candidate 2-TMLE
algorithms, each indexed by the corresponding choice of h, must be chosen in practice.
Optimal rates for hn can often be derived in particular applications, but these are
primarily of theoretical interest and generally provide little or no practical guidance
regarding the selection of hn. Fortunately, this is precisely the kind of challenge TMLE
can very naturally handle, notably by adjudicating the quality of a particular tuning
value h based on the gain in fit resulting from the ensuing parametric TMLE updat-
ing step. This is accomplished formally within the C-TMLE framework previously
referenced and discussed later.

3 Analytic basis for higher-order TMLE

3.1 Second-order differentiability

Let T (P ) be the tangent space of M at P ∈ M, defined as the closure of the linear
span of all scores of regular parametric submodels through P . This is a subspace of the
Hilbert space L2

0(P ) of square-integrable real-valued functions defined on the support
of P , with mean zero under P , endowed with inner product 〈h1, h2〉P := P (h1h2). The

norm h 7→ 〈h, h〉1/2P will be denoted by ‖ · ‖2,P . Let D(1)∗(P ) ∈ T (P ) be the first-
order canonical gradient of the parameter Ψ : M → R at P . Denote by L2∗

0 (P 2) the
Hilbert space of square-integrable real-valued functions defined on the support of P 2,
symmetric in its two arguments, and satisfying that∫

f(o1, o)dP (o1) =

∫
f(o, o2)dP (o2) = 0

for P -almost every o, equipped with the inner product

〈f1, f2〉P 2 := P 2(f1f2) =

∫
f1(o1, o2)f2(o1, o2)dP (o1)dP (o2) .

The norm f 7→ 〈f, f〉1/2P 2 will be denoted by ‖ · ‖2,P 2 . If, for a given P ∈ M and each
sufficiently smooth one-dimensional submodel {P (ε) : ε} ⊂ M through P and with
first-order score s(1)(P )(o) := ∂

∂ε
pε(o)

∣∣
ε=0

/p(o) at ε = 0, the representation

Ψ(P (ε))−Ψ(P ) = ε

∫
D(1)(P )(o)s(1)(o)dP (o) + o(ε) (3.1)
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holds for some element D(1)(P ) ∈ L2
0(P ), we say that Ψ is first-order pathwise differen-

tiable at P and D(1)(P ) is a first-order gradient of Ψ at P (see, e.g., Pfanzagl [1982]).
Defining

s(2)(P )(o) :=
∂2

∂ε2
pε(o)

∣∣∣∣
ε=0

[p(o)]−1

as the second-order score of ε in {P (ε) : ε} at ε = 0, and setting

A1(s(1))(P ) :=

∫
D(1)(P )(o)s(1)(o)dP (o)

A2(s(1), s(2))(P ) :=

∫
D(1)(P )(o)s(2)(o)dP (o)

+

∫∫
D(2)(P )(o1, o2)s(1)(o1)s(1)(o2)dP (o1)dP (o2) ,

if the representation

Ψ(P (ε))−Ψ(P ) = εA1(s(1))(P ) +
1

2
ε2A2(s(1), s(2))(P ) + o(ε2) (3.2)

holds for each first-order gradient D(1)(P ) ∈ L2
0(P ) and an element D(2)(P ) ∈ L2∗

0 (P 2),
we say that Ψ is second-order pathwise differentiable at P and D(2)(P ) is a second-
order gradient of Ψ at P (see, e.g., Pfanzagl [1985]). This definition provides a practical
means of identifying candidate second-order gradients. Specifically, given a smooth
one-dimensional parametric model {P (ε) : ε} ⊂ M with first- and second-order scores
s(1) and s(2), respectively, any function D(2)(P ) ∈ L2∗

0 (P 2) such that∫∫
D(2)(P )(o1, o2)s(1)(o1)s(2)(o2)dP (o1)dP (o2) =

d2

dε2
Ψ(P (ε))

∣∣∣∣
ε=0

− P
[
D(1)(P )s(2)

]
will be a candidate second-order gradient of Ψ at P in model M. In view of Re-
mark 4.4.2 of Pfanzagl [1985], given a first-order gradient D(1)(P ) of Ψ at P ∈ M, a
corresponding second-order gradient can also be obtained by computing pointwise a
first-order gradient of the parameter mapping P 7→ D(1)(P )(o) for fixed o.

A second-order gradient often has the form

D(2)(P )(o1, o2) =

∫
S1,x(o1)S2,x(o2)h(P )(x)dν(x) (3.3)

for some S1,x and S2,x in L2
0(P ) for each x, a function x 7→ h(P )(x) and a measure ν

such that resulting function is symmetric in its two arguments. To see this, suppose
that Ψ(P ) depends on P through a summary vector (Pf : f ∈ F) for some finite class
of functions F . This is necessarily the case if O is finite, for example, as then taking
F := {u 7→ I(u = o) : o ∈ O} will certainly do. A standard second-order Taylor
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expansion will give that

Ψ(P (ε))−Ψ(P ) =
∑
f∈F

∂Ψ(P )

∂Pf
· (P (ε)− P )f

+
1

2

∑
f1,f2∈F

∂2Ψ(P )

∂Pf1∂Pf2

· (P (ε)− P )f1(P (ε)− P )f2 + o(ε2) .

Using the representation dP (ε)/dP = 1 + εs(1) + 1
2
ε2s(2) + o(ε2), we can write

(P (ε)− P )f = ε

∫
(f(o)− Pf) s(1)(o)dP (o)

+
1

2
ε2
∫

(f(o)− Pf)s(2)(o)dP (o) + o(ε2) ,

(P (ε)− P )f1(P (ε)− P )f2 =

ε2
∫∫

(f1(o1)− Pf1)(f2(o2)− Pf2)s(1)(o1)s(1)(o2)dP (o1)dP (o2) + o(ε2) .

This motivates us to define

D(1),NP (P )(o) :=

∫
f∈F

∂Ψ(P )

∂Pf
(f(o)− Pf) dµ1(f)

D(2),NP (P )(o1, o2) :=

∫
f1,f2∈F

∂2Ψ(P )

∂Pf1∂Pf2

(f1(o1)− Pf1) (f2(o2)− Pf2) dµ2(f1, f2)

with µ1 and µ2 the counting measures on F and F × F , respectively. The heuristic
derivation above yields (3.2) with D(1)(P ) = D(1),NP (P ) and D(2)(P ) = D(2),NP (P ). In
the general case where F is not finite, this representation will generally still hold with
other measures µ1 and µ2. The form of these measures will often become apparent
upon taking increasingly fine discrete approximations to F .

Representation (3.2) can be alternatively written as

Ψ(P (ε))−Ψ(P ) = (P (ε)− P )D(1)(P ) +
1

2
(P (ε)− P )2D(2)(P ) + o(ε2)

= P (ε)D(1)(P ) +
1

2
P (ε)2D(2)(P ) + o(ε2) .

If at each P ∈ M such second-order expansion holds uniformly along all parametric
submodels through P , strong differentiability, as defined in Pfanzagl [1985], is expected
to hold and then

Ψ(P )−Ψ(P0) = −P0D
(1)(P )− 1

2
P 2

0D
(2)(P ) +R3(P, P0) , (3.4)

where R3(P, P0) involves a third-order difference between P and P0. This expansion
serves as the basis for constructing a 2-TMLE in this paper, as is discussed below.
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3.2 Second-order canonical gradients

The expansions above hold for any valid pair of first- and second-order gradients.
Here, we emphasize valid because for a given first-order gradient the set of second-
order gradients for which expansion (3.2) holds is generally smaller than the set of all
second-order gradients. This point was recognized by Pfanzagl [1985] and discussed
in Robins et al. [2009]. Under regularity conditions, a 2-TMLE constructed using
these expansions will be asymptotically linear with influence function D(1)(P0). As
such, semiparametric efficiency theory motivates us to select the first-order canonical
gradient D(1)∗(P ) as first-order gradient. We therefore make this choice from hereon.
The canonical gradient can be obtained by projecting any first-order gradient onto the
first-order tangent space T (P ); in particular, D(1)∗(P ) is the projection of D(1),NP (P )
onto T (P ). Of course, ifM is locally saturated at P so that T (P ) = L2

0(P ), it follows
that D(1),NP (P ) = D(1)∗(P ).

The notion of a second-order tangent space, particularly in the context of estima-
tion within infinite-dimensional models, is studied very carefully in Pfanzagl [1985],
Robins et al. [2009] and van der Vaart [forthcoming]. We encourage interested readers
to consult these references. Representation (3.2) motivates defining the second-order
tangent space at P as the closure of the linear span of cross-products of the form
(o1, o2) 7→ s(1)(o1)s(1)(o2), where s(1) is a first-order score for ε at ε = 0 in a one-
dimensional smooth parametric submodel {P (ε) : ε} such that P (0) = P . The second-
order canonical gradient can then be defined as the projection of any second-order
gradient onto the second-order tangent space. Provided an algorithm for projecting
any element of L2

0(P ) onto T (P ) is available, the latter projection can be easily com-
puted, as the following lemma describes. This result can be alternatively obtained as
a corollary of Remark 2.5.22 of Pfanzagl [1985].

Lemma 1. Suppose that a second-order gradient D(2)(P ) is available and defined point-
wise as D(2)(P )(o1, o2) =

∫
S1,x(P )(o1)S2,x(P )(o2)h(P )(x)dν(x) for some elements

S1,x(P ) and S2,x(P ) in L2
0(P ) for each x, a function x 7→ h(P )(x) and a measure

ν such that the resulting function is symmetric in its two arguments. Denoting by
S∗1,x(P ) and S∗2,x(P ) the projection of S1,x(P ) and S2,x(P ), respectively, onto T (P ), the
mapping

(o1, o2) 7→ D(2)∗(P )(o1, o2) :=

∫
S∗1,x(P )(o1)S∗2,x(P )(o2)h(P )(x)dν(x)

is the second-order canonical gradient of Ψ at P relative to model M.

For the sake of constructing a 2-TMLE, we require an element D(2)(P ) ∈ L2
0(P 2)

satisfying two critical conditions:

(A) that expansion (3.4) hold, and

(B) that either o1 7→ D(2)(P )(o1, o) or o2 7→ D(2)(P )(o, o2) lie in T (P ) for each o ∈ O.
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We refer to any such element as a second-order partial canonical gradient. Let D(2)(P )
satisfy these requirements, and suppose, for definiteness, that o1 7→ D(2)(P )(o1, o) is in
T (P ) for each o ∈ O. It then follows that

o 7→ D̄(2)
n (P )(o) :=

1

n

n∑
j=1

D(2)(P )(o,Oj) ∈ T (P )

and consequently, that the V-statistic

1

n2

n∑
i=1

n∑
j=1

D(2)(P )(Oi, Oj) =
1

n

n∑
i=1

D̄(2)
n (P )(Oi)

is the empirical mean of a score at P . As a consequence, a TMLE solving both
PnD

(1)∗(P ∗n) = 0 and the V-statistic equation P 2
nD

(2)(P ∗n) = 0 can be constructed
by using a parametric submodel through P with score vector components spanning
D(1)∗(P ) and D̄

(2)
n (P ). Such a submodel can be constructed precisely because the lat-

ter are in T (P ). Thus, if a second-order partial canonical gradient D(2)(P ) is available,
a 2-TMLE can be devised in the same fashion as a usual 1-TMLE. It is important to
note that this construction would not be possible with just any second-order gradi-
ent satisfying (3.4): for arranging a TMLE construction, it is critical that one of its
coordinate projections uniformly lie in the tangent space T (P ). This property gener-
ally applies to second-order canonical gradients, which can therefore typically be relied
upon for defining a proper 2-TMLE.

Denoting by f ◦ the symmetrization

(o1, o2) 7→ f ◦(o1, o2) :=
f(o1, o2) + f(o2, o1)

2

of a given function (o1, o2) 7→ f(o1, o2) ∈ R, we note that P 2f = P 2f ◦ for any measure
P ∈ M. Since in the construction of a 2-TMLE the second-order gradient D(2)(P )
appears only via empirical moments of the form P 2

nD
(2)(P ) for P ∈ M, any element

D
(2)
+ (P ) ∈ L2

0(P 2) such that P 2
nD

(2)
+ (P ) = P 2

nD
(2)(P ) for each P ∈ M could be used

in practice. In view of this observation and to simplify our presentation, hereafter
we allow abuse of definition and refer as second-order gradient or canonical gradient
any element of L2

0(P 2) whose symmetrization is a second-order gradient or canonical
gradient of Ψ at P ∈M.

3.3 Example: estimating a counterfactual mean

Our motivating example regards the estimation of ψ0 := Ψ(P0) using n independent
copies of O = (W,A, Y ) ∼ P0, where Ψ(P ) = EPEP (Y | A = 1,W ) is the counter-
factual mean under certain causal assumptions. The first-order canonical gradient is
known in this case to be

D(1)∗(P )(o) :=
a

ḡ(w)

[
y − Q̄(w)

]
+ Q̄(w)−Ψ(P ) ,

15

Hosted by The Berkeley Electronic Press



where o := (w, a, y) is a possible realization of O, ḡ(w) := P (A = 1 | W = w),
Q̄(w) := EP (Y | A = 1,W = w) and QW (w) := P (W = w). With this definition, we
find that Ψ(P )−Ψ(P0) = −P0D

(1)∗(P ) +R2(P, P0) with

R2(P, P0) := P0

[(
ḡ − ḡ0

ḡ

)
(Q̄− Q̄0)

]
,

where ḡ0 and Q̄0 denote ḡ and Q̄, respectively, under P0. Our goal is to find a rep-
resentation R2(P, P0) = −1

2
P 2

0D
(2)(P ) + R3(P, P0). For this purpose, we assume W

has a finite support; this will be relaxed in later sections. It can be shown that the
second-order canonical gradient at (o1, o2), with o1 := (w1, a1, y1) and o2 := (w2, a2, y2),
is given by (the symmetrization of – see note above)

D(2)(P )(o1, o2) := H(P )(w1, a1, w2, a2)[y1 − Q̄(w1)] , (3.5)

where

H(P )(w1, a1, w2, a2) :=
2a1I(w1 = w2)

ḡ(w1)QW (w1)

[
1− a2

ḡ(w1)

]
.

It is not difficult to directly verify that indeed

1

2
P 2

0D
(2)(P ) = −P0

[(
ḡ − ḡ0

ḡ

)
(Q̄− Q̄0)

]
+R3(P, P0) , (3.6)

where R3(P, P0) is given by

P0

[(
1− ḡ0QW,0

ḡQW

)(
ḡ − ḡ0

ḡ

)
(Q̄− Q̄0)

]
.

Thus, it holds that Ψ(P ) − Ψ(P0) = −P0D
(1)∗(P ) − 1

2
P0D

(2)(P ) + R3(P, P0) for a
third-order term R3(P, P0), as desired. To ensure D(2)(P ) is not degenerate, W must
finitely-supported so that the event {W1 = W2} has positive probability.

4 Inference using higher-order TMLE

4.1 Asymptotic linearity and efficiency

We assume, in this section, that the target parameter is second-order pathwise differ-
entiable and that (3.4) holds for some second-order partial canonical gradient D(2)(P ).
Under prescribed conditions, a 2-TMLE will be asymptotically linear and efficient ir-
respective of the particular second-order partial canonical gradient selected. A precise
enumeration of these conditions are given in the below theorem.

Theorem 1. Suppose that the target parameter Ψ admits the second-order expansion
Ψ(P ) − Ψ(P0) = −P0D

(1)∗(P ) − 1
2
P 2

0D
(2)(P ) + R3(P, P0), and that P ∗n ∈ M satisfies

the equations

PnD
(1)∗(P ∗n) = 0 and P 2

nD
(2)(P ∗n) = PnD̄

(2)
n (P ∗n) = 0

with D̄
(2)
n (P ∗n)(o) := 1

n

∑n
i=1 D

(2)(P ∗n)(o,Oi). Then, provided that
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1. there exists a P0-Donsker class F such that D(1)∗(P ∗n) is in F with probability

tending to one, and P0

[
D(1)∗(P ∗n)−D(1)∗(P0)

]2
= oP (1);

2. (P 2
n − P 2

0 )D(2)(P ∗n) = oP (n−1/2);

3. R3(P ∗n , P0) = oP (n−1/2);

ψ∗n is an asymptotically linear estimator of ψ0 with influence function D(1)∗(P0). It is
thus also asymptotically efficient.

Verification of condition 2 in this theorem may seem particularly daunting. The
following lemma provides a set of conditions which suffice to establish condition 2 and
may be easier to verify in practice.

Lemma 2. Provided it can be established that

(i) there exists a P0-Donsker class G such that o 7→
∫
D(2)(P ∗n)(o, o2)dP0(o2) and

o 7→
∫
D(2)(P ∗n)(o1, o)dP0(o1) are in G with probability tending to one;

(ii) the integrals defined as J∗n,1 :=
∫ [∫

D(2)(P ∗n)(o1, o2)dP0(o1)
]2
dP0(o2) and J∗n,2 :=∫ [∫

D(2)(P ∗n)(o1, o2)dP0(o2)
]2
dP0(o1) both tend to zero in probability;

(iii) (Pn − P0)2D(2)(P ∗n) = oP (n−1/2),

then condition 2 of Theorem 1 holds.

The following lemma, as presented in Gill et al. [1995] and using the concept of
uniform sectional variation norm, is particularly useful to verify (iii). For a given
function f : Rd → R, the uniform sectional variation norm ‖f‖∗v of f is defined as
‖f‖∗v := sups supxs

∫
|f(dxs, x−s)|, where the supremum is over all possible sections

of f and
∫
|f(dxs, x−s)| represents the variation norm of the section xs 7→ f(xs, x−s).

Here, the latter section is defined by a given subset s ⊆ {1, . . . , d}, xs := (xj : j ∈ s)
and x−s := (xj : j 6∈ s).

Lemma 3. Suppose that O ⊆ Rm for some integer m. Provided D(2)(P ∗n) is right-
continuous with left-hand limits, there exists a real number C <∞ such that

(Pn − P0)2D(2)(P ∗n) ≤ C‖Fn − F0‖2
∞‖D(2)(P ∗n)‖∗v ,

where Fn and F0 are the distributions functions associated to Pn and P0, respectively.

Most importantly, as a consequence of this lemma and in view of Donsker’s Theo-
rem, we have that (Pn − P0)2D(2)(P ∗n) = OP (n−1‖D(2)(P ∗n)‖∗v).

The theorem provided above can be readily generalized to arbitrarily higher orders
based on the existence of a higher-order expansion

Ψ(P )−Ψ(P0) = −P0D
(1)∗(P )−

k∑
j=2

1

j!
P j

0D
(j)(P ) +Rk+1(P, P0)
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with appropriate higher-order partial canonical gradients D(j) for j = 1, 2, . . . , k, and
an estimator P ∗n ∈M such that PnD̄

(j)(P ∗n) = 0 for each j = 1, 2, . . . , k, where

D̄(j)
n (P )(o) :=

1

nj−1

∑
`1,`2,...,`j−1

D(j)(P )(o,O`1 , O`2 , . . . , O`j−1
)

and D̄
(j)
n (P ) is in T (P ). In this generalized context, condition 1 of Theorem 1 remains

intact, while condition 2 requires additionally that (P j
n − P

j
0 )D(j)(P ∗n) = oP (n−1/2) for

each j = 3, 4, . . . , k, and condition 3 is relaxed to Rk+1(P ∗n , P0) = oP (n−1/2).

4.2 Constructing confidence intervals

The same techniques for constructing confidence intervals based on the usual TMLE can
be utilized in the context of a higher-order TMLE. Since a k-TMLE ψ∗n is asymptotically
linear with influence function D(1)∗(P0) irrespective of k, it follows that n1/2(ψ∗n − ψ0)
converges in law to a normal variate with mean zero and variance σ2

0 := P0[D(1)∗(P0)]2.
This suggests that the Wald-type interval(

ψ∗n − z1−α/2σnn
−1/2, ψ∗n + z1−α/2σnn

−1/2
)
, (4.1)

where σ2
n := Pn[D(1)∗(P ∗n)]2 and zβ is the β-quantile of the standard normal distribution,

has asymptotic coverage level (1 − α). TMLE procedures of different order exhibit
identical first-order behavior, although inclusion of higher-order terms will generally
guarantee such behavior holds under a wider range of scenarios. The interval (4.1) can
therefore be utilized with any higher-order targeted estimator P ∗n of P0.

The above approach provides asymptotically correct inference. However, it does
not explicitly utilize the higher-order expansion upon which a k-TMLE is constructed.
It is plausible that confidence intervals with improved finite-sample performance may
be obtained by incorporating higher-order terms from this expansion. For this purpose,
a simple bootstrap approach can be devised based on the fact that, provided a random
sample O#

1 , . . . , O
#
n ∼ P ◦n for some consistent estimator P ◦n of P0, the conditional

distribution of the bootstrapped statistic

Z#
n := n−1/2

n∑
i=1

[
D(1)∗(P ∗n)(O#

i )− PnD(1)∗(P ∗n)
]

+
n−3/2

2

n∑
i=1

n∑
j=1

[
D(2)(P ∗n)(O#

i , O
#
j )− P 2

nD
(2)(P ∗n)

]
given Pn and the distribution of n1/2(ψn − ψ0) approximate each other arbitrarily well
for large n and for almost every Pn. Obvious choices for P ◦n include, for example, the
empirical measure Pn and the targeted estimator P ∗n . This suggests the confidence
interval (

ψ∗n − q1−α/2,nn
−1/2, ψ∗n − qα/2,nn−1/2

)
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with qβ,n the β-quantile of the conditional distribution of Z#
n given Pn. Of course,

the involved quantiles can be estimated arbitrarily well by simulation. This confidence
interval is easy to implement and takes into account the second-order variability ex-
plained by the U -statistic process implied by the second-order partial canonical gradient
D(2)(P ).

4.3 Implementing a higher-order TMLE

The practical implementation of a higher-order TMLE is no more difficult than a
regular TMLE since the former can indeed be seen as an example of the latter. The
additional effort involved, in reality, lies in the computation of higher-order partial
canonical gradients, or of suitable approximations to such if need be, as discussed in
the next section. Below, we describe the implementation of a second-order targeted
minimum loss-based estimator.

Given independent variates O1, O2, . . . , On distributed according to P0 ∈ M, we
wish to estimate ψ0 := Ψ(P0) for a given target parameter Ψ : M → R of interest.
Suppose that the parameter P 7→ Q(P ) satisfies that

i) Ψ = Ψ1 ◦Q for some mapping Ψ1 : Q(M)→ R, and

ii) Q0 = argminQ∈Q(M) P0L(Q) for some loss function (o,Q) 7→ L(Q)(o).

Here, Q0 represents the true summary Q(P0). With slight abuse of notation, for
the sake of notational convenience, we take Ψ(Q) to mean Ψ1(Q) hereafter. Several
parametrizations may be possible and it will generally be preferable to choose the least
complex such parametrization for which we can find an appropriate loss function and
parametric fluctuation submodels with scores at Q spanning the appropriate empirical
gradients, as described below.

Let g = g(P ) be a nuisance parameter and write g0 := g(P0). Suppose that the
first-order canonical gradient D(1)∗(P ) of Ψ can be represented as D(1)∗(Q(P ), g(P ))
and that D(2)(P ) := D(2)(Q(P ), g(P )) is any associated second-order partial canonical
gradient of Ψ. Similar abuse of notation is tolerated here as well. Suppose that for
each (o1, o2) ∈ O × O we can write D(2)(P )(o1, o2) =

∫
x
S∗x(P )(o1)fx(P )(o2)dν(x) for

S∗x(P ) ∈ T (P ) for each x, for some arbitrary function (x, o) 7→ fx(P )(o) and for some
measure ν. Then, setting

D̄(2)
n (Q, g)(o) :=

∫
x

S∗x(P )(o)
1

n

n∑
j=1

fx(P )(Oj)dν(x) ,

we have that D̄
(2)
n (Q, g) ∈ T (P ) and will play the role of a second-order score at P .

Let Q(Q, g) := {Qg(ε) : ε} ⊂ Q(M) be a second-order least-favorable submodel, in

the sense that Qg(0) = Q and both D(1)∗(Q, g) and D̄
(2)
n (Q, g) lie in the closure of the

linear span {
zT

∂

∂ε
L(Qg(ε))

∣∣∣∣
ε=0

: z ∈ Rp
}
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of the generalized score vector at ε = 0, where p denotes the dimension of ε.
Suppose that an initial estimator (Qn,0, gn) of (Q0, g0) is at our disposal. As with

a regular TMLE, a 2-TMLE will generally be an iterative procedure, though analytic
convergence after a single step can be demonstrated in important examples. A 2-
TMLE updating step will be identical to that of a regular TMLE, except for the use
of a second-order rather than first-order least-favorable submodel. Specifically, given
the current estimate Qn,m of Q0, the updated estimate Qn,m+1 is defined as

Qn,m+1 := argmin
Q∈Q(Qn,m,gn)

PnL(Q) .

Alternatively, setting εmn := argminε PnL(Qn,m(ε)), we can express the updated esti-
mate of Q0 as Qn,m+1 := Qn,m,gn(εmn ). This iterative updating step will generally be
repeated until convergence, adjudicated by εmn being sufficiently close to zero. Denoting
by Q∗n the limit of this iterative procedure, the 2-TMLE of ψ0 is given by ψ∗n := Ψ(Q∗n).
The desirable asymptotic properties of ψ∗n are in large part a consequence of the fact
that

PnD
(1)∗(Q∗n, gn) = PnD̄

(2)
n (Q∗n, gn) = 0

by construction.
The implementation of a k-TMLE proceeds almost identically, except for the use

of an appropriate higher-order least-favorable submodel. The construction of such a
submodel requires the computation of higher-order partial canonical gradients – the
effort involved is therefore primarily analytic. Denoting by D(j)(Q, g) an available jth

order partial canonical gradient, suppose

D(j)(P )(o1, o2, . . . , oj) =

∫
x

S∗x(P )(o1)fx(P )(o2, o3, . . . , oj)dν(x)

for some S∗x(P ) ∈ T (P ) for each x, a function (x, o2, o3, . . . , oj) 7→ fx(P )(o2, o3, . . . , oj)
and a measure ν. Setting

D̄(j)
n (Q, g)(o) :=

∫
x

S∗x(P )(o)
1

nj−1

n∑
`1,...,`j−1

fx(P )(O`1 , O`2 , . . . , O`j−1
)dν(x) ,

we have that D̄
(j)
n (Q, g) lies in T (P ) and now plays the role of a jth order score at P .

For Q(Q, g) := {Qg(ε) : ε} ⊂ Q(M) to be a kth order least-favorable submodel, each
of D(1)∗(Q, g) and D(j)(Q, g), j = 2, 3, . . . , k, must be contained in the closure of the
linear span of the generalized score vector ∂

∂ε
L(Qg(ε)) at ε = 0. Given an initial estimate

(Qn,0, gn) of (Q0, g0), applying the same iterative updating algorithm described above
will generate a revised estimate Q∗n such that

PnD
(1)∗(Q∗n, gn) = PnD̄

(2)
n (Q∗n, gn) = . . . = PnD̄

(k)
n (Q∗n, gn) = 0 ,

from which asymptotic properties of the k-TMLE Ψ(Q∗n) can be derived.
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4.4 Example: estimating a counterfactual mean

We provide a concrete example of the above algorithm by developing a 2-TMLE in the
context of our motivating example, namely that of estimating EP0EP0(Y | A = 1,W ).
To ensure that a second-order gradient exists, we focus on the case where the covariate
vector W has finite support; in this case, a second-order gradient is given by (3.5).

The target parameter Ψ(P ) := EPEP (Y | A = 1,W ) depends on P via Q(P ) =
(Q̄(P ), QW (P )), where Q̄(P )(w) := EP (Y | A = 1,W = w) and QW (P )(w) := P (W =
w) describes the marginal distribution of W . It is straightforward to verify that the
loss function L(Q) := L1(Q̄) + L2(QW ), where we define

L1(Q̄)(o) := −a
[
y log Q̄(w) + (1− y) log(1− Q̄(w))

]
and

L2(QW )(o) := − logQW (w)

pointwise for each o = (w, a, y), is such that (Q̄0, QW,0) := (Q̄(P0), QW (P0)) indeed
minimizes the true risk P0L(Q).

As previously stated, the first-order canonical gradient of Ψ is given by D(1)∗(P ) =

D
(1)∗
Y (P ) +D

(1)∗
W (P ), where

D
(1)∗
Y (P )(o) := H(1)(ḡ)(a, w)

[
y − Q̄(w)

]
and

D
(1)∗
W (P )(o) := Q̄(w)−Ψ(P ) ,

with H(1)(ḡ)(a, w) := a/ḡ(w) and ḡ(w) := P (A = 1 | W = w), as before. Furthermore,
D(2)(P )(o1, o2) := H(2)(P )(w1, a1, w2, a2)

[
y1 − Q̄(w1)

]
is a second-order gradient upon

symmetrization, with

H(2)(P )(w1, a1, w2, a2) :=
2a1I(w1 = w2)

ḡ(w1)QW (w1)

[
1− a2

ḡ(w1)

]
.

Setting g(P ) := ḡ, both D(1)∗(P ) and D(2)(P ) depend on P through (Q(P ), g(P )),
and the components of (Q(P ), g(P )) are variationally independent of each other since
they involve orthogonal portions of the likelihood. This provides greater flexibility in
constructing appropriate fluctuation submodels. Taking S∗x(P )(o) := 2aI(w = x)[y −
Q̄(w)], fx(P )(o) := −I(w = x)[a− ḡ(w)]/[ḡ(x)2QW (x)] and ν the counting measure on
the support of QW , we have that D(2)(P )(o1, o2) =

∫
x
S∗x(P )(o1)fx(P )(o2)dν(x) with

S∗x(P ) ∈ T (P ) for each x, as expected. Defining

D̄(2)
n (P )(o) := H̄(2)

n (P )(w, a)
[
y − Q̄(w)

]
with H̄

(2)
n (P )(w, a) := 1

n

∑n
j=1 H

(2)(P )(w, a,Wj, Aj), we note that D̄
(2)
n (P ) ∈ T (P ) and

in fact is a score of the conditional distribution of Y given A and W . Furthermore, we
observe that

PnD̄
(2)
n (P ) = P 2

nD
(2)(P ) .

21

Hosted by The Berkeley Electronic Press



We also note that, at QW = QW,n, the empirical distribution of W ,

H̄(2)
n (P )(w, a) =

2a

ḡ(w)

[
1− ḡn,NP (w)

ḡ(w)

]
,

where ḡn,NP (w) :=
∑n

i=1 I(Ai = 1,Wi = w)/
∑n

i=1 I(Wi = w) is the nonparametric
maximum likelihood estimator of ḡ0(w).

We can readily verify that PnD
(1)∗
W (P ) = 0 if QW (P ) = QW,n. Thus, if the initial

estimator of QW,0 is taken to be QW,n, to achieve our objective of solving the requisite
first- and second-order estimating equations, it will suffice to produce an estimate Q̄∗n
of Q̄0 satisfying

PnD
(1)∗
Y (Q̄∗n, QW,n, ḡn) = PnD̄

(2)
n (Q̄∗n, QW,n, ḡn) = 0 (4.2)

with ḡn our initial estimate of ḡ0. Given any particular Q̄, QW and ḡ, the submodel
determined by

Q̄ḡ,QW
(ε) := expit

[
logit(Q̄) + ε1H

(1)(ḡ) + ε2H̄
(2)
n (ḡ, QW )

]
with ε := (ε1, ε2) satisfies that Q̄ḡ,QW

(0) = Q̄ as well as

∂

∂ε1
L(Q̄ḡ,QW

(ε), QW )(o)

∣∣∣∣
ε=0

= H(1)(ḡ)(o)
[
y − Q̄(w)

]
= D

(1)∗
Y (P )(o) ,

∂

∂ε2
L(Q̄ḡ,QW

(ε), QW )(o)

∣∣∣∣
ε=0

= H̄(2)
n (ḡ, QW )(o)

[
y − Q̄(w)

]
= D̄(2)

n (P )(o) .

As such, given an initial estimate (Q̄n,0, ḡn) of (Q̄0, ḡ0), a first updated estimate Q̄n,1 of
Q̄0 is obtained by selecting the minimizer of the empirical risk PnL1(Q̄) with Q̄ ranging
over the parametric submodel determined by

Q̄n,0(ε) := expit
[
logit(Q̄n,0) + ε1H

(1)(ḡn) + ε2H̄
(2)
n (ḡn, QW,n)

]
and −∞ < ε1, ε2 < +∞. The optimal values of ε1 and ε2 can be readily obtained as
estimated regression coefficients in the fit of a logistic regression model with outcome
Yi, covariates H(1)(ḡn)(Oi) = Ai/ḡn(Wi) and

H̄(2)
n (ḡn, QW,n)(Oi) =

2Ai
ḡn(Wi)

[
1− ḡn,NP (Wi)

ḡn(Wi)

]
,

and offset logit(Q̄n,0(Wi)) restricted to the subset of data points for which Ai = 1. It is
not difficult to see that any further attempt to update Q̄n,1 by considering the second-
order least-favorable submodel through it will not produce any change. As such, in
this case, the algorithm terminates in a single step, so that Q̄∗n = Q̄n,1 and (4.2) must
then hold. The resulting 2-TMLE of ψ0 is finally given by

Ψ(Q̄∗n, QW,n) =
1

n

n∑
i=1

Q̄∗n(Wi) .
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This estimator allows concrete theoretical gains relative to the 1-TMLE described
previously and preliminary simulation results suggest these indeed translate well into
practical gains.

In the algorithm described above, there was no need to update the estimate of QW,0

at all. This resulted from the selection of the NPMLE QW,n as initial estimator and of
the log-likelihood loss for QW . Had any of these two choices differed, it would generally
have been necessary to iteratively update the estimate of QW,0 using an appropriate
fluctuation submodel to ensure that the resulting targeted estimate Q∗W,n satisfy that

PnD
(1)∗
W (Q̄∗n, Q

∗
W,n) = 0 ,

leading then to the 2-TMLE of ψ0 given by
∑

w Q̄
∗
n(w)Q∗W,n(w).

As transpires from the developments above, if the support of W is finite but
nonetheless rich, large samples will be required to ensure that ḡn,NP behaves suffi-
ciently well as an estimator of ḡ0. Given the sufficiency property of the propensity
score as a summary of potential confounders, it is natural to inquire whether the use
of a second-order partial canonical gradient based on the propensity score may allow
us to circumvent the dimensionality of W . Suppose that W is finitely supported and
consider the second-order partial canonical gradient given by

D
(2)a
0 (P )(o1, o2) := Ha

0 (P )(w1, a1, w2, a2)[y1 − Q̄(w1)] ,

where we define pointwise

Ha
0 (P )(w1, a1, w2, a2) :=

2a1I(ḡ0(w1) = ḡ0(w2))

ḡ(w1)Qḡ0(W ),0(ḡ0(w1))

[
1− a2

ḡ(w1)

]
and Qḡ0(W ),0 denotes the probability mass function of ḡ0(W ) under P0. Clearly, the
important benefit of this choice is that the event {W1 = W2} is replaced by the better-
supported event {ḡ0(W1) = ḡ0(W2)}. Unsurprisingly, (3.6) holds identically when using

D
(2)a
0 instead of D(2). Of course, the limitation of this result, in practice, is that use of

this alternate second-order partial canonical gradient presupposes knowledge of ḡ0 and
Qḡ0(W ),0. To render this approach practically useful, we may replace ḡ0 by ḡ in the def-

inition of D
(2)a
0 and hope that this substitution contributes no more than an additional

third-order term in (3.6). Unfortunately, a careful study of the resulting remainder
reveals that it is only a second-order term, essentially behaving asymptotically like
R2(P, P0). In particular, for the sake of achieving asymptotic linearity and efficiency,
the conditions required on the initial estimators in such a 2-TMLE procedure are no
different than those arising in the study of the standard 1-TMLE. While it is plausible
that finite-sample gains would be derived from the use of a 2-TMLE based on this
candidate second-order partial canonical gradient, these benefits cannot be expected
to persist asymptotically.
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5 Inference using approximate second-order gradi-

ents

5.1 Asymptotic linearity and efficiency

The theory of higher-order TMLE outlined above applies to settings wherein the pa-
rameter is higher-order pathwise differentiable. However, as indicated before, in re-
alistic models, many parameters of interest are not smooth enough as functionals of
the data-generating distribution to admit even a second-order gradient. Nonetheless, a
useful higher-order theory can still be developed with the introduction of approximate
higher-order partial canonical gradients, as the following theorem indicates.

Theorem 2. Suppose that for each h the element D
(2)
h (P ) ∈ L2

0(P 2) satisfies that

o1 7→ D
(2)
h (P )(o1, o)

lies in T (P ) for each o ∈ O, that the target parameter Ψ admits the second-order

expansion Ψ(P ) − Ψ(P0) = −P0D
(1)∗(P ) − 1

2
limh→0 P

2
0D

(2)
h (P ) + R3(P, P0), and that

P ∗n ∈M satisfies the equations

PnD
(1)∗(P ∗n) = 0 and P 2

nD
(2)
hn

(P ∗n) = PnD̄
(2)
hn,n

(P ∗n) = 0

with D̄
(2)
hn,n

(P ∗n)(o) := 1
n

∑n
i=1D

(2)
hn

(P ∗n)(o,Oi). Then, provided that

1. there exists a P0-Donsker class F such that D(1)∗(P ∗n) is in F with probability

tending to one, and P0

[
D(1)∗(P ∗n)−D(1)∗(P0)

]2
= oP (1);

2. (P 2
n − P 2

0 )D
(2)
hn

(P ∗n) = oP (n−1/2);

3. Bn(hn) := 1
2

[
P 2

0D
(2)
hn

(P ∗n)− limh→0 P
2
0D

(2)
h (P ∗n)

]
= oP (n−1/2);

4. R3(P ∗n , P0) = oP (n−1/2);

ψ∗n is an asymptotically linear estimator of ψ0 with influence function D(1)∗(P0). It is
thus also asymptotically efficient.

Sufficient conditions for establishing the validity of Condition 2 in the above theorem
are identical to those discussed in Lemma 2 upon replacing the second-order partial
canonical gradient D(2) by its approximation D

(2)
hn

. Again, Lemma 3 implies that

(Pn − P0)2D
(2)
hn

(P ∗n) = OP

(
‖D(2)

hn
(P ∗n)‖∗v
n

)
,

which provides a basis for establishing that this term is oP (n−1/2) for sequences hn
that do not converge to zero too quickly. In contrast, it will be necessary for hn to
tend to zero quickly enough for the representation error Bn(hn) to be asymptotically
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negligible. A careful trade-off between these opposing constraints must therefore be
achieved.

The above theorem is a direct generalization of Theorem 1 allowing for the lack
of existence of a second-order partial canonical gradient. This theorem can readily be
generalized to higher orders without any additional effort. For this purpose, it will be
required that the representation errors Bj

n(hn) := 1
2
[P j

0D
(j)
hn

(P ∗n) − limh→0 P
j
0D

(j)
h (P ∗n)]

be themselves oP (n−1/2) for j = 2, 3, . . . , k. This will ensure that the approximation
used does not itself generate higher-order terms which then would have to be taken into
account as well. If relevant portions of the underlying data-generating distribution P0

are sufficiently smooth, this condition will be achievable using appropriate smoothing
techniques, for example. Provided the higher-order expansion

Ψ(P )−Ψ(P0) = −P0D
(1)∗(P )−

k∑
j=2

1

j!
lim
h→0

P j
0D

(j)
h (P ) +Rk+1(P, P0) ,

Theorem 2 holds if conditions 2 and 3 above are replaced by the requirement that
(P j

n−P
j
0 )D

(j)
hn

(P ∗n) and Bj
n(hn) both be oP (n−1/2) for each j = 2, 3, . . . , k, and condition

4 instead involves the (k+1)th order remainder term, so that Rk+1(P ∗n , P0) = oP (n−1/2).

5.2 Implementation and selection of tuning parameter

A proper k-TMLE procedure will need to yield an estimate P ∗n ∈M of P0 such that

PnD
(1)∗(P ∗n) = PnD̄

(2)
hn,n

(P ∗n) = . . . = PnD̄
(k)
hn,n

(P ∗n) = 0 ,

where D̄
(j)
hn,n

(P ∗n) is defined similarly as D̄
(j)
n (P ∗n) but with D(j) replaced by D

(j)
hn

. Thus,
a k-TMLE procedure can be defined in exactly the same way as in Subsection 4.3,
where the scores from higher-order terms are replaced by their corresponding approxi-
mation. As such, except for the selection of an appropriate tuning parameter value hn,
the algorithm is no more difficult to implement than in settings where higher-order gra-
dients exist. Of course, the key challenge we must face in practice is the data-adaptive
determination of an appropriate value for hn.

The choice of h in this problem determines the least-favorable parametric submodel
used in the TMLE algorithm. Thus, the selection of h can be seen as completely
analogous to the selection of an estimator of the treatment or censoring mechanism,
principal determinants of the first-order least-favorable submodel, in the problem of
estimating a counterfactual mean when all potential confounders have been recorded or
when the available data are subject to censoring. A principled solution to this problem,
referred to as the collaborative TMLE algorithm and abbreviated C-TMLE, has been
described, thoroughly discussed and implemented in van der Laan and Gruber [2010],
Gruber and van der Laan [2010], Stitelman and van der Laan [2010], van der Laan
and Rose [2011] and Gruber and van der Laan [2012]. This approach can readily be
utilized here as well.
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C-TMLE consists of a TMLE algorithm that automatically selects among a collec-
tion of candidate least-favorable parametric submodels in its updating step. For each
candidate submodel, the resulting TMLE algorithm yields a decrease in empirical risk;
the magnitude of this change can serve as a criterion for adjudicating the value of this
particular submodel. C-TMLE uses precisely this criterion for data-adaptively build-
ing or selecting a least-favorable parametric submodel, and thereby a corresponding
TMLE. Under certain regularity conditions, the resulting estimator is asymptotically
linear and efficient provided at least one of the candidate submodels allows for complete
bias reduction asymptotically.

In the setting of a 2-TMLE, denoting by (Qn,0, gn) an initial estimate of (Q0, g0)
and letting h index a candidate second-order least-favorable submodel determined by
D(1)∗(Qn,0, gn) and D

(2)
h (Qn,0, gn), a C-TMLE solution would first select the h-value for

which the possible decrease in the empirical risk PnL(Qh,n,0(ε)) along the corresponding
h-specific parametric submodel {Qh,n,0(ε) : ε} through Qn,0 is maximal and perform a
single updating step along this submodel. In other words, h0

n would be selected as the
minimizer of

h 7→ PnL(Qh,n,0(ε0n(h)))

with ε0n(h) := argminε PnL(Qh,n,0(ε)) for each h and the first update would then be
Qn,1 := Qh0n,n,0

(ε0n(h0
n)). The next targeting step would be carried out similarly, with

subsequent choices of h constrained to be non-increasing. Specifically, letting h1
n denote

the minimizer of
h 7→ PnL(Qh,n,1(ε1n(h)))

over the interval [0, h0
n], where ε1n(h) := argminε PnL(Qh,n,1(ε)) for each h, the updated

estimate of Q0 would then be Qn,2 := Qh1n,n,1
(ε1n(h1

n)). This iterative process would pro-
ceed until the decrease in empirical risk from an additional step is no longer significant
according to some pre-specified criterion, such as BIC or some cross-validation risk, for
example. Denoting the final estimate of Q0 and the final value of hn at convergence
by Q∗n and h∗n, respectively, the TMLE Ψ(Q∗n) could be directly used, or the 2-TMLE
based on the initial estimate Qn,0 and final tuning parameter choice h = h∗n could be
constructed anew.

In the scheme proposed above, the performance of a particular h-value is adjudi-
cated on the basis of the decrease in empirical risk resulting from a single targeting
step. While this seems sensible in settings where convergence of the TMLE updating
process occurs analytically in a single step, in other settings, it may not be an optimal
way to proceed. As an alternative, it would be possible to carry out a fully iterated
TMLE until convergence for every choice of h, to select the optimal h-value on this
basis, and then, to repeat until overall convergence. Of course, this variant of the
algorithm would be potentially much more computationally intensive.

The approach described above is used to fully automate the selection of the tuning
parameter required in the setting of a 2-TMLE based on an approximate second-order
partial canonical gradient. The idea could directly be applied to a k-TMLE as well.
More importantly though, the same principle could be used to construct more involved
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collaborative TMLE algorithms that not only select tuning parameters but also other
choices that define the approximate second-order partial canonical gradient.

5.3 Example: estimating a counterfactual mean

When the distribution of the vector of potential confounders has infinite support, the
counterfactual mean generally does not admit a second-order gradient in the non-
parametric model we have been considering. An approximate second-order canonical
gradient can nonetheless be considered, leading to a well-defined 2-TMLE, which we
describe and study in this subsection.

5.3.1 An approximate second-order canonical gradient

Suppose that W := (W (1), . . . ,W (d)) and each W (j) is real-valued. Defining pointwise

D
(2)
h (Q̄, ḡ, QW )(o1, o2) := H

(2)
h (ḡ, QW )(w1, a1, w2, a2)[y1 − Q̄(w1)], where

H
(2)
h (ḡ, QW )(w1, a1, w2, a2) :=

1

hd
K

(
w1 − w2

h

)
2a1

ḡ(w1)QW (w1)

[
1− a2

ḡ(w1)

]
withK a compactly-supported multivariate kernel function and h a positive bandwidth,
D

(2)
h is seen to be a kernel approximation of the second-order partial canonical gradient

D(2) defined in Subsection 4.4. For each w, we henceforth denote h−1K(h−1w) by
Kh(w). The following lemma establishes conditions under which the bias term arising
in a TMLE due to the use of this approximate second-order canonical gradient is
negligible.

Lemma 4. Suppose that the distribution of W has compact support and is absolutely
continuous with respect to Lebesgue measure with density QW,0. Suppose that Q◦W,n is
a working estimate of QW,0. If

1. both ḡ0 and QW,0 are (m0 + 1)-times continuously differentiable almost surely;

2. K is orthogonal to all polynomial powers up until m0;

3. there exists some δ > 0 such that ḡ0 is bounded below by δ, and both ḡn and Q◦W,n
are bounded below by δ with probability tending to one,

then we have that

P 2
0D

(2)
h (Q̄∗n, ḡn, Q

◦
W,n)− lim

h→0
P 2

0D
(2)
h (Q̄∗n, ḡn, Q

◦
W,n) = OP

(
hm0+1‖Q̄∗n − Q̄0‖

)
,

where ‖Q̄∗n − Q̄0‖2 :=
∫

(Q̄∗n − Q̄0)2(w)QW,0(w)dw.

The result above explicitly deals with kernel smoothing with an equal bandwidth in
all dimensions. The lemma also holds, however, if a multivariate bandwidth is utilized,
with h substituted by maxj hj in the statement of the lemma.
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5.3.2 A corresponding 2-TMLE

Computation of the counterfactual mean does not in principle require an estimate of the
density function of W - indeed, an estimate of the distribution function of W suffices.
Nonetheless, the second-order targeting process explicitly requires this density function,
as is apparent from the form of the approximate second-order canonical gradient. Thus,
to construct a 2-TMLE, an estimate of the density of W must first be obtained. At
least two approaches can be considered to tackle this issue:

1. a fixed smooth estimate Q◦W,n of QW,0 is used whenever required in the second-
order targeting process to yield a targeted estimate of Q̄∗n but final computation
of the targeted estimate of ψ0 is based on the empirical measure QW,n;

2. the same smooth estimate Q◦W,n of QW,0 is used both in the second-order targeting
process and in the computation of the targeted estimate of ψ0.

The second option requires a substantial amount of additional work since in order for
the smooth estimator Q◦W,n to be appropriate for the sake of constructing the targeted
estimate of ψ0 it must itself be targeted. As such, it will need to be iteratively updated
along with estimates of Q̄0. This issue is circumvented in the first option since the
empirical distribution QW,n is a NPMLE and therefore already solves the relevant
score equation. For this reason, we recommend the first option in practice and restrict
our theoretical study below to this option alone.

Consider the 2-TMLE using the empirical distribution QW,n as initial estimator of
QW,0 in the TMLE algorithm but using a fixed smooth estimator Q◦W,n in the quantity

H
(2)
h (ḡn, Q

◦
W,n)

used to construct the logistic regression-based least-favorable submodel through a cur-
rent estimate Q̄n,m of Q̄0. This is then precisely an example of the 2-TMLE of Subsec-
tion 4.4. The implementation of this algorithm is particularly simple because a single
step of targeting suffices to achieve analytic convergence. To perform this single updat-
ing step, the maximum likelihood estimate εn of ε = (ε1, ε2) in the logistic regression
model

Q̄n,0,h(ε) := expit
[
logit(Q̄n,0) + ε1H

(1)(ḡn) + ε2H̄
(2)
h,n(ḡn, Q

◦
W,n)

]
is obtained, with H(1)(ḡn)(o) = a/ḡn(w) and

H̄
(2)
h,n(ḡn, Q

◦
W,n)(o) =

1

n

n∑
j=1

1

hd
K

(
w −Wj

h

)
2a

ḡn(w)Q◦W,n(w)

[
1− Aj

ḡn(w)

]

=
2a

ḡn(w)Q◦W,n(w)

[
1

n

∑
j

Kh(w −Wj)−
1
n

∑
jKh(w −Wj)Aj

ḡn(w)

]
.
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If the kernel estimate Q◦W,n(w) := 1
n

∑n
i=1Kh(w −Wi) is used, it is easy to verify that

the simplification

H̄
(2)
h,n(ḡn, Q

◦
W,n)(o) =

2a

ḡn(w)

[
1− ḡn,h(w)

ḡn(w)

]
ensues, where ḡn,h(w) :=

∑
jKh(w−Wj)Aj/

∑
jKh(w−Wj) is the Nadaraya-Watson

estimator of ḡ0(w) indexed by bandwidth h.
Given the targeted estimate Q̄∗n,hn := Q̄n,0,hn(εn) of Q̄0 based on this single-step

procedure, the resulting 2-TMLE of ψ0 is ψ∗n := Ψ(Q̄∗n,hn , QW,n) = 1
n

∑n
i=1 Q̄

∗
n,hn

(Wi).
The following theorem provides conditions under which ψ∗n is an asymptotically linear
and efficient estimator of ψ0. Below, we will make reference to the third-order remainder
term R3 defined as

R3(P, P0) := P0

[(
1− QW,0ḡ0

QW ḡ

)(
ḡ − ḡ0

ḡ

)(
Q̄− Q̄0

)]
,

as before.

Theorem 3. Under the conditions of Lemma 4, and provided that

1. each of ḡn − ḡ0, Q̄∗n − Q̄0 and Q◦W,n −QW,0 tend to zero in L2(QW,0)-norm;

2. there exists some δ > 0 such that ḡ0, ḡn and Q◦W,n · ḡn are bounded below by δ with
probability tending to one;

3. each of ḡn, Q̄∗n and Q◦W,n have uniform sectional variation norm bounded by some
M <∞ with probability tending to one;

4. the kernel function K is 2d-times differentiable and h2d
n n→ +∞,

and either of

5a. R2(P ∗n , P0) = oP (n−1/2);

5b. R3(P ∗n , P0) = oP (n−1/2) and ‖Q̄∗n − Q̄0‖hm0+1
n = oP (n−1/2)

holds, ψ∗n is an asymptotically linear estimator of ψ0 with influence function D(1)∗(P0).
It is thus also asymptotically efficient.

As is evident from the above conditions, the rate at which the bandwidth hn de-
creases plays a critical role in the asymptotic behavior of the 2-TMLE described. On
one hand, condition 2 of the theorem requires that the bandwidth converge to zero suf-
ficiently quickly in order for n1/2‖Q̄∗n− Q̄0‖hm0+1 to itself converge to zero, where m0 is
the order of the kernel K used. This ensures that the representation error is negligible.
On the other hand, condition 6 requires hn to converge to zero slowly enough to allow
control of the term (P 2

n − P 2
0 )Dhn(P ∗n).

We remark that when K is indeed taken to be a tensor product of uniform kernels
over (−0.5,+0.5), m0 = 1 and condition 2 becomes more restrictive. While for d ≤ 2,
there does indeed exist a rate hn for which both conditions are true, this is not the
case if d > 2. Therefore, even though higher-order kernels increase the variation norm
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and thereby lead to more stringent conditions on hn, when the vector of potential
confounders includes more than two components, it is necessary to use higher-order
kernels that fully exploit the underlying smoothness of the distribution of (A,W ) in
order to control the representation error.

Scrutiny of the theorem above reveals that a 2-TMLE will indeed generally be
asymptotically linear and efficient in a larger model compared to a corresponding 1-
TMLE. On one hand, as explicitly reflected in Theorem 3, for example, it is generally
true that whenever a 1-TMLE is efficient, so will be a 2-TMLE. This formalizes our
earlier claim that 2-TMLE operates in a safe haven wherein we expect not to hurt
a 1-TMLE by performing the additional targeting required to construct a 2-TMLE.
On the other hand, we note that 2-TMLE will be efficient in many instances in which
1-TMLE is not. As an illustration, suppose in the setting of our motivating example
that W is a univariate random variable with a sufficiently smooth density function.
Suppose also that ḡ0 is smooth enough so that an optimal univariate second-order
kernel smoother can be utilized to produce an estimate of ḡ0. In this case, efficiency of
a 1-TMLE requires that Q̄n tends to Q0 at a rate faster than n−1/10. In contrast, the
corresponding 2-TMLE built upon a second-order canonical gradient approximated
using an optimal second-order kernel smoother will be efficient provided that Q̄n is
consistent for Q̄0, irrespective of the actual rate of convergence. The difference between
these requirements may not seem drastic in settings where Q̄0 is sufficiently smooth
since then constructing an estimator Q̄n which satisfies both requirements is easy. This
is certainly not so if Q̄0 fails to be smooth, in which case achieving convergence even at
n−1/10-rate may be a challenge. This problem is exacerbated further if W has several
components. For example, if W is 5-dimensional, a 1-TMLE requires that Q̄n tend
to Q̄0 faster than n−5/18, whereas the corresponding 2-TMLE based on a third-order
kernel-smoothed approximation of the second-order canonical gradient requires that Q̄n

tend to Q̄0 faster than n−1/5. While the latter is achievable using an optimal second-
order kernel smoother, the former is not, and without further smoothness assumptions
on Q̄0, a 1-TMLE will generally not be efficient.

As in the last paragraph of Section 4, we may hope that systematic dimension
reduction may be performed by replacing Kh(w1 − w2) in the definition of D

(2)
h by a

kernel-based discrepancy based on the propensity score at w1 and w2. This can be
accomplished if ḡ0 is known, in which case Kh(ḡ0(w1)− ḡ0(w2)) can be used to define
a dimension-reduced approximate second-order partial canonical gradient without sac-
rificing the order of the remainder in the associated expansion. As before, replacing
ḡ0 by ḡ in this kernel discrepancy unfortunately introduces a second-order term in the
remainder, thereby invalidating the theoretical justification for using such a second-
order partial canonical gradient. Again, this does not preclude the possibility that
finite-sample benefits might be derived from taking this path.
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6 Concluding remarks

If the target parameter is higher-order pathwise differentiable, there appears to be no
reason not to implement a higher-order TMLE using appropriate higher-order partial
canonical gradients. Compared to its first-order counterpart, a higher-order TMLE
will be an asymptotically linear and efficient substitution estimator under weaker con-
ditions. This article provides a clear template describing how to construct such a
higher-order TMLE. As discussed at length, its implementation is identical to that of
a regular TMLE, save for the use of a higher-dimensional least-favorable parametric
submodel that generates a set of scores defined by the partial canonical gradients of
all orders.

We explicitly described this construction of a second-order TMLE for estimating
a counterfactual mean under the assumption that the vector W of confounders has
finite support. The latter ensured the presence of ties Wi = Wj for i 6= j, a necessary
ingredient for the existence of a non-degenerate second-order gradient. If W includes
continuous components, for example, such ties have null probability of occurring and
a second-order gradient does not exist. Since a second-order canonical gradient is
obtained by projecting any candidate second-order gradient into a second-order tangent
space, it may well be that the second-order canonical gradient involves a smoothed
version of the indicator I(Wi = Wj) if the semiparametric model is sufficiently smaller
than the saturated nonparametric model.

Inspired by the fact that EPEP (Y | A = 1,W ) = EPEP (Y | A = 1, ḡ(W )), we
note that it may be of interest to instead focus on estimation of the data-adaptively-
defined parameter value Ψn(P0), where Ψn(P ) := EPEP (Y | A = 1, ḡn(W )) and ḡn is
considered deterministic. The obvious benefit from adopting such an approach is that
the set of confounders we must adjust for is reduced to a univariate measure, and as
such, only univariate smoothing is required in computing the approximate second-order
canonical gradient. Nonetheless, this simplification is achieved by altering the target
of inference – this nullifies the need to consider the bias due to adjusting for ḡn(W )
rather than ḡ0(W ), but also modifies the interpretation of the resulting inference, since
the target parameter can no longer be considered as a bona fide mean counterfactual
outcome under causal assumptions.

To tackle target parameters that are not higher-order pathwise differentiable, we
make use of approximate higher-order gradients in this article. This approximation
strategy impacts only the higher-order bias reduction performed by the higher-order
partial canonical gradients. Since such a higher-order TMLE is tailored to eliminate
the higher-order terms in the Taylor expansion for the TMLE, a meaningful bias reduc-
tion relative to a standard first-order TMLE can be expected in practice if higher-order
partial canonical gradients are reasonably approximated. Unfortunately, these approx-
imations rely on possibly high-dimensional smoothing and one may wonder whether we
have simply replaced a difficult problem by another difficult problem. Fortunately, ap-
proximate higher-order TMLEs operate in a safe haven in which the desirable properties
of the first-order TMLE are preserved. Adding extra parameters to the least-favorable
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submodel always improve the estimator asymptotically and can be very reasonably
expected not to harm the estimator in finite samples.

In practice, the higher-order TMLE, based on actual or approximate higher-order
partial canonical gradients, should aim to achieve as much bias reduction as pos-
sible with the higher-order least-favorable submodel. In this paper, we provided
theoretically-sound and practicable building blocks for achieving this. Since any higher-
order TMLE is a substitution estimator, the finite-sample variability induced by the
need to fit a higher-order least-favorable submodel is controlled by global bounds on
the model and target parameter mapping. This is likely even more crucial in higher-
order procedures given the need to correct a greater number of terms. Even more
importantly, the seemingly daunting task of selecting tuning parameters and other po-
tential inputs of the algorithm can be seamlessly overcome using an implementation
of C-TMLE. The latter provides concrete tools for data-adaptively fine-tuning the se-
lection of a higher-order least-favorable submodel with the objective of maximizing its
effectiveness in reducing bias.

As highlighted in this article, the second-order TMLE in our motivating example
provides a concrete demonstration of a gain relative to a first-order TMLE: it is asymp-
totically linear and efficient in a significantly larger statistical model than an analogue
first-order TMLE. This is directly parallel to the advances made in the seminal work
of Robins et al. [2009] in the context of the one-step estimators. Another advantage
of including higher-order partial canonical gradients into the TMLE framework as car-
ried out in this article is that they yield contributions to the influence function of the
higher-order TMLE that can be directly incorporated in the construction of confidence
intervals, thereby possibly leading to finite-sample performance improvements.

Finally, since the Donsker class conditions imposed in our theorems can be restric-
tive in some settings, it is certainly of interest to develop a higher-order cross-validated
TMLE. The latter would use a cross-validated version of the empirical risk in the it-
erative updating procedure and could be shown to lead to an asymptotically linear
and efficient estimator even when such Donsker class conditions fail to hold. Such a
development would be a direct extension of the work of Zheng and van der Laan [2011]
in the first-order case, particularly since, as we have illustrated, a higher-order TMLE
can be framed as a first-order TMLE with an augmented least-favorable submodel.
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Appendix: proof of theorems and lemmas

Proof of Lemma 1

We first establish the fact that, for any orthonormal basis {e1, e2, . . .} of the first-order
tangent space T (P ) ⊆ L2

0(P ), the second-order tangent space T (2)(P ) is given by

H :=

{
(o1, o2) 7→

∑
i1,i2

C(i1, i2)ei1(o1)ei2(o2) : C ∈ C

}

with C denoting the set of all symmetric mappings from N × N to R. By definition,
T (2)(P ) is the closure of the linear span of S2(P ), the set of linear combinations of
score cross-products at P , formally defined as{

(o1, o2) 7→
∫
Sx(o1)Sx(o2)dµ(x) : Sx ∈ T (P ) for each x, µ has finite support

}
.

Take any element s ∈ S2(P ), say (o1, o2) 7→ s(o1, o2) :=
∫
x
Sx(o1)Sx(o2)dµ(x). For

each x, Sx ∈ T (P ) can be written as
∑

iCx(i)ei for some Cx : N → R. Thus, we
can write s(o1, o2) =

∑
i1,i2

C(i1, i2)ei1(o1)ei2(o2) with C(i1, i2) :=
∫
Cx(i1)Cx(i2)dµ(x).

Hence, we see that S2(P ) ⊆ H. Since H equals its closed linear span, it follows that
T (2)(P ) ⊆ H.
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Suppose an arbitrary element h of H is characterized by C0 ∈ C . Given δ > 0, it
is always possible to find K(δ) ∈ N such that∥∥∥∥∥∥(o1, o2) 7→

∑
i1,i2>K(δ)

C0(i1, i2)ei1(o1)ei2(o2)

∥∥∥∥∥∥ < δ

in L2(P )-norm. Set x(i1, i2) = (i1, i2) for each i1, i2 ∈ {1, 2, . . . , K(δ)} and let µδ be a
measure putting mass sgn(C0(i1, i2))/2 at x(i1, i2) for i1, i2 ∈ {1, 2, . . . , K(δ)} and no
mass elsewhere. For x = x(i1, i2) with i1, i2 ∈ {1, 2, . . . , K(δ)} and for j ∈ {i1, i2}, set
Cδ
x(j) := |C0(i1, i2)|1/2. Otherwise, set Cδ

x(j) = 0. Constructing Sx :=
∑

j C
δ
x(j)ej, it

is not difficult to verify that∫
x

Sδx(o1)Sδx(o2)dµδ(x) =
∑
j1,j2

∫
Cδ
x(j1)Cδ

x(j2)dµδ(x)ej1(o1)ej2(o2)

=
∑
j1,j2

∑
1≤i1,i2≤K(δ)

Cδ
x(i1,i2)(j1)Cδ

x(i1,i2)(j2)dµδ(x(i1, i2))ej1(o1)ej2(o2)

=
∑

1≤j1,j2≤K(δ)

C0(j1, j2)ej1(o1)ej2(o2) .

Since we have that∫
x

Sδx(o1)Sδx(o2)dµδ(x)−
∑
i1,i2

C0(i1, i2)ei1(o1)ei2(o2)

=

∫
x

Sδx(o1)Sδx(o2)dµδ(x)−
∑

i1,i2≤K(δ)

C0(i1, i2)ei1(o1)ei2(o2)

−
∑

i1,i2>K(δ)

C0(i1, i2)ei1(o1)ei2(o2) ,

we have constructed an element of S2(P ) ⊆ T (2)(P ) which approximates h to a pre-
scribed level of accuracy. Since T (2)(P ) is closed, h must necessarily lie in T (2)(P ), and
so, H ⊆ T (2)(P ). This therefore proves that T (2)(P ) = H.

In view of the representation of T (2)(P ) derived above and the fact that T (2)(P ) is
itself a Hilbert space, for each x, we can write

Π
{

(o1, o2) 7→ S1,x(o1)S2,x(o2) | T (2)(P )
}

(o1, o2)

=
∑

j1,j2
EP [S1,x(O1)S2,x(O2)ej1(O1)ej2(O2)] ej1(o1)ej2(o2)

=
∑

j1,j2
EP [S1,x(O1)ej1(O1)]EP [S2,x(O2)ej2(O2)] ej1(o1)ej2(o2)

=
∑

j1
EP [S1,x(O1)ej1(O1)] ej1(o1)

∑
j2
EP [S2,x(O2)ej2(O2)] ej2(o2)

= Π {o 7→ S1,x(o) | T (P )} (o1) · Π {o 7→ S2,x(o) | T (P )} (o2) .

The lemma thus follows since the projection operator is linear.
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Proof of Theorem 1

Theorem 1 is a special case of Theorem 2.

Proof of Lemma 2

This follows upon noting, using Fubini’s theorem, that

(P 2
n − P 2

0 )D(2)(P ∗n) = (Pn − P0)
[
D

(2)
1 (P ∗n) +D

(2)
2 (P ∗n)

]
+ (Pn − P0)2D(2)(P ∗n) ,

where D
(2)
1 (P )(o) :=

∫
D(2)(P )(o1, o)dP0(o1) and D

(2)
2 (P )(o) :=

∫
D(2)(P )(o, o2)dP0(o2)

for each P ∈ M. Under conditions (i) and (ii), Lemma 19.24 of van der Vaart [2000]
can be used to conclude that the first summand on the right-hand side of the expression
above is oP (n−1/2). The result follows then from condition (iii).

Proof of Lemma 3

A proof can be found in Gill et al. [1995].

Proof of Theorem 2

Based on the assumed second-order expansion, we have that

Ψ(P ∗n)−Ψ(P0) = −P0D
(1)∗(P ∗n)− 1

2
limh→0 P

2
0D

(2)
h (P ∗n) +R3(P ∗n , P0)

= −P0D
(1)∗(P ∗n)− 1

2
P 2

0D
(2)
hn

(P ∗n) +Bn(hn) +R3(P ∗n , P0)

= (Pn − P0)D(1)∗(P ∗n) + 1
2
(P 2

n − P 2
0 )D

(2)
hn

(P ∗n) +Bn(hn) +R3(P ∗n , P0) ,

where we have used that P ∗n ∈M and hn are selected so that

PnD
(1)∗(P ∗n) = P 2

nD
(2)
hn

(P ∗n) = 0 .

The 2-TMLE algorithm we propose in this paper will produce such a P ∗n . Under
condition 1, Lemma 19.24 of van der Vaart [2000] implies that (Pn − P0)D(1)∗(P ∗n) =
(Pn − P0)D(1)∗(P0) + oP (n−1/2). The result then follows directly in view of conditions
2, 3 and 4.

Proof of Lemma 4

The bias term Bn(h) = 1
2
[P 2

0D
(2)
h (P ∗n)− limh→0 P

2
0D

(2)
h (P ∗n)] can be studied similarly as

one studies the bias of a kernel density estimator. Defining pointwise

f1n(w1, w2) := ḡn(w1)− ḡ0(w2)

f2n(w1) :=
ḡ0(w1)

ḡ2
n(w1)Q◦W,n(w1)

[
Q̄0(w1)− Q̄∗n(w1)

]
,
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the identity 1
2
P 2

0D
(2)
h (P ∗n) =

∫∫
Kh(w1−w2)f1n(w1, w2)f2n(w1)dPW,0(w1)dPW,0(w2) can

be directly verified. Writing h1n(w1, w2) := f1n(w1, w2)QW,0(w2), we can express this
as∫∫

Kh(w1 − w2)f1n(w1, w2)f2n(w1)dPW,0(w1)dPW,0(w2)

=

∫ [∫
Kh(w1 − w2)h1n(w1, w2)dw2

]
f2n(w1)dPW,0(w1)

=

∫ [∫
K(u)h1n(w1, w1 − uh)du

]
f2n(w1)dPW,0(w1)

=

∫∫
K(u)

[
h1n(w1, w1) +

∑
m∈A(m0)

d∏
j=1

(−1)mj(ujhj)
mj

mj!
h

(m)
1n (w1, w1)

+O(hm0+1)

]
duf2n(w1)dPW,0(w1)

with A(m0) := {(m1,m2, . . . ,md) ∈ {0, 1, 2, . . . ,m0}d :
∑d

j=1mj ≤ m0} and

h
(m)
1n (w1, w1) :=

∂
∑d

j=1mj

∂wm1
21 ∂w

m2
22 . . . ∂wmd

2d

h1n(w1, w2)

∣∣∣∣∣
w2=w1

,

where w2j denotes the jth component of w2, provided w2 7→ h1n(w1, w2) is (m0 + 1)
times continuously differentiable at w2 = w1 on the support of W , assumed compact,
and each of its (m0 + 1)th order partial derivatives are uniformly bounded by a fixed
M <∞ with probability tending to one. We have used here the orthogonality of K to
polynomials of all degrees up until m0. It follows then that

1

2
P 2

0D
(2)
h (P ∗n) =

∫
h1n(w1, w1)f2n(w1)dPW,0(w1) +OP

(
hm0+1‖f2n‖

)
=

1

2
lim
h→0

P 2
0D

(2)
h (P ∗n) +OP

(
hm0+1‖Q̄∗n − Q̄0‖

)
,

where we have now used that ḡn and Q◦W,n are bounded away from zero with probability
tending to one.

Proof of Theorem 3

Since our 2-TMLE can be perceived as a particular 1-TMLE, when condition 5a holds,
the result follows from the asymptotic efficiency and linearity of a 1-TMLE. Under
conditions 1–4, Q̄∗n will be sufficiently well-behaved as to allow a usual analysis involv-
ing Donsker theorems, even despite the additional targeting in 2-TMLE relative to a
standard 1-TMLE. We omit further details in this simple case and instead focus on the
case where condition 5b holds.
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We note that Lemma 4 allows us to write

R2(P ∗n , P0) = −1
2

limh→0 P
2
0D

(2)
h (P ∗n) +R3(P ∗n , P0)

= −1
2
P0D

(2)
h (P ∗n) +OP (hm0+1‖Q̄∗n − Q̄0‖) +R3(P ∗n , P0)

under smoothness conditions on the distribution of (A,W ), where

R3(P, P0) := P0

[(
QW,0ḡ0

QW ḡ
− 1

)(
ḡ − ḡ0

ḡ

)
(Q̄− Q̄0)

]
,

thereby giving us the expansion

Ψ(P ∗n)−Ψ(P0) = −P0D
(1)∗(P ∗n)− 1

2
P 2

0D
(2)
hn

(P ∗n) +R3(P ∗n , P0) +OP (hm0+1
n ‖Q̄∗n− Q̄0‖) .

By construction, our 2-TMLE P ∗n solves the desired first- and second-order equations:

PnD
(1)∗(P ∗n) = 0 and P 2

nD
(2)
hn

(P ∗n) = 0 .

Thus, under condition 5a, we obtain that

Ψ(Q∗n)−Ψ(Q0) = (Pn − P0)D(1)∗(P ∗n) +
1

2
(P 2

n − P 2
0 )D

(2)
hn

(P ∗n) + oP (n−1/2) .

If conditions 3 and 4 hold, D(1)∗(P ∗n) is consistent in the sense that P0[D(1)∗(P ∗n) −
D(1)∗(P0)]2 tends to zero in probability. Additionally, if condition 4 holds, D(1)∗(P ∗n)
has uniform sectional variation norm bounded by some fixed constant with probability
tending to one. Thus, we can conclude by Lemma 19.24 of van der Vaart [2000] that
(Pn − P0)D(1)∗(P ∗n) = (Pn − P0)D(1)∗(P0) + oP (n−1/2). As per the V-statistic term, we
can use Lemma 2 to write

(P 2
n − P 2

0 )D
(2)
hn

(P ∗n) = (Pn − P0)2D
(2)
hn

(P ∗n) + oP (n−1/2)

since we have that o1 7→
∫
D

(2)
hn

(o1, o2)dP0(o2) and o2 7→
∫
D

(2)
hn

(o1, o2)dP0(o1) both have
uniformly bounded uniform sectional variation norm asymptotically under conditions
3 and 4 and hence fall in a P0-Donsker class with probability tending to one. This
is shown in a similar fashion as the fact that the variation norm of w2 7→

∫
Kh(w1 −

w2)dP0(w1) =
∫
K(u)p0(uh + w2)du is bounded uniformly in h. As such, integrating

over each of the variables the kernel Kh(w1−w2) does not pose any problem anymore.
The consistency condition is a straightforward consequence of conditions 3 and 4.

The term (Pn − P0)2D
(2)
hn

(P ∗n) is bounded above by OP (n−1‖D(2)
hn

(P ∗n)‖∗v) according
to Lemma 3. Under conditions 4 and 5, this uniform sectional variation norm is
uniformly bounded by a constant multiple of the uniform sectional variation norm of
(w1, w2) 7→ Kh(w1 − w2) with probability tending to one. The latter is bounded by
O(h−d). Indeed, for a typical smooth multivariate kernel with compact support, while
differentiation with respect to the 2d components of (w1, w2) 7→ Kh(w1 − w2) will
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generate a factor h−2d, the integral of the absolute value of the resulting function, and
therefore of the uniform sectional variation norm of interest, will be of order O(h−d)
since the support is assumed to be compact. This motivates condition 6 of the theorem.
While this condition is sufficient, it is unlikely to be necessary and may possibly be
weakened using alternative techniques of proof.
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