Harvard University
Harvard University Biostatistics Working Paper Series

Year 2014 Paper 187

On the Restricted Mean Survival Time Curve
Survival Analysis

Lihui Zhao* Brian Claggett' Lu Tian?
Hajime Uno** Marc A. Pfeffer' Scott D. Solomon##

Lorenzo Trippa® L.J. Weif!

*Northwestern University, lihui.zhao @northwestern.edu
"Brigham & Women’s Hospital, Harvard Medical School
tStanford University

**Dana-Farber Cancer Institute

T Brigham & Women’s Hospital, Harvard Medical School

HBrigham & Women’s Hospital, Harvard Medical School
$Harvard University, ltrippa@jimmy.harvard.edu

YHarvard University, wei@hsph.harvard.edu
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-

cially reproduced without the permission of the copyright holder.
http://biostats.bepress.com/harvardbiostat/paper187
Copyright (©)2014 by the authors.



ON THE RESTRICTED MEAN SURVIVAL TIME CURVE IN SURVIVAL
ANALYSIS

Lihui Zhao', Brian Claggett?, Lu Tian3, Hajime Uno?, Marc A. Pfeffer?, Scott D.

Solomon?, Lorenzo Trippa®, and L. J. Wei%*

SUMMARY

For a study with an event time as the endpoint, its survival function theoretically contains
all the information regarding the temporal profile of this outcome variable. The survival
probability at a specific time point, say ¢, however, does not transparently capture the
temporal profile of this endpoint up to t. An alternative is to use the restricted mean
survival time (RMST) at time ¢ to summarize the profile. The RMST is simply the area
under the survival curve up to t. The advantages of using such a quantification over the
survival rate have been extensively discussed for the setting of a fixed-time analysis. In
this article, we generalize this concept by considering a curve based on the RMST over
time as an alternative summary to the survival function. Inference, for instance, based on
simultaneous confidence bands for a single RMST curve and also the difference between two
RMST curves are proposed. The latter is quite informative for evaluating two groups under
an equivalence or non-inferiority setting, and provides a clinically meaningful interpretation
for the difference of two groups in a time scale. The proposal is illustrated with the data

from two clinical trials, one from oncology and the other from cardiology.
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1 Introduction

In a longitudinal study, often the primary endpoint is the time to a speciﬁc event. The
corresponding survival function contains all the information about the stochastic features
of this endpoint. Empirically this function can be estimated consistently with the Kaplan-
Meier (KM) curve with censored event time data (Kaplan and Meier, 1958). When the event
rate is low, the empirical cumulative incidence curve, which is one minus the KM estimate of
the survival function, is generally utilized to display observed failure probabilities over time.
The survival/event probability at a specific time point ¢ is a summary measure, though it
does not contain information regarding the event time distribution profile during the time
interval (0,¢). One may instead utilize the entire survival curve up to time ¢ to have a visual
interpretation of the pattern of events during this time period. However, it may be more
informative to quantify such “survivorship” history with a summary measure beyond only
reporting the event rate at time ¢.

A summary measure, which provides more clinically interpretable information than the
event rate at time t, is the so-called restricted mean survival time (RMST) (Irwin, 1949;
Zhao and Tsiatis, 1997, 1999; Murray and Tsiatis, 1999; Chen and Tsiatis, 2001; Andersen
and others, 2004; Royston and Parmar, 2011; Zhao and others, 2012; Tian and others, 2014;
Uno and others, 2014). That is, if all the subjects in the population of interest are followed
up to time ¢, the RMST is the mean of the survival time. The RMST vcan be estimated well
with the area under the corresponding KM curve up to time ¢. Note that the area above the
survival curve is the restricted mean time lost, RMTL, which is -—RMST. The RMTL is a
counterpart for the cumulative incidence rate function. With the RMST or RMTL summary
measure, one can then construct the corresponding mean survival time curve RMST(-) or
RMTL(-) over time, which provides a transparent, easily understood temporal profile for
evaluating, for example, the benefit or safety of a new therapy.

For illustration, we use the data from a recent study conducted by the Eastern Co-

operative Oncology Group (ECOG) for comparing two groups of patients treated by low-
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and high-dose dexamethasone for newly diagnosed multiple myeloma (Rajkumar and others,
2010). For this trial, there were 445 enrolled patients: 222 were assigned to the low-dose
and 223 to the high-dose group. Figure 1(a) shows the Kaplan-Meier (KM) curves of overall
survival based on the data collected by November 2008. The survival curve for the low-dose
group (dashed line) is always above the one for the high-dose group (solid line), except at
the end of the follow-up. In Figure 1(b), for the KM curve of the low dose group, the area
under the curve (darker shaded region) up to ¢ = 40 months is 35.4. That is, on average,
the future patients are expected to be alive for 35.4 out of the 40. months of followup. The
corresponding estimated RMTL is 40 — 35.4 = 4.6 (months). Figures 1(c) and 1(d) show the
corresponding estimated processes RMST(-) and RMTL(-), say, RTI?T() and RT/I?L(-),
respectively, for both the low and high dose groups. This type of the curve provides an
interesting alternative to the KM counterpart using a time scale on the y-axis instead of the
event or event-free probability. This time scale may be clinically appealing to practitioners
with respect to the cost-risk-benefit perspectives for evaluating different treatments. For
example, in Figure 1(d), through month 40, the empirical average loss times are 4.6 and 6.7
(months) for the low and high dose groups, respectively, and the difference is 2.1 months
with 0.95 confidence interval of (0.1, 4.2) months. That is, with this followup duration,
on average, a patient in the high dose group is alive for 2.1 fewer months. On the other
hand, the survival rate difference at this time point is -0.04 with a 0.95 confidence interval of
(—0.14,0.06), indicating that there is no difference between the two groups. This conclusion
with event rates may not reflect the treatment difference appropriatel&, especially when the
study followup time is long and the disease is lethal so that the two survival curves meet at
the end of study.

In Section 2, we present the inference procedures for the RMST(-) and RM TL(-). Specif-
ically, the pointwise and simultaneous confidence interval estimation procedures for the dif-
ference of the two RMST's over a specific time interval are proposed and illustrated with the

data from the above oncology study. This type of analytic tool is quite useful for evaluating
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the between-group differences under the equivalence/non-inferiority setting. In Section 3,
we use the data from a large cardiovascular study to illustrate such an application. The con-
ventional approach for summarizing the between-group difference in survival analysis under
the equivalence/non-inferiority sétting is to use a confidence interval estimation procedure
for the hazard ratio. If the upper bound of the interval is less than a pre-specified value, one
may claim that the therapy is non-inferior compared with its control counterpart. Using the
data from the above cancer study, we show that this approach can be quite misleading. In
general, using a single summary measure for Claiming that the two groups are similar may be
problematic. ‘A more rigorous way is to examine the confidence band of the difference of two
entire survival curves or their RMST curves. More discussion is provided in the Remarks

section.

2 Pointwise and Simultaneous Confidence Interval Es-
timates

First we consider the case using event time data from a single group, followed by the case
for the comparison of two groups. Let T be the time to an event of interest, which may
be censored by an independent variable C. For each individual, the observable quantities
are (X, A), where X = min(7,C) and A = I(T < C). The data, {(X;,2:);i =1,...,n},
consist of n independent copies of (X, A).

Now, let S(t) and S(t) be the survival function for T and the corresponding KM estimate
at time ¢, respectively. The corresponding RM ST'(t) and RMST (t) are the areas under S(-)
and S(-) up to t, respectively. It follows from the uniform consistency property of the KM
estimator (Gill, 1983) that RT/I?T(t) is uniformly consistent for RMST'(t). To derive an

approximation to the distribution of mT(t), we first use the following approximation
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(Fleming and Harrington, 1991, Page 98):
va {50 -sw}=—vasn ) [ o),

where M;(t) = N;(t) — f(fY;(u))\(u)du, Ni(t) = I{X; <t,0, =1}, Yi(t) = I{X; > t},Y (¢) =
> i1 Yi(t) and A(¢) is the hazard function for T. Note that due to right censoring, this
approximation is only valid for the interval ¢ € [0, 7], where pr(X > 7) > 0. It follows
from the martingale central limit theorem (Fleming and Harrington, 1991, Chapter 5) that
vn {S’ (t)— S (t)} converges weakly to a Gaussian process over the interval [0, 7].

With the functional §-method, the distribution of \/n {RTl?T() — RM ST(-)} can be
approximated asymptotically by that of a mean-zero Gaussian process G(-). When the
sample size is large, this limiting distribution can be approximated well via a perturbation-
resampling method (Lin and others, 1993; Parzén and others, 1997; Zhao and others, 2012).
Specifically, let {Z;,i = 1,...n} be n random samples from N (0,1), which are indepen-
dent of the data. Then the distribution of \/n {5’(75) - S (t)} can be approximated by the
distribution (conditional on the data) of

N P * dN;(u
L =vasn oz [ G

=1

where S(-), Y(-) and Ni(-) denote the observed quantities from the data for S(-), Y(:) and
Ni(-), respectively. That is, the distribution of v/n { S(t) -8 (t)} can be approximated using
a large number of sets for the perturbation weights {Z;;i = 1,--- ,n} given the observed
data. This technique has been successfully utilized in many applications in survival analysis
(Park and Wei, 2003; Tian and others, 2005; Cai and others, 2010).

Now, to approximate G(-), the limiting Gaussian process, one can simply consider the

random process over ¢ € [0, 7]:

/0 L¥(s)ds. (1)
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Note that the conditional asymptotic distribution of (1) is G(-). Such a conditional distribu-
tion can be approximated by its empirical counterpart based on realizatioﬁs from M different
sets of random perturbation weights {Z; : i = 1,...,n}. Let the corresponding standard de-
viation estimate for the distribution of G(-) be denoted by Gx(-). The pointwise confidence
interval estimate for the RM ST'(-) can be constructed based on the standard normal approx-
imation to ﬁ(RTJ?T(t) — RM ST(t)) /&r(t). Specifically, for any o € (0, 1), a two-sided
1 — « confidence interval for RMST(t) is

(RTET@) — ey Y26R(t), EMST(t) + 21-a /z)n—l/zaR(@) ,

where 2(1_q/2) is the 100(1 — o/2)-th percentile of the standard normal distribution. Note
that in theory, the above confidence interval estimation procedure is valid for ¢ € [n, 7],
where pr(T < n) > 0 and pr(X > 7) > 0. The corresponding simultaneous, equal precision

confidence interval (Nair, 1984) estimate for RM ST(t) over [n, ] would be
(mfr(t) — con~ V26 5(t), RMST(t) + can'lﬂ&R(t)) ,

where the cutoff value ¢, is chosen such that

fot L*(s)ds
or(t)

pr| sup <cy | >21—0
ten,7]

In practice, the time interval [n, 7] can be chosen by requiring that the estimated proba-
bilities for both pr(T < n) and pr(X > 7), which can be obtained from the KM estimates for
the distributions of T' and the empirical cumulative distribution function of X, respectively,
are greater than a small positive number d. This truncation is to ensure the positivity of
Gr(t) and the statistical validity of the interval estimation procedure. Note that this require-
ment is satisfied as long as 7 is above the smallest observed event time and 7 is below the

maximum follow up time. The pointwise and simultaneous confidence intervals for RMT L(t)
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can be similarly constructed using the fact that RMTL(t) = t — RMST(¢).

As an example, with the data from the low dose group from the cancer study and with
M = 1000 realizations of {Z; : ¢ = 1,...,n} from the standard normal distribution, the
0.95 pointwise (dashed lines) and simultaneous (shaded area) confidence intervals for the
RMTLY(-) are given in Figure 2(a). Here, the time interval for the simultaneous confidence
intervals is [n, 7] = [2.6,40] months, where the choice of 7 = 2.6 and 7 = 40 satisfies the
condition that the estimated probabilities of both pr(T < 7) and pr(X > 7) are positive
and has been used previously (Uno and others, 2014). These confidence bands are quite
informative, for instance, at Month 40, the possible values for RMTL are between 3.1 months
and 6.1 months based on the simultaneous confidence band.

Now, suppose we are interested in estimating the difference of two RMST curves. Let
all the aforementioned random variables and observed quantities be indexed by £ = 1,2
for the two treatment groups. The data are {(Xu, Ay);i = 1, ... ,n1} for group 1 and
{(Xo5,A95);5 = 1,...,np} for group 2. Let D(t) = RMST,(t) — RMST;(t). Then, it
follows that D(t) = RMST, (t) — RMST; () is uniformly consistent for D(¢), for t € [0, 7],
where pr(Xi1 > 7)pr(Xz > 7) > 0. Moreover, n=/2(D(-) — D(-)) converges weakly to the
Gaussian process G(-) — G4(+), whose distribution can be applloximated by the realizations
of the difference of the two corresponding processes (1) for the two treatment groups.

Let the standard deviation estimate for Ga(-) — G1(-) be denoted by &p(t) via the i)er-
turbation method with M independent sets of random Weights {Zviyi=1,-- \n1; Zoj,5 =

1,---,ns}. Then the pointwise confidence interval estimate for D(t) is
(D(t) - Z(l_a/g)n_l/25'p (t), b(t) + z(l_a/Q)n“l/z&D (t)) y

and the corresponding simultaneous, equal precision confidence interval estimate over the -
range [n, 7] is

(D)~ @n™26p(8), Dt) + can™65(1)) .t € In. 7,
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where pr(T1; < n)pr(Te; < n) > 0, and the cutoff point ¢, satisfies that

JHL3(s) — Li(s)]ds
Gp(t)

Pr| sup <éC | Z21—0
ten,r]

Empirically, [7,7] can be chosen such that the estimated probabilities of both pr(7T1; <
n)pr(Ty < n) and pr(Xy; > 7)pr(Xa > 7) are above a small positive number d.

As an example, with the data from the cancer study, Figure 2(b) shows the 0.95 point-
wise and simultaneous confidence interval estimates for D(t). Here, the time interval for
simultaneous confidence intervals is [, 7] = [2.6,40] months. It is interesting to note that
for the cancer study, the hazard ratio estimate is 0.87 in favor of the low dose, but with a
0.95 confidence interval of (0.60, 1.27) that does not detect a significant difference between
groups, possibly due to the fact that the two hazard functions are crossed. On the other
hand, the confidence interval estimate in Figure 2(b) shows that the low dose group is uni-
formly better than the high dose group over the entire time interval [2.6,40] months. For
instance, at month 20, the difference in RMST is 1.1 months with a 0.95 pointwise confi-
dence interval of (0.4,2.0) months and a 0.95 simultaneous confidence interval of (0.1,2.2)
months. The concerns and issues have been discussed extensively for using the hazard ratio
as a between-group difference measure and model-free alternatives including inference based

on the RMST difference at a specific time point have been proposed (Uno and others, 2014).

3 An application of the simultaneous confidence band
estimation procedure for comparative studies under
an equivalence/ non—infériority setting

In comparing a new treatment with a control with an event time as the endpoint, the standard
inference procedure is based on the hazard ratio estimate (that is, assuming that the ratio of

two hazard functions would be constant over the entire study followup time). To evaluate if

http://biostats.bepress.com/harvardbiostat/paper187



the new treatment is equivalent or non-inferior to the control, for example, with respect to
an event time outcome, a single summary measure such as the hazard ratio as a comparison
tool can be rather misleading. The above cancer study provides a clear example in which the
two dose groups may be claimed to be “equivalent” on the basis of the confidence interval
for the hazard ratio, but in fact, these two groups appear to be quite different based on the
simultaneous confidence band for the difference of two survival functions or RMST curves.
In this section, we use the data from a cardiovascular trial: “Valsartan In Acute My-
ocardial Infarction (VALIANT) Study” (Pfeffer and others, 2003) to illustrate our inference
proposal for evaluating equivalence of two treatment groups with respect to the patient’s
survival. There were three arms for the study, the patients in the first group were treated by
valsartan, the second group was with captopril and the third one was with a combination of
these two drugs. One of the study goals was to investigate if the two mono-therapies were
equivalent with respect to the overall survival. The study was conducted from 1999 to 2003
with a total of 9818 patients equally assigned to the above two mono-therapy groups. The
median follow-up time is 24.7 months after randomization. Figure 3 shows the KM curves
for two arms, which visually are overlai)ped with each other over 46 months of follow-up.
The hazard ratio estimate is 1.02 with a 0.95 confidence interval of (0.93, 1.11). Using the
technique discussed in Section 2, the 0.95 pointwise and simultaneous confidence intervals
for two RMST functions are given in Figure 4. The largest upper bound and smallest lower
bound are 0.9 and -0.9 (months), respectively, indicating that the expected survival times
differ by no more than /- 0.9 months over the duration of the study, less than 2% of the
follow-up time. This tight band suggests that there may be no clinically meaningful difference
between two mono-therapies with respect to the patient’s survival. Note that the confidence
bands are constructed using M = 1000 realizations of the standard normal random sample
for the resampling method and [n,7] = [0.1,45.5] months, which is the maximum-length
time interval such that the estimated probabilities for both pr(Ti; < n)pr(Te; < n) and

pr(Xi; > 7)pr(Xy > 7) are positive empirically.

Hosted by The Berkeley Electronic Press




4 Remarks

Although in theory, the survival curve estimate in Figure 1(a) contains all the information
empirically regarding the temporal profile of the survivorship of patients in each dose group
for the ECOG study, its visual interpretation can be different from that based on the corre-
sponding RMST curve estimates presented in Figure 1(c). For instance, the observed survival
probability for the low dose group at month 40 is numerically smaller than that for the high
dose group (0.70 vs. 0.74). However, this could also be equally true under a scenario where
30% of low-dose patients died on day 1 of the study as well as the scenario where all low-dose
patients survive until month 39. On the other hand, the RMST evaluated at month 40 can
distinguish between these two scenarios. Note that the RMST curve for the low dose group
is above that of the high dose group over the entire 40 month follow-up. It is not apparent
how to quantify such a superiority via the KM curves at this time point. Visually the RMST
curve estimates quantify the relative merit between two interventions based on the totality
of information up to each time point. Both types of curve estimates can be useful, depending
on the clinical question of interest, and may complement each other in helping to describe
and interpret the survivorship patterns associated with the intervention(s) of interest .

For the purpose of evaluating whether two regimens are equivalent with respect to an
event time outcome, the conventional approach is to utilize an event-driven study and sum-
marize the comparison via, for example, an estimated coﬁﬁdence interval for the hazard
ratio. This approach is not ideal and may be misleading. For example, for the cancer study
example, a 0.95 confidence interval for the hazard ratio between two dose groups is (0.60,
1.27), which includes the null value one. One may interpret this result to indicate that there
is not enough information to make a decision or that there is no difference statistically. A
single summary such as the hazard ratio estimate may not adequately capture the differ-
ential temporal patterns between two groups. Neither the traditional Kaplan-Meier curves
nor the estimated hazard ratio are able translate an estimated treatment effect to the time
scale, while the median survival time is presented only in settings with suitably high event

10
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rates. The simultaneous band for the difference of two RMST (RMTL) curves discussed in
this article appears to be a useful alternative to address the equivalence or non-inferiority

question via a clinically meaningful metric.
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Figure 1: Results based on the data from ECOG (E4A03): (a) Kaplan-Meier curves for
high-dose (solid line) and low-dose (dashed line) groups; (b) The estimated RMST (darker
shaded region below the solid line) and RMTL (lighter shaded region above the solid line)
up to 40 months for the low-dose group; (c) The estimated RMST curve for high-dose (solid
line) and low-dose (dashed line) groups; (d) The estimated RMTL curve for high-dose (solid
line) and low-dose (dashed line) groups.
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Figure 2: Results based on the data from ECOG (E4A03): (a) RMTL curve for low-dose
group; (b) Difference in RMST curves between low-dose and high-dose groups. Solid lines:
point estimates, dashed lines: pointwise 0.95 confidence intervals, shaded region: simultane-
ous 0.95 confidence intervals, dotted line: zero reference line.
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Figure 3: The Kaplan-Meier estimates for the survival functions of patients taking ARB or
ACEi in the VALIANT study.
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Figure 4: The difference in RMST curves between ARB and ACEi in RMST up to time ¢ of
patients in the VALIANT study (Solid: point estimate; Dashed: 0.95 pointwise confidence
interval; Shaded: 0.95 simultaneous confidence interval; dotted: zero reference line)
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