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Abstract

In the analysis of non-monotone missing at random (MAR) data using inverse
probability weighting, a straightforward approach towards modeling the missingness
mechanism based on simple polytomous logistic regression often imposes more re-
strictive conditions than what MAR entails. We propose a class of models for the
non-monotone missingness mechanism that spans and accommodates the entire MAR
model, and the estimation procedure can be easily implemented within this class using
existing software. Where unconstrained maximum likelihood (ML) does not converge,
we propose a Bayesian estimation of the missing data process which is guaranteed to
yield inferences within the model. We illustrate the new methodology in an appli-
cation evaluating the association between maternal HIV infection and adverse birth
outcomes in Botswana.
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1 INTRODUCTION

Missing data is a major complication which occurs frequently in empirical research. Non-

response in sample surveys, dropout or non-compliance in clinical trials and data excision

by error or to protect confidentiality are but a few examples of ways in which full data is

unavailable and our ability to make accurate inferences may be compromised. Missingness

could also be introduced into a study by design, e.g. multi-stage sampling plans in order to

reduce the cost associated with measurements for all subjects. In many practical situations,

the missing data pattern is non-monotone, that is, there is no nested pattern of missingness

such that observing variable Xk implies that variable Xj is also observed, for any j <

k. Non-monotone missing data patterns may occur, for instance, when individuals who

dropped out of a longitudinal study re-enter at later time points. The missing data process

is said to be missing-completely-at-random (MCAR) if it is independent of both observed

and unobserved variables in the full data, and missing-at-random (MAR) if, conditional

on the observed variables, the process is independent of the unobserved ones (Little and

Rubin 2002). A missing data process which is neither MCAR nor MAR is said to be

missing-not-at-random (MNAR).

While complete-case analysis is the easiest to implement and often employed in prac-

tice, the method is generally known to produce biased estimates when the missingness

mechanism is not MCAR (Little and Rubin 2002). Efficiency is also lost by discarding

samples with incomplete data. Other commonly used procedures include last-observation-

carried forward analysis in longitudinal studies and simple imputation techniques, but

they typically produce valid inferences only under restrictive and often unrealistic condi-

tions (Molengerghs et al. 2004; Siddiqui and Ali 1998; Little and Rubin 2002). In addition,

it may be difficult to account for the variance induced by simply filling in missing values

and analyzing the resulting data using procedures originally meant for fully observed data,

without explicitly defining a data generating mechanism for the filled in values.

The development of principled methods to appropriately account for missing data has

been an area of active and on-going research. The assumptions of MAR or MCAR, together

with separability of parameters governing the missingness mechanism and complete data

model, provide sufficient conditions for valid inferences based on the observed data likeli-
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hood (Little and Rubin 2002). Similar analysis could also be performed within the Bayesian

framework by introducing priors for model parameters. While likelihood-based methods

generally require specification of the full-data likelihood, the estimators are efficient under

the assumed parametric restrictions. Estimation is easier in monotone missing data pat-

terns where the likelihood can be factored naturally into a series of conditional densities. For

non-monotone missing data patterns, except under certain special conditions (Rubin 1974),

estimation usually requires some iterative procedures such as the expectation-maximization

(EM) algorithm (Dempster et al. 1977).

Multiple Imputation (MI) has become an influential technique to account for missing

data since its introduction in the survey analysis setting (Rubin 1977), and is widely utilized

through its incorporation into mainstream statistical software (Horton and Lipsitz 2001).

MI requires an imputation model, typically a regression model, that relates the distribution

of the missing data to the observed data. MI is particularly well suited for monotone missing

data patterns where missing values can be imputed sequentially under a series of conditional

imputation models. For arbitrary missing data patterns, it is often necessary to specify

a multivariate distribution of all variables for joint imputation in order to ensure model

congeniality, such as the multivariate normal imputation distribution (Schafer 1997). An

alternative strategy involving multiple imputation using chained equations (MICE) (van

Buuren and Oudshoorn 2000) has become popular due to its simplicity and applicability

under a wide variety of settings with different variable types and missing data patterns.

Under MICE, MI is essentially accomplished by specifying a series of univariate conditional

imputation models. It is possible, however, that the conditional models are incompatible

and a joint distribution may not exist (White et al. 2011; van Buuren 2007). At the same

time, since in non-monotone missing data the sets of observed and unobserved variables

changes among individuals often in an arbitrary manner, it is not clear how conditional

densities at the single variable level can be made to depend only on observed variables,

which is assumed under MAR. In actual implementations, the issue of MAR is often skirted,

although it is a key assumption to ensure validity of multiple imputation (Kenward and

Carpenter 2007).

Another popular approach involves weighting the complete cases by the inverse proba-
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bility of being a complete case, also known as the propensity score (Horvitz and Thompson

1952; Little and Rubin 2002; Robins et al. 1994; van der Laan and Robins 2003; Tsiatis

2006), which creates a pseudo-population of complete cases in which selection bias due to

missing data is removed. IPW estimation does not require specification of the full-data

likelihood, but the missingness mechanism needs to be modeled. In the case of a monotone

missing data pattern, the missingness probability can be naturally factored into a sequence

of conditional binomials due to the nested missing data patterns, under the MAR assump-

tion. The missingness mechanism can then be modelled by a corresponding sequence of

binary regressions using say logistic or probit regression. This approach does not generally

work for non-monotone missing data patterns, and, as we will discuss later in the paper,

a straightforward polytomous logistic regression for the collection of possible missing data

patterns will impose more restrictive conditions than what MAR strictly entails. The

development of coherent models and practical estimation procedures for the missingness

probabilities of nonmonotone missing data is challenging, even under the assumption that

the data is MAR. To the best of our knowledge, and as discussed in the seminal missing

data book of Tsiatis (2006, p. 188), there currently is not available, a general approach

to model an arbitrary nonmonotone missing data generating process only imposing MAR.

This is an important gap in the missing data literature, which has essentially restricted the

use of inverse probability weighted estimation to monotone missing data settings.

As a remedy, Robins and Gill proposed a large class of models for the missing data

mechanism, the randomised monotone missingness (RMM) processes, which are guaranteed

to be MAR for a non-monotone missing data mechanism without being MCAR (Robins and

Gill 1997). This class of models does not span the space of all MAR models and therefore

it is possible to test whether the class includes the true missing data mechanism. However,

estimation of the missing data mechanism within this class is complex and computationally

demanding, even for small to moderate sample size and number of different missing data

patterns, and there is currently no available software to implement the approach, which

has limited its widespread adoption. In this paper we take a different direction, and we

propose a class of models for the non-monotone missing data mechanism that spans the

entire MAR model and therefore, with enough data such that non-parametric models can
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be used reliably, in principle one would not be able to reject MAR based on the oberved

data.

In order to estimate the missingness mechanism required for IPW estimation, we discuss

two approaches: unconstrained maximum likelihood estimation and constrained Bayesian

estimation. The first approach is easily implemented in standard software, say using ex-

isting procedures in SAS or R. However, despite this appealing feature, as we illustrate in

extensive simulation studies, unconstrained maximum likelihood estimation has a major

drawback, in that it is not guaranteed to converge in finite sample, even if all regression

models are correctly specified. This problematic feature of the approach is mainly due to

the fact that it fails to impose certain natural restrictions of the model. This drawback was

previously noted by Robins and colleagues (Robins et al. 1999), who upon pointing out this

potential difficulty, abandoned the approach. In this paper, we propose a novel constrained

Bayesian strategy (Gelfand et al. 1992) as a viable alternative to unconstrained maximum

likelihood estimation, which largely resolves any convergence difficulty and is easily im-

plemented in standard Bayesian software packages. Constrained Bayesian estimation has

been used previously to estimate risk ratio and relative excess risk regressions (Chu and

Cole 2010, 2011); however, to the best of our knowledge, it has not previously been used in

the current context. We present a simulation study to investigate the finite-sample prop-

erties of both constrained and unconstrained inferences in the context of IPW of logistic

regression with non-monotone missing outcome and covariates, followed by an analysis of

adverse birth outcomes on a cohort of women in Botswana to illustrate an application of

the methods.

2 NOTATION AND ASSUMPTIONS

Let L = (L1, ..., LK)′ be a random K-vector representing the complete data. In addition,

let R = m be the scalar random variable encoding the different missing data patterns

where 1 ≤ m ≤ 2K . For individuals with R = m, we observe L(m) where L(m) ⊆ L.

For example, suppose the complete data for each person consists of two random variables

L = (L1, L2). Then we may encode the missing data patterns as follows: R = 1 if we

observe L(1) = L = (L1, L2); R = 2 if we observe L(2) = L1; R = 3 if we observe
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L(3) = L2; and R = 4 if neither variable is observed. For non-parametric identification

of the missingness parameters, we assume that the missing data process is MAR (Robins

et al. 1994).

Pr{R = m|L} = πm(L(m)) for m = 1, ...,M (1)

If we were to relax the above assumption by considering MNAR processes, we would lose

non-parametric identification, and we would require an additional assumption to success-

fully identify parameters indexing the missing data mechanism (Robins et al. 1999; Robins

and Rotnitzky 1997). In addition, we assume that the probability of being a complete

case is bounded away from zero, a necessary assumption for identification of a full data

functional (Robins et al. 1994).

π1(L) > σ > 0 with probability 1 (2)

for a non-zero positive constant σ > 0. A key implication of the MAR assumption is

that the missing data process is itself nonparametrically identified under the assumption,

without imposing any restriction on the full data distribution of L. This also implies

that provided on using separate parameters to index the missing data mechanism and the

full data distribution, efficient estimation of the parameters of the missing data process

can be obtained by maximizing its partial likelihood, ignoring the part of the likelihood

corresponding to the full data likelihood.

3 IPW INFERENCE

Suppose we observe n i.i.d. vector Li, and we wish to make inferences about the parameter

β0 which is the unique solution of the full data population estimating equation

E{M(L; β0)} = 0 (3)

where expectation is taken over the distribution of the complete data L. Note that we do

not require a model for the distribution of the full data L; in fact, estimation is possible

under certain weak regularity conditions (van der Vaart 1998) as long as full data unbiased

estimating functions exist. Since the empirical version of the estimating function will
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involve non-monotone missing variables, we only use complete cases weighted by the inverse

probability of being a complete case observation to remove any possible selection bias

associated with the missing data mechanism. We have

E

{
1(R = 1)

π1(L)
M(L; β0)

}
= 0 (4)

where 1(R = 1) is the indicator of a complete case, and π1(L) is the corresponding prob-

ability of observing complete data. The above unbiasedness of the estimating function (4)

holds by straightforward iterated expectations.

The above framework encompasses a great variety of settings under which investigators

may wish to account for non-monotone missing data. This includes IPW of the full data

score equation, where the score function is such an unbiased estimating function, given a

model f(L|β) for the law of the full data, in which case (4) reduces to

E

1(R = 1)

π1(L)

∂ log f(β|L)

∂β

∣∣∣∣∣
β0

 = 0 (5)

Note that equation (5) does not necessarily correspond to the observed data score equa-

tion, and will therefore generally not achieve the efficiency bound for the model. Estima-

tion can also be extended to classes of semi-parametric models which specify only certain

marginal relationships in L and in which scientific interest focuses on some low dimentional

functional β = β(FL) of the distribution FL of the full data L. For instance, in many health

related applications it is common to specify a model g(X, β) for the conditional mean of

the outcome response Y given a set of covariates X = (X0, X1, ..., XP )′ with X0 ≡ 1 for the

intercept. Here L = (Y,X) and the data could be missing in any of the outcome variables

or covariates. Then the parameters of interest can be identified by the population IPW

estimating equation

E

{
1(R = 1)

π1(L)
[Y − g(X, β0)]X

}
= 0 (6)

Likewise, if we were to model the conditional median of Y givenX with the model m(X, β),

then one could instead identify the true parameter of interest by the IPW population

estimating equation

E

{
1(R1 = 1)

π1(L)
[1{Y < m(X, β0)} − 0.5]X

}
= 0 (7)
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Regression parameters in semi-parametric models for right censored failure time data can

likewise be identified by similar IPW population estimating equations, e.g. Cox propor-

tional hazards regression and Aalen’s additive hazards regression. Analogous estimating

equations are also available for longitudinal and clustered data. Feasible finite sample es-

timating equations are obtained by replacing population expectations with their empirical

counterparts, and π1(L) with a consistent estimator. In the next section, we consider

several strategies for estimating π1(L); we discuss both, certain strategies that although

straightforward to implement, are not guaranteed to converge, as well as more principled

strategies that do not suffer such limitation.

Briefly, we note that in some instances, IPW estimating functions may be augmented

for greater efficiency and double robustness (Robins et al. 1994; van der Laan and Robins

2003; Tsiatis 2006). Unfortunately, AIPW estimating functions for non-monotone missing

data are not available in closed form and require solving a complicated integral equation

numerically (Robins et al. 1994), which is considerably more computationally intensive

than the simple IPW estimators we plan to focus on (Tsiatis 2006). However, we note that

estimation of the missing data process is equally relevant for AIPW, therefore the methods

described below are very relevant to the construction of doubly robust semi-parametric

locally efficient estimators.

3.1 ESTIMATION

3.1.1 The failure of polytomous regression

Unless we have missingness by design, the missingness probability π1(L, γ) is estimated

with a parametric specification of the missing data mechanism (1). In the case of non-

monotone missing data, a straightforward approach to model πm(L(m); γ) using simple

polytomous logistic regression will have the unintended consequence of imposing more

restrictive conditions than what MAR strictly entails (Robins and Gill 1997). For example,

suppose we have 2 variables L = (L1, L2) with 4 possible missingness patterns encoded as

in the previous section. Polytomous logistic regression produces, for m = 2, 3, 4

Pr{R = m|L1, L2} =
exp(γ0m + γ1mL1 + γ2mL2)

1 +
∑4

k=2 exp(γ0k + γ1kL1 + γ2kL2)
(8)
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By the MAR assumption, since for R = 4 neither variable is observed, the probability

Pr{R = 4|L1, L2} does not depend on either (L1, L2) so that γ1j = γ2j = 0 for j = 2, 3, 4.

Therefore model (6) is also MCAR. In general, it is shown in appendix A.1 using a similar

argument that the missing data pattern probabilities modeled using polytomous logistic

regression can only depend on the intersection of the sets of observed variables L(m), m =

2, 3, ..., K, which imposes more restrictions than MAR only. In the example above, the

intersection of variables in the 4 missingness patterns is the null set, hence the missing

data process does not depend on any variable and is MCAR.

In the context of binary longitudinal data analysis with non-monotone missing response

and missing covariates (Chen and Zhou 2011), the conditional probability for the missing

data pattern k at time point j of the ith individual, λijk = Pr(Rij = k|R̄ij,Y i,X i,Zi), is

modeled using the generalized logistic link, with λij1 as the reference level

log

(
λijk
λij1

)
= µTijkαk, k = 2, 3, 4 (9)

where µTijk may be a subset of (R̄ij, Ȳ
o
ij, X̄

o
ij,Zi), that is, the assumption that the condi-

tional probability for missing data process at time j depend only on previously observed

missing data indicators, outcomes and covariates up until time j − 1, with Z being co-

variates that are always observed. This convenient approach has been previously used to

model longitudinal MAR processes (Robins et al. 1995; Chen et al. 2010). However, it is

natural to assume that the missing data process at time j should also depend on observed

outcome and covariate values up to and including time j, and in this sense, the model will

be necessarily restricted under MAR for the same reason given earlier, in that for Rij = 4,

neither X ij nor Y ij is observed and so the other missing data patterns also cannot depend

on these variables.

3.1.2 Proposed missing data model

Our approach involves modelling the missingness probability for each missing data pattern

separately as a series of logistic regressions

Pr{R = m|L; γm} = πm(L(m); γm) = expit(γm
′L(m)) m = 2, ...,M (10)
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and the probability of observing complete data is

Pr{R = 1|L; γ} = π1(L; γ) = 1−
M∑
m=2

expit(γm
′L(m)) (11)

The above complete case probability depends on the union set of observed variables

M⋃
m=2

L(m) (12)

Consider the estimator defined as the value which maximizes the unconstrained log-likelihood

function corresponding to equations (10) and (11).

N∑
i=1

[{
M∑
m=2

1(Ri = m) log πm(Li(m); γm)

}
+ 1(Ri = 1) log

{
1−

M∑
k=2

πk(Li(k); γk)

}]
(13)

with the score function

Sγm =
N∑
i=1

{
1(Ri = m)−

1(Ri = 1)πm(Li(m))

π1(Li(1); γ)

}
(1− πm(Li(m)))

(
1,L(m)

)T
(14)

for the parameters γm in missing data pattern m, where Sγm and
(
1,L(m)

)T
have the same

dimensions. Parametric specifications (10) and (11) do not define a proper probability mass

function unless the following constraints also hold

M∑
k=2

πk(Li(k); γk) < 1 for i = 1, 2, ..., N (15)

Thus, it may be in practice that the unconstrained maximum likelihood estimator that

maximizes (13) will be undefined, if there is at least one complete case for which the

empirical version of restriction (15) is not satisfied in the process of finding the maximum

likelihood estimate. In actual implementation of the procedure, this translates into failure

to converge during maximization of the observed log-likelihood (13). For this reason, we

will refer to the equation (13) as the unconstrained log-likelihood function, as it does not

naturally impose restrictions (15).

Note that even if the missingness mechanism were known, not all constraints listed

in (15) can be observed, since only those for complete cases can be observed to satisfy

the restriction. In fact, only the restrictions for complete cases are strictly needed to

be enforced in order to ensure that the maximum likelihood estimate can be computed in
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practice. Thus, one could in principle attempt to maximize the observed data log-likelihood

(13) together with the observable constraints

1(Ri = 1)
M∑
k=2

πk(Li(k); γk) < 1 for i = 1, 2, ..., N (16)

which is potentially computationally prohibitive, since there are as many constraints as

complete case observations. Instead, we propose an alternative, more attractive solution

upon noting that the above constraints can be reformulated using a Bayesian constrained

estimation approach where samples are drawn from the unconstrained posterior conditional

distribution for γ and only those draws that fall into the constrained parameter space (16)

are retained (Gelfand et al. 1992).

To implement the approach, we specify a diffuse prior distribution π(γ) for γ =

(γ2, ..., γM) under model (10) and incorporate constraint (16) for each individual with com-

plete data. It is natural to think of the constraint as built into the log-likelihood function

(13). The posterior distribution of γ under the contrained Bayesian model is proportional

to

f(γ|data) ∝ f(data|γ)× π(γ) =
N∏
i=1

{
M∏
m=2

{πm(Li(m); γm)}1(Ri=m)×{1−
M∑
k=2

πk(Li(k); γk)} × 1{
M∑
k=2

πk(Li(k); γk) < 1}

}1(Ri=1)
× π(γ) (17)

Let π̂1(L) = 1 −
∑M

m=2 expit(γ̂′mL(m)) where γ̂ = (γ̂2, ...γ̂M) is the posterior mode (or

mean) from the Bayesian constrained approach. Then an estimate for the parameter of

interest β0 is given by the solution β̂ to the inverse probability weighted estimating equation

N∑
i=1

{
1(Ri = 1)

π1(Li; γ̂)
M(Li; β̂)

}
= 0 (18)

Subject to standard regularity conditions and assuming that the missing data model given

in (10) and (11) is correctly specified, we show in appendix section A.2 that β̂ is consistent

and asymptotically normal

√
n(β̂ − β0)

d−→ N
(

0,E{∇βU(β0, γ0)}−1Var [U(β0, γ0)−W (β0, γ0)] E{∇βU(β0, γ0)}−1
T
)

(19)
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where U(β, γ) = {1(R1 = 1)/π1(L; γ)}M(L; β), Sγ0 is the score function for the missing

data mechanism and

W (β0, γ0) = E[U(β0, γ0)S
T
γ0

]E
[
Sγ0S

T
γ0

]−1
Sγ0

The asymptotic variance in (19) can be consistently estimated by replacing the terms under

expectation with empirical averages evaluated at (β̂, γ̂).

Ê{∇βU(β̂, γ̂)}−1V̂ar
[
U(β̂, γ̂)− Ŵ (β̂, γ̂)

]
Ê{∇βU(β̂, γ̂)}−1T (20)

Although the posterior mode (or mean) is asymptotically efficient by the Bernstein-von

Mises Theorem, in finite sample the posterior estimate may not necessarily correspond

to the solution of the score function (14). For inference under the Bayesian constrained

approach, we therefore apply a finite-sample correction to the variance estimate

Ê{∇βU(β̂, γ̂)}−1V̂ar
[
U(β̂, γ̂)− Ŵ (β̂, γ̂) + Ê{W (β̂, γ̂)}

]
Ê{∇βU(β̂, γ̂)}−1T (21)

so that the term in V̂ar[·] has mean zero empirically. The correction term Ê{W (β̂, γ̂)}

is expected to vanish as sample size increases. A conservative, albeit more easily imple-

mentable, estimate of the asymptotic variance in (19) is obtained by the standard sandwich

variance formula (Robins et al. 1994)

Ê{∇βU(β̂, γ̂)}−1V̂ar
[
U(β̂, γ̂)

]
Ê{∇βU(β̂, γ̂)}−1T (22)

4 SIMULATION

In this section we present a simulation study to investigate the finite-sample properties of

the proposed estimator. Full data consists of independent and identically distributed L =

(Y,A,C) with exposure A, binary outcome Y and confounders C = (C1, C2). Although

there are 16 possible missing data patterns, in actual applications with missing data we

rarely observe all missing data patterns, and here we consider the case where only 4 of such

patterns are observed: R = 1 if we observe L(1) = L; R = 2 if we observe L(2) = (Y,A,C1);

R = 3 if we observe L(3) = (Y,C1); and R = 4 if we observe L(4) = (A,C2).

The vector (X1, X2, X3) is generated from a multivariate standard normal distribution

with correlation coefficent ρ = 0.3 between X1 & X2 and ρ = −0.2 between X1 & X3. Then
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we take A = Φ(X1), C1 = Φ(X2) and C2 = Φ(X3) where Φ(·) is the CDF of the standard

normal distribution. Finally, the outcome variable Y is generated as

logit Pr(Y = 1|A,C1, C2) = α0 + α1A+ α2C1 + α3C2

Where α = (−0.55, 0.4,−0.35, 0.2). Following the MAR assumption, the probabilities of

the 4 missing data patterns are generated as

Pr{R = 2|L} = expit{γ2,0 + γ2,1Y + γ2,2A+ γ2,3C1}

Pr{R = 3|L} = expit{γ3,0 + γ3,1Y + γ3,2C1}

Pr{R = 4|L} = expit{γ4,0 + γ4,1A+ γ4,2C2}

Pr{R = 1|L} = 1−
4∑

m=2

Pr{R = m|L}

The observed missing data mechanism is generated from a multinomial distribution based

on the above probabilities, and only the corresponding observed data for the sampled

pattern contributes to estimation. We performed 1000 replicates each with sample size

n = 500, 1000 or 2000. The true parameters for the missing data mechanism are

γa = (−0.68,−0.50,−0.10, 0.10,−0.80,−0.40,−0.30,−1.00,−0.20, 0.30)

γb = (−0.70,−1.50,−0.60,−0.30,−0.90,−0.60,−0.50,−0.80,−0.70,−0.40)

γc = (−1.00,−1.50,−1.00,−0.80,−1.00,−1.50,−1.50,−1.00,−1.50,−1.20)

so that each simulation replicate has approximately 15-25% of complete cases generated

under γa, 35-45% of complete cases generated under γb and 65-75% of complete cases

generated under γc.

The parameters γi,j in the missingness mechanism are estimated using both the con-

strained Bayesian model as well as unconstrained maximum likelihood. The main results

for the estimation of parameters γi,j based on simulated data under γb are summarized in

Table 1, while the results under γa and γc respectively are included in the supplementary

material. For posterior computation, we specify the diffuse priors γi,j ∼ normal(0, 103).

Adaptive Gibbs sampling (Gilks et al. 1995) was implemented through BRugs, the R in-

terface to the OpenBUGS MCMC software (Lunn et al. 2009). We assessed convergence

by visually inspecting the trace plots as well as through the Gelman-Rubin convergence
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Table 1: Estimation for the parameters in the simulation missing data model for the scenario with 35-45%

complete-cases under γb. Bias and SE refer to relative bias and Monte Carlo standard error respectively.

Posterior mean is used as estimate in constrained Bayesian estimation. Results for unconstrained maximum

likelihood estimation are restricted to those runs that did converge.

n = 500 n = 1000 n = 2000

Cons. Bayes Uncons. MLE Cons. Bayes Uncons. MLE Cons. Bayes Uncons. MLE

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

γ2,0 0.04 0.28 0.07 0.26 0.04 0.20 0.03 0.19 0.01 0.14 0.00 0.13

γ2,1 0.05 0.34 0.02 0.32 0.02 0.23 0.01 0.23 0.01 0.16 0.01 0.16

γ2,2 -0.06 0.43 -0.08 0.41 -0.03 0.29 -0.00 0.29 -0.04 0.20 -0.01 0.20

γ2,3 0.11 0.41 -0.05 0.40 -0.01 0.29 -0.08 0.28 0.06 0.21 0.02 0.20

γ3,0 0.04 0.23 0.01 0.22 0.02 0.16 0.01 0.16 0.01 0.11 0.00 0.11

γ3,1 -0.01 0.24 -0.00 0.24 0.03 0.17 0.02 0.17 0.00 0.11 0.00 0.11

γ3,2 -0.00 0.37 -0.00 0.37 -0.02 0.27 -0.02 0.27 -0.02 0.19 -0.00 0.19

γ4,0 0.02 0.29 0.07 0.27 0.00 0.21 0.04 0.19 -0.01 0.14 0.02 0.13

γ4,1 -0.00 0.38 -0.05 0.37 0.00 0.27 -0.03 0.26 0.02 0.19 -0.00 0.19

γ4,2 0.01 0.35 -0.15 0.32 -0.01 0.24 -0.08 0.23 0.01 0.17 -0.03 0.17

statistic (Gelman and Rubin 1992), and included an adaptive phase of 10000 iterations

out of a total of 20000 iterations. The effect of exposure α1 in the outcome regression

is estimated using weighted logistic regression. We performed unweighted complete-case

regression to evaluate the magnitude of selection bias, and also carried out maximum like-

lihood estimation on the original full data without missing variables as a gauge for the

efficiency bound (Table 2). The results for the estimation of parameters (α0, α2, α3) are

included in the supplementary material.

The bias of the IPW estimators using constrained Bayesian estimation or unconstrained

maximum likelihood procedure generally decreases with increasing sample size or propor-

tion of complete-cases in the data, and the bias becomes negligible at moderate complete

case sample sizes and higher. Our estimator of the asymptotic variance given by equation

(19) performs quite well and is close to the Monte Carlo standard errors. The standard

deviation estimated using the standard sandwich estimator (22) is typically larger than the

asymptotic variance estimate, which follows from the theoretical result that the sandwich

estimator produces a conservative estimate of the true asymptotic variance. The coverage

using the consistent estimator of the asymptotic variance is close to the nominal 95% using

Wald confidence intervals.
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Table 2: Estimation for effect of exposure α1 = 0.4 in the logistic regression model from 1000 simulation
replicates. Posterior mean is used as estimate in constrained Bayesian estimation. Results for unconstrained
maximum likelihood estimation are restricted to those runs that did converge. Sandwich variance estimators
are given in (22). The asymptotic variance estimators are given in (20) and (21). For complete-case
analysis and full data maximum likelihood, the asymptotic variance estimates are obtained via Fisher
scoring. Coverages are based on nominal 95% Wald confidence intervals.

IPW Bayesian Constrained Estimation

% CC n %Converge Rel. Bias MC SE Sand. SE % Cover Asymp. SE % Cover

15-25

500 100 -0.36 0.83 0.92 96.8 0.82 95.0

1000 100 -0.25 0.58 0.63 96.2 0.56 94.8

2000 100 -0.12 0.39 0.44 97.3 0.38 95.3

35-45

500 100 -0.10 0.50 0.55 97.2 0.50 94.7

1000 100 -0.08 0.36 0.39 96.6 0.35 94.8

2000 100 -0.02 0.25 0.37 96.2 0.25 94.9

65-75

500 100 -0.02 0.41 0.41 95.6 0.40 94.8

1000 100 0.00 0.28 0.29 95.1 0.28 94.3

2000 100 0.00 0.20 0.20 95.2 0.20 94.5

IPW Unconstrained ML Estimation

% CC n %Converge Rel. Bias MC SE Sand. SE % Cover Asymp. SE % Cover

15-25

500 56.9 -0.08 0.80 0.91 96.8 0.79 95.4

1000 72.2 -0.04 0.57 0.63 97.0 0.55 95.0

2000 83.3 -0.03 0.39 0.44 97.3 0.38 94.9

35-45

500 81.1 -0.03 0.49 0.55 97.5 0.50 95.5

1000 91.7 -0.02 0.35 0.39 97.0 0.35 94.7

2000 97.2 -0.01 0.25 0.35 96.3 0.24 94.8

65-75

500 96.3 0.00 0.41 0.41 95.4 0.40 94.7

1000 99.7 0.01 0.28 0.29 94.9 0.28 94.3

2000 100 0.00 0.20 0.20 94.8 0.20 94.5

Complete-Case Estimation

% CC n %Converge Rel. Bias MC SE Sand. SE % Cover Asymp. SE % Cover

15-25

500 100 -1.08 0.91 0.89 92.5

1000 100 -1.10 0.62 0.61 88.7

2000 100 -1.04 0.43 0.42 83.2

35-45

500 100 -1.19 0.54 0.54 84.7

1000 100 -1.24 0.39 0.38 72.7

2000 100 -1.20 0.27 0.26 55.9

65-75

500 100 -0.55 0.41 0.40 90.8

1000 100 -0.52 0.29 0.28 88.7

2000 100 -0.54 0.20 0.20 82.0

Full Data Maximum Likelihood

% CC n %Converge Rel. Bias MC SE Sand. SE % Cover Asymp. SE % Cover

15-25

500 100 -0.01 0.35 0.34 94.8

1000 100 0.02 0.25 0.24 94.8

2000 100 -0.02 0.16 0.17 95.2

35-45

500 100 0.03 0.35 0.34 95.0

1000 100 -0.01 0.24 0.24 95.3

2000 100 0.02 0.17 0.17 94.9

65-75

500 100 0.01 0.35 0.34 94.6

1000 100 0.02 0.24 0.24 94.7

2000 100 0.00 0.17 0.17 94.5
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The proportion of simulated samples where the unconstrained maximum likelihood esti-

mate converged increased both with total sample size, and with the proportion of complete

cases. We note that the bias of the estimator using constrained Bayesian estimation is

larger than that using unconstrained maximum likelihood estimation when the latter con-

verges, particularly when sample size is small and the proportion of complete cases is low.

Similar finite sample bias has been reported in previous implementations of the constrained

Bayesian estimation in a log-linear model of risk (Chu and Cole 2010). However, even so,

as noted above the coverage of 95% confidence intervals does not appear to be affected and

the bias appears to vanish as sample size increases. The bias could be potentially due to

the small number of available complete cases for which constraints (16) are imposed. The

constrained Bayesian estimation can be adapted to impose the constraints over a range

of possible covariate combinations for all individuals, if we were to assume bounds on the

domain of the full data. Nevertheless, the constrained Bayesian procedure is guaranteed

to produce an estimate for π1(L) within the parameter space of the model which may be

used for IPW. Restricting our analysis to only those simulated samples in which the uncon-

strained maximum likelihood procedure converged, then constrained Bayesian estimation

presents similar bias compared to the unconstrained maximum likelihood method (results

not shown). The simulation results indicate that both IPW estimators have smaller bias

and greater efficiency than the complete-case only analysis.

5 APPLICATION

The empirical application concerns a study of highly active antiretroviral therapy (HAART)

and adverse birth outcomes among HIV-infected women in Botswana. A detailed descrip-

tion of the study cohort has been presented elsewhere (Chen et al. 2012). The entire study

cohort consists of 33148 obstetrical records abstracted from 6 sites in Botswana for 24

months. Our current analysis focuses on the subset of women who were known to be HIV

positive (n = 9711).

Two adverse birth outcomes of interest are the binary variables stillbirth and small

for gestational age. Stillbirth was defined as fetal death with an Apgar score of 0 and

small for gestational age as below the 10th percentile of birthweight by gestational age.
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Table 3: Tabulation of non-monotone missing data patterns as a percentage of total data (n = 9711).

Missing variables are indicated by 0. Complete-cases are given in the first pattern.

Analysis with outcome stillbirth

pattern Stillbirth Hypertension Low CD4+ Continued HAART % of data

1 1 1 1 1 45.7

2 1 0 1 1 0.9

3 1 1 0 1 47.8

4 1 0 0 1 5.6

Analysis with outcome small for gestational age

pattern Small gest. age Hypertension Low CD4+ Continued HAART % of data

1 1 1 1 1 45.0

2 0 1 1 1 0.7

3 1 0 1 1 0.7

4 0 0 1 1 0.2

5 1 1 0 1 46.6

6 0 1 0 1 1.2

7 1 0 0 1 3.9

8 0 0 0 1 1.7

Analysis with outcome birthweight

pattern Birthweight Hypertension Low CD4+ Continued HAART % of data

1 1 1 1 1 45.4

2 0 1 1 1 0.2

3 1 0 1 1 0.9

4 1 1 0 1 47.6

5 0 1 0 1 0.2

6 1 0 0 1 5.6

7 0 0 0 1 0.1

The data contains a number of predictors of interest with unobserved values (Table 3):

maternal hypertension in pregnancy (6.5% missing), whether CD4+ cell count is less than

200 µL (53.4% missing) and whether a woman continued HAART in pregnancy or not.

Our goal is to correlate these factors with the risks of the two adverse birth outcomes. The

outcome variable small for gestational age itself has 3.8% of values missing, while stillbirth

data is available for all. We applied the proposed IPW estimator in logistic regression as

well as performed complete case analysis and multivariate imputation by chained equations

(MICE) (van Buuren and Groothuis-Oudshoorn 2011) with M = 50 imputed samples for

comparison. In addition, we investigated the effects of the predictors on the continuous

variable birthweight (0.5% missing) through IPW linear regression (Table 4).

Unconstrained maximum likelihood estimation of the missing data model converged in

17
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Table 4: Analysis for outcomes stillbirth, small for gestational age and birthweight. The values presented

for the first 2 outcomes are estimated odds ratios from logistic regression, while the values for birthweight

are estimated coefficients (in grams) from linear regression. Wald 95% confidence intervals are constructed

with standard errors for both IPW estimators using (20) and (21), and using Fisher scoring for complete-

case analysis. The standard error for MICE is estimated by Rubin’s formula with M = 50 imputed

samples.

Stillbirth

Predictor Complete-case IPW Max. Likelihood IPW Cons. Bayesian MICE

l Hypertension 3.56 (2.59, 4.88) 4.04 (2.87, 5.71) 4.03 (2.86, 5.70) 3.34 (2.72, 4.10)

Low CD4+ 1.71 (1.16, 2.54) 1.63 (1.09, 2.45) 1.64 (1.09, 2.45) 1.59 (1.05, 2.41)

Cont. HAART 1.86 (1.25, 2.79) 2.01 (1.38, 2.94) 2.00 (1.37, 2.93) 1.55 (1.26, 1.91)

Small for Gestational Age

Predictor Complete-case IPW Max. Likelihood IPW Cons. Bayesian MICE

Hypertension 1.58 (1.30, 1.92) 1.62 (1.31, 1.99) 1.62 (1.30, 1.99) 1.68 (1.47, 1.92)

Low CD4+ 1.70 (1.37, 2.11) 1.61 (1.28, 2.03) 1.62 (1.29, 2.03) 1.49 (1.05, 2.10)

Cont. HAART 1.90 (1.52, 2.37) 1.97 (1.58, 2.46) 1.97 (1.58, 2.46) 1.85 (1.64, 2.09)

Birthweight

Predictor Complete-case IPW Max. Likelihood IPW Cons. Bayesian MICE

Hypertension -162 (-217, -106) -249 (-278, -220) -248 (-277, -220) -233 (-269, -197)

Low CD4+ -118 (-174, -63 ) -108 (-162, -56 ) -109 (-162, -56 ) -115 (-174, -56 )

Cont. HAART -226 (-288, -165) -270 (-289, -251) -269 (-288, -250) -213 (-244, -181)
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all 3 analyses. Given the reasonably large sample size (n = 9711), the results from un-

constrained maximum likelihood estimation are similar to those obtained by constrained

Bayesian estimation, consistent with findings from both the simulation study and asymp-

totics theory. For the first outcome risk of stillbirth, we note that IPW produces an

estimated odds ratio for maternal hypertension which is greater by 13.5% compared with

complete-case results. However, the 95% confidence intervals for IPW, complete-case and

MICE logistic regression estimates overlapped. For the second outcome small for gesta-

tional age, results were very similar across different methods, suggesting little selection

bias might be present, that can be accounted for by IPW or MICE. The efficiency of IPW

estimators is similar to that of complete-case estimators, while the efficiency of MICE

estimators is more variable depending on the proportion of missing data in each predictor.

The estimates for the linear regression of birthweight are more affected by IPW and

MICE adjustments. The IPW estimates of the average decrease in birthweight increases

by 53.7% with maternal hypertension and 19.5% with continued HAART treatment, com-

pared with complete-case analysis. Differences between MICE and IPW estimates may

reflect differences of modeling assumptions between the methods because one is making

assumptions on the full data univariate conditional laws in the former (which as previously

noted may be vulnerable to bias due to model incompatibility) and the missing data model

in the latter, although validity for either method requires MAR.

6 DISCUSSION

We have proposed a simple yet general class of missing data models for non-monotone

MAR mechanisms which makes no assumption about the full data distribution. Our models

are explicit in their dependence on only the observed variables, and the proposed inverse

probability weighted estimators can be easily implemented using existing software. An

important contribution of the paper is a proposed strategy to estimate the missing data

mechanism under MAR while circumventing potential convergence difficulties encountered

with unconstrained maximum likelihood estimation of the missing data process.

Assuming no model misspecification, the proposed IPW estimator corrects the bias of

complete-case analysis and may be used whenever one has available a full data estimating
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equation. While constrainted Bayesian estimation is guaranteed to produce valid proba-

bility weights for subsequent estimation of a full data regression or other functionals of

interest, we found that there was non-negligible finite sample bias in small samples. How-

ever, this bias appears to vanish at moderate to large sample sizes. The bias may be due to

the fact that constraints (16) are imposed on complete-cases only, and thus the constraints

may not be satisfied for incomplete cases. The constrained Bayesian approach could be

adapted to impose the constraints over a finite range of possible values for the full data L,

if bounds for the sample space were known.

Lastly, Robins and Gill have argued that the class of RMM models represents the most

general plausible physical mechanism for generating non-monotone missing data (Robins

and Gill 1997). Therefore, they have effectively argued that any model within our class

that is not RMM may be difficult to motivate scientifically. However we emphasize that the

perspective we have presented is completely agnostic as to whether a particular submodel

of MAR may be more scientifically meaningful than another; in fact, RMM, like any other

submodel of MAR, can be accommodated by the proposed approach, but would require

placing additional appropriate constraints while sampling from the posterior, to ensure

that one remains within the submodel. This will necessarily result in a more complicated

fitting procedure, with little apparent benefit for bias reduction or efficiency gain. This

is because, as is well known in the missing data literature, it is generally advisable for

efficiency considerations in IPW estimation under MAR, that one estimates the probability

of a complete-case using as richly parameterized a regression as empirically feasible (Robins

et al. 1994). This implies that even if RMM is correctly specified, one would generally

benefit from including correlates of the full data estimating equation into a model for

the missing data mechanism, even if such variables do not necessarily correlate with the

missing data process. We believe such efficiency considerations trump any concern for

scientific interpretation of the model for the missing data process, particularly since after

all, the missing data process is technically a nuisance parameter not of primary scientific

interest.

APPENDIX: PROOFS
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A.1 Restrictions imposed by polytomous logistic regression model

Suppose there are M missingness patterns, each with observed variables L(m), m = 1, ...,M .

Choosing pattern j as the baseline category, we model the other missingness pattern prob-

abilities as

Pr{R = m|L} =
exp(γm

′L(m))

1 +
∑

k∈{1,...,M}\{j} exp(γk′L(k))
for m ∈ {1, ...,M} \ {j}

Let LI =
⋂
m∈{1,...,M}\{j}L(m). Then by the MAR assumption, each of the above proba-

bilities Pr{R = m|L} depends on L(m) respectively. But they can only depend on LI . If

not, then the probability for one of the missing data patterns h will depend on variables

L(h) \LI that another pattern does not have. This is not possible due to the linked nature

of the terms in the denominator of the probability expression.

A.2 Asymptotic results for IPW estimator

The consistency of β̂ can be established under general conditions for 2-step estimators

(Newey and McFadden 1993) to show uniform convergence of estimating equation (18) in

β, where we make use of the fact that γ̂
p→ γ. Typically one would need to impose moment

assumptions on π1(L; γ) and M(L; β) (Wooldridge 2007).

To investigate the asymptotic distribution of β̂, under suitable regularity conditions

expand (18) around the true values β0 and subsequently γ0,

√
n(β̂ − β0) = −

[
1

n

n∑
i=1

∇βUi(β
∗, γ̂)

]−1
1√
n

n∑
i=1

Ui(β0, γ̂)

= −

[
1

n

n∑
i=1

∇βUi(β
∗, γ̂)

]−1
×

[
1√
n

n∑
i=1

Ui(β0, γ0) +

(
1

n

n∑
i=1

∇γUi(β0, γ
∗)

)
√
n(γ̂ − γ0)

]

where β∗ and γ∗ are the mean values and U(β, γ) = {1(R1 = 1)/π1(L; γ)}M(L; β). When

γ̂ is the maximum likelihood estimator or a Bayes point estimator satisfying conditions

in the Bernstein-von Mises Theorem, it is an asymptotically linear estimator with the

influence function

√
n(γ̂ − γ0) =

1√
n

n∑
i=1

E
[
Sγ0S

T
γ0

]−1
Siγ0 + op(1) (23)
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where Sγ is the score function with respect to the missing data model parameters γ. Sub-

stituting the influence function representation into previous expansion gives

√
n(β̂ − β0)

= −E{∇βU(β0, γ0)}−1
1√
n

n∑
i=1

{
Ui(β0, γ0) + E{∇γU(β0, γ0)}E

[
Sγ0S

T
γ0

]−1
Siγ0

}
+ op(1)

(24)

In addition, from the assumption that the parameters governing full data and the missing

data process are separable, under standard regularity conditions we have for observed data

O

E[U(β, γ)] =

∫
U(β, γ)f(O; β, γ) dO = 0

∂

∂γ
E[U(β, γ)] =

∫
∂

∂γ
U(β, γ)f(O; β, γ) dO +

∫
U(β, γ)

∂

∂γ
f(O; β, γ) dO = 0

=⇒ E{∇γU(γ, β)} = −
∫
U(β, γ)

∂
∂γ
f(O; β, γ)

f(O; β, γ)
f(O; β, γ) dO = −E[U(β, γ)Sγ]

Substituting the above equality to (24)

√
n(β̂ − β0) =

− E{∇βU(β0, γ0)}−1
1√
n

n∑
i=1

{
Ui(β0, γ0)− E[U(β0, γ0)S

T
γ0

]E
[
Sγ0S

T
γ0

]−1
Siγ0

}
+ op(1)

An application of Slutsky’s theorem shows that

√
n(β̂ − β0)

d−→ N
(

0,E{∇βU(β0, γ0)}−1Var [U(β0, γ0)−W (β0, γ0)] E{∇βU(β0, γ0)}−1
T
)

(25)

where

W (β0, γ0) = E[U(β0, γ0)S
T
γ0

]E
[
Sγ0S

T
γ0

]−1
Sγ0

The sandwich estimator is consistent for E{∇βU(β0, γ0)}−1E
[
U(β0, γ0)

⊗
2
]

E{∇βU(β0, γ0)}−1
T
.

In the Hilbert space of mean-zero random functions, E
[
U(β0, γ0)S

T
γ0

]
E
[
Sγ0S

T
γ0

]−1
Sγ0 is

the projection of U(β0, γ0) onto the linear subspace spanned by elements of Sγ0 . Therefore

by Pythagorean Theorem

E
[
U(β0, γ0)

⊗
2
]
− E

[{
U(β0, γ0)− E

[
U(β0, γ0)S

T
γ0

]
E
[
Sγ0S

T
γ0

]−1
Sγ0

}⊗
2
]

is positive semi-definite and the sandwich estimator provides conservative estimate for the

true asymptotic variance.
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Estimation of parameters γi,j generated under γa and γc

Table 5: Estimation for the parameters in the simulation missing data model for the scenario with 15-25%

complete-cases under γa. Bias and SE refer to relative bias and Monte Carlo standard error respectively.

Posterior mean is used as estimate in constrained Bayesian estimation. Results for unconstrained maximum

likelihood estimation are restricted to those runs that did converge.

n = 500 n = 1000 n = 2000

Cons. Bayes Uncons. MLE Cons. Bayes Uncons. MLE Cons. Bayes Uncons. MLE

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

γ2,0 0.03 0.24 0.06 0.23 0.01 0.16 0.03 0.16 0.01 0.11 0.01 0.11

γ2,1 0.02 0.20 -0.00 0.20 0.01 0.13 -0.00 0.13 -0.00 0.10 -0.01 0.09

γ2,2 -0.30 0.33 -0.31 0.31 -0.20 0.22 -0.22 0.22 -0.13 0.16 -0.06 0.16

γ2,3 -0.24 0.33 0.37 0.31 -0.19 0.22 0.07 0.22 -0.06 0.15 0.08 0.15

γ3,0 0.04 0.21 0.04 0.20 0.02 0.14 0.02 0.14 0.01 0.10 0.01 0.10

γ3,1 0.02 0.21 -0.01 0.22 -0.01 0.15 0.00 0.14 -0.00 0.11 0.01 0.10

γ3,2 -0.04 0.35 -0.16 0.33 -0.04 0.23 -0.10 0.23 -0.02 0.16 -0.03 0.16

γ4,0 -0.02 0.24 -0.03 0.22 0.00 0.17 0.00 0.17 -0.01 0.12 -0.00 0.11

γ4,1 0.23 0.33 0.05 0.32 0.08 0.23 -0.04 0.23 0.04 0.16 -0.02 0.16

γ4,2 -0.05 0.25 -0.17 0.20 -0.02 0.17 -0.06 0.16 -0.04 0.12 -0.05 0.11

Table 6: Estimation for the parameters in the simulation missing data model for the scenario with 65-75%

complete-cases under γc. Bias and SE refer to relative bias and Monte Carlo standard error respectively.

Posterior mean is used as estimate in constrained Bayesian estimation. Results for unconstrained maximum

likelihood estimation are restricted to those runs that did converge.

n = 500 n = 1000 n = 2000

Cons. Bayes Uncons. MLE Cons. Bayes Uncons. MLE Cons. Bayes Uncons. MLE

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

γ2,0 0.04 0.36 0.04 0.35 0.02 0.24 0.01 0.25 0.00 0.18 -0.00 0.18

γ2,1 0.08 0.49 0.04 0.46 0.04 0.32 0.02 0.33 0.02 0.21 0.01 0.21

γ2,2 0.03 0.61 0.01 0.60 -0.02 0.41 -0.02 0.41 0.01 0.30 0.02 0.30

γ2,3 0.03 0.59 -0.01 0.58 0.04 0.40 0.02 0.40 0.03 0.29 0.01 0.29

γ3,0 0.04 0.29 0.01 0.28 0.02 0.20 0.00 0.21 0.02 0.14 0.00 0.14

γ3,1 0.06 0.45 0.04 0.42 0.03 0.28 0.01 0.30 0.01 0.20 0.01 0.20

γ3,2 0.02 0.54 0.01 0.54 -0.00 0.38 -0.00 0.40 -0.01 0.28 0.00 0.28

γ4,0 0.01 0.40 0.01 0.38 0.02 0.28 0.01 0.28 -0.01 0.20 -0.00 0.20

γ4,1 0.03 0.60 0.02 0.58 0.00 0.41 -0.01 0.42 0.01 0.28 0.01 0.28

γ4,2 0.04 0.53 0.01 0.51 0.00 0.38 -0.01 0.38 0.01 0.27 0.00 0.27

27

Hosted by The Berkeley Electronic Press



Estimation of parameters (α0, α2, α3)

Table 7: Estimation for intercept α0 = −0.55 in the logistic regression model from 1000 simulation
replicates. Posterior mean is used as estimate in constrained Bayesian estimation. Results for unconstrained
maximum likelihood estimation are restricted to those runs that did converge. Sandwich variance estimators
are given in (22). The asymptotic variance estimators are given in (20) and (21). For complete-case
analysis and full data maximum likelihood, the asymptotic variance estimates are obtained via Fisher
scoring. Coverages are based on nominal 95% Wald confidence intervals.

IPW Bayesian Constrained Estimation
% CC n %Converge Rel. Bias MC SE Sandwich SE % Coverage Asymp. SE % Coverage

15-25

500 100 -0.25 0.68 0.78 96.6 0.66 94.1
1000 100 -0.15 0.46 0.53 98.3 0.45 95.6
2000 100 -0.09 0.32 0.37 97.5 0.32 94.9

35-45

500 100 -0.16 0.44 0.50 97.4 0.44 94.2
1000 100 -0.08 0.29 0.35 98.0 0.30 95.3
2000 100 -0.02 0.22 0.25 96.4 0.21 94.0

65-75

500 100 -0.05 0.32 0.36 97.6 0.33 95.7
1000 100 -0.02 0.24 0.26 96.7 0.24 94.9
2000 100 -0.01 0.17 0.18 96.9 0.17 95.4

IPW Unconstrained ML Estimation
% CC n %Converge Rel. Bias MC SE Sandwich SE % Coverage Asymp. SE % Coverage

15-25

500 56.9 -0.05 0.66 0.76 97.8 0.64 94.6
1000 72.2 -0.03 0.45 0.53 98.7 0.45 95.7
2000 83.3 -0.01 0.32 0.37 97.4 0.32 94.5

35-45

500 81.1 -0.03 0.43 0.50 97.7 0.43 95.3
1000 91.7 -0.02 0.29 0.35 98.0 0.30 95.2
2000 97.2 0.01 0.22 0.25 96.8 0.21 94.2

65-75

500 96.3 -0.01 0.32 0.37 97.8 0.33 94.7
1000 99.7 -0.01 0.24 0.26 96.7 0.24 94.9
2000 100 0.00 0.17 0.18 96.9 0.17 95.4

Complete-Case Estimation
% CC n %Converge Rel. Bias MC SE Sandwich SE % Coverage Asymp. SE % Coverage

15-25

500 100 -2.24 0.80 0.79 63.4
1000 100 -2.17 0.53 0.52 35.7
2000 100 -2.16 0.36 0.36 8.5

35-45

500 100 -2.10 0.48 0.48 33.0
1000 100 -2.08 0.33 0.34 6.6
2000 100 -2.06 0.24 0.24 0.1

65-75

500 100 -1.19 0.33 0.36 55.9
1000 100 -1.18 0.25 0.25 27.7
2000 100 -1.17 0.18 0.18 4.2

Full Data Maximum Likelihood
% CC n %Converge Rel. Bias MC SE Sandwich SE % Coverage Asymp. SE % Coverage

15-25

500 100 -0.01 0.29 0.29 95.6
1000 100 0.02 0.21 0.20 94.8
2000 100 -0.01 0.14 0.14 95.3

35-45

500 100 0.01 0.29 0.29 95.4
1000 100 0.00 0.20 0.20 94.9
2000 100 0.01 0.14 0.14 95.2

65-75

500 100 -0.01 0.28 0.29 95.5
1000 100 0.00 0.20 0.20 94.2
2000 100 0.00 0.14 0.14 95.0
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Table 8: Estimation for effect of first confounder α2 = −0.35 in the logistic regression model from 1000
simulation replicates. Posterior mean is used as estimate in constrained Bayesian estimation. Results for
unconstrained maximum likelihood estimation are restricted to those runs that did converge. Sandwich
variance estimators are given in (22). The asymptotic variance estimators are given in (20) and (21). For
complete-case analysis and full data maximum likelihood, the asymptotic variance estimates are obtained
via Fisher scoring. Coverages are based on nominal 95% Wald confidence intervals.

IPW Bayesian Constrained Estimation
% CC n %Converge Rel. Bias MC SE Sandwich SE % Coverage Asymp. SE % Coverage

15-25

500 100 0.35 0.83 0.90 96.4 0.80 94.5
1000 100 0.10 0.55 0.62 97.8 0.54 95.0
2000 100 0.04 0.38 0.43 97.8 0.37 95.4

35-45

500 100 0.12 0.50 0.54 97.2 0.51 94.6
1000 100 0.04 0.34 0.37 97.7 0.34 94.3
2000 100 0.01 0.24 0.26 97.2 0.24 94.8

65-75

500 100 0.02 0.38 0.40 96.3 0.38 94.8
1000 100 0.03 0.26 0.28 96.4 0.26 95.1
2000 100 -0.01 0.19 0.20 95.4 0.19 94.3

IPW Unconstrained ML Estimation
% CC n %Converge Rel. Bias MC SE Sandwich SE % Coverage Asymp. SE % Coverage

15-25

500 56.9 -0.04 0.79 0.89 97.6 0.76 94.6
1000 72.2 -0.02 0.54 0.60 97.6 0.54 94.7
2000 83.3 -0.03 0.38 0.43 97.8 0.38 94.8

35-45

500 81.1 0.03 0.49 0.53 97.5 0.48 95.2
1000 91.7 0.01 0.33 0.37 97.7 0.34 95.5
2000 97.2 0.00 0.23 0.26 97.3 0.24 94.9

65-75

500 96.3 -0.02 0.38 0.40 96.2 0.37 94.7
1000 99.7 0.02 0.26 0.28 96.6 0.26 94.5
2000 100 -0.01 0.19 0.20 95.5 0.19 94.3

Complete-Case Estimation
% CC n %Converge Rel. Bias MC SE Sandwich SE % Coverage Asymp. SE % Coverage

15-25

500 100 0.91 0.90 0.87 94.0
1000 100 0.74 0.59 0.60 93.7
2000 100 0.73 0.43 0.42 89.9

35-45

500 100 1.08 0.55 0.52 89.4
1000 100 0.98 0.37 0.37 84.5
2000 100 0.99 0.26 0.26 73.1

65-75

500 100 1.08 0.41 0.40 83.3
1000 100 1.10 0.28 0.28 72.3
2000 100 1.06 0.20 0.20 52.1

Full Data Maximum Likelihood
% CC n %Converge Rel. Bias MC SE Sandwich SE % Coverage Asymp. SE % Coverage

15-25

500 100 0.02 0.35 0.34 94.2
1000 100 -0.03 0.23 0.24 95.4
2000 100 -0.03 0.17 0.17 94.6

35-45

500 100 0.01 0.35 0.34 94.6
1000 100 -0.01 0.24 0.24 94.8
2000 100 -0.01 0.16 0.16 94.7

65-75

500 100 0.01 0.33 0.33 94.5
1000 100 0.02 0.23 0.23 94.9
2000 100 -0.01 0.17 0.16 94.2
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Table 9: Estimation for effect of second confounder α3 = 0.2 in the logistic regression model from 1000
simulation replicates. Posterior mean is used as estimate in constrained Bayesian estimation. Results for
unconstrained maximum likelihood estimation are restricted to those runs that did converge. Sandwich
variance estimators are given in (22). The asymptotic variance estimators are given in (20) and (21). For
complete-case analysis and full data maximum likelihood, the asymptotic variance estimates are obtained
via Fisher scoring. Coverages are based on nominal 95% Wald confidence intervals.

IPW Bayesian Constrained Estimation
% CC n %Converge Rel. Bias MC SE Sandwich SE % Coverage Asymp. SE % Coverage

15-25

500 100 0.98 0.88 0.89 94.5 0.82 92.2
1000 100 0.37 0.55 0.60 97.3 0.55 95.4
2000 100 0.09 0.39 0.42 96.4 0.38 94.8

35-45

500 100 -0.14 0.53 0.52 95.0 0.51 94.3
1000 100 -0.10 0.36 0.37 96.0 0.36 94.8
2000 100 -0.03 0.26 0.26 94.9 0.25 94.5

65-75

500 100 -0.05 0.37 0.39 96.6 0.39 95.8
1000 100 -0.02 0.28 0.27 94.4 0.27 94.3
2000 100 0.00 0.19 0.19 94.8 0.19 94.6

IPW Unconstrained ML Estimation
% CC n %Converge Rel. Bias MC SE Sandwich SE % Coverage Asymp. SE % Coverage

15-25

500 56.9 -0.12 0.83 0.87 95.8 0.78 93.4
1000 72.2 -0.11 0.54 0.60 97.6 0.54 95.9
2000 83.3 -0.10 0.38 0.42 96.1 0.38 95.1

35-45

500 81.1 -0.08 0.53 0.52 95.1 0.50 94.5
1000 91.7 -0.07 0.36 0.37 95.7 0.36 94.6
2000 97.2 -0.04 0.26 0.26 94.7 0.25 94.3

65-75

500 96.3 -0.04 0.37 0.39 96.7 0.38 94.7
1000 99.7 -0.01 0.28 0.28 94.4 0.27 94.2
2000 100 0.00 0.19 0.19 94.7 0.19 94.5

Complete-Case Estimation
% CC n %Converge Rel. Bias MC SE Sandwich SE % Coverage Asymp. SE % Coverage

15-25

500 100 2.14 0.89 0.86 92.1
1000 100 1.90 0.58 0.58 89.9
2000 100 1.79 0.41 0.41 86.2

35-45

500 100 -0.57 0.53 0.51 94.6
1000 100 -0.60 0.36 0.36 94.1
2000 100 -0.56 0.26 0.25 91.5

65-75

500 100 -0.14 0.37 0.39 96.5
1000 100 -0.11 0.27 0.27 94.5
2000 100 -0.10 0.19 0.19 94.2

Full Data Maximum Likelihood
% CC n %Converge Rel. Bias MC SE Sandwich SE % Coverage Asymp. SE % Coverage

15-25

500 100 0.01 0.34 0.33 94.4
1000 100 0.01 0.24 0.23 94.6
2000 100 -0.03 0.16 0.16 94.8

35-45

500 100 0.02 0.33 0.33 94.9
1000 100 0.00 0.23 0.23 94.7
2000 100 -0.02 0.17 0.16 94.6

65-75

500 100 -0.03 0.33 0.33 95.3
1000 100 -0.01 0.23 0.23 94.1
2000 100 0.00 0.16 0.16 94.6
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