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Abstract For a patient who is facing a treatment decision, the added value
of information provided by a biomarker depends on the individual patient’s
expected response to treatment with and without the biomarker, as well as
his/her tolerance of disease and treatment harm. However, individualized es-
timators of the value of a biomarker are lacking. We propose a new graphi-
cal tool named the subject-specific expected benefit curve for quantifying the
personalized value of a biomarker in aiding a treatment decision. We develop
semiparametric estimators for two general settings: i) when biomarker data are
available from a randomized trial; and ii) when biomarker data are available
from a cohort or a cross-sectional study, together with external information
about a multiplicative treatment effect. We also develop adaptive bootstrap
confidence intervals for consistent inference in the presence of non-regularity.
The proposed method is used to evaluate the individualized value of the serum
creatinine marker in informing treatment decisions for the prevention of renal
artery stenosis.

Keywords Adaptive bootstrap · Biomarker · Cost-Benefit · Semiparametric
location-scale model · Subject-specific expected benefit · Treatment selection

This work was supported by NIH grants R01 GM106177-01, U01 CA086368, and R01
GM054438.

Ying Huang
Biostat & Biomath Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, U.S.A
Tel.: 2066674198
Fax: 2066674378
E-mail: yhuang@fhcrc.org

Eric Laber
Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC,
27695, U.S.A

Hosted by The Berkeley Electronic Press



2 Ying Huang, Eric Laber

1 Introduction

Advances in lab technology have led to the discovery of a large number of
biomarkers and medical tests that are potentially useful for guiding treatment
decisions. However, these biomarkers and tests may be costly, invasive, or oth-
erwise burdensome. Examples include the Oncotype Dx test for predicting the
response to adjuvant chemotherapy, which currently costs around $4,000 USD
(http://www.breastcancer.org/symptoms/testing/types/oncotype dx), and Am-
niocentesis in pregnant women for detecting chromosomal abnormality, which
is associated with a risk of miscarriage. Therefore, when a biomarker or test is
optional, patients and clinicians must determine whether the biomarker pro-
vides useful information for treatment selection beyond readily available infor-
mation such as patient demographics and standard test results. Hereafter, we
use the term “covariate” for any other readily available patient information.

To make an informed decision regarding whether to have a biomarker-based
diagnostic test, it is important to understand how the test affects a patient’s
clinical consequence. In particular, one needs to quantify the impact of the ad-
ditional marker using a metric that is intuitive and interpretable to patients.
The metric should also flexibly account for individual differences to facili-
tate personalized decision making. Classical statistical measures for biomarker
evaluation are not satisfactory for this purpose. For example, common mea-
sures of classification performance like sensitivity, specificity, and the receiver
operating characteristics curve [Zhou et al. 2002,Pepe 2003] are not directly
relevant for individual patients’ decision making because they are defined con-
ditional on disease status and do not reflect an individual’s risk of disease.
Common measures of risk prediction performance like the predictiveness curve
[Huang et al. 2007,Pepe et al. 2008], and positive and negative predictive val-
ues [Altman and Bland 1994], are informative about disease risk, but by them-
selves do not account for other important information for decision making such
as the effects of available treatments on the targeted disease and additional
treatment costs (e.g., the side effect and the monetary cost). Many other re-
cent measures of a marker’s value in a treatment decision, e.g., the overall re-
duction in the disease rate through treatment selection [Song and Pepe 2004,
Zhang et al. 2012a,Zhang et al. 2012b,Zhao et al. 2012,Zhao et al. 2013], the
conditional distribution of the risk difference between comparative interven-
tions in a population [Cai et al. 2011,Huang et al. 2012,Janes et al. 2013b] and
in the marker-positive group [Zhao et al. 2013,Foster et al. 2011], focus on the
marker’s average effect on the entire population only with respect to the bur-
den of the targeted disease.

There are multiple factors affecting a patient’s clinical consequence, in-
cluding the patient’s expected disease outcome with or without treatment and
the patient’s tolerance of the disease harm and the treatment harm. Decision
theory provides an appealing framework for incorporating these cost-benefit
considerations into model evaluation and has received much attention in recent
years. Examples include the decision curve analysis developed for characteriz-
ing the performance of disease risk prediction models [Vickers and Elkin 2006,
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Baker et al. 2009] and the net benefit for characterizing treatment effect pre-
diction models [Vickers et al. 2007,Rapsomaniki et al. 2012,Baker et al. 2012].
Nevertheless, existing work in this paradigm focuses primarily on quantifying
the average value of a marker to the whole population for guiding individ-
ualized treatment selection instead of allowing the evaluation of the marker
value itself to be individualized. For example, the decision curve quantifies
a risk prediction model’s utility in units of the benefit for a true positive,
which does not account for patient-specific treatment effects. The net benefit
quantifies the utility of a marker-based treatment-selection strategy in units
of the disease harm, which is intuitive and easy to communicate to patients
and clinicians. The utility, however, is measured relative to the strategy of no
treatment, which may not be a patient’s best choice based on the available
covariate information.

In this paper we propose a new statistical measure, the subject-specific ex-
pected benefit curve, for characterizing the additional value of a biomarker to
individual patients from a cost-benefit perspective. As will be shown in Section
2, it is built upon an existing decision-theoretic framework [Vickers et al. 2007,
Janes et al. 2013a,Rapsomaniki et al. 2012], but is expanded to allow individ-
ualized evaluation of a marker by accounting for individual differences in treat-
ment effect on disease and in tolerance of disease and treatment harm. In par-
ticular, this curve quantifies the personalized expected benefit of measuring a
marker, which is defined as the reduction in the minimum total disease and
treatment cost by incorporating the marker information into an individual’s
treatment decision. The points on the curve are defined conditional on an in-
dividual’s baseline covariates and one’s choice of treatment/disease cost ratio.
We develop semiparametric estimators for this measure that are broadly ap-
plicable to both randomized trials and cohort or cross-sectional studies. We
also develop adaptive bootstrap confidence intervals that are consistent even
in the nonregular setting in which a subject’s specific treatment/disease cost
ratio coincides with one’s expected treatment effect on disease outcome.

In Section 2, we introduce the concept of the subject-specific expected
benefit curve. We develop estimation methods and theoretical results for both
randomized trials and cohort studies. We examine finite sample performance of
the proposed estimators using simulation studies in Section 3. In Section 4, we
apply the proposed methodology to demonstrate the personalized evaluation
of serum creatinine as a biomarker for guiding treatment decision in preventing
renal stenosis. Concluding remarks are made in Section 5.

2 Method

Let D denote an undesirable binary outcome that we call “disease”, coded
0 for non-diseased and 1 for diseased. Assume there is a treatment available
and let A = 1, 0 indicate the decision or recommendation for a subject to
have or not have the treatment based on some model. Let X denote baseline
subject covariates, possibly multivariate, which can be used to inform the
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4 Ying Huang, Eric Laber

treatment decision. Suppose there is a biomarker or a marker combination Y
that, if measured, has the potential to further inform the treatment decision.
If the marker is costly to measure, the decision to collect the marker should
be informed by an estimate of the individual-specific benefit offered by the
marker. In our motivating example of serum creatinine evaluation, a female
subject must decide whether to use renal angioplasty to prevent renal stenosis.
A model based on her baseline characteristics X, such as age, body mass
index, smoking status etc., can be used to predict the probability of having
renal stenosis with or without the treatment. Based on this prediction, she
can then incorporate her tolerance of the side effects of renal angioplasty to
make a treatment decision. If she was also offered the option of having a lab
test measuring serum creatinine level, Y , she should only opt to have the lab
test if the predictive model incorporating both Y and X performs significantly
better than the model using X alone so as to justify the cost of the test.

We propose to quantify the individual-specific value of a biomarker with the
expected reduction in an individual’s total disease and treatment cost as the
result of measuring the biomarker, under the assumption that an individual
would make the optimal treatment decision based on available information
either before or after the biomarker measurement. To put the disease cost
and the treatment cost on a common scale, we follow the decision theoretic
framework of Vickers et al. [2007] by allowing each individual to input a ratio
of the cost per treatment relative to the cost per disease event, namely δ, which
reflects the individual’s tolerance of the treatment burden relative to his/her
tolerance of the disease burden.

Define the cost per targeted disease event as 1 so that the total disease and
treatment cost will be represented in units of the burden per disease event.
For a subject with covariate X = x, this total cost, given a treatment decision
rule A that is a function of either X alone or X plus Y , can be computed as
follows.

Let D(1) and D(0) indicate the potential disease outcome if a subject does
or does not receive the treatment. First, if a subject with covariates X = x
makes a treatment decision based on X alone, i.e., A = A(X), then his/her
expected disease rate if receiving/not receiving treatment according to decision

rule A(x) would equal
∑1

a=0 I{A(x) = a}E{D(a)|X = x}, where I() is the
indicator function; the corresponding cost of treatment is δ × A(x) since the
cost of treatment will only be incurred when A(x) = 1. As a result, the total
disease and treatment cost based on A(X) equals

1∑

a=0

I{A(x) = a}E{D(a)|X = x} + δ × A(x). (1)

The optimal treatment selection rule, say Aopt(x), that minimizes (1), is

Aopt(x) = argminaE{D(a)|X = x} + δ × a = I{∆(x) > δ},

where ∆(x) = E{D(0)|X = x}−E{D(1)|X = x} is the risk difference between
non-treated and treated conditional on X = x. That is, a subject will choose
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to treat the disease only if one’s risk difference is greater than the cost ratio δ
and will not treat otherwise. Equivalently, δ is the risk difference at which the
treatment benefit (i.e., the risk difference for disease) exactly compensates for
harm of treatment [Vickers et al. 2007]. The total disease and treatment cost
given Aopt(x) equals

Cost1x(δ) = E{D(0)|X = x} − [∆(x)− δ]+, (2)

where [u]+ = max(0, u) is the positive-part function.
Second, if a subject with X = x makes a treatment decision based on both

covariates and the additional marker, i.e., A = A(X, Y ), then the total disease
and treatment cost is

P {A(X, Y ) = 0|X = x} × E{D(0)|A(X, Y ) = 0, X = x}
+P {A(X, Y ) = 1|X = x} × E{D(1)|A(X, Y ) = 1, X = x}
+δ × P {A(X, Y ) = 1|X = x}
=E [D(0) × I{A(X, Y ) = 0}|X = x]

+E [D(1) × I{A(X, Y ) = 1}|X = x] + δ × E{A(X, Y )|X = x}
=E{D(0)|X = x} − E{D(0) × A(X, Y )|X = x}+ E{D(1) × A(X, Y )|X = x}
+δ × E{A(X, Y )|X = x}
=E{D(0)|X = x} − E {A(X, Y ) × [E{D(0)|Y, X} − E{D(1)|Y, X}] |X = x}
+δ × E{A(X, Y )|X = x}
=E{D(0)|X = x} − E [A(X, Y ) × {∆(X, Y ) − δ}|X = x] . (3)

It follows that the treatment-selection rule that minimizes (3), say Aopt(x, y),
is

Aopt(x, y) = argmina − a × {∆(x, y) − δ} = I{∆(x, y) > δ},

where ∆(x, y) = E{D(0)|X = x, Y = y} − E{D(1)|X = x, Y = y} is the risk
difference between non-treated and treated conditional on X = x and Y = y.
Corresponding total cost due to either disease or treatment for a subject with
X = x equals

Cost2x(δ) = E{D(0)|X = x} − E [{∆(X, Y ) − δ}+|X = x] . (4)

We define the expected benefit for a subject with covariates X = x and cost
ratio δ as the reduction in the minimum total cost by adding marker Y into
the disease risk model conditional on X:

EBx(δ) = Cost1x(δ)−Cost2x(δ) = E [{∆(X, Y ) − δ}+|X = x]−[∆(x)−δ]+. (5)

The subject-specific expected benefit curve is defined as the curve of EBx(δ)
versus δ. One can also plot EBx(δ)/Cost1x(δ) versus δ to show the relative
reduction in cost by measuring Y . Examples of the curves of Cost1x(δ) and
Cost2x(δ) for different x levels are displayed in Figure 1(a), which will be
discussed later in the data example. Corresponding curves of EBx(δ), and
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EBx(δ)/Cost1x(δ) versus δ are displayed in Figures 1(b) and 1(c). Note that a
change-point exists in the curve of Cost1x(δ) versus δ and in the subject-specific
expected benefit curves, where there is a dramatic change in the shape of the
curve. This point corresponds to δ = ∆(x), the treatment effect conditional
on X = x, which is the specific cost-ratio where a subject’s optimal treatment
absent biomarker Y changes.

2.1 Estimation and Inference

In this section, we consider estimation of EBx(δ) and EBx(δ)/Cost1x(δ), the
subject-specific expected benefit on absolute and relative scales. We develop
semiparametric estimation methods for data either from a randomized trial or
from a cohort or cross-sectional study.

2.1.1 Estimation with data from a randomized trial

Biomarker studies nested within randomized trials are natural sources for es-
timating the subject-specific expected benefit curve. Let T = 0, 1 indicate the
assignment to the untreated and the treated arm respectively in a two-arm ran-
domized trial. Suppose we observe i.i.d. samples of (Yi, Xi, Ti, Di), i = 1, . . . , n,
one observation for every participant in the trial. The estimation of cost and
expected benefit consists of two steps: i) estimation of the disease risk condi-
tional on T, X, Y ; and ii) estimation of the distribution of Y conditional on
X.

The task in the first step is to estimate E{D(0)|X, Y } and ∆(X, Y ).
We make the following assumptions: (i) stable unit treatment value assump-
tion (SUTVA) and consistency: {D(0),D(1)} of one subject is independent
of the treatment assignments of other subjects, and the observed outcome
is equal to the potential outcome under treatment actually received; (ii) ig-
norable treatment assignments assumption: T ⊥ D(0), D(1)|X, Y . Assump-
tion (i) is plausible in trials where participants do not interact with one an-
other and assumption (ii) is ensured by randomization. Under these assump-
tions, E{D(t)|X, Y } = E{D(t)|X, Y, T} = E(D|X, Y, T = t) for t = 0, 1, and
∆(X, Y ) = E(D|X, Y, T = 0) − E(D|X, Y, T = 1). Thus E{D(0)|X, Y } and
∆(X, Y ) can be estimated by modeling the disease risk as a function of T , X,
and Y . We adopt a generalized linear model (GLM)

g{P (D = 1|X, Y, T )} = θ0 + θ1T + θ′2X + θ3Y + θ′4XT + θ5Y T,

where g is a link function such as logit link or inverse normal-CDF link. We
derive θ̂ as the maximum likelihood estimator (MLE) of θ.

In the second step, There are many options to estimate the distribution
of Y conditional on X. Here we adopt a semiparametric location-scale model
[Heagerty and Pepe 1999] for the distribution of Y conditional on X = x:
Yi = µ(Xi) + σ(Xi)εi and F0(s) = P (ε ≤ s), such that Fx(y) = P (Y ≤ y|X =
x) = F0 [{y − µ(x)}/σ(x)], where F0 is some baseline residual distribution with
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mean 0 and variance 1, µ(X) and σ(X) are the location and scale functions
respectively.

Let µ(x) = γ′U(x) and log{σ(x)} = η′W (x) with U(x) and W (x) being
specified functions of x. For example, for binary X, U(X) and W (X) could be
(1, X), while for continuous X, U(X) and W (X) could be a B-spline basis for
X. As in Heagerty and Pepe [1999], we use the following estimating equations
for γ and η:

n∑

i=1

{
∂

∂γ
µ(Xi)

}
Yi − µ(Xi)

var(Yi)
= 0,

n∑

i=1

{
∂

∂η
σ2(Xi)

}
(Yi − µ(Xi))

2 − σ2(Xi)

var [{Yi − µ(Xi)}2]
= 0.

Write Ui = U(Xi) and Wi = W (Xi), then under the Gaussian higher moment

relationship var
[
{Yi − µ(Xi)}2

]
= 2var(Yi)

2 [Heagerty and Pepe 1999], the

above estimating equations equal

n∑

i=1

Ui(Yi − γ′Ui)/σ2(Xi) = 0,

n∑

i=1

Wi

{
(Yi − γ′Ui)

2 − σ2(Xi)
}

/σ2(Xi) = 0,

from which we can solve for γ̂ and η̂. We then estimate F0 empirically using
residuals ei = {Yi − γ̂′Ui} /exp (η̂′Wi), i = 1, . . . , n.

Finally, note that in (2) and (5), ∆(x) can be represented as EY |x{∆(x, Y )},
the expectation of ∆(X, Y ) conditional on X = x. Thus we estimate Cost1x(δ)
in (2) and EBx(δ) in (5) with

Ĉost
1

x(δ) =
1

n

n∑

i=1

R̂isk {x, Y ?
i (x)} −

[
1

n

n∑

i=1

∆̂ {x, Y ?
i (x)} − δ

]

+

,

ÊBx(δ) =
1

n

n∑

i=1

[
∆̂ {x, Y ?

i (x)} − δ
]
+
−

[
1

n

n∑

i=1

∆̂ {x, Y ?
i (x)} − δ

]

+

, (6)

where Y ?
i (x) = γ̂′U(x) + exp {η̂′W (x)} ei, R̂isk(X, Y ) = P̂ (D = 1|T =

0, X, Y ) is the estimated risk of disease, and ∆̂(X, Y ) is the estimated risk
difference between untreated and treated conditional on X and Y based on
MLE θ̂.

2.2 Estimation with data from a cohort or cross-sectional study

Under the SUTVA, consistency, and ignorable treatment assignments assump-
tions, the subject-specific expected benefit curve can also be derived when

Hosted by The Berkeley Electronic Press



8 Ying Huang, Eric Laber

we have biomarker data from a cohort or a cross-sectional study that can
be used to estimate risk prediction models, if in addition we have external
information about a multiplicative treatment effect. The latter can be ob-
tained, e.g., from historical data or from a different study. The assumption
of a relative risk rr ∈ (0, 1) for treated versus untreated has frequently been
made in evaluating the use of risk models for recommending therapy, includ-
ing the Gail model for advising the use of tamoxifen to prevent breast can-
cer [Gail et al. 1999,Baker and Kramer 2005,Gail 2009]. It implicitly requires
a monotone treatment effect, i.e., in terms of the disease, the treatment will
not cause harm [Janes et al. 2013a]. This multiplicative treatment effect as-
sumption implies a one-to-one correspondence between the risk of disease in
the population and the risk difference between untreated and treated, i.e.,
∆(X, Y ) = Risk(X, Y ) × (1 − rr), where Risk(X, Y ) = P {D(0) = 1|X, Y }.
In other words, in this scenario, we can interpret the subject-specific expected
benefit for an individual as the reduction in the total disease and treatment
cost by measuring the biomarker, under the condition that a subject with a
treatment/disease cost ratio δ opts to take treatment whenever the predicted
disease risk is greater than a threshold value of δ/(1 − rr).

Estimation of Cost1x(δ) and EBx(δ) again consists of two steps. In the
first step, we model the disease risk as a function of X and Y using a GLM
g{P (D = 1|X, Y )} = θ0 + θ′1X + θ2Y . In the second step, we model the
distribution of Y conditional on X using a semiparametric location-scale model
as in Section 2.1. Finally, we estimate Cost1x(δ) and EBx(δ) as in (6), where

we estimate ∆̂(x, y) with R̂isk(x, y) × (1 − rr).
We note that the proposed estimation procedures can be easily extended

to allow for subsampling of Y , e.g., when the biomarker is only measured
from a case-control sample nested within a randomized trial or a cohort study.
Let pi be the probability of sampling Y from the ith subject in the study;
we can estimate the subject-specific expected benefit curve by weighting the
contribution of subject i inversely by pi when estimating both the risk model
and the conditional biomarker distribution.

Note that in the special case where X is discrete and sample sizes among
each X level are large, the expected benefit of a marker conditional on a
particular X = x can be estimated by modeling the disease risk as a function of
Y and estimating the distribution of Y [Huang et al. 2013] within each stratum
of X separately. This approach, however, does not use data as efficiently, nor is
it applicable when X is continuous. The semiparametric approach, in contrast,
provides a way to borrow information across levels of X and applies to general
X including both discrete and continuous components.

2.3 Inference

In this section we develop confidence intervals for the subject-specific expected
benefit. Let ρ1x = P (D = 1|T = 1, X = x) and ρ0x = P (D = 1|T = 0, X = x)
indicate the prevalence of D conditional on X = x with or without treatment
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respectively. Under standard regularity conditions (RCs) specified in the Ap-

pendix, when ∆(x) = ρ0x − ρ1x 6= δ, Ĉost
1

x(δ) and ÊBx(δ) are asymptotically
normally distributed as stated in Theorems 1 and 2.

Theorem 1. Assume RCs, when δ 6= ρ0x − ρ1x,
√

n
{

Ĉost
1

x(δ) − Cost1x(δ)
}

converges to a mean-zero normal random variable as n → ∞.

Theorem 2. Assume RCs, when δ 6= ρ0x−ρ1x,
√

n
{
ÊBx(δ) − EBx(δ)

}
con-

verges to a mean-zero normal random variable as n → ∞.

Proofs of Theorems 1 and 2 follow from standard arguments and are
sketched in the Appendix. We also provide expression for the asymptotic vari-

ances of Ĉost
1

x(δ) and ÊBx(δ) in the Appendix. The asymptotic normality of

ÊBx(δ)/Ĉost
1

x(δ), the estimator of the relative cost reduction, follows from
the Delta method when δ 6= ρ0x − ρ1x.

When δ = ρ0x − ρ1x, it can be shown that
√

n

([∑n
i=1 ∆̂{x, Y ?

i (x)}/n − δ
]
+
− (ρ0x − ρ1x − δ)+

)
, a constituent of

√
n

{
Ĉost

1

x(δ) − Cost1x(δ)
}

and
√

n
{

ÊBx(δ) − EBx(δ)
}

, converges to a mix-

ture of 0 and a truncated normal distribution. As a result, asymptotic nor-

mality of ÊBx(δ), Ĉost
1

x(δ), or ÊBx(δ)/Ĉost
1

x(δ) no longer holds. Even in the
scenario where asymptotic normality of these estimators does hold, we recom-
mend the bootstrap for constructing confidence intervals since computation of
asymptotic variances of these estimators requires numerical differentiation.

The foregoing abrupt change in the limiting distribution at δ = ρ0x −
ρ1x signals nonregularity, which is anticipated by the nonsmoothness of the
max operator [Van Der Vaart 1991,Hirano and Porter 2012]. Thus, standard
bootstrap percentile confidence intervals can lead to undercoverage when δ '
ρ0x − ρ1x [Chakraborty et al. 2010]; to avoid undercoverage we develop an
adaptive bootstrap confidence interval by extending the ideas of Berger and
Boos [1994], Robins [2004], and Laber and Murphy [2011]. Specifically, we use
a pretest to determine if ρ0x − ρ1x ' δ. If the test rejects, then there is strong
evidence that δ is different from ρ0x−ρ1x and we apply the standard percentile
bootstrap; if the test accepts, we use a projection interval formed as the union
of bootstrap intervals as described below.

Let b = 1, . . . , B index bootstrap samples drawn from the original data
with replacement. We add a superscript b, to indicate that a statistic has
been computed using a bootstrap sample. We construct an adaptive pro-

jection confidence interval as follows. For any r ∈ R define ÊB
b

x,r(δ) =
∑n

i=1

[
∆̂b

{
x, Y ?b

i (x)
}
− δ

]
+

/n −
[∑n

i=1 ∆̂b
{
x, Y ?b

i (x)
}

/n − δ
]
× I(r ≥ 0),

Ĉost
1b

x,r(δ) =
∑n

i=1 R̂isk
b {

x, Y ?b
i (x)

}
/n−

[∑n
i=1 ∆̂

{
x, Y ?b

i (x)
}

/n − δ
]
×I(r ≥

0). Let ζEBx(δ),κ(r) and ζCost1x(δ),κ(r) denote (1 − κ) × 100% percentile boot-
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10 Ying Huang, Eric Laber

strap confidence intervals formed by taking empirical percentiles of ÊB
b

x,r(δ)

and Ĉost
1b

x,r(δ) over bootstrap samples respectively. Let Γx,α(δ) denote an
asymptotically valid (1 − α) × 100% confidence interval for ρ0x − ρ1x − δ.
The (1 − κ − α) × 100% projection intervals for EBx(δ), Cost1x(δ) are given
respectively by

⋃
r∈Γx,α(δ) ζEBx(δ),κ(r) and

⋃
r∈Γx,α(δ) ζCost1x(δ),κ(r).

We construct an adaptive bootstrap CI for EBx(δ) or Cost1x(δ) by con-
structing a standard 95% bootstrap percentile interval when |ρ̂0x − ρ̂1x − δ| >
τn, and constructing a projection interval described above with κ + α = 5%
otherwise, where τn is a sequence of positive constants satisfying τn → 0 and√

nτn → ∞. As presented in Theorem 3, this adaptive bootstrap CI will have
asymptotic coverage equal to 95% when ρ0x − ρ1x 6= δ and be conservative
otherwise. In this sense, the interval is adaptive.

Theorem 3 Let τn be a sequence of positive random variables satisfying
τn → 0 and

√
nτn → ∞ almost surely as n → ∞. Define Ax,α(δ) = Γx,α(δ) if

|ρ̂0x − ρ̂1x − δ| ≤ τn and ρ̂0x − ρ̂1x − δ otherwise. Let P b denote probability
taken with respect to the bootstrap sampling algorithm, conditional on the
observed data. Assume RCs, we have

1. P b
(
Cost1x(δ) ∈

⋃
r∈Ax,α(δ) ζCost1x(δ),κ(r)

)
≥ 1 − α − κ + op(1);

2. P b
(
EBx(δ) ∈ ⋃

r∈A(c) ζEBx(δ),κ(r)
)
≥ 1 − α − κ + op(1),

where for |ρ̂0x−ρ̂1x−δ| > τn,
⋃

r∈Ax,α(δ) ζCost1x(δ),κ(r) and
⋃

r∈A(c) ζEBx(δ),κ(r)

refer to standard 95% bootstrap confidence intervals for Cost1x(δ) and EBx(δ).
If ρ0x − ρ1x 6= δ then the right hand side of the foregoing inequalities can be
replaced with equalities. A proof of Theorem 3 is sketched in the Appendix.

3 Simulation Studies

In this section, we conduct simulation studies to investigate performance of the
proposed estimators. Suppose we have a continuous covariate X and a continu-
ous biomarker Y that jointly follow a bivariate normal distribution with mean
0, standard deviation 0.5 each, and correlation 0.2. We consider two simula-
tion settings: one from a randomized trial and the other from a cohort/cross-
sectional study. We consider the estimation of EBx(δ) and EBx(δ)/Cost1x(δ)
for x equal to the 25%, 50%, and 75% percentiles in the distribution of X.

In the first setting, we consider a two-arm 1:1 randomized trial where the
risk of a binary disease D conditional on X, Y and T follows a linear Probit
model P (D = 1|T, X, Y ) = Φ(−0.8 − 0.4T + 0.5X + 0.5Y − 0.5XT − Y T ).
The differences in disease prevalence between untreated and treated (ρ0x−ρ1x)
conditional on the 25%, 50%, and 75% percentiles of X are 0.165-0.129=0.036,
0.219-0.122=0.097, and 0.280-0.115=0.165 respectively.

In the second setting, we consider a cohort/cross-sectional study where
subjects receive no treatment. Suppose the risk of a binary disease D condi-
tional on X and Y in the cohort follows a linear Probit model P (D = 1|T =

http://biostats.bepress.com/uwbiostat/paper404
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0, X, Y ) = Φ(−1.5+2X−3Y ). Moreover, suppose the treatment under consid-
eration has a relative risk rr = 40%. The differences in disease prevalence be-
tween untreated and treated conditional on the 25%, 50%, and 75% percentiles
of X are 0.133-0.080=0.053, 0.199-0.119=0.080, and 0.281-0.168=0.113 respec-
tively.

In each simulation setting, sample sizes of 200, 500, and 2000 are used.
Standard bootstrap and adaptive bootstrap confidence intervals are constructed
with 1000 resamples. For the adaptive CI, we use α = 0.01 and use the projec-
tion interval when |ρ̂0x − ρ̂1x − δ| < ŜE(ρ̂0x − ρ̂1x)×max{n0.05, Φ−1(0.975)},
where Φ−1 is the quantile of the standard normal distribution and ŜE(ρ̂0x −
ρ̂1x) is estimated from a standard bootstrap procedure with the disease risk
model and the conditional distribution of Y re-estimated in each resampled
data.

Performances of our semiparametric estimators of EBx(δ) and EBx(δ)/Cost1x(δ)
for simulation setting 1 are presented in Tables 1 and 2 for X equal to its 25%
and 50% percentiles. Corresponding results for simulation setting 2 are pre-
sented in Tables 3 and 4. In general, our estimators have minimal bias with a
sample size as large as 200. Coverage of the percentile bootstrap CI is close to
the nominal level when δ is away from ρ0x −ρ1x. An under-coverage, however,
is observed for standard percentile bootstrap CI when δ is close to ρ0x − ρ1x,
which is not alleviated with the increase of sample size. The adaptive boot-
strap CI fixes the under-coverage problem. The same pattern is observed for
X equal to its 75% percentile (results omitted).

4 Example

We illustrate the methodology by evaluating serum creatinine as a risk pre-
diction marker for renal artery stenosis in hypertensive patients from a cohort
study. The original cohort consists of 426 hypertensive patients undergoing re-
nal angiography [Janssens et al. 2005,Krijen et al. 1998]. Baseline risk is mod-
eled with age, smoking status (ever versus never) and their interaction, gen-
der, recent onset of hypertension, body mass index (BMI), abdominal bruit,
atherosclerosis disease, and hypercholesterolaemia.

Suppose an individual patient needs to determine whether measuring serum
creatinine is useful in guiding the treatment of renal artery stenosis. Here, for
illustrative purposes, we assume the presence of a treatment that can lead to a
30% reduction in the risk of stenosis. The treatment also has additional costs
associated with it. An example of the treatment could be the renal angioplasty,
which can stabilize a patient’s renal function but has the potential risk of
causing bleeding, additional kidney damage, and total renal failure. The value
of serum creatinine in guiding the choice of therapy differs across individuals
because of differences in individual patients’ baseline risk, distribution of serum
creatinine conditional on baseline covariates, and tolerance about treatment
harm relative to disease harm. To illustrate the personalized benefit of serum
creatinine, we display the subject-specific cost and expected benefit for two
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12 Ying Huang, Eric Laber

individuals using the method described in Section 2.2. We model the risk of
stenosis conditional on baseline covariates and serum creatinine using a linear
logistic model, and model the distribution of serum creatinine conditional on
baseline covariates with a location-scale model. For the latter a multiple linear
regression model is used for the location parameter conditional on baseline
covariates, and a constant scale parameter is assumed. Subject 1 is a 33-year-
old male with BMI 19.9kg m−2 who has a smoking history. His baseline risk
of renal stenosis is 15.7%. Subject 2 is a 65-year-old female with BMI 26.0 kg
m−2 who has vascular diseases. Her baseline risk is 38.3%.
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Fig. 1 Subject-specific cost curves (a), expected benefit curves (b), and curves of relative
reduction in cost by measuring serum creatinine in guiding the treatment of stenosis (c).
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Figure 1(a) shows the minimum total disease and treatment cost for each
subject as a function of the cost ratio δ with or without the serum creati-
nine measurement. Corresponding subject-specific expected benefit curves are
shown in Figure 1(b), and the curves of the relative reduction in cost by mea-
suring serum creatinine are shown in Figure 1(c). These curves provide useful
information to an individual for determining whether to have the new marker
measured. For example, if subject 2 has a high tolerance for treatment cost
with a cost ratio δ = 5%, she will have an expected benefit of 1e-4 (with 95%
CI = (0, 0.005)) and a relative cost reduction of 0.04% (95% CI = (0-2.6%)) by
measuring serum creatinine, which might be deemed too minimal to justify the
measurement of the marker. In contrast, if subject 1 has the same cost ratio
of 5%, his expected benefit will be 0.007 (95% CI = (4e-4, 0.068)), amounting
to a relative cost reduction of 5.2% (95% CI = (0.2%, 32.6%)), which may
be large enough for him to choose the marker measure. On the other hand,
suppose subject 1 has a low tolerance for treatment cost with δ = 15%; his
expected benefit will decrease to 0.002 (95% CI = (0, 0.012)), which corre-
sponds to 1.3% reduction in cost (95% CI = (0, 4.3%)) by measuring serum
creatinine. At this cost ratio, subject 2 will have a higher expected benefit of
0.022 (95% CI = (0.002, 0.083)) with a relative cost reduction of 5.9% (95%
CI = (0.5%, 26.7%)).

In practice, given an individual’s baseline covariates, the subject-specific
expected benefit curves can be generated. The individual can then find out the
value of measuring the additional marker by inputting his/her choice of the
cost ratio δ or a range of δ, to assist with the decision regarding the diagnostic
test.

5 Concluding Remarks

A biomarker that is useful in guiding treatment decisions for the general pop-
ulation will have different values to individual patients due to individual dif-
ferences in their responses to treatment and in their tolerances of the disease
harm and treatment harm. In this paper, we propose new graphical tools for
personalized evaluation of a biomarker’s value in guiding clinical decisions from
a cost-benefit perspective. In particular, based on an individual’s baseline co-
variate level and personal input of treatment/disease cost ratio, we propose
to evaluate the biomarker-elicitated reduction in total disease and treatment
cost, assuming a person will make the most cost-effective treatment decision
before and after measuring the biomarker. Besides the absolute reduction in
cost, the relative reduction is also recommended to help with personal decision
making. In practice, a subject can compare the expected benefit of a biomarker
with the cost of measuring the marker to make a final judgment call about
whether to have the biomarker measured.

A caveat in cost-benefit analyses at a population level is the choice of the
treatment/disease cost ratio, which is typically difficult to fix across individ-
uals. Different approaches have been taken to reach a common cost ratio. For
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14 Ying Huang, Eric Laber

example, in the setting where treatment harm is characterized by other dis-
eases caused by the treatment, one can estimate the cost ratio using data on
different types of disease outcomes, under an assumption about the relative
severity between the targeted disease events and the side effect of treatment
[Gail 2009]; other researchers have proposed to elicit a common cost ratio
across subjects using a questionnaire [Vickers et al. 2007]. For personalized
evaluation of a biomarker, on the other hand, allowing for subject-specific in-
put of the cost ratio is important in order to flexibly account for individual
differences. The expected benefit conditional on covariates and a personal
input δ essentially quantifies the value of measuring the marker to individuals
in the population who have the same potential disease risk and cost ratio as
this particular subject.

Estimators for our proposed measures were derived both in a randomized
trial setting where the disease risk is modeled as a function of the marker,
the covariates, and the treatment, and in a cohort study setting where the
disease risk model in the absence of treatment is modeled as a function of the
marker and the covariates. An adaptive bootstrap procedure was developed
for inference to account for nonsmoothness in the estimands.

While described in a personalized decision setting, the methods we devel-
oped can be readily applied to evaluate the value of biomarkers in treatment
decision making among sub-populations, which can differ with respect to base-
line covariates and cost ratio.
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Appendix

Proof of Theorems 1 and 2

Let θ be the parameters for GLM model: P (D = 1|T, X, Y ) = G(T, X, Y ; θ)
(for a randomized trial) or P (D = 1|T = 0, X, Y ) = G(X, Y ; θ) for a cohort/cross-
sectional study. Denote Risk(X, Y ) = P (D = 1|T = 0, X, Y ) as Risk(X, Y ; θ),
∆(X, Y ) = P (D = 1|T = 0, X, Y ) − P (D = 1|T = 1, X, Y ) as ∆(X, Y ; θ). Let

θ̂ be the estimate of θ, we make the following assumptions:
Assumptions

(i)
√

n(θ̂n−θ0) = n−1

2

∑n
i=1 Ψ2i+op(1), where Ψ2i, i = 1, . . . , n are indepen-

dently identically distributed variables with E(Ψ2i|Yi, Xi) = 0 and var(Ψ2i) ≡
σ2(θ0).

(ii) Risk(X, Y ; s) is differentiable at s = θ, X = x, and Y = y ∈ R for
almost all x, y.

(iii) ∆(X, Y ; s) is differentiable at s = θ, X = x, and Y = y ∈ R for almost
all x, y.

(iv) F0(.) is differentiable everywhere with positive derivative f0.
(v) E

[
{∆(X, Y ; s) − δ}+ |X

]
is differentiable with respect to s at s = θ,

X = x for almost all x.

(vi) E

{(
∆

[
x, {Y − s′U(X)} × exp{t′W(x)}

exp{t′W(X)} + s′U(x); θ

]
− δ

)

+

}
is dif-

ferentiable with respect to s and t at s = γ, t = η.

Let γ̂, η̂ be the solutions to
n∑

i=1

Ui(Yi − γ′Ui)/σ2
X = 0,

and
n∑

i=1

Wi

[
(Yi − γ′Ui)

2 − σ2
X

]
/σ2

X = 0.

Then, through Taylor expansion,√
n (γ̂ − γ) ' 1√

n
X−1

1

∑n
i=1 Ui(Yi − γ′Ui)/e2η′Wi ,

where X1 is limit of X̄1 = 1
n

∑n

i=1 UiU
T
i /e2η′Wi , and

√
n (η̂ − η) ' 1√

n
X−1

2

∑n
i=1 Wi

[
(Yi − γ′Ui)

2 − e2η′Wi

]
/e2η′Wi ,

where X2 is limit of X̄2 = 1
n

∑n

i=1 2WiW
T
i (Yi − γ′Ui)

2
/e2η′Wi .

By the standard central limit theorem,
√

n (γ̂ − γ) and
√

n (η̂ − η) con-
verges in distribution to a mean 0 multivariate normal random variable.

Denote F̂0(c) = 1
n

∑n
i=1 I

(
Yi−γ̂′Ui

eη̂′Wi
≤ c

)
, F̂X(c) = F̂0(

c−γ̂′U

eη̂′W
), then F̂−1

X (v) =

F̂−1
0 (v) × eη̂′W + γ̂′U for v ∈ (0, 1).

By functional central limit theorem (Pollard 1990) that for any η > 0,

1√
n

∑n
i=1

[
I(

(
Yi−γ∗′Ui

eη∗′Wi
≤ c

)
− F0

(
ceη∗′Wi+(γ∗−γ)′Ui

eη′Wi

)]
,

(c, γ∗, η∗) ∈ [F−1
0 (a), F−1

0 (b)]×Dγ∗ ,η∗

η , converges in distribution to a Gaussian

process, where Dγ∗,η∗

η =
{
γ∗, η∗ : ‖(γ∗, η∗)T − (γ, η)‖ ≤ η

}
, for 0 < a < b < 1.
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It then follows from the equicontinuity (Pollard 1990; Cai and Pepe 2002) of
the foregoing process and the consistency of γ̂ and η̂ that

supc∈[F−1

0
(a),F−1

0
(b)]

∣∣∣∣∣
1√
n

n∑

i=1

[
I

(
Yi − γ̂′Ui

eη̂′Wi
≤ c

)
− F0

{
ceη̂′Wi+(γ̂−γ)′Ui

eη′Wi

}

− 1√
n

n∑

i=1

[
I

(
Yi − γ′Ui

eη′Wi
≤ c

)
− F0(c)

]∣∣∣∣∣ → 0

in probability. Thus,

√
n

{
F̂0(c) − F0(c)

}

' 1√
n

n∑

i=1

[
I

(
Yi − γ′Ui

eη′Wi
≤ c

)
− F0(c) + F0

{
ceη̂′Wi+(γ̂−γ)′Ui

eη′Wi

}
− F0(c)

]

' 1√
n

n∑

i=1

[
I

(
Yi − γ′Ui

eη′Wi
≤ c

)
− F0(c) + f0(c)

{
U ′

i

eη′Wi
(γ̂ − γ) + cW ′

i (η̂ − η)

}]

' 1√
n

n∑

i=1

[
I

(
Yi − γ′Ui

eη′Wi
≤ c

)
− F0(c) + f0(c)

{
(X′

3X
−1
1 Ui)(Yi − γ′Ui)/e2η′Wi

+ c(X′
4X−1

2 Wi)
[
(Yi − γ′Ui)

2 − e2η′Wi

]
/e2η′Wi

}]
,

where X3 is the limit of X̄3 =
∑n

i=1
Ui

eη′Wi
/n, and X4 is the limit of X̄4 =∑n

i=1 Wi/n.

From the functional central limit theorem, we see that
√

n
{

F̂0(c) − F0(c)
}

converges in distribution to a mean 0 Gaussian process. It then follows from a

Taylor series expansion and the stochastic equicontinuity of
√

n
{

F̂0(c) − F0(c)
}

that

√
n

[{
F̂−1

x (v)
}
− F−1

x (v)
]

=
√

n
[(

F̂−1
0 (v) × eη̂′w + γ̂′u

)
− F−1

x (v)
]

=
√

neη′w
{
F̂−1

0 (s) − F−1
0 (s)

}
+
√

nF−1
0 (s)eη′ww(η̂ − η) +

√
nu(γ̂ − γ)

' − 1√
n

eη′w

f0(F
−1
0 (s))

n∑

i=1

[
I

(
Yi − γ′Ui

eη′Wi
≤ F−1

0 (v)

)
− v + f0(F

−1
0 (v))

×
{

(X3 − u)′(X−1
1 Ui)(Yi − γ′Ui)

e2η′Wi

+ F−1
0 (v)

(X4 − F−1
0 (s)w)′(X−1

2 Wi)
[
(Yi − γ′Ui)

2 − e2η′Wi

]

e2η′Wi
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(i) For estimation of Cost1x(δ), we have

√
n

(
Ĉost

1

x − Cost1x(δ)
)

=
√

n

[
1

n

n∑

i=1

R̂isk(x, Y ?
i (x)) −

{
1

n

n∑

i=1

∆̂(x, Y ?
i (x)) − δ

}

+

]

−
√

n
[
ρ0x − {∆(x) − δ}+

]
= A − B,

where

A =
√

n

{
1

n

n∑

i=1

R̂isk(x, Y ?
i (x)) − EY |x{E(D|X = x, T = 0, Y )}

}

=
√

n

{
1

n

n∑

i=1

R̂isk(x, Y ?
i (x)) − 1

n

n∑

i=1

Risk(x, Y ?
i (x))

}

+
√

n

{
1

n

n∑

i=1

Risk(x, Y ?
i (x)) − EY |x {E(D|X = x, T = 0, Y )}

}

'
√

n

[∫
R̂isk

{
x, F−1

x (s)
}

ds−
∫

Risk
{
x, F−1

x (s)
}

ds

]

+
√

n

[∫
Risk

{
x, F̂−1

x (s)
}

ds−
∫

Risk
{
x, F−1

x (s)
}

ds

]

'
∫

∂Risk
{
x, F−1

x (s), θ
}

∂θ

√
n(θ̂ − θ)ds

+

∫
∂Risk(x, y)

∂y
|y=F−1

x (s)

√
n

{
F̂−1

x (s) − F−1
x (s)

}
ds,

B =
√

n

[{
1

n

n∑

i=1

∆̂(x, Y ?
i (x)) − δ

}
× I

{
∆̂(x, Y ?

i (x)) > δ
}

− {∆(x) − δ} × I {∆(x) > δ}]

which when ∆(x) 6= δ

' I {∆(x) > δ}
√

n

{
1

n

n∑

i=1

∆̂(x, Y ?
i (x)) − ∆(x)

}

' I {∆(x) > δ} ×
√

n

[∫
∆(x, F−1

x (s))ds −
∫

∆(x, F−1
x (s))ds

]

' I {∆(x) > δ} ×
∫

∂∆(x, y)

∂(y)
|y=F

−1

x (s) ×
√

n
{
F̂−1

x (s) − F−1
x (s)

}
ds.
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(ii) For estimation of EBx(δ), we have

√
n

(
ÊBx(δ) − EBx(δ)

)

=
√

n

[
1

n

n∑

i=1

{
∆̂(x, Y ?

i (x)) − δ
}

+
−

{
1

n

n∑

i=1

∆̂(x, Y ?
i (x)) − δ

}

+

]

−
√

n
(
E [{∆(X, Y ) − δ}+|X = x]− {∆(x) − δ}+

)

= C − B

where C =
√

n
{

Png(x, X, Y, γ̂, θ̂, η̂) − Pg(x, Y, θ, γ, η)
}
, with g defined as

g(x, X, Y, θ, γ, η) =

{
∆(x, γ′u(x) + exp {η′w(x)} Y − γ′U(X)

exp(η′W (X))
− δ

}

+

.

Note that G = {g(·, ·, ·, θ, γ, η} : θ ∈ R, γ ∈ R, η ∈ R} is Donsker. Thus equicon-
tinuity follows. In particular,

C =
√

n

[
1

n

n∑

i=1

{
∆̂(x, Y ?

i (x)) − δ
}

+
− EY |x{∆(x, Y ) − δ}+

]

=
√

n

(∫ [
∆̂

{
x, F̂−1

x (s)
}
− δ

]
+

ds−
∫ [

∆
{
x, F̂−1

x (s)
}
− δ

]
+

ds

)

+
√

n

[∫ [
∆

{
x, F̂−1

x (s)
}
− δ

]
+

ds−
∫ [

∆
{
x, F−1

x (s)
}
− δ

]
+

ds

]

'
√

n

(∫ [
∆̂

{
x, F−1

x (s)
}
− δ

]
+

ds−
∫ [

∆
{
x, F−1

x (s)
}
− δ

]
+

ds

)

+
√

n

{
1

n

n∑

i=1

{∆(x, Y ?
i (x)) − δ}+

}
−
√

n

{
1

n

n∑

i=1

{
∆(x, Y †

i (x)) − δ
}

+

}

+
√

n

{
1

n

n∑

i=1

{
∆(x, Y †

i (x)) − δ
}

+
− EY |x {∆(x, Y ) − δ}+

}

'
∂

∫ [
∆

{
x, F−1

x (s), θ
}
− δ

]
+

ds

∂θ

√
n

(
θ̂ − θ

)

+

(
∂K

∂γ
,
∂K

∂η

)√
n

{(
γ̂
η̂

)
−

(
γ
η

)}

+
√

n

[
1

n

n∑

i=1

{
∆(x, Y †

i (x)) − δ
}

+
− EY |x {∆(x, Y ) − δ}+

]
,

where

K(x, γ, η, θ) =

E

{(
∆

[
U(x),

Y − γ′U(X)

exp{η′W (X)} × exp{η′W (x)} + γ′U(x); θ

]
− δ

)

+

}
,

Hosted by The Berkeley Electronic Press



20 Ying Huang, Eric Laber

and Y †
i (x) = γ′U(x) + exp {η′W (x)} × {Yi − γ′U(Xi)} / exp {η′W (Xi)}.

Proof of Theorem 3

We sketch the proof for the results for EBx(δ), the proof for Cost1x(δ) is similar.
Define EBx,r(δ) = E

[
{∆(X, Y ) − δ}+ |X = x

]
− {∆(x) − δ} I(r ≥ 0).

Then following similar arguments as in [Huang et al. 2013], one can show that
√

n
{

ÊBx,r(δ) − EBx,r(δ)
}

and
√

n
{

ÊB
b

x,r(δ) − ÊBx,r(δ)
}

converge to the

same limiting distribution in probability. Thus (i) the validity of the projection
confidence intervals when ρ0x − ρ1x = δ follows from standard arguments for
the validity of projection interval (see, for example, [Berger and Boos 1994]).

Moreover, (ii), when ρ0x − ρ1x 6= δ, the standard bootstrap confidence
interval provides the correct coverage.

Suppose τn is a positive sequence of random variables converging to zero
almost surely with n and satisfying

√
nτn → ∞ almost surely as n → ∞. Define

the event E , {|ρ̂0x− ρ̂1x−δ| ≤ τn} then 1E → 1ρ0x−ρ1x=δ in probability. This,
together with Results (i) and (ii) proves the validity of the proposed adaptive
bootstrap confidence interval.
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Table 1 Performance of EBx(δ) estimator based on randomized trial data. Here x1 are x2

correspond to the 25th and the 50th percentiles of X respectively.

x1, ρ0x1
− ρ1x1

= 0.036 x2, ρ0x2
− ρ1x2

= 0.097
δ − (ρ0x − ρ1x) -0.036 -0.016 -0.006 0 0.004 0.024 -0.097 -0.027 -0.007 0 0.003 0.023

δ 0 0.02 0.03 0.036 0.04 0.06 0 0.07 0.09 0.097 0.1 0.12
EBx(δ) 0.028 0.036 0.04 0.043 0.042 0.033 0.014 0.035 0.044 0.047 0.046 0.036

n Bias × 100
200 -0.29 -0.94 -1.37 -1.68 -1.5 -0.68 0.5 -0.5 -1.25 -1.56 -1.4 -0.59
500 -0.04 -0.55 -0.94 -1.26 -1.09 -0.38 0.25 -0.17 -0.81 -1.12 -0.96 -0.26

2000 0.07 -0.12 -0.4 -0.68 -0.52 -0.03 0.07 0.03 -0.32 -0.6 -0.45 -0.01

SE ×
√

n
200 0.28 0.28 0.28 0.28 0.28 0.28 0.25 0.3 0.3 0.3 0.3 0.3
500 0.33 0.33 0.32 0.32 0.32 0.32 0.26 0.34 0.34 0.33 0.33 0.34

2000 0.4 0.38 0.36 0.36 0.36 0.4 0.27 0.4 0.36 0.36 0.36 0.4

Coverage of 95% bootstrap CI
200 94.42 89.5 84.82 81.34 83.34 91.4 95.84 93.96 88.24 85.12 86.72 93.52
500 95.54 92.32 87.44 82.82 85.62 94.4 95.1 95.34 90.16 86.02 88.34 95.04

2000 95.56 95.96 91.74 83.58 88.72 96.42 94.44 95.82 93.46 86.38 90.52 96.4

Coverage of 95% adaptive bootstrap CI
200 97.1 97.32 97.06 96.7 96.8 97.24 96 97.84 97.88 97.44 97.54 97.58
500 96.78 97.26 97.36 97.12 97.34 97.32 95.24 97.62 97.98 97.58 97.8 97.42

2000 95.68 97.18 97.64 97.44 97.8 96.66 94.44 95.98 97.88 97.86 98.24 96.72

Table 2 Performance of EBx(δ)/Cost1x(δ) estimator based on randomized trial data. Here
x1 are x2 correspond to the 25th and the 50th percentiles of X respectively.

x1, ρ0x1
− ρ1x1

= 0.036 x2, ρ0x2
− ρ1x2

= 0.097
δ − (ρ0x − ρ1x) -0.036 -0.016 -0.006 0 0.004 0.024 -0.097 -0.027 -0.007 0 0.003 0.023

δ 0 0.02 0.03 0.036 0.04 0.06 0 0.07 0.09 0.097 0.1 0.12
EBx(δ)

Cost1x(δ)
0.214 0.24 0.254 0.263 0.252 0.198 0.113 0.183 0.207 0.216 0.208 0.167

n Bias× 100
200 -1.06 -4.48 -6.45 -7.81 -7.02 -3.26 3.67 -1.76 -4.57 -5.67 -5.06 -2.1
500 -0.17 -2.72 -4.51 -5.88 -5.12 -1.86 1.68 -0.63 -3.03 -4.12 -3.54 -1.01

2000 0.35 -0.58 -1.84 -3.11 -2.39 -0.21 0.5 0.16 -1.14 -2.16 -1.62 -0.06

SE ×
√

n
200 2.05 1.89 1.82 1.77 1.75 1.64 1.84 1.54 1.45 1.42 1.41 1.34
500 2.3 2.07 1.97 1.92 1.89 1.8 1.91 1.7 1.56 1.52 1.51 1.46

2000 2.6 2.27 2.07 1.99 1.97 2.04 1.97 1.88 1.61 1.56 1.54 1.61

Coverage of 95% bootstrap CI
200 96.54 94.42 92.06 89.96 90.9 94.88 95.48 96.08 92.76 91.14 92.14 95.6
500 96.2 94.38 91.46 88.32 90.14 95.32 95 95.8 92.62 90 91.46 95.4

2000 95.62 95.8 93.06 87.74 91.1 96.4 94.08 95.64 94.02 88.96 91.82 96.1

Coverage of 95% adaptive bootstrap CI
200 97.58 98.14 98.12 98.12 98.08 98.06 95.62 98.02 98.34 98.24 98.3 98
500 97.28 98.04 98.04 97.92 97.98 97.72 95.28 97.62 98.32 98.2 98.4 97.52

2000 95.82 97.26 98.08 98.1 98.3 96.94 94.08 95.86 98.18 98.36 98.5 96.74
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Table 3 Performance of EBx(δ) estimator based on cohort data. Here x1 are x2 correspond
to the 25th and the 50th percentiles of X respectively.

x1, ρ0x1
− ρ1x1

= 0.053 x2, ρ0x2
− ρ1x2

= 0.080
δ − (ρ0x − ρ1x) -0.043 -0.023 -0.003 0 0.007 0.026 -0.07 -0.026 -0.01 0 0 0.02

δ 0.01 0.03 0.05 0.053 0.06 0.08 0.01 0.053 0.07 0.08 0.08 0.1
EBx(δ) 0.004 0.016 0.029 0.032 0.03 0.025 0.003 0.025 0.036 0.042 0.042 0.036

n Bias× 100
200 0.02 0.04 -0.28 -0.45 -0.2 0.01 0.01 0.06 -0.07 -0.43 -0.42 -0.01
500 0.01 0.02 -0.14 -0.29 -0.07 0.01 0 0.02 0 -0.28 -0.27 0.01

2000 0 0.01 -0.03 -0.14 0 0.01 0 0.01 0.01 -0.14 -0.13 0

SE ×
√

n
200 0.01 0.03 0.06 0.07 0.09 0.11 0.01 0.05 0.06 0.08 0.08 0.11
500 0.01 0.03 0.06 0.07 0.1 0.11 0.01 0.05 0.06 0.07 0.08 0.12

2000 0.01 0.03 0.05 0.07 0.12 0.11 0.01 0.05 0.06 0.08 0.08 0.12

Coverage of 95% bootstrap CI
200 90.46 97.18 92.18 84.06 95.9 94.5 90.86 95.34 98 87.94 88.78 95.1
500 93.02 94.14 93.8 82.64 96.18 94.72 93.5 93.62 97.98 86.58 87.74 94.76

2000 94.2 94.38 96.98 81.8 94.48 94.3 94.62 94.48 95.94 85.74 88.34 94.28

Coverage of 95% adaptive bootstrap CI
200 90.42 96.06 97.56 95.84 96.08 94.46 90.86 94.34 98.8 97.08 97.12 95
500 93.02 93.7 98.24 96.26 96.02 94.72 93.5 93.34 98 97.5 97.5 94.76

2000 94.2 94.38 98.02 96.42 94.32 94.3 94.62 94.48 95.4 96.82 96.9 94.28

Table 4 Performance of EBx(δ)/Cost1x(δ) estimator based on cohort data. Here x1 are x2

correspond to the 25th and the 50th percentiles of X respectively.

x1, ρ0x1
− ρ1x1

= 0.053 x2, ρ0x2
− ρ1x2

= 0.080
δ − (ρ0x − ρ1x) -0.043 -0.023 -0.003 0 0.007 0.026 -0.07 -0.026 -0.01 0 0 0.02

δ 0.01 0.03 0.05 0.053 0.06 0.08 0 0.01 0.07 0.08 0.08 0.1
EBx(δ)

Cost1x(δ)
0.045 0.143 0.225 0.238 0.225 0.189 0.023 0.146 0.188 0.211 0.211 0.18

n Bias× 100
200 0.59 1.1 -1.16 -2.18 -0.96 -0.02 0.22 0.76 0.12 -1.45 -1.42 0.01
500 0.21 0.43 -0.59 -1.49 -0.38 0 0.07 0.28 0.16 -1 -0.96 0.03

2000 0.06 0.12 -0.1 -0.78 -0.02 0.02 0.01 0.08 0.09 -0.52 -0.49 0.02
SE ×

√
n

200 0.29 0.61 0.46 0.41 0.35 0.37 0.12 0.47 0.41 0.32 0.32 0.3
500 0.25 0.6 0.51 0.42 0.33 0.36 0.11 0.45 0.47 0.32 0.32 0.29

2000 0.24 0.58 0.63 0.45 0.33 0.36 0.11 0.45 0.52 0.33 0.33 0.29
Coverage of 95% bootstrap CI

200 92.18 92.94 97 90.86 96.42 96.64 91.88 92.7 96.76 92.76 92.9 96.36
500 93.98 93.9 97.64 88.06 96.48 95.26 93.82 93.92 95.7 90.88 91.1 95.5

2000 94.48 94.3 96.74 87 96.64 94.4 94.5 94.38 94.36 89.3 90.08 94.4
Coverage of 95% adaptive bootstrap CI

200 92.18 92.76 98.16 98.22 98.58 95.96 91.88 92.62 96.26 98.52 98.64 96.2
500 93.98 93.9 98.1 98.02 98.04 95.06 93.82 93.92 95.12 98.52 98.5 95.08

2000 94.48 94.3 96.18 97.6 96.6 94.4 94.5 94.38 94.36 97.76 97.82 94.4
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