
 

Designing Efficient Local Flexibility Markets in the Presence of
Reinforcement-Learning Agents
Citation for published version (APA):
Zhang, H., Tsaousoglou, G., Zhan, S., Kok, J. K., & Paterakis, N. G. (2024). Designing Efficient Local Flexibility
Markets in the Presence of Reinforcement-Learning Agents. TechRxiv, 2024.
https://doi.org/10.36227/techrxiv.170775541.17616673/v1

Document license:
CC BY-NC-SA

DOI:
10.36227/techrxiv.170775541.17616673/v1

Document status and date:
Published: 12/02/2024

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 07. Jul. 2024

https://doi.org/10.36227/techrxiv.170775541.17616673/v1
https://doi.org/10.36227/techrxiv.170775541.17616673/v1
https://research.tue.nl/en/publications/f1b7d7a4-9d0f-4892-b736-576e5c8e5bc8


1

Designing Efficient Local Flexibility Markets in the
Presence of Reinforcement-Learning Agents

Haoyang Zhang, Graduate Student Member, IEEE, Georgios Tsaousoglou, Member, IEEE, Sen Zhan, Graduate
Student Member, IEEE, Koen Kok, Senior Member, IEEE, and Nikolaos G. Paterakis, Senior Member, IEEE

Abstract—Local Flexibility Markets (LFMs) are considered a
promising framework towards resolving voltage and congestion
issues of power distribution systems in an economically efficient
manner. However, the need for location-specific flexibility services
renders LFMs naturally imperfectly competitive and market
efficiency is severely challenged by strategic participants that
exploit their locally monopolistic power. Previous works have
been considering either non-strategic participants, or strategic
participants with perfect information (e.g. about the network
characteristics etc) that can readily compute their payoff-
maximizing bidding strategy. In this paper, we take on the prob-
lem of designing an efficient LFM in the more realistic case where
market participants do not possess this information and, instead,
learn to improve their bidding policies through experience. To
that end, we develop a multi-agent reinforcement learning algo-
rithm to model the participants’ learning-to-bid process. In this
framework, we first present two popular LFM pricing schemes
(pay-as-bid and distribution locational marginal pricing) and
expose that learning agents can discover ways to exploit them,
resulting in severe dispatch inefficiency. We then present a game-
theoretic pricing scheme that theoretically incentivizes truthful
bidding and empirically demonstrate that this property improves
the efficiency of the resulting dispatch also in the presence of
learning agents. In particular, the proposed scheme is able to
outperform the popular distribution locational marginal pricing
(DLMP) scheme, in terms of efficiency, by a factor of 15− 23%.

Index Terms—AC OPF, Local flexibility market, Incentive
compatibility, Multi-agent reinforcement learning, VCG

I. INTRODUCTION

Load electrification and high penetration of behind-the-
meter renewables, poses significant challenges for distribution
system operators (DSOs) in ensuring the safe and reliable
operation of power distribution systems. In particular, towards
dealing with voltage and congestion issues, DSOs are envi-
sioned to procure flexibility services from distributed energy
resources. Such active resources include electric vehicles,
building energy management systems, etc., which are increas-
ingly configured with monitoring and control capabilities by
aggregator entities that integrate them into electricity markets.
It is now a well-recognized opportunity that such aggregators
can also act as local flexibility service providers (FSPs), i.e.
use their capability to control the profile of their registered
resources towards offering flexibility services to the local
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DSO. Such flexibility services are location-specific and refer
to a controlled power deviation from a pre-scheduled setpoint.

Making efficient flexibility dispatch decisions entails solv-
ing the Optimal Power Flow (OPF) problem of the distribution
network. Towards resolving voltage and congestion issues
in an economically optimal way, the OPF problem utilizes
information about the cost of the flexibility actions of differ-
ent FSPs. The need to motivate FSPs to communicate and
offer their flexibility motivates the establishment of a market
framework specifically for local flexibility services. Such a
framework is now quite mature in the literature, while also
gaining traction in the industry, and is referred to as a Local
Flexibility Market (LFM) [1], [2]. Through such a market,
FSPs communicate their flexibility capabilities to the DSO,
in the form of location-and-time-specific bids, and the DSO
decides upon each FSP’s dispatch and payment.

Different pricing schemes have been adopted for defining
the participants’ payments, with the predominant ones being
the pay-as-bid (PAB) and the distribution locational marginal
pricing (DLMP). The PAB scheme compensates each partic-
ipant for a deviation from its scheduled profile at the per-
unit price that the participant bid for that deviation [3]. This,
however, clearly creates an incentive for each participant to
inflate its bids, in order to increase its own payments. On the
contrary, the DLMP scheme defines a single per-unit clearing
price per distribution network node and per timeslot, with
which all deviations in that node and timeslot are compensated.
These nodal prices, similar to the locational marginal prices
used in a transmission system, are defined based on the
marginal cost of the most expensive source that was dispatched
in each node and time. Mathematically, they are instantiated by
the Lagrange multipliers corresponding to the power balance
constraints of the OPF problem [4].

Under the DLMP scheme, the optimal solution of the
OPF problem is also a competitive equilibrium, i.e. a point
from which no price-taking participant is willing to deviate
unilaterally. In practice this means that, if the LFM was
a perfectly competitive market, the DLMP scheme would
incentivize each participant to bid no more than its marginal
flexibility cost and, if dispatched, make a per-unit profit off
the difference between its own cost and the nodal price (i.e.
the marginal cost of the most expensive resource that was
dispatched). Unfortunately, though, LFMs are notoriously
markets of imperfect competition in which the above property
no longer holds. In particular, an FSP that controls the
resources under a particular node can have oligopolistic,
or even monopolistic, power towards resolving voltage or
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congestion issues in that node’s neighborhood.
Thereby, an FSP can exploit its position to manipulate

the prices for its own benefit, and to the detriment of
system efficiency. This phenomenon is well-documented for
transmission systems (e.g. see [5] and related literature on
strategic market participation) while, more recently, it was
also demonstrated for distribution systems [6]. The interaction
of multiple strategic participants can be modeled through an
Equilibrium Problem with Equilibrium Constraints (EPEC),
and the resulting dispatch can be remarkably inefficient [7].

Towards remedying such problems, Mechanism Design
theory prescribes elaborate payment rules, such that a truth-
ful costs’ declaration becomes each participant’s profit-
maximizing strategy. In other words, truthful declarations are
in equilibrium, i.e. no participant has an incentive to deviate
towards an untruthful bid. Naturally, if each participant reveals
its true costs to the DSO, the latter acquires all the necessary
information to dispatch the system efficiently. In this case, we
say that the incentives of the market participants (maximizing
profits) and the one of the DSO (calculating an efficient
dispatch) are aligned, and a mechanism that achieves such
alignment is called incentive compatible. Indeed, recent works
[8], [9] have leveraged concepts from Mechanism Design to
design LFMs that are efficient and robust to strategic behavior.

Despite their strong theoretical foundations, both EPEC
models and incentive-compatible mechanisms are fairly con-
fined to the realm of theory. That is because, in practice,
market participants do not possess the necessary information
(e.g. the other participants’ bids, the network characteristics,
etc) to compute an optimal bidding strategy, which makes
the notion of equilibrium elusive. Rather, the behavior of
actual market participants with imperfect information, can
be better modeled by learning algorithms through which a
participant gradually improves its bidding policy by drawing
on the knowledge acquired from past experience. Besides,
the concept of having intelligent agents control the actions
of flexible resources has been ramping up rapidly in the
related literature (e.g. see [10] and references therein). In
that direction, the authors in [11] demonstrate how intelligent
learning agents, employing deep reinforcement learning, can
learn to bid in LFMs.

In light of the above, this paper takes on the problem of
designing a LFM (i.e. a dispatch algorithm and a pricing
scheme) that retains market efficiency in the presence of
self-interested learning agents bidding strategically on be-
half of distributed resources. Regarding the dispatch algo-
rithm, we present a linearization technique to approximate
the quadratically-constrained AC-OPF problem and assess its
accuracy, while configuring it with three possible pricing
schemes for determining the participants’ payments. The first
two are the PAB and DLMP schemes which are, at least in
principle, prone to manipulation. They serve as comparison
benchmarks for the third (proposed) pricing scheme, based on
Grove’s pivot payment rule which constitutes the payment rule
of the celebrated Vickrey-Clarke-Groves (VCG) mechanism: a
game-theoretic mechanism renowned for achieving incentive
compatibility and, subsequently, efficiency.

This paper’s contribution is to examine whether the above

theoretical properties of the three schemes propagate also to
the more relevant practical case where the participants cannot
calculate optimal, payoff-maximizing bids, but gradually im-
prove their bidding policies by learning from past experience.
Especially in the context of an LFM, we are interested in:

1) Whether learning agents, acting on behalf of FSPs, will
in fact discover ways to exploit the Achilles hill of
the DLMP and PAB schemes: the absence of incentive
compatibility;

2) Whether, in the presence of learning nodes with
agents, the proposed (theoretically incentive-compatible)
scheme can manage to implement more efficient market
outcomes than DLMP and PAB in practice.

The remainder of this paper is organized as follows: Sec-
tion II introduces the system model and Section III formulates
the efficient LFM design problem. Section IV formulates the
three schemes discussed and elaborates on their properties.
In Section V we introduce two multi-agent reinforcement
learning algorithms through which the LFM participants learn
to optimize their policies. Finally, Section VI presents the
empirical evaluation of the three schemes’ performance in a
case study, and Section VII concludes the paper by answering
the two questions posed above.

II. SYSTEM MODEL

Consider a power distribution network, with N denoting the
set of nodes and L the set of lines, operated over a horizon T
of discrete timeslots of equal duration. Each node n ∈ N is
characterized by a demand p̂nt scheduled for each timeslot t ∈
T (e.g. as a result of a day-ahead market process). A node also
features flexible energy resources, such that its net demand can
be modified by regulating upwards (pupnt) or downwards (pdnnt),
resulting in an effective demand pnt, as in:

pnt = p̂nt + pupnt − pdnnt , n ∈ N , t ∈ T . (1)

This flexibility is harnessed by the DSO who is responsible
for maintaining the distribution system within safe operational
margins. The system’s safe operational region is modeled
based on the linearized distribution flow (LinDistFlow) model
[12] which approximates the common branch flow equations
(DistFlow) by dropping the branch loss and shunt components
[13]. The active/reactive power balance equations read as:

pnt +
∑

l∈δ+(n)

pLlt =
∑

l∈δ−(n)

pLlt, n ∈ N , t ∈ T (2)

qnt +
∑

l∈δ+(n)

qLlt =
∑

l∈δ−(n)

qLlt, n ∈ N , t ∈ T . (3)

where pLlt and qLlt represent the active and reactive power flow
at branch l, while δ−(n) denotes the lines connected to node
n from preceding nodes, and δ+(n) denotes the lines that
start from node n and are connected to successor nodes. The
apparent power on a branch is limited by

(pLlt)
2 + (qLlt)

2 ≤ (S̄Ll )
2, l ∈ L, t ∈ T , (4)

and the same stands true for a node’s power:

(pnt)
2 + (qn,t)

2 ≤ (S̄n)
2, n ∈ N , t ∈ T (5)
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The relationship between the squared magnitude voltages
vnt and vit of neighboring nodes n and i, is given by

vnt = vit−2Rlp
L
lt−2Xlq

L
lt, n ∈ N , l ∈ δ−(n)∩δ+(i), t ∈ T ,

(6)
where Rl (Xl) is the resistance (reactance) of line l that
connects n to i. All voltages should be within safe bounds:

v ≤ vnt ≤ v̄, n ∈ N , t ∈ T , (7)

and the same stands true for the power exchanges at the feeder:

−p̄ex ≤ p0t ≤ p̄ex, t ∈ T . (8)

−q̄ex ≤ q0t ≤ q̄ex, t ∈ T . (9)

Finally, the relationship between a node’s active and reactive
power is given by

− tan θnpnt ≤ qnt ≤ tan θnpnt, n ∈ N , t ∈ T (10)

which ensures that a node’s resources are operated at a
sufficiently high reactive and active power ratio tan θn to limit
the circulation of reactive power in the network (cf. [14]).

We assume, without loss of generality, that all the resources
of a node are managed by a single FSP/aggregator. Each node
is generally managed by a different FSP. A node’s flexibility
actions are bounded by:

0 ≤ pupnt ≤ pupn , n ∈ N , t ∈ T , (11)

0 ≤ pdnnt ≤ pdnn , n ∈ N , t ∈ T . (12)

To define the cost of a flexibility action, let us divide the
range [0,pupn ] (and [0,pdnn ]) into a set Bup (and Bdn) of
blocks, such that:

pupnt =
∑
b∈Bup

pupnbt, n ∈ N , t ∈ T , (13)

pdnnt =
∑
b∈Bdn

pdnnbt, n ∈ N , t ∈ T , (14)

where each block b ∈ Bup/dn bears a different marginal
flexibility cost cupnbt (benefit cdnnbt). The cost (benefit) of a
flexibility action pupnt (pdnnt) is then defined as

λupnbt = cupnbt + ζupt , n ∈ N , b ∈ Bup, t ∈ T , (15)

λdnnbt = −cdnnbt − ζdnt , n ∈ N , b ∈ Bdn, t ∈ T , (16)

i.e. the sum of the node’s marginal cost increase (decrease)
and the price ζupt (ζdnt ) that the node will receive from (pay
to) the balancing market for an upwards (downwards) change
of its schedule.

III. PROBLEM FORMULATION

Based on the definitions of the previous section, the
optimal flexibility dispatch is defined as the optimizer of the
following problem:

min
V

{∑
t∈T

∑
n∈N

( ∑
b∈Bup

λupnbtp
up
nbt +

∑
b∈Bup

λdnnbtp
dn
nbt

)}
(17)

s.t. (1)− (14),

where the problem’s variables are

V =

{(
pLlt, q

L
lt

)
l∈L,t∈T(

pntp
up
nt , p

dn
nt , qn,t, vn,t

(
pupnbt

)
b∈Bup ,

(
pdnnbt

)
b∈Bdn ,

)
n∈N ,t∈T

}
.

However, problem (17) cannot be solved directly since
the DSO is not aware of the nodes’ (agents’) flexibility
costs. This motivates the establishment of a Local Flexibility
Market (LFM) mechanism, through which the DSO tries to
elicit this information from the nodes, so that it can then
dispatch the system efficiently. A mechanism M = (D,P),
in this context, asks each node to declare its flexibility costs
(λupnbt)b∈Bup , (λdnnbt)b∈Bdn and deploys a dispatch rule D and
a pricing scheme P , each one analysed in the following
subsections, before introducing the LFM Design Problem.

A. Dispatch Rule

The dispatch rule defines that the nodes’ flexibility actions
are determined by solving problem (17), but using the declared
costs λ̂upnbt, λ̂

dn
nbt instead of the (unknown to the DSO) true costs

λupnbt, λ
dn
nbt, i.e.

min
V

{∑
t∈T

∑
n∈N

( ∑
b∈Bup

λ̂upnbtp
up
nbt +

∑
b∈Bdn

λ̂dnnbtp
dn
nbt

)}
(18)

s.t. (1)− (14).

Still though, even with given (declared) cost parameters,
problem (18) is a convex quadratically-constrained problem
(due to constraints (4) and (5)) which often leads to numerical
stability problems [15]. This numerical stability issue arises
from factors such as potential ill-conditioning of the Hessian
matrix and finite precision of the commercial solver tied to
quadratic terms, leading to sensitivity to small input changes
and impacting the stability of the solving process. Following
the work in [15] and [16], a piecewise linearization method is
applied as shown in Fig. 1. Using the branch power constraint
(4) as an example, the x and y axes represent the active and
reactive power branch flow, respectively, and the original
circular feasible region is linearized into a polygon with Narc

linear segments whose polar angle is:

θarcnarc,l,t =
360◦

Narc
, l ∈ L, t ∈ T . (19)

Details of the linearization can be found in Appendix A
(omitted in this version due to space limitations)

B. Pricing Scheme

The role of the pricing scheme is to use payments

rn = f
((
λ̂upnbt, λ̂

dn
nbt

)
t∈T ;

(
λ̂upmbt, λ̂

dn
mbt

)
m ̸=n,t∈T

)
, n ∈ N ,

(20)
calculated as a function f of the nodes’ cost declarations
(and subsequent dispatch), so as to incentivize the nodes
to declare their flexibility costs truthfully (i.e. λ̂upnbt = λupnbt
and λ̂dnnbt = λdnnbt). Naturally, if the DSO elicits truthful cost
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Fig. 1: Piecewise linearization of the quadratic constraint.

declarations, the dispatch rule (18) results in the optimal
decisions (since it becomes equivalent to problem (17)). If the
pricing scheme achieves this goal, we say that the mechanism
is truthful, or incentive compatible. On the other hand, if
a node can increase its own payoff by making untruthful
declarations, problem (18) is solved using false information
and the resulting dispatch is suboptimal.

C. The LFM Design Problem

We consider rational nodes where each one tries to choose
the declarations λ̂∗upnbt , λ̂

∗dn
nbt that result in a maximization of

its own payoff, where a node’s payoff-maximizing choice is
defined as:

λ̂∗upnbt , λ̂
∗dn
nbt = (21)

argmax
λ̂up
nbt,λ̂

dn
nbt

{rn − cn}

s.t. (20),

cn =
∑
t∈T

∑
n∈N

( ∑
b∈Bup

λupnbtp
∗up
nbt +

∑
b∈Bup

λdnnbtp
∗dn
nbt

)
,

p∗upnbt , p
∗dn
nbt ∈ (18),

or, in words, the node’s payoff is the payment received
from the mechanism (by (20)) minus the actual cost cn
(which is based on the true costs λupnbt, λ

dn
nbt) it bears from

the flexibility actions p∗upnbt , p
∗dn
nbt that result from the dispatch

rule (18). Notice that a node’s declarations λ̂upnbt, λ̂
dn
nbt affect

its own payoff by parameterizing both the node’s payment
calculation (cf. (20)) as well as problem (18) that determines
the node’s dispatch p∗upnbt , p

∗dn
nbt . Also, note that a node n

cannot solve problem (21) to optimality since, apart from the
problem’s non-convex nature, the problem’s parameters (e.g.
network characteristics etc.) are not known to n. However,
what a node can (and is expected to) do, is to learn how to
gradually adapt its declarations towards improving its payoff
over time. Thereupon, the nodes’ sequential interactions,
through their daily declarations and subsequent payoffs, take
the form of a Partially Observable Markov Game (POMG)
G = (O,A, ρ, ω), where:

• O = ×n∈NOn is the joint observation space, where a
node’s observation ont ∈ On is defined by the present
timeslot t, its schedule, and upwards/downwards balanc-
ing costs, as in

ont = [t, p̂nt, ζ
up
t , ζdnt ], n ∈ N , t ∈ T ; (22)

• A = ×n∈NAn is the joint action space, where a node’s
action ant ∈ An is the cost declarations (or bids) for
each flexibility block, i.e.:

ant =
[
(λ̂upnbt)b∈Bup , (λ̂dnnbt)b∈Bdn

]
, n ∈ N , t ∈ T ;

(23)
• A node’s reward Rnt = ρ(ont, ant) is defined by the

objective function of problem (21):

Rnt = rn − cn, n ∈ N , t ∈ T ; (24)

• The observation transition function ω, where

ont+1 = ω(ont), n ∈ N , t ∈ T , (25)

is a random process, (it will be specifically defined in the
simulation setup).

For preliminaries on POMGs, the reader is referred to
Appendix B (omitted in this version due to space limitations).
A node’s policy is a function that maps a given observation
to an action, i.e.:

ant = πn(ont; ξn), n ∈ N , t ∈ T , (26)

where ξn is a vector of parameters that define the policy (e.g.
the weights of a neural network). Once all nodes make their
declarations, the DSO decides the dispatch and payments and
the game transitions to the next stage. In the POMG, a node
gradually learns to make actions that improve its own payoff,
over episodes of experienced observation-action-reward
triples. Let E denote a given budget of experience episodes
and ψne = (onte, ante, Rnte)t∈T denote the observation-
action-reward trajectory of n in experienced episode e. After
each episode, a node updates its policy parameters as

ξne+1 = ℓ(ξne, ψne), n ∈ N , e ∈ E , (27)

where ℓ(·) is the policy update or learning rule.
Based on the above, and in the presence of learning nodes,

the LFM designer’s objective is to design a payment rule f(·)
that prompts the nodes towards learning bidding policies that
result in efficient LFM dispatch decisions. The pursuit of such
an efficient payment rule design is formalized as

min
f(·)

{∑
e∈E

∑
n∈N

E
[∑
t∈T

( ∑
b∈Bup

λupnbtp
∗up
nbt +

∑
b∈Bdn

λdnnbtp
∗dn
nbt

)]}
(28)

s.t. (20), (22)− (27),

p∗upnbt , p
∗dn
nbt ∈ (18),

where the expectation is over joint trajectories ψe conditioned
over joint policies πe. The intuition behind problem (28),
i.e., the sequence of dependencies that link the problem’s
objective function to the choice of the payment rule f , is
as follows: The objective function depends on the dispatch
decisions p∗upnbt , p

∗dn
nbt which, through problem (18), depend on

the participants bids (23); the latter comes as a result of the
bidding policies (26) which are parameterized by the policy
parameters ξn,e; those, in turn, are updated by the learning
rule (27) based on each episode’s experienced trajectory ψn,e

which includes the experienced rewards (24). These rewards
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are partially defined by the payments rn, and subsequently by
the payment rule function f , as defined in (20).

In the following section, we present three pricing rules f ,
towards approximating an attractive solution to problem (28).

IV. PRICING SCHEME DESIGN

In this section, we present three pricing schemes:
• the pay-as-bid (PAB) pricing scheme which is often used

in practice,
• the Distribution Locational Marginal Pricing (DLMP)

scheme that is a popular choice in the related literature,
• the proposed scheme, based on Groves’ pivot rule,

and discuss their properties before empirically assessing their
performance.

A. Pay-as-Bid

Under the PAB pricing mechanism [3], a node’s payment
for an operational horizon T is defined as

rPABn =
∑
t∈T

( ∑
b∈Bup

λ̂upnbtp
∗up
nbt +

∑
b∈Bdn

λ̂dnnbtp
∗dn
nbt

)
, n ∈ N ,

(29)
i.e., n is compensated for its dispatched quantities p∗upnbt , p

∗dn
nbt

at the per-unit prices λ̂upnbt, λ̂
dn
nbt that n declared. This scheme is

clearly not incentive compatible since it incentivizes each node
to declare higher costs than its true ones. In fact, if a participant
declares its true costs then, for any dispatch, its payments
would equal its costs resulting in a payoff of zero. However,
it is not easy for a node to determine by how much it should
inflate its bids. If a low-cost node overshoots, it could well
happen that another, higher-cost node (that does not inflate its
declarations as much) would be dispatched instead. Clearly,
dispatching a high-cost node instead of a low-cost one, due to
false declarations, is a prominent source of inefficiency. Thus,
the PAB is not expected to achieve a good performance in
terms of the objective function of problem (28).

B. Distribution Locational Marginal Pricing

Similar to the locational marginal price scheme that is used
in the wholesale, transmission-level electricity market, the
DLMPs constitute node-differentiated prices for a distribution
grid. Given cost declarations λ̂upnbt, λ̂

dn
nbt from all nodes, the

DLMPs (ηnt)n∈N ,t∈T are instantiated by the optimal dual
variables of the active power balance constraints (2), as in

0 ≤ ηnt ⊥
(
pnt +

∑
l∈δ−(n)

pLlt −
∑

l∈δ+(n)

pLlt

)
, n ∈ N , t ∈ T ,

(30)
and they represent the additional flexibility cost at t resulting
from a marginal increase in a node’s active power. This
interpretation follows from computing the first-order partial
derivative of the Lagrangian function of problem (18), cf. [4],
[8], [17]; the reader is referred to Appendix C (omitted in this
version due to space limitations) for the details. The DLMP
scheme payments take the form:

rDLMPn =
∑
t∈T

ηntp
∗
nt, n ∈ N . (31)

While marginal pricing schemes are well-known to be effi-
cient for perfectly competitive markets, an LFM is a prominent
example of an imperfect competition market; that is, due
to the spatial characteristics of the underlying distribution
network, a node often possesses oligopolistic (sometimes even
monopolistic) power over resolving voltage and congestion
problems within the node’s neighborhood. Indeed, it has been
previously demonstrated that, under the DLMP scheme, a
node can increase its own payoff by strategically inflating
its bids [8], [9]. Nonetheless, in practice, a node does not
have perfect information over the network characteristics or
the other nodes’ bids, and thus it cannot calculate its optimal,
payoff-maximizing bid. It remains an open question whether a
node can actually discover/learn payoff-maximizing untruthful
bidding policies, through experience, in the realistic case
where the node cannot solve the payoff-maximizing problem
(21) directly. This question will be addressed in the case
study, along with the main question of the resulting dispatch
efficiency (cf. (28)) under the learned bidding policies induced
by the DLMP scheme.

C. The Grove’s pivot rule

Different from the PAB and DLMP mechanisms where a
node is compensated based on its dispatch quantities mul-
tiplied by respective prices, the Grove’s Pivot Rule (GPR)
defines a node’s payment based on its “externality”, i.e., the
difference that the node’s presence makes in the aggregated
cost of the other nodes’ dispatch, as in

rGPRnt = C−n(N−n)− C−n(N ), n ∈ N , (32)

where

C−n(N−n) = (33)

min
V

{∑
t∈T

∑
m∈N/{n}

( ∑
b∈Bup

λ̂upmbtp
up
mbt +

∑
b∈Bdn

λ̂dnmbtp
dn
mbt

)}
s.t. (1)− (16),

is the counterfactual system cost that would have been if n
was not participating in the market, and

C−n(N ) =
∑
t∈T

∑
m∈N/{n}

( ∑
b∈Bup

λ̂upmbtp
∗up
mbt +

∑
b∈Bdn

λ̂dnmbtp
∗dn
mbt

)
(34)

is the system cost of problem (18) solved with n present but
without accounting for n’s part of the cost.

Grove’s pivot rule, combined with the dispatch rule (18)
form the renowned Vickery-Clarke-Groves (VCG) mechanism,
which is known to be incentive compatible, in the sense that
truthful bidding is a dominant strategy for each participant.
In our context, this means that the true costs λupnbt, λ

dn
nbt

are the solutions of each node’s payoff-maximizing problem
(21). Nonetheless, given the intractability of problem (21), it
remains an open question whether the attractive theoretical
properties of this scheme propagate to a setting with repeatedly
interacting learning nodes. Thus, in the case study we will
empirically assess whether the nodes can discover/learn that
bidding truthfully maximizes their payoffs, or whether the
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efficiency-maximizing truthful bidding policies will be elusive
in practice. Ultimately, we are interested in the efficiency of
the learned policies induced when the GPR is adopted as the
LFM’s pricing scheme.

V. BIDDING POLICIES BASED ON MARL

This section specifies the policies and learning rules (cf.
(26) and (27)) that each node uses to optimize its declarations
towards maximizing its own payoff, i.e., approximating the
solution to problem (21) under any given pricing scheme.
Specifically, we model the nodes’ interaction using the
powerful framework of Multi-Agent Reinforcement Learning
(MARL). The choice to adopt this approach is justified by
the dynamic adaptation of strategies employed by other nodes
as they learn and adapt from their experiences. Hence, the
multi-agent deep deterministic policy gradient (MADDPG)
algorithm [18] is deployed to simulate the strategic bidding
behavior of the flexible nodes. The algorithm forms a
distributed counterpart of the centralized DDPG, where
decentralized nodes maintain local critic networks based on
the aggregated observations and actions of all nodes and
provide feedback to the local actors. For each node n, the
critic network Qn(ot,at|θQn ) determines the Q-value based on
the joint observation ot = (o1t, o2t, ..., oNt) and joint action
at = (a1t, a2t, ..., aNt) of all nodes at time step t, and the
actor network µn(ont|θµn) = argmax

ant

Qn(ot,at) determines

the greedy action to take based on the local observation ont.
To maintain consistent target values during TD backups and
enhance the stability of the learning process, supplementary
networks known as the target critic network Q′

n(ot,at|θQ
′

n )
and target actor network µ′

n(on|θµ
′

n ) are employed, in addition
to the regular critic and actor networks. The target networks
possess identical network architectures as the standard
networks and soft updates by copying the parameters from
their respective regular networks at fixed intervals as follows:

θQ
′

n = τθQn + (1− τ)θQ
′

n (35)

θµ
′

n = τθµn + (1− τ)θµ
′

n (36)

where the value of the learning rate τ is close to 1. To train
the networks, a reply buffer Rn of a size NR is created for
each agent, and the experience of the nodes is stored in the
form of (ot,at, rnt,ot+1). When training the networks, a
mini-batch of size Nm is sampled uniformly from the reply
buffer, and the parameters of the critic and actor networks
are updated. Given the mini-batch above, node updates the
parameters θQn of the critic network by minimizing the
Smooth L1 Loss function L(θQn ) defined as:

L(θQn ) =

{
1

Nm

∑Nm

n=1 0.5ζ
2
n if |ζn| ≤ 1,

1
Nm

∑Nm

n=1(|ζn| − 0.5) otherwise,
(37)

ζn = rnt + γQ′
n(ot+1,at+1|θQ

′

n )−Qn(ot,at|θQn ) (38)

The objective of the target is to minimize the TD error,
denoted as ζn, within the mini-batch. which is defined as the
gap between the estimated Q-value between target networks
and regular networks, and the parameters in the neural

network can be updated via the back-propagation method. To
evaluate the performance of the actor network, a performance
objective J(θµn) is formulated in (39) and updated based on
the policy gradient theorem in (40), aiming to maximize the
expected profit return, as described below:

J(θµn) = E(Qn(ot,at(θ
µ
n)|θQn ) (39)

∇θµ
n
J(θµn) =

1

Nm

Nm∑
n=1

(∇antQ(ot,at(θ
µ
n)|θQn )

∇θµ
n
ant(θ

µ
n))

(40)

In addition, the Gaussian noise N ϵ
nt is added to the action

during exploration to encourage exploration and avoid falling
into the local optima as follows:

ant = clip(µn(ont|θµn) +N ϵ
nt(0, σ

ϵ
n), a

min
nt , amax

nt ) (41)

where σϵ
n is the standard deviation of the Gaussian noise.

To mitigate excessive exploration of actions over time and
facilitate convergence, the parameter σϵ

n is decaying linearly
with episodes by multiplying with a decaying factor κ at the
end of each episode.

However, MADDPG encounters the challenge of the curse
of dimensionality problem. This arises from the exponential
expansion of the joint state-action space of the critic network
as the number of nodes increases, rendering the training
process intractable [19]. As an extension of MADDPG, MF-
MADDPG integrates the MF mechanism into its framework
that approximates the interactions among a large number
of nodes by considering the average effect from the overall
population or neighboring nodes as shown in Fig. 2. It assumes
ānt represents the average action of node n’s neighborhood.
The action aj of each neighbor j can be expressed as ānt
combined with a small fluctuation δajnt given by:

ant = ānt + δajnt, where ānt =
1

N − 1

∑
j∈N/n

ajt (42)

Subsequently, the original critic network Qorg
n can be

decomposed into individual pairwise critic networks, denoted
as Qn and further simplified through the application of a
twice-differentiable Taylor expansion, as described below:

Qorg
n (ot,at) =

1

N − 1

∑
j∈N/n

Qn(ot, ant, ajt)

=
1

N − 1

∑
j∈N/n

(
Qn(ot, ant, ānt) +∇ānt

Qn(ot, ant, ānt) · δajnt

+
1

2
δajnt · ∇2

āj
nt
Qn(ot, ant, ãnt) · δajnt

)
= Qn(ot, ant, ānt) +∇ānt

Qn(ot, ant, ānt)(
1

N − 1

∑
j∈N/n

δajnt)

+
1

2(N − 1)

∑
j∈N/n

(
δajnt · ∇2

āj
nt
Qn(ot, ant, ãnt) · δajnt

)
= Qn(ot, ant, ānt) +

1

2(N − 1)

∑
j∈N/n

Rn,t(ajt)

≈ Qn(ot, ant, ānt)
(43)
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Fig. 2: MF-MADDPG framework

Algorithm 1 MF-MADDPG Algorithm

1: Set hyperparameters and reply buffer R
2: Randomly initialize regular (target) critic and actor net-

works of the nodes θQn (θQ
′

n ), θµn (θµ
′

n )
3: while episode ≤ NE do
4: t = 1 and nodes take the initial observations ont
5: while t ≤ T do
6: Nodes take actions at by (41)
7: Obtain rewards rt
8: Get the observation of the next time step ot+1

9: Store (ot,at, ānt, rnt,ot+1) in Rn

10: Update critic network by (37) and (38)
11: Update actor network by (39) and (40)
12: Soft update target networks by (35) and (36)
13: t← t+ 1

14: σϵ
n ← κσϵ

n for each node n
15: episode← episode+ 1

where the first-order term in the equation can be omitted since∑
j∈N/n δa

j
nt = 0. In addition, the second-order term can be

disregarded as the second-order remainders Rnt(ajt) = δajnt ·
∇2

āj
nt

Qn(ot, ant, ãnt) · δajnt are determined using the external
action distribution of node j based on the perspective node
n which is thus essentially a random variable. Furthermore,
it has been proven in [20] that the remainders Rnt(ajt) are
bounded within the symmetric interval [−2M, 2M ], given the
mild condition that the Q-function is M-smooth. As a result,
the second order remainder Rnt acts as a small fluctuation near
zero. And the original critic networks in (35) to (40) can be ap-
proximated by the critic network Qn(ot, ant, ānt). In contrast
to the original critic network, the input dimension of the critic
network has been reduced from [N× (dimo+dima)] to [N×
dimo +2× dima)], where dimo and dima are the dimension
of the observations and actions, respectively, resulting in an
enhancement of the scalability of the MARLs. The whole pro-
cess of the MF-MADDPG algorithm is shown in Algorithm 1.

VI. CASE STUDY

A. Experimental Setting

This section evaluates the performance of the three LFM
pricing mechanisms. In the baseline scenario, all nodes bid
their costs truthfully. Conversely, in the strategic bidding
scenarios, nodes employ a MARL algorithm to discover the
(possibly untruthful) bidding policies that maximize their
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Fig. 3: Test system

own payoffs. The test system is a 20 kV 11-bus MV-DN as
shown in Fig. 3, where Bus 1 is the slack bus of the system
and the base for power is 1 MVA. The network is assumed
to be balanced, allowing the use of a single-phase model, and
the switches at branch (4, 11) and (6, 7) are disconnected so
that the system is operated in a radial configuration. Details
related to the grid parameters can be found in [21].

The network comprises 10 active nodes (buses 2 to 11).
Each node’s resources are managed by an aggregator that coor-
dinates the flexibility actions of households located behind the
node. Thus, in alignment with the system model, it is regarded
that each node is managed by a single agent. The nodes first
participate in the day-ahead electricity market and obtain the
scheduled power profiles for the next day. After that, they
calculate the available upward and downward flexibility capac-
ities and submit the flexibility bids to the LFM. After the LFM
is cleared, they receive the payments from the DSO for provid-
ing the flexibility services and then pay for the imbalance costs
arising from deviations in the day-ahead scheduled profiles due
to the provision of flexibility services. The test case spans a
duration of 4 weeks, with the initial three weeks allocated for
training purposes and the final week designated for testing.
The positive and negative imbalance prices are sampled from
10th January to 6th February 2022, in the Netherlands using
data from ENTSO-E [22]. The scheduled profile of each node
is sampled from Simbench [23]. The hyperparameters of the
MARL algorithm are determined using the grid search method.
A discount factor of 0.99 is chosen for the critic network. The
size of the minibatch and reply buffer are 35 and 5 × 104,
respectively. The critic and actor networks are updated by the
Adam optimizer with learning rates of 5 × 10−4 and 10−4,
respectively. The target networks are then updated with a soft
update rate of 0.001 and are updated 5 times in each episode.
The mean and standard deviation of the Gaussian noise for
exploration are 0 and 0.3, respectively. The MARL algorithms
are implemented in Python 3.8 using Pytorch [24] and the
optimization model is solved using the GUROBI 9.5.2 solver
[25] on a computer equipped with a 6-core 2.60 GHz Intel(R)
Core(TM) i7-9750H CPU and 16 GB of RAM.

B. Evaluating the Dispatch Rule

We first test the linearized dispatch rule (18), in terms of
how accurately it approximates the original, quadratically
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TABLE I: Objective value of different LFM dispatch models

Objective value (C)
Day 1 2 3 4 5 6 7

Quadratic LFM -4805.9 -1429.5 63.6 -459.1 950.3 5064.0 3468.4
Linear LFM -4792.1 -1423.2 67.9 -453.7 959.4 5088.9 3482.1
Difference 0.3% 0.4% 6.7% 1.2% 1.0% 0.5% 0.4%

constrained LFM problem (17). To this end, the objective
values of both the linearized and the quadratic LFM formula-
tions are compared for the test week, as presented in Table I.
When all nodes bid truthfully, the objective value represents
the system’s cost, comprising the sum of operational costs and
the imbalance costs incurred by nodes for providing flexibility
services. The objective values demonstrate that the adopted
linear LFM yields higher system costs than the quadratic
LFM over 7 days. This is because the linear LFM reduces
the feasible region of the energy sources and branch capacity,
leading to a suboptimal outcome. However, the differences
between them are relatively small, averaging 1.5%. Although
the difference on the third day is notable, it is primarily
due to the low objective value on that day and the absolute
difference is only C4.3, which is negligible. Consequently, it
can be inferred that the linear LFM can closely approximate
the quadratic LFM with a negligible difference.

C. Evaluating the Pricing Schemes

This subsection presents the main result of empirically
evaluating the efficiency of the three pricing schemes. Figure 4
illustrates the convergence of the MF-MADDPG algorithm
across three LFM pricing mechanisms. The x-axis denotes the
2000 training episodes and the y-axis represents the system
cost of the LFM (objective function of problem (28)), where
a lower system cost corresponds to greater LFM efficiency.
The figure validates the paper’s hypothesis that the proposed,
incentive compatible pricing scheme succeeds in incentivizing
the nodes to learn bidding policies that result in a lower system
cost (higher efficiency) compared to the two benchmarks.

Figure 5 provides more details to support this conclusion
by presenting the system costs of the three schemes for each
day, while in Table II, the advantage gained by the proposed
scheme is more specifically quantified: The optimal system
cost (solution of problem (17) under truthful declarations)
is C2850.8, while in the presence of strategic learning
nodes, the proposed scheme significantly outperforms the two
benchmarks. More specifically, for both MARL algorithms
the proposed scheme results in a cost that is 22.6% (and
respectively 32.5%) higher than the baseline scenario, whereas
the respective optimality gap for the DLMP scheme is 55.5%
(and 51.5% respectively). It is worth noting that, compared to
the DLMP scheme, the proposed scheme reduces the system
cost by 15− 23%.

The PAB scheme achieves the worst performance, with a
system cost that is 227.5% (and 164.8%) higher than the op-
timal baseline. Moreover, Fig. 4 demonstrates that, in contrast
to the proposed and the DLMP schemes, the nodes’ learning
policies under the PAB scheme are volatile and not convergent.
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This is explained by the fact that the PAB scheme makes the
discovery of a good bidding policy a very difficult and highly
non-stationary task for a node, as pointed out in Section IV-A.

Overall, the results provide an empirical demonstration of
the proposed scheme’s superiority towards enhancing the effi-
ciency of the LFM in the presence of strategic, learning nodes.

D. Assessing the Payments

In this subsection, we provide further insight into the impli-
cations of each pricing scheme in terms of the flexibility cost
incurred for the DSO, i.e. the aggregated payments

∑
n∈N rn

that the DSO makes to the nodes. Figure 6 shows how the
flexibility cost of the DSO evolves across learning episodes. At
the beginning of the episodes, the FSPs submit bids with high
flexibility prices, resulting in high flexibility costs. Neverthe-
less, the competition among FSPs leads to a gradual reduction
in flexibility bidding prices, resulting in decreased flexibility
costs as the training episodes increase. The PAB scheme incurs
the lowest cost to the DSO. This was expected since the
PAB scheme rewards a node’s activated flexibility blocks at
different prices, while the DLMP scheme rewards the whole
of the node’s flexibility at the price of the marginal (i.e. most
expensive) accepted block. Moreover, the proposed scheme
results in a flexibility cost that is higher than the one of the
DLMP. This is exactly what the theory predicts for the equilib-
rium strategies (i.e. for the case where nodes can compute the
payoff-maximizing bids by problem (21)), and Fig. 6 validates
that this expectation propagates also to the case of nodes that
learn to approximate their payoff-maximizing strategies.

A more quantitative view is provided in Table II, where
the flexibility costs across three pricing mechanisms are com-
pared in both baseline and strategic bidding scenarios. In the
baseline scenario, the PAB demonstrates the lowest flexibility
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TABLE II: Comparison of different LFM pricing mechanisms

Pricing mechanism DLMPs PAB VCG
Bidding method Baseline Strategic Gap Baseline Strategic Gap Baseline Strategic Gap

System cost (C) MADDPG 2850.8 4556.4 55.5% 2850.8 9336.8 227.5% 2850.8 3495.6 22.6%
MF-MADDPG 4437.3 51.5% 7548.6 164.8% 3777.7 32.5%

Flexibility payment (C) MADDPG 15521.7 15919.3 2.5% 2850.8 13932.9 388.7% 16973.2 17814.6 5.0%
MF-MADDPG 16226.6 4.5% 11688.9 310.0% 17390.6 2.5%
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Fig. 6: Convergence of flexibility cost with MF-MADDPG

cost at C2850.8, marking an 81.6% reduction compared to
DLMPs (C15521.7) and an 83.2% reduction compared to
VCG (C16973.2). However, this result should be taken with
a grain of sand, since the PAB scheme results in a highly
non-stationary learning task for the nodes and their bidding
behavior is more difficult to predict; so, it is not safe to say
that this result would pertain to other settings and case studies.
Indeed, Fig. 6 validates this remark by indicating that the PAB
scheme exhibits the highest differentiation among different
seeds (shadowed area around the curve).

Moreover, by choosing the PAB scheme, the DSO implies
that the nodes are actually expected to strategize since truthful
bidding would result in zero payoffs. As a result, the difference
in the flexibility cost between the baseline and strategic
bidding scenarios is as high as 310 − 389%. In contrast, the
flexibility costs for DLMPs and VCG mechanisms exhibit
minimal changes between the baseline and strategic scenarios.

E. Implications on the Nodes’ Incentives

This subsection discusses the incentives of the nodes’ under
the different pricing schemes. To that end, Fig. 7-(a-c) show
the profits of the nodes under the baseline and strategic
scenarios for the three schemes, while Fig. 7-(d) summarizes
the nodes’ profits’ gap between the baseline and the strategic
scenarios. It is validated again that the PAB scheme creates
the highest incentive for nodes to be untruthful since the
difference in profits between baseline and strategic bidding is
the highest. The proposed scheme is the one with the lowest
incentive to bid untruthfully, while the DLMP scheme falls
in between. Specifically, the root mean squared error (RMSE)
in agent profits under the strategic bidding scenario compared
to the truthful bidding scenario amounts to C283.3, C485.3,
and C177.8 for the DLMPs, PAB, and VCG, respectively.
Moreover, it is worth noting that, under the PAB and DLMP
schemes, certain nodes (e.g. 3, 5, 9) have a significantly
higher incentive to strategize than others. In contrast, under the
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proposed scheme, the incentive to be untruthful is, not only
lower overall, but also more evenly distributed among nodes.

Similarly, the average prices of the three pricing mecha-
nisms and their absolute gaps are depicted in Fig. 8. The
proposed scheme results in per-unit prices that closely track
the ones that would occur under the baseline scenario, in
contrast to the PAB and DLMP schemes, where strategic
behavior causes a high distortion of the prices. Specifically, in
the baseline scenario, the average prices for DLMPs, PAB, and
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VCG are C86.5, C15.6, and C97.5, respectively. Under the
strategic scenario, these averages shift to C97.5, C84.1, and
C101.8 for DLMPs, PAB, and VCG, respectively. Thereby,
VCG shows the smallest increase, at 4.3%, compared to 11.0%
for DLMPs and a substantial 68.5% for PAB.

Furthermore, the price distortion is, again, unequally
distributed among different nodes: the RMSE in agent prices
under the strategic bidding scenario, in comparison to the
truthful bidding scenario, are C43.1, C80.6, and C13.7 for
DLMPs, PAB, and VCG, respectively. The results clearly
demonstrate that VCG maintains the most consistent prices
for nodes among the three pricing mechanisms.

VII. CONCLUSION AND OUTLOOK

In this paper, we took on the problem of designing an
efficient Local Flexibility Market (LFM) through which a DSO
can procure flexibility services to resolve voltage and conges-
tion problems of the network. We relaxed the assumption of
compliant nodes and considered intelligent nodes that learn to
optimize the nodes’ market participation, each one with the
objective of selfishly optimizing its own payoff. In order to
incentivize the nodes towards learning bidding policies that
enhance the efficiency of the LFM dispatch, we considered
three pricing schemes: the pay-as-bid, the distribution
locational marginal pricing, and the proposed scheme based
on Grove’s pivot rule. The nodes’ behavior was modeled
using two deep Reinforcement Learning algorithms, and their
learning was simulated for each of the three pricing schemes,
along with the respective results on the LFM efficiency.

As an overarching conclusion, the simulation results answer
both questions posed in the Introduction on the affirmative:

1) Learning nodes can indeed discover strategies to ma-
nipulate the two popular LFM schemes (pay-as-bid
and distribution locational marginal pricing) which is
alarming and calls for investing more effort and research
into market designs that shield the system against such
dangerous phenomena;

2) The attractive theoretical properties of the incentive
compatible Grove’s pricing scheme do propagate to the
case of learning nodes despite the absence of perfect
information and the fact that they cannot perfectly reason
out the market outcomes. In fact, the proposed scheme
was able to reduce the system’s cost by 15 − 23%
compared to the state-of-the-art DLMP scheme.

Our analysis further delves into the schemes’ effects on
flexibility costs, social costs, profits, and prices of the market
participants. The simulation results reveal that the increased
dispatch efficiency of the proposed scheme may come at the
cost of higher payments to the flexible nodes. It is left for
future work to study the trade-off between efficiency and flex-
ibility payments and achieve a good balance between the two.
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