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Missing Data Imputation with High-Dimensional Data
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ABSTRACT
Imputation of missing data in high-dimensional datasets with more variables P than samples N, P � N, is
hampered by the data dimensionality. For multivariate imputation, the covariance matrix is ill conditioned
and cannot be properly estimated. For fully conditional imputation, the regression models for imputation
cannot include all the variables. Thus, the high dimension requires special imputation approaches. In this
article, we provide an overview and realistic comparisons of imputation approaches for high-dimensional
data when applied to a linear mixed modeling (LMM) framework. We examine approaches from three
different classes using simulation studies: multiple imputation with penalized regression, multiple impu-
tation with recursive partitioning and predictive mean matching; and multiple imputation with Principal
Component Analysis (PCA). We illustrate the methods on a real case study where a multivariate outcome
(i.e., an extracted set of correlated biomarkers from human urine samples) was collected and monitored
over time and we discuss the proposed methods with more standard imputation techniques that could be
applied by ignoring either the multivariate or the longitudinal dimension. Our simulations demonstrate the
superiority of the recursive partitioning and predictive mean matching algorithm over the other methods in
terms of bias, mean squared error and coverage of the LMM parameter estimates when compared to those
obtained from a data analysis without missingness, although it comes at the expense of high computational
costs. It is worthwhile reconsidering much faster methodologies like the one relying on PCA.
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1. Introduction

Many different research fields are increasingly dealing with high-
dimensional data where the number of covariates (P) is much
larger than the number of units (N), in what is known in lit-
erature as the “curse of dimensionality.” Such data can arise for
different reasons. The high dimension can come from a large
number of variables obtained at one time point (i.e., cross-
sectional data) or by a single or a few variables measured over
many time points (i.e., longitudinal data). For instance, in cross-
sectional studies hundreds to thousands of genes or proteomes
are being collected on all included units (Bras and Menezes
2006). In longitudinal studies, wearables are able to collect mil-
lions of heart rates on each individual (Soroushmehr and Najar-
ian 2016). The high dimensions create challenges for scaling
up statistical methods developed for low-dimensional data, in
terms of plausibility of the underlying assumptions (i.e., it’s hard
to characterize the observed data distribution from a parame-
terized family of distributions p(·|θ))θ∈� whose dimension �

grows with the dimension P of the data), in terms of practicalities
such as computing time, or in terms of technicalities where mod-
els are ill-posed (i.e., calculation of the empirical covariance).

One area of statistics where the high dimension is a seri-
ous issue is the area of missing data. Missing data occur in
almost all studies, particularly in observational (cross-sectional
and longitudinal) studies, where nonresponse is common, and
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modern collection methods can be hampered by measurement
failures (insufficient resolution, image corruption, fabrication
errors, sensor failures, internet transmission problems etc.). The
current state-of-the-art for addressing missingness is to use
multiple imputation (MI) methods (Schafer 1997; Schafer and
Graham 2002). These methods can be roughly classified as mul-
tivariate (normal) approaches and chained-equations or fully
conditional approaches (van Buuren 2018). Methods in both
classes would fail in high-dimensional data. The reason is that
the high dimensionality prohibits the estimation of the multi-
variate missing data distributions and the chained-equations.
Indeed, covariance matrices for imputation with multivariate
normal distributions are ill-posed when P > N (Ledoit and
Wolf 2004; Engel, Buydens, and Blanchet 2017). Furthermore,
regression equations cannot include all variables when P > N.
Even if these methods are still appropriate, standard software
packages are in general not efficiently designed to handle high-
dimensional datasets either.

The goal of this article is to find generic and efficient solutions
for missing data imputation in (incomplete) high-dimensional
studies. We perform a systematic and comparative study on state
of the art available MI methods for large-scale high-dimensional
data, through simulations and their application in the context of
linear mixed-effect modeling with a longitudinal case study from
health monitoring. To the best of our knowledge, this is the first
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comprehensive evaluation of the available MI methods for high-
dimensional data.

The case study described in Section 2 considers 50 (adults)
participants where 29 biomarkers were extracted from their
urine samples repeatedly over 8 time points. The curse of dimen-
sionality arises when the entire biomarkers’ profile of each par-
ticipant is considered (i.e., a 29 × 8 dimensonal vector) to study
for instance the potential effects of exercise altered metabolism
in urine.

In the next subsection, we will give a general background
on MI and introduce the existing methods for MI for high-
dimensional data in the literature. Section 2 will present our
motivating example, whereas Section 3 will give a detailed
description of the available MI algorithms for high-dimensional
data. In Section 4 we will describe the design of the simulation
study and in Section 5 we will present our results. Finally, in
Section 6 we will present a discussion of our results and we will
provide some recommendations for further research.

1.1. Background

Missing data usually appear as non-registered or empty cells
in multivariate datasets, with columns indicating variables and
rows indicating units. The mechanism for missingness is called
missing not at random (MNAR) when the mechanism relies
on the unobserved values (of the response variable). If it relies
on the observed values alone, the mechanism is called missing
at random (MAR). A special case of MAR occurs when the
missingness mechanism does not depend on the observed values
either (whereas in longitudinal data it may still depend on the
baseline covariates), resulting in a missing completely at random
mechanism (MCAR). More detailed information of the three
mechanisms can be found in (Schafer and Graham 2002).

There are two general classes of methods to conduct MI:
(a) the joint modeling approach (Schafer and Graham 2002),
which uses Markov chain Monte Carlo simulations and (b) the
chained equation method (MICE), sometimes called “fully con-
ditional specification” (FCS) or “sequential regression multiple
imputation” (van Buuren 2018). While joint modeling has strong
theoretical justifications, its performance deteriorates as the data
dimension increases (Deng et al. 2016) and it is impossible to
extend it to high-dimensional data. MICE consists of a series
of regression models where each variable with missing data is
modelled conditional upon (a subset of) the remaining vari-
ables in the data (van Buuren and Groothuis-Oudshoorn 2011;
van Buuren 2018). It is often easier to implement than joint
modeling, but it has no theoretical foundation even though it
has shown satisfactory performances in extensive simulation
studies. However, MICE cannot handle high-dimensional data
either, since regression equations including all variables cannot
be determined.

To deal with missing data in high dimensions, researchers
made use of dimension reduction techniques. Among them we
mention Regularized Regression (Tibshirani 1996; Zou 2006;
Zou and Hastie 2012) and Principal Component Analysis (PCA)
(Wold, Esbensen, and Geladi 1987). The first one consists of the
minimization of the loss function of a regression model, subject
to some penalties which limit the number of relevant covari-
ates in the imputation model. Different penalty specifications

give rise to various regularized regression methods (Tibshirani
1996; Zou 2006; Zou and Hastie 2012). The majority of the
software packages with imputation purposes have included a
ridge regularization option to “shrink” the big predictor matrix.
We mention for example the empri = λ option in the “AMELIA
II” R package (Honaker, King, and Blackwell 2015), the ridge =
λ option in the “mice” R package (van Buuren and Groothuis-
Oudshoorn 2011) or the prior = ridge(λ) option in the proce-
dure MI of the SAS software. These solutions work reasonably
well when the number of units equals or is slightly smaller than
the number of measured variables (Lang 2015). Nevertheless,
in chemometrics and in health monitoring many experiments
involve data tables with P � N. In these settings, MI based on
ridge regression has poor performance and smarter solutions are
required (Zahid and Heumann 2019).

Zhao and Long (2016) incorporated regularization tech-
niques (LASSO, adaptive LASSO and elastic net) within a
Bayesian framework. However, their study was limited to
settings where only one variable showed missing values. Deng
et al. (2016) slightly improved their work using a regularized
regression scheme together with the MICE concept for three
different types of data, that is, Gaussian, Bernoulli and Poisson
distributed data. Because of the high computational costs of the
algorithm, they considered just three variables with missing
data. Lang (2015) extended this work with a more general
imputation scheme, exploiting the Bayesian elastic net presented
in (Li and Lin 2010). In a simulation study Lang showed
that his new method obtained comparable performances to
the algorithm of Deng et al. (2016), but it outperformed the
adaptations contained in the R package “mice” to select more
proper subsets of predictors in the chained equations. His work
resulted in the new R package “MIBRR” (Lang 2019), including
both his newly developed procedure and the algorithm of Deng
et al. (2016).

Recently, similar work has been published by Zahid and
Heumann (2019) and Zahid, Faisal, and Heumann (2021),
which is summarized in the R package “mispr” (Zahid 2018),
where the authors implemented an alternative MI algorithm
based on sequential penalized regressions. Yet, the authors
limited the comparison of their new methodology to standard
procedures, that is, the expectation-maximization algorithm
(Molenberghs and Verbeke 2005) and the standard MICE
(which clearly failed in the high-dimensional settings explored
in their simulations). Also, they did not investigate their newly
proposed algorithm in a high-dimensional case study dataset.

Alternatively, PCA constructs a linear mapping of the original
data matrix to a lower-dimensional space so that the variance of
the data in the low-dimensional representation is maximized.
This is achieved through the eigenvalue decomposition of
the covariance matrix or by a singular value decomposition
(SVD). It is well known that PCA cannot be conducted in
the presence of missing data (Josse, Pags, and Husson 2011).
This is because PCA is based on the eigenvalue decomposition
of a cross-product matrix (e.g., covariance matrix) and thus
requires complete data. Therefore, the PCA algorithm has
been adapted in the literature to deal explicitly with the
missing data. The mostly used techniques, such as Non-linear
Iterative PArtial Least Squares (NIPALS) (Wold 1966) and
Expectation-Maximization algorithm for Principal Component
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Analysis (EM-PCA) (Josse and Husson 2012) rely only on single
imputation. Recent advances for MI have been proposed by
Josse, Pags, and Husson (2011) that first extended the single
imputation schemes derived from a PCA model into MI and
later proposed also a Bayesian framework for the PCA-based
imputation model (Verbanck, Josse, and Husson 2015; Audigier,
Husson, and Josse 2016). Their work resulted in the R package
“missMDA” (Josse and Husson 2016; Kucheryavskiy 2020).
Even though the comparative studies shown in (Josse, Pags,
and Husson 2011) and (Audigier, Husson, and Josse 2016)
were mostly based on small datasets with P < N (and on an
intrinsic MCAR missingness mechanism), the authors claimed
the potential of their methods also for higher dimensional
designs, which were confirmed elsewhere (Dray and Josse 2015;
Voillet et al. 2016).

Lastly, Doove, Buuren, and Dusseldorp (2014) considered
recursive partitioning with predictive mean matching (Little
1988) (PMM). For recursive partitioning, they used two main
techniques: Classification And Regression Trees (CART) and a
random forest algorithm. This resulted in an extension of the
R package “mice” with the introduction of two new functions
“mice.impute.cart” and “mice.impute.rf ”. The purpose of the
authors was originally to study the performance of recursive
partitioning in the estimation of nonlinear effects in presence
of missing data. However, it is well known that these algo-
rithms have very good predictive performances also in high-
dimensional incomplete data (Degenhardt, Seifert, and Szym-
czak 2017; Matrov et al. 2020; Hamid et al. 2021), which is the
reason why they have been considered in this manuscript.

2. Vier Daagse Dataset

The Vier Daagse is a very popular yearly event in Nijmegen (the
Netherlands) in July, where people all over the world come to
experience 4 walking days of 30 to 50 kilometers around the city.
A study was conducted on a group of participants to evaluate
potential changes in urine composition due to strenuous walk-
ing. A total of 51 subjects (23 females), from 25 to 85 years old,
who took part at the event in 2012, were monitored during the
activity. Eleven of them were diagnosed with diabetes of type
1 (7 females) and 17 of type 2 (6 females). One of the aims of
the original study was to investigate potential biomarkers which
are associated to exercise altering metabolism and whether any
found relationship has different extents according to the patient
health status (and possibly other characteristics like sex, age, and
BMI). For this purpose, urine samples were collected twice a day
for 4 consecutive days for each individual. A first measurement
was taken in the morning before the activity and the second
one after walking. Baseline patient information, such as age,
sex, BMI, diabetes, were collected before the monitoring phase,
whereas the distance covered was registered in each walking day.

A total of 29 biomarkers/ions (in the range m/z 33 to m/z
107) were extracted from the urine samples and observed for
each participant twice a day, which create a relatively high-
dimensional data structure with 236 (= 29 ∗ 8 + 4) variables
for each unit (including three baseline variables, sex, BMI and
diabetes, the longitudinal biomarkers’ profile and the variable
time). The details about the protocol, the individuals and the
analysis of the volatile organic compounds in the urine samples

are discussed elsewhere (Samudrala et al. 2015). Unfortunately,
35 subjects missed at least one follow-up, that is, none of the
biomarkers were assessed. These missing data, together with the
relatively high amount of information collected at each follow-
up and the complex longitudinal structure of the study repre-
sents a big challenge. In Section 5.2 we will illustrate the impact
of different MI techniques on the significance of the relevant
patient-specific features.

3. Overview of the Selected Imputation Algorithms

In this section, we will examine the selected algorithms ded-
icated to MI for high-dimensional data in more detail. For
the description of the different methods we start introducing a
bit of notation. Bold symbols refer to vector notation, capital
letters are used for matrices and lower case notation is used
for vectors. xT refers to the transpose of the vector x. We then
suppose that a dataset Y contains P variables, consisting of both
time dependent measured outcomes and of baseline variables,
and N units with N < P. Note that the P variables might
comprise also (non-) linear interactions among the measured
variables (Howard, Rhemtulla, and Little 2015). The imputation
algorithms discussed in this article require that all information
on each unit is put next to each other, in a wide format, that is,
they do not make distinctions between response and auxiliary
variables. We also assume that L ≤ P variables contain missing
values. We will suppose that the continuous variables have been
standardized (per time point and variable) prior to any statistical
analysis. This is a crucial step for the methods in Section 3.3. To
be consistent, this procedure has been applied before any other
imputation algorithm. In the presence of longitudinal data, we
will consider a wide format, with all observations for each unit
appearing in one unique row after each other.

To the best of our knowledge, we could find in the literature
8 MI algorithms, from three different classes, for missing data
imputation in high dimensions, namely the MI procedures of
(Deng et al. 2016), (Lang 2015), and (Zahid and Heumann
2019) that proposed MI with regularized regression; those from
(Howard, Rhemtulla, and Little 2015), (Josse, Pags, and Husson
2011); and that of (Audigier, Husson, and Josse 2016) that stud-
ied MI using PCA, and (Doove, Buuren, and Dusseldorp 2014)
who proposed two MI procedures with recursive partitioning
and PMM. These algorithms were first tested on our case study,
to see if we could get them operationalized. In this section,
we will restrict our investigations to those procedures which
could be successfully implemented in our case study, without any
computation issue or execution error. This left us with five algo-
rithms from three different classes, that is, the work of (Zahid
and Heumann 2019), that of (Josse, Pags, and Husson 2011),
and (Audigier, Husson, and Josse 2016); and two algorithms
presented in (Doove, Buuren, and Dusseldorp 2014). These five
algorithms will be compared in the simulations described in
Section 4 and in the case study analysis of Section 5.2 to a
more canonical implementation of MICE that uses PMM (a.k.a.
“MICEPMM”) in the imputation process (see supplementary
materials for the technical details).

3.1. MI with Regularized Regression

Regularized regression models aim to reduce the complexity
of the large pool of explanatory variables such that the

https://doi.org/10.1080/\spacefactor \@m {}DOI
https://doi.org/10.1080/\spacefactor \@m {}DOI
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sequential regressions in the imputation process become
tractable. Penalized regression is a generalization of the ordinary
least square regression (OLS) with the addition of penalty terms.
The solution to the OLS problem is given by the minimization
of the residual sum of squares (RSS):

RSS :=
P∑

j=1
||yj − Y−jζ̂ j||22 +

P∑

j=1
(λ1||ζ̂ j||L1 + λ2||ζ̂ j||L2), (1)

where yj is the j-th variable vector to be predicted, Y−j is the pre-
dictor matrix for variable yj, with Y−j = (y1, . . ., yj−1, yj+1, . . .,
yL, . . ., yP) potentially including all variables in the matrix Y but
j, ζ̂ j = (ζ̂1, ζ̂2, . . ., ζ̂j−1, ζ̂j+1, . . ., ζ̂P) is a (P − 1)-dimensional
vector of the estimated regression coefficients (where many of
the coefficients will be 0) for yj, λ1 and λ2 are the tuning param-
eters for the L1 and a L2 regularization terms for ζ̂ j. Equation (1)
is known as the elastic net regularization. It includes the ridge
regression case when λ1 = 0 and the LASSO when λ2 = 0
(Tibshirani 1996). The quadratic penalty term makes the RSS
function strongly convex (which therefore ensures a unique
minimum) and controls for the multicollinearity in the data,
whereas the LASSO penalty shrinks the low-valued regression
coefficients to 0.

3.1.1. MI with Sequential Penalized Regression (MISPR)
Zahid and Heumann (2019) devised a MI imputation algorithm
using a ridge penalty in (1) (i.e., λ1 = 0). The procedure can
be used for any type of data, that is, continuous, binary and
categorical. In short, the sequential regression imputation works
as follow: the missing values in each yj (yj,miss) are first filled in
with some initial values, that is, mean imputation, nearest neigh-
bors or random sampling from the observed values of yj, (yj,obs).
For each variable yj with missing values, yj is regressed on Y−j,
and yj,miss are imputed using the draws from the corresponding
posterior predictive distribution and subsequently updated in
the original data matrix Y. The procedure continues until all the
variables are imputed. M replications of this procedure yields M
imputed datasets. Algorithm 1 in the supplementary materials
describes the imputation steps in case of continuous data (see
the R package “mispr”, version 1.0.0) which will be denoted as
“MISPR” in the following sections.

3.2. MI with Recursive Partitioning and Predictive Mean
Matching

3.2.1. MICart
Classification And Regression Trees (CART) (Doove, Buuren,
and Dusseldorp 2014) are machine learning algorithms that
search for cut points among the predictors’ values that are sub-
sequently used to split the data. The cut points are meant to
construct homogeneous subsamples that can be used for pre-
diction. The splitting process is repeated iteratively on each
subsample, so that a series of splits defines a binary tree. The
target variable can be discrete (classification tree) or continuous
(regression tree) (van Buuren 2018). An automated procedure
is often implemented to make this iterative step quite handy.
CART methods are also quite robust against outliers, they can
tackle multicollinearity and skewness in the data and they are

also able to fit interactions and non-linear relationships (Doove,
Buuren, and Dusseldorp 2014), which makes them an attractive
tool for imputation. Multiple imputation using CART meth-
ods has already been considered in the literature (Burgette and
Reiter 2010; Doove, Buuren, and Dusseldorp 2014). In short,
the missing values are initially imputed by random draws from
the observed values on each related variable. For each variable
yj with missing values a tree is fitted (on the observed ele-
ments yj,obs), using all the remaining variables as predictors. This
results in a tree with several leaves, each containing a subset of
the data. A member with a missing value on yj (yj,miss ) is put
down this tree and ends up in one of the leaves. One value from
the chosen leaf is randomly selected and used for imputation. A
complete cycle along all incomplete variables is repeated several
times, yielding one imputed dataset. Ultimately, this process is
repeated M times, yielding M imputed datasets. In Algorithm 2
of the supplementary materials we summarized the implementa-
tion discussed in (Doove, Buuren, and Dusseldorp 2014) where
the imputation is done by using PMM (see R package “mice”,
version 3.14.0). For the upcoming discussions, this algorithm
will be denoted as “MICart”.

3.2.2. MIForest
The CART algorithm may suffer from some downsides. For
instance, the local optimization of the splits may not ensure
the best possible tree with homogeneous sets. Further, the hier-
archical dependence of the splits might create unstable trees
which can lead to unreliable estimates. A solution is to adopt a
random forest perspective, by creating multiple trees simultane-
ously, for example employing bootstrap methods that repeatedly
create new datasets, by sampling from the observed data with
replacement. By combining the results from the different trees,
the chance of unstable results is minimized, guaranteeing a more
reliable solution. The procedure is provided in Algorithm 3 of
the supplementary materials (see R package “mice”) and will be
denoted as “MIForest” in the remainder of this article.

3.3. MI with PCA

PCA is a well known method able to reduce the dimensionality
of a N×P matrix Y. It provides a low rank K ≤ P approximation
of Y in the least square sense by finding two matrices T and L,
with T an N × K matrix and L a P × K matrix, that minimize
the weighted residual error

‖ R ⊗ (Y − Ȳ − TLT) ‖, (2)

where R is an N × P indicator matrix that accounts for missing
values in the dataset (Rij = 0 if Yij is missing and Rij = 1 oth-
erwise, with i = 1, . . ., N and j = 1, . . ., P), Ȳ is a N × P matrix
whose rows contain the P column means and “⊗” corresponds
to the Hadamard (element-wise matrix) product. With the addi-
tional constraint of orthonormality for the columns of T and L,
the solution of (2) is given by the score matrix T and the loading
matrix L. The columns of T represent the row PCs of Y and can
be interpreted as a linear combination of the columns of Y using
the elements of L as weighting coefficients. The matrices T and
L can be easily computed, in the complete case, through a SVD
of the (mean) centered data for instance. The introduction of the

https://doi.org/10.1080/\spacefactor \@m {}DOI
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matrix R in (2) is purposely due to tackle the main limitation of
the PCA structure, that does not handle missing cells. In contrast
to the complete case, there is no explicit solution to minimize (2)
and therefore it is necessary to make use of iterative procedures
like the iterative PCA algorithm (iPCA), which is summarized
in Algorithm 4 of the supplementary materials.

3.3.1. MIPCABoot
Josse, Pags, and Husson (2011) and Audigier, Husson, and Josse
(2016) relied on Algorithm 5 of the supplementary materials and
extended the procedure to a MI scheme through a bootstrap
resampling of the residuals in (2). The algorithm to generate
multiply imputed datasets with a PCA model is composed of two
parts. First, the missing values are imputed with an interactive
single imputation algorithm using PCA (see the iPCA Algo-
rithm 4 in the supplementary materials). Next PCA is performed
on the complete data. The residuals of the PCA model are
bootstrapped M times to generate new M complete data. A
single PCA-based imputation algorithm is performed on each
bootstrapped data. Algorithm 5 outlines the main steps of their
procedure (see R package “missMDA”, version 1.14) which will
be denoted as “MIPCABoot” in the following sections. A core
and crucial feature of this MI procedure is the choice of the
number of PCs to be retained in the PC model. If a small number
of PCs is considered, relevant information might be neglected,
whereas if more dimensions are retained, the risk of fitting the
noise into the model increases, leading to potentially biased
results and conclusions. For instance, the authors in (Josse and
Husson 2012) proposed a generalized cross-validation (GAV)
procedure that calculates (for each PCA model) the quantity

GAV(K) = (NP − L∗)(
∑N

i=1
∑P

j=1 Rij(Ŷij − Yij))

(NP − L∗ − P − NK − PK + K2 + K)2 , (3)

where L∗ is the total number of missing values in Y. The value
K that minimizes the function in (3) corresponds to the number
of PCs to be retained before the imputation step.

3.3.2. MIPCABayes
Audigier, Husson, and Josse (2016) worked on an adaptation of
MIPCABoot using a Bayesian approach. The Bayesian treatment
of the PCA model extended a previous proposal by (Verbanck,
Josse, and Husson 2015) that exploited a ridge version of a PCA
model that showed improved mean squared errors (MSEs) in
the reconstruction of the original data. Three main steps are
performed: first, missing values are imputed by a draw from the
predictive distribution of the data. Next, a regularized PCA is
performed on the full data matrix. The posterior distribution of
the data Y given the reconstructed data Ŷ has an explicit form
and depends on the regularized PCA. Finally, the missing data
in Y are updated by random draws from their posterior distribu-
tion. Algorithm 6 in the supplementary materials describes the
procedure (see R package “missMDA“) which will be denoted as
“MIPCABayes” in the remainder of this article.

4. Simulation Design

A simulation study was conducted in order to evaluate the
performance of the MI approaches presented in Section 3. The

simulation design aims at recreating the longitudinal study pre-
sented in Section 2 for a subset (i.e., 14) of the 29 original
biomarkers, to ease the calculations and the Monte Carlo repli-
cations. To do so, the case study was analyzed per biomarker
with a Linear Mixed Model (LMM) with random intercept and
AR(1) correlated residuals for the repeated time assessments.
Sex, type of diabetes and BMI were included in the model
as baseline covariates. Time was included in the model as a
continuous covariate, also in interaction with sex, diabetes and
BMI. The correlation matrix between the Empirical Best Linear
Unbiased Predictors (i.e., EBLUPs) of the random intercepts was
computed to get an approximation of the baseline associations
among the different biomarkers. The data generation model is

y(u)
ij = μ(u)+

P∑

p=1
β

(u)
p xpi+β

(u)
t t+

P∑

p=1
β

(u)
pt xpit+a(u)

i +e(u)
ij , (4)

where μ(u) is the average for biomarker u = 1, . . ., 14, β
(u)
p is

the effect size of the baseline covariate xp for biomarker u, β
(u)
t

is the effect size of time t for biomarker u, β
(u)
pt is an interac-

tion effect of variable xpi and time t on the response, a(u)
i ∼

N(0, σ 2(u)
1 ) is a biomarker-specific random intercept, whereas

e(u)
i ∼ N(0, Υ (u)

i ) is the residual vector for biomarker u, with the
matrix Υ

(u)
i = σ

2(u)
e R(u)

i being first order autoregressive with
parameter ρ(u). The 14 random intercepts ai = (a(1)

i , . . ., a(14)
i )

are assumed to be correlated with correlation matrix � (see
supplementary materials).

For the simulation of the baseline covariates, a Bernoulli
(parameter π = 0.45), a Gaussian (mean=27, standard
deviation=4) and a uniform discrete distribution (with p1 =
0.45, p2 = 0.22) were used independently from each other to
generate sex, BMI and type of diabetes (1 and 2), respectively,
whereas the variable time was included as 9 consequent time
units. A MAR missing mechanism was introduced through the
following inverse logit model: we assumed that the biomarker
data was complete at the first time point j = 1; for j ≥ 2, we
considered Rij ∼ Bernoulli(pij), with

pij = invlogit(−2.5 + 0.1xsex,i + 0.01xBMI,i + 0.12y(14)
i(j−1)) (5)

as the probability for unit i to miss the next follow-up j, with
y(14)

i(j−1) denoting the level of biomarker “14” in our dataset for
subject i at the previous time assessment j − 1. From univariate
analyses conducted in (Samudrala et al. 2015), biomarker 14
was considered particularly sensitive to physical activity. We
therefore based our missing mechanism on potentially (pre-
viously) abnormal levels of such biomarker. Next, a dropout
pattern was included in this scheme, that is, when Rij = 1 all
the biomarker levels from time point j on will be considered
as missing, ensuring a MAR missing mechanism. This way,
about 40% average missingness in the biomarker levels was
introduced in each simulated dataset, which constitutes quite a
substantial missing rate. One-hundred and thirtyeight variables
(14 × 9 + 9 + 3) were generated for each of the 50 subjects,
which create a relatively high-dimensional dataset. Five hundred
datasets were simulated with this procedure in a Monte Carlo
framework. In the supplementary materials the R code to gen-
erate the data is given. For MI with regularized regression and
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recursive partitioning, the imputation models for the variables
with missing values included all the remaining variables, and
thus also the other biomarker levels. In fact standard practice
suggests that a proper imputation model should consider all
variables that will be included in the analysis model, as well as
all variables thought to be predictive of each imputed variable so
as to make the MAR assumption more plausible (Schafer 1997).
The tuning parameters of the algorithms (see supplementary
materials) were fixed to the default settings specified in the R
packages (van Buuren and Groothuis-Oudshoorn 2011; Zahid
2018). For MI with PCA, PCA was performed on the entire data
matrix Y. The number of PCs were selected according to (3).
For MICEPMM the biomarkers were considered independent,
that is, the set of predictors for the imputation of a missing
biomarker level did not include any information on the other
biomarkers (i.e., resolving the high-dimensionality issues for
the standard MICE). Twenty imputations were performed for
each MI method. The parameter estimates from the multiply
imputed datasets were pooled by means of Rubin’s rule (Rubin
2004), as standard practice of all the three groups of imputation
techniques (Shah et al. 2014; Audigier, Husson, and Josse 2016;
Zahid, Faisal, and Heumann 2021): denoting with Q the quantity
of interest and [Q̂m, Um], with m = 1, . . ., M the set of parameter
estimates Q̂m and standard errors Um from each of the imputed
datasets, the overall combined parameter estimate is given by
the sample average Q̄ = M−1 ∑M

m=1 Q̂m and associated total
variance T = Ū + B + B/M, where Ū = M−1 ∑

Um is
the within-imputation variance and the between-imputation
variance (generated by the missing data) is calculated as B =
(M − 1)−1 ∑M

m=1(Q̂m − Q̄)2. The bias, the mean squared error
(MSE), the Monte Carlo standard error (SE) of the point estimate
and the coverage (i.e., the probability that the pooled parameter
estimate after LMM analysis with imputation falls within the
95% confidence interval of the parameter estimate obtained
from the LMM analysis with the complete simulated data) were
used to express the degree of accuracy of the MI methods. The
Bias and the MSE were calculated by comparing the pooled
parameter estimates to those obtained by fitting (4) to the com-
plete simulated data.

All the data generation and imputations were performed in
the R 64bit software, version 3.4.2, and the statistical analyses
were completed using the procedure MIXED of the statistical
software SAS, version 9.4. The softwares were installed in an
Intel Core-i7 6700HQ @2.60GHz machine with 24GB of RAM.

5. Results

5.1. Simulation Study

In Table 1 we collected the CPU time for the completion of
a pilot round of simulations (100 replications) to generate 10
imputed datasets. The two PCA-based approaches, MIPCABoot
and MIPCABayes, outperformed by far the chained equation
procedures in terms of processing time and remained relatively
closed to MICEPMM which involved a simpler imputation strat-
egy.

We fitted (4) for each biomarker independently. We will
denote the average for each biomarker as μ(u), representing
the average of men with diabetes of type 2, the effect size for

Table 1. Average processing time (hr) required by the MI algorithms to generate 10
imputations for 100 datasets.

Method/setting Time (hr)

MISPR 138.68
MIPCABoot 6.91
MIPCABayes 3.61
MICart 194.46
MIForest 195.30

MICEPMM 2.99

BMI as β
(u)
BMI , the effect size of females as β

(u)
sex , the effect size

of non-diabetes participants as β
(u)

diab,0 and that of people with
type 1 diabetes with β

(u)

diab,1, the linear time effect as β
(u)
time, the

interactions with time as β
(u)
time × β

(u)
sex for females, as β

(u)
time ×

β
(u)

diab,0 for non-diabetes participants, as β
(u)
time × β

(u)

diab,1 for type
1 diabetes.

Figures 1 to 9 in the supplementary materials display the bias,
the MSE and the coverage of the nine fixed effect parameters.
The parameter estimates of the imputed data for MIPCABayes
are clearly showing the largest bias and MSE and the worst
coverages. Based on these performances, results on the fixed
effects from the imputed datasets with MIPCABayes will not be
discussed further. The fixed effects parameter estimates of the
LMM on the imputed datasets with the other MI methods show
a relatively good absolute accuracy with very comparable biases
among the MI methods. However, we did detect substantial dif-
ferences in the MSEs and coverages of the parameter estimates
on the imputed datasets of the four remaining MI methods. With
respect to the MSE, we see that the parameter estimates of the
LMM model on the imputed datasets with the MISPR method
have a higher MSE for the coefficients of sex, BMI and time and
also for the interaction terms with time, compared to the other
three MI methods. The three methods (MIPCABoot, MICart
and MIForest) show comparable MSEs for the same parameters.
Parameter estimates on the MIForest imputed datasets show a
higher MSE for the coefficients of diabetes compared to the other
MI methods. When we study the coverages, we see that there are
many parameters (for the different biomarkers) with coverages
away from the nominal value of 0.95. MICEPMM showed very
low coverages for the overall intercept μ(u). Generally, we see
that the coverages appear to be more conservative for the main
coefficients, whereas for the interaction effects the coverages are
typically more liberal. For the interaction coefficient of diabetes
type 1 and time, β

(u)
time × β

(u)

diab,1, we see very liberal coverages
for the imputed datasets with all four methods in almost all
biomarkers. Furthermore, we note that the parameter estimates
for the imputed dataset with MISPR have a lower coverage for
the intercept and the coefficients BMI, time, and the two interac-
tions with time compared to the other MI methods, which show
very comparable coverages. For the coefficient of sex, only the
parameter estimates on the imputed datasets with MISPR (and
in few cases MICEPMM) show coverages close to 0.95, while the
parameter estimates on the imputed datasets for the other three
MI methods are highly conservative. However, the parameter
estimates for the MISPR imputed datasets typically gives liberal
coverages, except for the two coefficients of diabetes, where we
see conservative coverages for all biomarkers. The coverages for
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the parameter estimates of the MICart and MIForest imputed
datasets are very close to each others on all parameters, except
for the two coefficients for diabetes, where the coverages of the
parameter estimates are close to nominal only for the MIForest
datasets. Parameter estimates on the MIPCA imputed datasets
shows very similar coverages as the parameter estimates on the
MICart imputed datasets, but with slightly better results on the
coefficient for the interaction of sex and time. When looking at
the empirical SE of the LMM point estimates after imputation
we notice some systematic trends (not illustrated): MIForest
and MICart always provide the lowest SE (they typically dif-
fer in the third decimal between each other) over MIPCA-
Boot, MICEPMM, MIPCABayes and MISPR for the main effects
whereas for the interaction terms MIPCABoot outperformed
the imputation methods based on recursive partitioning and
PMM, with the others maintaining the same hierarchy.

Figures 1–3 display the bias, the MSE and the coverage of the
estimates for the three variance-covariance parameters of the 14
biomarkers profiles from the simulated model (4), that is, the
subject-specific random intercept (σ 2(u)

1 ), the residual variance
(σ 2(u)

e ) and the AR(1) parameter (ρ(u)) of the residual covari-
ance matrix (Υ ). When we investigate the parameter estimates
for the variance component of the random intercept, we see a
large positive bias of the estimates on the MIPCABayes imputed
datasets and a somewhat negative bias on the MIPCABoot and
MICEPMM imputed datasets. This has a direct negative influ-
ence on the size of the MSE and the low coverage probabilities.
The coverages for the parameter estimates on the datasets of the
other three MI methods are mostly liberal, with somewhat worse
coverages in general on the datasets imputed with the MISPR
method. For the residual variance, we see large positive biases on
the imputed datasets of both the MIPCABayes and the MISPR
methods. Interestingly, here the best coverages are attained on
the datasets of the MIPCABoot method. For the autoregressive
parameter we see that the biases on the imputed datasets with
MICart, MIForest, and MIPCABayes are very comparable and
are also the smallest among all MI methods. When we investigate
the coverages of the LMM autoregressive parameters, we see that
the best results are obtained in the imputed datasets with MICart
and MIForest, but for several biomarkers we still have very
liberal coverages. As for the empirical SE (not shown), LMM
analyses on the MIForest and MICart imputed datasets provide
the lowest SE of the point estimates for the random intercept and
the residual variance over MIPCABoot, MICEPMM; whereas
for the AR(1) parameter they are outperformed by MIPCABoot
whose SEs are the lowest over the other methods. As for MISPR
and MIPCABayes, they systematically present the largest SEs of
the point estimates after imputation, with MIPCABayes show-
ing the largest values for the random intercept and the AR(1)
parameters, whereas for the residual variance MISPR presents
much larger SEs than those obtained with MIPCABayes and the
other imputation approaches.

5.2. Analysis of the Vier Daage Dataset

In order to do inference on the biomarker trajectories for the
different subjects, we first need to carry out MI properly. In this
section, we consider for illustrative purposes, two imputation
algorithms from two different classes, MIForest and MIPCA-

Figure 1. Bias (a), mean squared error (b) and coverage (c) of the 6 MI algorithms for
the random intercept variance component σ 2(u)

1 (simulated value range [0.09;0.30])
from (4). The black dashed line in panel (c) indicates the nominal coverage level,
fixed at 0.95.

Boot (here simply denoted as “MIPCA”), (see Section 3). From
the simulations, these methods showed comparable to better
performances than the other methods in high-dimensional
settings. We also considered as benchmarks (a) MICE with
PMM, denoted as “MICEPMM” (Little 1988), performing MI
on each biomarker separately, (i.e., for each missing biomarker
level at one time point PMM creates a set of subjects that have the
information of that specific biomarker available; because we had
“unit missing” in this dataset, we could not borrow information
from other biomarkers at one time point because all biomarker
information was missing), and (b) full information maximum
likelihood (denoted as “FIML”), allowing to get parameter
estimates without imputing the missing data. Note that the
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Figure 2. Bias (a), mean squared error (b) and coverage (c) of the 6 MI algorithms
for the residual variance component σ

2(u)
e (simulated value range [0.58;2.07]) from

(4) per biomarker. The black dashed line in panel (c) indicates the nominal coverage
level, fixed at 0.95.

comparison with FIML could not be performed in the simula-
tion study as the high missing response rate (i.e., low percentage
of subjects with fully observed data) caused convergence issues
for the majority of the LMM univariate analyses, that is, it was
not possible to estimate the variance components.

We performed M = 10 imputations for each method. A
relative efficiency (calculated as M/(λ + M), with λ the frac-
tion of missing information in the original data) (Rubin 2004)
higher than 0.96 for all the imputed variables indicated that the
number of imputations was big enough to ensure good statistical
inference (Newgard and Haukoos 2007). For each of the 10
imputed datasets, a LMM with sex, age, diabetes (0=healthy,
1=type1, 2=type2), BMI and distance covered as fixed covariates,
a random intercept and AR(1) correlated residuals as variance
components was fitted for each biomarker separately.

Figure 3. Bias (a), mean squared error (b) and coverage (c) of the 6 MI algorithms
for the residual correlation ρ(u) (simulated value range [−0.35;0.52]) from (4) per
biomarker. The black dashed line in panel (c) indicates the nominal coverage level,
fixed at 0.95.

In Figure 4–5 we reported the point and standard error
estimates as well as the t-test p-values (p-vals) for two fixed effect
parameters of the LMM, that is, the intercept μ(u) and the BMI
effect size β

(u)
BMI. The BMI point estimates obtained by FIML

were systematically lower than the ones obtained from the other
approaches. The FIML standard errors are consistently higher
than the estimates obtained from the other approaches for both
fixed effects. The intercept was found to be significant for all
biomarkers in the LMM after the three imputation methods,
except for the PMM imputation in biomarker 10, but in few
(10/29) biomarkers (i.e., 1, 2, 5, 6, 10, 12, 16, 17, 20, 22) sub-
stantial differences in the p-vals were observed among the four
imputation strategies. In 14 biomarkers, the LMM after the three
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Figure 4. Average point (a) and standard error (b) estimates and t-test p-val’s (c)
(over 10 imputations) of the intercept fixed effect μ(u)for FIML and the imputation
algorithms MICEPMM, MIPCA, and MIForest applied to the case study. The black
dashed line in panel (c) indicates the significance level, fixed at 0.05.

imputation methods showed mismatches in the significance of
the BMI effect size (with the most significant ones observed in
biomarkers 7, 11, and 18). For the other covariates, we could
observe very minor and subtle differences, thus the p-vals were
not displayed. Overall, LMM analyses of the fixed effects param-
eters after MIPCABoot imputation resulted more frequently in
more liberal (higher) p-vals than the LMM results after PMM
and MIForest imputation. Exceptionally, in biomarkers 2, 4, 8,
18, 26, and 27 for the intercept μ(u) and in biomarkers 2, 8, 12,
and 22 for the BMI parameter β

(u)
BMI , the LMM results after PMM

and MIForest showed higher p-vals compared to MIPCABoot.

Figure 5. Average point (a) and standard error (b) estimates and t-test p-val’s (c)
(over 10 imputations) of the fixed effect for BMI β

(u)
BMIfor FIML and the imputation

algorithms MICEPMM, MIPCA, and MIForest applied to the case study. The black
dashed line in panel (c) indicates the significance level, fixed at 0.05.

Figure 6–7 display the pooled estimates and the standard
errors of the two variance components for the different biomark-
ers, that is, the random intercept σ 2(u)and the AR(1) residual
correlation parameter ρ(u). For the residual variance σ

2(u)
e we

could not find relevant differences in the LMM results after the
three MI methods (see supplementary materials), but overall
the LMM analyses after PMM imputation resulted most often
in higher p-vals. For the random intercept σ 2(u)and the AR(1)
residual correlation parameter ρ(u) substantial differences were
observed. FIML provided parameter estimates of larger size. The
LMM after univariate PMM imputation could not estimate the
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Figure 6. Average point (a) and standard error (b) estimates (over 10 imputations)
of the random intercept σ 2(u) for FIML and the imputation algorithms MICEPMM,
MIPCA, and MIForest applied to the case study.

random intercept for biomarkers 2 and 4, whereas for MIP-
CABoot the LMM could not estimate the random intercept for
biomarkers 2 and 21, and MIForest could not estimate the ran-
dom intercept for biomarker 21. They were set to 0 in Figure 6, as
well as the standard errors. MIPCA produced higher estimates
of the random intercept σ 2(u) compared to the other methods,
except for biomarkers 2, 8, 12, 18, 22, and 27. The standard
errors of FIML are systematically larger than the parameters esti-
mates obtained after imputations for the random intercept σ 2(u)

whereas for the correlation parameter ρ(u) they remain of moder-
ate size compared to the other imputation approaches. MIForest
showed more frequently estimates the correlation parameter ρ(u)

closer to 0, whereas MIPCABoot tended to produce larger values
of this parameter in (absolute value), except for biomarkers 4, 8,
10, 11, 24, 25, 27, and 28.

Overall, the analyses showed how the different imputation
approaches could bring different conclusions in terms of
significance of the fixed effects or in terms of size and standard
errors of the variance components. The heterogeneity of
the results became even larger when considering the FIML
approach, which has been included as a benchmark technique
in this section only for illustrative purposes, but its overall
performances should be considered out of scope from the
investigations conducted in this article. Looking at the three
imputation approaches considered in this section and based on

Figure 7. Average point (a) and standard error (b) estimates (over 10 imputations)
of the residual correlation ρ(u) for FIML and the imputation algorithms MICEPMM,
MIPCA, and MIForest applied to the case study.

the results of the simulation study we consider MIForest and
MIPCABoot most trustworthy, whereas the univariate PMM
may be less reliable. In this latter case, each biomarker level
is imputed independently from the others (i.e., all the other
biomarker levels were not considered as auxiliary variables in
the imputation model), but this approach could lead to a MNAR
setting, if the missingness of one biomarker depended on other
biomarkers’ levels, as they were left out of the analysis model.

6. Discussion and Conclusions

In this article, we have addressed the controversial problem of
MI in high-dimensional settings. Despite the rich discussions in
literature on the superiority of specific MI algorithms through,
often not realistic, comparative simulation studies, no special
attention has been given to MI methods for high-dimensional
data with a detailed investigation of their performances. The
work presented in this article aims to fill this gap through an
evaluation of the current MI approaches available in litera-
ture that are suited and/or have already been applied in high-
dimensional data, with an extensive simulation study which
mimicked the longitudinal and high-dimensional structure of
our case study. In this article, we focused our attention on
handling missing data with MI in the context of linear mixed-
effects modeling, applied both to real and synthetic longitudi-
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nal settings, and thus our conclusions apply to this particular
framework. For further evaluations of missing value imputation
in other high-dimensional research fields, see Liao et al. (2014)
and Chandrasekher, Alaoui, and Montanari (2020).

Our literature review identified five algorithms, which were
employed in previous high-dimensional studies. Other methods
have recently been proposed, and they seemingly showed great
potential also in high-dimensional data. Purely by way of exam-
ple we mention the proposal of (Howard, Rhemtulla, and Little
2015), where principal component (PC) scores are used as pre-
dictor variables in a MICE scheme, or the SuperMICE algorithm
of (Laqueur, Shev, and Kagawa 2022), where a combination of
learner algorithms are used as predictive models in MICE. It
would be interesting to evaluate in the near future these new
proposals in a high-dimensional context.

The majority of the available MI algorithms in literature failed
when applied to high-dimensional data, because of the incapa-
bility of dealing with the large predictor matrix. This is the case
for example of the R packages “GAMLSS”, “Midatouch”, “sbart”,
“Amelia”, “Hmisch”, and “Raoul”. Surprisingly, also some of the
MI algorithms that were developed for high-dimensional data
showed computational issues, such as the algorithm of (Deng
et al. 2016) and (Lang 2015) (from the R package “MIBRR”,
version 0.3.0.9000). These approaches appeared to be compu-
tationally burdensome and became practically infeasible with
increasing number of variables with missing data. Moreover, any
of the MICE adaptations considered in the R package “mice” to
control multicollinearity and high dimensionality couldn’t cope
with the singularity of the predictor matrix of the MICE regres-
sion equations. Overall, the computational burden constituted a
big limitation of the study presented in this article, which limited
the investigations from moderate to fairly high-dimensional
settings. Thus, we cannot say whether our results generalize
also to ultra high-dimensional settings (i.e., large P > large N),
because we could not verify systematically the performances of
the methods due to the limited computing power.

Our simulations demonstrated that MI is possible in high-
dimensional data for the considered methods, that is, MISPR,
MIPCABoot MIPCABayes, MICart and MIForest, but the MI
imputation methods need to be improved further in the near
future. Although the more traditional MICEPMM technique
appeared to be computationally less expensive, it was in most
cases outperformed by the other imputation methods in the sim-
ulations. Our simulation study also showed that MIPCABayes is
not recommended, since the fixed effects parameter estimates
of the LMM were estimated with a substantial bias, despite
the number of PCs retained in the analysis. Noticeably, initial
investigations showed that the performances of this imputation
method largely improved in more traditional N ≥ P settings (see
supplementary materials for a selection of parameter estimates
in two explorative N = 130, 250 and P = 130 simulation
settings). The parameter estimates on the imputed datasets of
the other 4 imputation methods showed biases that appeared
small in absolute sense. However, the variance components were
seemingly more difficult to estimate in the imputed datasets
and this also affected the coverages of all the estimates. Based
on the simulation study, we also do not recommend MISPR of
(Zahid and Heumann 2019; Zahid, Faisal, and Heumann 2021),
because it is computationally intensive and less efficient than

the recursive partitioning algorithms with PMM (i.e., MICart
and MIForest) which demonstrated better performances than
MISPR (generally smaller bias and MSE and higher coverages).
The results of the fixed effects on the imputed datasets with
the two recursive partitioning algorithms with PMM were very
similar to the results on the imputed datasets with MIPCA-
Boot, but the recursive partitioning algorithms with PMM pro-
vided better estimation results for the variance components.
This might be to their ability to easily handle interactions, non-
linearities (Doove, Buuren, and Dusseldorp 2014) in big data
settings, and to avoid overfitting. However, this often comes
at the expenses of a much higher computational cost. In fact,
we have seen that for the high-dimensional settings explored
in our research, the computational speed of such algorithms is
very slow and might therefore play a decisive role when massive
data analyses must be performed or, even worse, replicated
multiple times. Thus, practically speaking, the researchers might
not be able to use such methods because of the unfeasible
computational times. The actual state of art suggests to consider
much faster methodologies like the one relying on PCA, that is,
MIPCABoot.

Interestingly, additional investigations (not shown) suggest
that increasing the sample size (up to a size P, in P ∼ N setting)
slightly improves the precision of the LMM estimates, although
it comes at the expenses of a much higher computational burden.
This applies in general to all imputation algorithms considered
in this study. For this last evaluation however, we were forced
to exclude MISPR due to the much higher computational cost
when we increased the sample size to N = 130.

Finally, we considered different strategies for MI in our case
study. We could identify some differences among the adopted MI
approaches, but others might still remain uncovered. An expla-
nation can be found in the missing data structure of our case
study: missing data arose when the patient missed a particular
assessment, which consequently meant that all the biomarkers
levels could not be measured at that time point. This missing
data structure undermines the power of missing data algorithms
which consider also high-dimensional and possibly multivariate
structures in the data. Anyhow, our motivating example shows
that different imputation strategies could be adopted in this
particular case, as it happens also in many longitudinal stud-
ies, where ad-hoc MI strategies can circumvent the curse of
dimensionality. On the one hand, the missing information in
a biomarker at a specific time point can be borrowed within
each person using other records of the biomarker or exploiting
the information available that other persons share for the same
biomarker at that time point. On the other hand, we could
exploit all the information shared by different biomarkers at one
time point, within or between subjects. The first two strategies
consist merely in a univariate approach which would practically
resolve the high-dimensional issue and allow standard MI uni-
variate procedures (i.e., standard MICE), but probably at the cost
of some loss of information and underestimation of significant
effects (as demonstrated in Section 5.2). On the contrary, the
second approach would emphasize the multivariate structure of
the data, at the expenses of a significant data augmentation in
the imputation phase which restricts the range of the possible MI
approaches to the ones illustrated in Section 3. The full under-
standing and the exploration of the impact that different MI
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techniques might have in these longitudinal settings definitely
deserves more focus in future research.

Supplementary Materials

In the supplement, further details for the MI algorithms of Section 3 as well
as codes for their operationalization in the R software are provided. The
simulation parameter settings and codes are also given. Finally, additional
plots for the simulation and case study analysis are shown.
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