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I. Methodology 
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ABSTRACT: 

Randomized controlled trials (RCTs) provide reliable evidence for approval of new treatments, 

informing clinical practice, and coverage decisions.  The participants in RCTs are often not a 

representative sample of the larger at-risk population.  Hence it is argued that the average 

treatment effect from the trial is not generalizable to the larger at-risk population.  An essential 

premise of this argument is that there is significant heterogeneity in the treatment effect (HTE). 

We present a new method to extrapolate the treatment effect from a trial to a target group that is 

inadequately represented in the trial, when HTE is present.  Our method integrates trial and 

observational data (cross-design synthesis). The target group is assumed to be well-

represented in the observational database.  An essential component of the methodology is the 

estimation of calibration adjustments for unmeasured confounding in the observational sample.  

The estimate of treatment effect, adjusted for unmeasured confounding, is projected onto the 

target sample using a weighted G-computation approach.  We present simulation studies to 

demonstrate the methodology for estimating the marginal treatment effect in a target sample 

that differs from the trial sample to varying degrees.  In a companion paper, we demonstrate 

and validate the methodology in a clinical application. 

 

Keywords: observational data, unmeasured confounding, sensitivity analysis, interaction, 

heterogeneity, standardization, generalizability, internal and external validity. 

 

I. Introduction 

Randomized controlled trials (“RCTs” or “trials”) provide the most reliable evidence regarding 

efficacy of interventions for approval of new treatments, informing clinical practice, and 

coverage decisions.  Although trials provide reliable evidence regarding treatment effects, their 

evidence is usually narrow in the sense that it comes from participants who are carefully 

screened and selected. It is generally argued that the participants in trials are a select group 

that is not a representative sample of the larger at-risk population, and hence that the average 

treatment effects from the trials are not generalizable to the larger at-risk population.  Trials 
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cannot hope to avoid selection entirely. Selection criteria are useful to reduce the number of trial 

participants who are either too unlikely to benefit or too likely to be harmed to maintain scientific 

equipoise and ethical acceptability.  Further, a trial can experience unplanned selection such as 

due to healthy volunteerism.1  However, selection by a trial becomes a source of limited external 

validity when it occurs according to treatment effect modifiers causing significant heterogeneity 

in the treatment effects (HTE), since if there were no HTE the evidence should be generalizable.  

 

The limited external validity of trial evidence is a cause for concern to the extent that two 

conditions are present.  The first is selection in trials or non-random sampling.  The second 

condition is heterogeneity of treatment effect (HTE) or explanatory variability of treatment effect 

across individuals.  HTE occurs when a variable that substantially modifies treatment effect is 

understood.2   The presence of selection by a trial is not by itself a threat to external validity in 

the absence of known HTE.  (Admittedly, selection may be some cause for concern even in the 

absence of HTE because it suggests that there is an increased likelihood of selection according 

to an unknown source of HTE.)  The trial evidence becomes less relevant to a specific target 

population when selection and HTE are both present.3    

 

Mainly due to a lack of external validity, some guideline-makers and policy-makers believe that 

the evidence base from trials is inadequate, i.e. that trials provide insufficient evidence to guide 

care for key target populations.4,5  In recent years many have called for trials that are less 

exclusionary and more pragmatic.6,7  In addition, interest has gathered around exploiting 

observational studies’ potential to provide evidence where trials cannot.  However, a 

fundamental limitation of observational studies is that they do not control for confounding 

through randomization.  We could use a propensity-score based approach to estimate the 

treatment effect, but this is likely to be biased due to unmeasured confounding.  Therefore, 

limited internal validity is inherent to an observational design.  

 

There have been a few past attempts to draw information from more than one study design.  

Cross-design synthesis attempts to draw on respective strengths by examination of trial and 

observational data side by side.8  However, no statistical methods were proposed to estimate 

treatment effects in the observational study.  The confidence profile approach uses a Bayesian 

framework to combine evidence, with adjusted likelihood functions for different study designs 

and biases.9  However, confidence profile, like meta-analysis, uses only data at the study level 

and therefore cannot rigorously account for HTE.2  A standardization approach proposed by 
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Cole and Stuart10 uses the trial treatment effect and minimum sufficient information about the 

joint distribution of treatment effect modifiers from the observational target sample.  It can be 

used even without individual-level data from the target sample if sufficient information about the 

joint distribution of treatment effect modifiers is available.  With this approach, the probability of 

being selected into the trial sample can be used to provide a valid estimate of the marginal 

treatment effect in the target sample.  The Cole and Stuart approach for estimating a marginal 

treatment effect appears to work well in scenarios where there is sufficient overlap between the 

trial and target sample.  Without sufficient overlap, many people within the trial will be assigned 

zero weights and standardization will become unstable.  

 

We present a novel method to project (extrapolate) the treatment effect from a trial to a target 

group that is poorly represented in the trial, thus extending the applicability of the trial evidence. 

Our method uses individual-level data from a trial and an observational study that is more 

representative than the trial with respect to the target population. The method is based on the 

principle that valid (i.e., unbiased) estimates of treatment effect are most reliably obtained in 

trials, but observational designs are attractive for assessing and extending applicability of 

evidence to a different target sample. The proposed method may be viewed as an advance in 

cross-design synthesis, where the main idea is to integrate two different study designs in such a 

manner as to exploit their unique strengths while avoiding their weaknesses.  We call this cross-

design synthetic approach CRAM (Calibrated Risk-Adjusted Modeling). 

 

We present two simulation examples to demonstrate the methodology. In a companion paper, 

we demonstrate the application of the CRAM methodology to a clinical problem and validate the 

results using another trial. 

 

2. Brief description of CRAM 

Let A denote a binary treatment that is randomized in a clinical trial, sample E.  Let A(E) be the 

estimate of efficacy of intervention in E (i.e., the intent-to-treat effect).  We would like to assess 

whether the evidence from source E is applicable to target sample T.  The evidence would be 

applicable if the sample E is exchangeable with T, in the sense that it is reasonable to conceive 

of E as a random sample of T.  In particular, T should have the same distribution of the 

treatment effect modifiers as E in order for the evidence from E to be applicable to T (Cole and 

Stuart 2010).  How can we apply evidence from E to T when there is lack of exchangeability 

between E and T with respect to treatment effect modifiers?  Cole and Stuart (2010) proposed 

Hosted by The Berkeley Electronic Press



standardization on the basis of an effect modifier for establishing exchangeability between E 

and T when T is the entire at-risk population rather than a specific target population. In other 

words, they considered the generalizability of evidence in situations where E is a subsample of 

T, albeit a non-random subsample.  Direct standardization of E to T might work well when there 

is sufficient overlap in the distribution of the effect modifier in E and T.   

 

We consider a more relevant situation in which the source of evidence E is not necessarily a 

subsample of the target population T.  In particular, we are interested in the applicability of the 

trial evidence either to a target sample that was excluded or under-sampled (e.g. older women).  

Here the direct standardization approach of Cole and Stuart would not work well because 

without sufficient overlap standardization will be unstable.  Therefore, we propose a cross-

design synthetic approach using an observational bridging sample B where both E and T are 

well represented in terms of treatment effect modifiers (see Figure 1).  First, we estimate an 

intent-to-treat effect in E that is standardized to the distribution of the treatment response score 

(this is an “optimal” linear combination of treatment effect modifiers) in B.  This may be viewed 

as the causal treatment effect for B.  We then estimate the treatment effect in B using models 

which incorporate unmeasured confounding.  We calibrate the parameters of unmeasured 

confounding such that the calibrated treatment effect in the observational sample is the same as 

the risk-standardized treatment effect estimated in the trial.  The model-based calibration makes 

it possible to characterize unmeasured confounding.  Finally, we estimate the treatment effect 

for the target sample that is calibrated for unmeasured confounding.   
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Figure 1.  A schematic of a cross-design synthesis approach, calibrated risk-adjusted modeling 

(CRAM).  We have: E = trial (evidence source sample), T = target group and B = (bridge 

sample).   1A is an abstract conceptualization of the overlap between the three different 

samples, and 1B is a concrete representation of the overlap in terms of the distribution of the 

treatment effect modifier (e.g., baseline risk of outcome, age).  According to this particular 

schema, there is little overlap between the source (E) and the target (T) samples, therefore the 

direct standardization approach of Cole and Stuart will not be appropriate.  The observation 

sample (B) has a substantial overlap with both E and T in terms of the treatment effect modifier.   

The CRAM approach utilizes B as the “bridge” that provides the evidentiary link between E and 

T. 

   

3. Testing for heterogeneity of treatment effect in the trial 

When the treatment effect is heterogeneous, the average treatment effect from the trials is 

neither generalizable to the larger at-risk population nor applicable to a specific target sample.  

Therefore, ascertaining whether HTE is likely to be present is an essential aspect of our 

methodology.  Various patient characteristics can modify the effect of the treatment. There is a 

large literature demonstrating that baseline risk of the outcome (i.e. the probability of outcome 

that is independent of treatment) is often a potent treatment effect modifier on the relative risk 

scale.11-18 We propose to use baseline risk of the outcome as a treatment effect modifier to 

model heterogeneity of treatment effects.  The baseline risk of outcome is generally unknown.  
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We have to estimate it either using a validated external model or using a regression model 

developed with the data at hand.  If the risk model is external, it is important to ensure that it is 

well calibrated for the data at hand.  When a reliable external risk model is not available, it must 

be developed internally.  This can be developed in the control arm of the trial and observational 

samples.  Depending on the type of outcome (e.g., continuous, binary, counts, time-to-event), 

the risk model might be linear, generalized linear, or Cox models.  We will denote ri the 

predicted baseline risk of outcome for individual i with covariates Xi.   

 

It has been shown that the baseline outcome risk is more powerful than interaction tests using 

one variable at a time, and that it is not susceptible to multiple testing concerns. 2 We suggest 

two approaches for testing whether the treatment effect varies according to baseline outcome 

risk.  An interaction term between the treatment and the baseline risk score can be included in a 

regression model of outcome variable that also has first-order terms for treatment and baseline 

risk.  HTE is present if the interaction term is statistically (e.g., Wald test) and clinically 

significant.   

 

Another interesting approach has been proposed by Follmann and Proschan.25  In this approach 

we do not estimate the risk and then test for interaction separately, but we do it all in one step.  

This is particularly useful when a validated external risk model is unavailable.  

 

The data is {Yi, Ai, Xi}, where Yi is the primary endpoint, Ai the treatment indicator, and Xi a p-

dimensional vector of baseline predictors of outcome.  Consider the model: 

 

𝑔(𝐸[𝑌𝑖]) = (1 − 𝐴𝑖)(𝛼0 +  𝑿′
𝑖𝛃𝛄𝟎) +   𝐴𝑖(𝛼1 +  𝑿′

𝑖𝛃𝛄𝟏)  (1) 

Test for interaction now is a test of H0: versus HA: ≠By substituting 𝛃𝛄𝐣 =  𝛅𝐣, the 

null and alternate hypotheses, H0 and HA, can be rewritten as: 

 H0: 𝛅 𝛅versus HA: k 𝛅≠ 𝛅k ≠ 1.   

A likelihood ratio test for this can be constructed by estimating a common 𝛅under H0 and 𝛅 and 

k under HA.  The test both identifies a single index of risk and also tests for an interaction along 

this index.  If the test rejects the null hypothesis, the conclusions are that there is a treatment 

interaction and that the treatment effect varies along 𝑿′𝛃, which Follmann and Proschan call 

“disease severity”, and may be viewed as being analogous to the baseline risk.  However, it is 
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more accurate to think of this as the optimal linear combination of covariates that predicts 

individuals’ response to the treatment.  Hence, we call this treatment response score.  

 

4. Current approach: direct standardization of treatment effect from the trial to target 

sample 

There are two approaches for projecting (or extrapolating) the intent-to-treat effect from the 

source sample E (i.e. trial) to the target group P.  Standardization (Cole and Stuart 2010) is the 

direct approach.  Standardization is a commonly used technique to estimate the (causal) 

parameter of interest in a population of interest. It is a traditional approach in survey sampling 

and epidemiology to extrapolate estimates from the sample at hand to a target population.  

Standardization involves appropriate adjustment of the estimate from available data such that 

the adjusted estimate reflects the differences in characteristics between the sample at hand and 

the target population of interest, especially those characteristics that are thought to be 

confounders or effect modifiers. Stratification is used when there is small number of 

characteristics or when there is large data.  Model based approach is warranted when there are 

several variables.  Cole and Stuart10 proposed a model based approach for standardizing trial 

results to a target population.  Here we briefly review their approach.   

 

4.1 Covariate-based standardization 

Let S = 1 denote membership in study sample at hand.  Obviously, S=0 denotes those in the 

target sample not being selected into the study.  For subject i with covariates Xi, pi=Pr(Si=1 | Xi) 

denotes the probability of being selected into the study.  

log
Pr(𝑆𝑖 = 1 | 𝑋𝑖)

1 − Pr(𝑆𝑖 = 1 | 𝑋𝑖)
= 𝑋𝑖𝜃 

         (2) 

Cole and Stuart fitted a weighted Cox proportional model to estimate the treatment effect, where 

the weight assigned to each individual was the inverse probability of being selected into the 

study, 1/pi.  Individuals who according to the selection model are least likely to get into the 

study, but actually got in, would be assigned large weights. The treatment effect from the 

weighted Cox model is standardized to the target population.  Robust variance estimation 

procedure should be used to compute standard error of treatment effect estimate since 

weighting induces correlation in the data.   

 

4.2 Risk-based standardization  
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We follow the standardization approach of Cole and Stuart.  However, we depart from their 

proposal in that rather than use covariate-based standardization we use the baseline risk, ri, as 

the standardization variable (treatment response score can also be used here).   We estimate 

study membership Si=1 using a flexible logistic regression model: 

log
Pr(𝑆𝑖=1 |𝑟𝑖)

1−Pr(𝑆𝑖=1 |𝑟𝑖)
= 𝑓(𝑟𝑖)      (3) 

where f(ri) is a flexible cubic spline function.  The model is fitted using the generalized additive 

model approach implemented in the R package “mgcv”.19  Let pi = Pr(Si=1) for individual i.  The 

weights are wi = 1/pi.  We estimate standardized treatment effect using a weighted outcome 

model (a marginal structural model): weighted linear, logistic or Cox regression model 

depending on the outcome.  Robust variance estimation procedure is used to compute standard 

error of treatment effect estimate. 

 

 

5. CRAM  

The direct standardization approach will not work well in situations where the target group is 

either excluded or under-sampled in E (e.g. older women).  Without sufficient overlap, many 

people in the trial will be assigned zero weights and standardization will be unstable. Hence, we 

propose a new cross-design synthetic approach (CRAM), where we make use of both the 

source sample E and an observational bridge sample B to obtain the treatment effect in the 

target group.  There are three main steps involved in CRAM:  (i) definition of the causal 

estimand in observational sample, (ii) calibrating observational sample for unmeasured 

confounding, and (iii) estimating treatment effect for target sample. 

 

5.1 Causal estimand in observational bridge sample 

We employ the G-computation approach in the observational bridge sample to estimate the 

causal effect of the treatment. This approach allows the use of observational data for the 

estimation of parameters that would be obtained in a randomized controlled trial.  Under 

assumptions of consistency, no unmeasured confounding and correct model specification for 

the potential outcomes, these estimates can be interpreted causally.20  Suppose the data is {Yi, 

Ai, Xi}, where Yi is the primary endpoint, Ai the treatment indicator, and Xi a p-dimensional vector 

of baseline predictors of outcome. We let Yi be a binary outcome for describing the G-

computation.  The first step is to fit a regression model for the outcome Y on the exposure A and 

covariates X.  The outcome model can include interactions between exposure and covariates. 

After fitting this model, we predict the counterfactual outcome probabilities for each individual 
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under each exposure, pi0=Pr(Yi=1|Ai=0,Xi)) and pi1=Pr(Yi=1|Ai=1,Xi)). The covariates are fixed at 

the observed values, but only the exposure status is changed. The marginal treatment effect 

estimate (log odds ratio) is computed as: 

θ = log [(
1

𝑛
) ∑ 𝑝𝑖1

𝑛
𝑖=1 ] − log [(

1

𝑛
) ∑ 𝑝𝑖0

𝑛
𝑖=1 ]    (5) 

Resampling based methods, such as bootstrapping, may be used to estimate the standard error 

of .  

 

For survival (i.e. time to event) data, the causal effect of interest is the marginal log hazard ratio, 

given as: 

t = log[-log(prob(T1 > t)] – log[-log(prob(T0 > t)] ,    (6) 

where T0 and T1 denote the potential failure times under unexposed and exposed conditions.  

The Cox proportional hazards model is commonly used to estimate the marginal log-hazard 

ratio.  The survival probability, prob(Ta > t), is estimated after fitting a Cox PH model as follows: 

prob(Ta >  t) = 
1

𝑛
 ∑ 𝑆𝑖(𝑡|𝐴 = 𝑎,𝑛

𝑖=1 𝑋𝑖),       (7) 

where Si(t|A=a) is the counterfactual survival probability at time t for individual i when he/she is 

given treatment A=a.  The G-computation formulas (6) and (7) are given in Stitelman et al.21 

 

The outcome model must be correctly specified in order for the G-computation estimate of the 

marginal treatment effect to be unbiased. This is a major difference between the standardization 

approach and the G-computation approach. The standardization approach using study selection 

weights does not require an outcome model, whereas the G-computation approach is critically 

dependent on the outcome model. On the other hand, the standardization approach requires 

that the study selection model be correctly specified.  In addition to correct outcome model 

specification, the G-computation approach also requires experimental treatment assignment or 

positivity assumption, which means that each individual should have a non-zero probability of 

receiving the intervention. It also requires no unmeasured confounding, which is unlikely to hold 

in observational studies.  

 

5.2. Calibration of observational bridge sample to trial 

We assume that all unmeasured confounding can be captured by a single covariate U, i.e. 

exposure A is independent of potential outcomes {Y(A=0), Y(A=1)} given X and U.  This 

assumption is not as unrealistic as it might seem.  It can be actually proved (see Appendix).  If 

there is knowledge about how the unmeasured confounder U is related to exposure A, outcome 
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Y and to covariates X, it can be used to generate realizations of U.  In the absence of such 

knowledge, it is necessary to make strong (unverifiable) assumptions about U and sensitivity 

analyses are warranted. For continuous and binary outcomes Y, we take U to be normally 

distributed with a mean that depends on Y and A as follows:  

E[U|Y=y, A=a] = b0 + baa + byy;  var[U|Y=y, A=a] = U
2  (8) 

where ba represents the impact of U on exposure status and by represents the impact of U on 

the outcome. A positive ba implies that people with higher values of U are more likely to be 

exposed, and a positive by implies that people with higher values of U are more likely to 

experience the outcome. 

 

When the outcome is the time to an event subject to right censoring, we cannot use (8) since we 

cannot observe the event times for all individuals due to right censoring. Let {Yi, Ei} be the 

observed data for each individual, where Yi is the duration of follow-up and Ei is an indicator of 

whether the individual had the event, with Ei=1 indicating that the event happened. We do not 

know the true event times for those with Ei=0. We need to estimate the true failure time T given 

{Y, E}. We assume that censoring is uninformative and that T is log-normally distributed.  Under 

these assumptions, the mean and variance of log T can be readily estimated from {Y, E} by 

fitting a censored regression model (with `survreg’ function in “survival” package,22 with a log-

normal distribution).  Let the estimated marginal mean and standard deviation of log T, 

estimated using {Y, E}, be LT and LT, respectively  The assumption of completely 

uninformative censoring can be relaxed by using covariate information to model {Y, E}.  We, 

then, generate U correlated with estimated failure time as follows.  

 

We assume that (log U, log T) is from a bivariate normal distribution.  The marginal mean of log 

U is U and it varies according to the exposure status A as:  

U = A*1 + (1-A)*0,       (9) 

where 0 and 1 are the means of U in the unexposed and exposed groups. Let U be the 

standard deviation of log U, and be the correlation between log U and log T.  Both U and  

are assumed constant, i.e. independent of treatment group A.  Now, the conditional distribution 

of U given T is also log-normal with mean and standard deviation given as follows: 

U|T = U + Z U, where Z = (log Y - LT)/LT    (10a) 

U|T = U (1-         (10b) 
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This completes the specification of the model for generating unmeasured confounder U that is 

correlated with right-censored failure time Y.  Note that 4 input parameters are necessary to 

characterize U:  0, 1, and U. We can fix 0 and U without losing much generality, and only 

vary 1 and to study the impact of unmeasured confounding.  A positive 1 implies that people 

with higher values of U are more likely to be exposed, and a positive  implies that people with 

higher values of U are more likely to have a larger time to event, or alternately, positive  implies 

that higher values of U are associated with smaller rates of events. 

 

The expected treatment effect from the trial and observational study should be the same when 

the two samples have the same distribution of confounders and when there is no unmeasured 

confounding. However, they might differ when the distributions of confounders differ.  Therefore, 

we need to standardize the ITT effect from the trial to an observational sample. We let S=1 

denote membership in observational sample and S=0 membership in the trial sample.  We 

estimate pi = Pr(Si=1|ri) for each individual i using (3).  The weight assigned to each individual in 

the trial is the odds of that individual being selected into the observational sample:  

wi = pi/(1-pi), where pi = Pr(Si=1|ri)     (4) 

The individuals in observational sample receive zero weight. We then estimate standardized 

treatment effect using a weighted outcome model (a marginal structural model): weighted linear, 

logistic or Cox regression model depending on the outcome.  Let A be the (intent-to-treat) 

treatment effect in the trial that is standardized to the treatment response score distribution in 

the observational study.  In order for the standardization to provide reliable effect estimate, the 

baseline risk distributions in the trial and observational samples should have substantial overlap.  

One way to quantify the lack of overlap is to look at the proportion of subjects in the trial with 

relatively small weights, Eq. (4).   

 

We can compute the corresponding marginal causal effect in the observational study using the 

G-computation approach described in Section II.E.  For a binary outcome, we consider the 

outcome model: 

log
Pr(𝑌𝑖=1 |𝐴,𝑅𝑖)

1−Pr(𝑌𝑖=1 |𝐴,𝑅𝑖)
= 𝛼0 +  𝛼𝑎𝐴 + 𝛼𝑟𝑅 + 𝛼𝑎𝑟𝐴 ∗ 𝑅   (11) 

where A is binary exposure status and R is the baseline risk of outcome.  Let the G-computation 

estimate of marginal log odds ratio, Eq. (5), be A.  This would be the causal effect, and would 

equal, in expectation, the risk-standardized trial effect, A, when there is no unmeasured 
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confounding (and when the additional assumptions of consistency and positivity of treatment 

assignment hold). When these 2 effect estimates are different, we might suspect that 

unmeasured confounding is present. We might consider the following outcome model: 

log
Pr(𝑌𝑖=1 |𝐴,𝑅𝑖,𝑈)

1−Pr(𝑌𝑖=1 |𝐴,𝑅𝑖,𝑈)
= 𝛼0 +  𝛼𝑎𝐴 + 𝛼𝑟𝑅 + 𝛼𝑎𝑟𝐴 ∗ 𝑅 + 𝛼𝑈𝑈 +  𝛼𝑎𝑢𝐴 ∗ 𝑈 (12) 

Let the corresponding G-computation estimate of marginal log odds ratio (Eq. (5)) be A(U).  We 

use this notation to denote the dependence of the G-comp estimate on the parameters of U.  

We estimate unmeasured confounding by finding the parameters of U (Eqs. 10a and 10b) that 

optimally matches the observational sample’s treatment effect to the trial treatment effect.  In 

other words, we find ba and bysuch that A(U) = A.  Even though the G-comp estimate and the 

standardized trial effect only have to be equal in expectation, we enforce this equality for the 

sample at hand.   

 

Without loss of much generality, we may fix the following values of parameters defining U (see 

Eq (8)):  b0 = 0, U = 1.  The remaining two parameters ba and by fully characterize the nature and 

degree of unmeasured confounding.  There is no unmeasured confounding if either one of them 

is zero (or very small).  A positive ba indicates that U is positively correlated with treatment 

status, i.e. an increase in U increases the probability of choosing the treatment.  Similarly, a 

positive by indicates that U is positively correlated with the probability of outcome.  We vary ba < 

0 and estimate by such that A(U) = A.  We do not lose any generality by considering a 

negativeba.  It should be noted that a smaller magnitude of difference in U between the two 

treatment groups, i.e. a less negative ba, would need to be compensated by a larger positive by 

in order to obtain the same target treatment effect; by  0 would mean that there is no 

unmeasured confounding.  

 

The algorithm for CRAM calibration is as follows: 

1. Obtain the standardized trial treatment effect  to be matched. 

2. Fix b0 = 0, U = 1 and pick a value of ba < 0.   

3. For some by, generate K realizations of U from a normal distribution with the 

mean and standard deviation given by (8).  Each U is a vector of length N 

(sample size of observational data), one for each individual. This gives us K 

augmented observational data sets: Dk = {A, Y, X, Uk}, k=1, 2, …, K.   
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4. For each data set Dk, estimate the marginal log-odds ratio , Eq (5), 

corresponding to model (12).   

5. Compute *(U) = E[|U] = mean((k)) 

6. Determine the discrepancy between estimate and target: (U) = (*(U) - A2 

7. Find by* that minimizes U 

The parameters (ba=0, U = 1, ba, by*) complete the description of optimal U required for 

calibration to eliminate any unmeasured confounding.  The optimization in Step 7 is a scalar 

optimization involving only one parameter by.  However, the objective function in Step 7 is noisy 

due to randomness of Uk.  A large K is required to get good results.  K = 200 is usually 

adequate.  A sensitivity analysis for U involves repeating the CRAM algorithm for different 

values of ba and estimating the optimal by* for each, under model (12).   

 

5.3. Projecting treatment effect from the bridge sample to the target sample 

The last step is to project the treatment effect from the bridge sample, which is the observational 

study sample, to a target sample.  Model (11) cannot be used directly since the participants’ risk 

distribution is different in the target compared to the bridge sample (see Figure 1).  However, 

the calibrated CRAM model (12) with optimal parameters (ba=0, U = 1, ba, by*) can predict 

treatment effect for the target sample, accounting for HTE.  The G-computation formula can be 

applied to the calibrated model (11) with standardization weights to compute the counterfactual 

probabilities for each individual in the bridge sample.  Formula (4) with weights is used to 

compute the counterfactual probabilities required for calculating the causal effect, (3): 

η = log [(
1

𝑛
) ∑ 𝑤𝑖𝑝𝑖1

𝑛
𝑖=1 ] − log [(

1

𝑛
) ∑ 𝑤𝑖𝑝𝑖0

𝑛
𝑖=1 ]  (13) 

where wi = pi/(1-pi), and pi is the probability that individual i in the bridge sample could belong to 

the target sample. A logistic regression model is fitted for predicting pi = prob(Si=1) as a function 

of baseline risk of outcome, where S=1 for target sample and S=0 for the observational sample.  

The marginal log-odds ratio (13) is the CRAM estimate of causal effect for the target sample.   

 

6. Simulation studies 

There are three different samples:  the trial, the observational, and the target. Our goal is to 

estimate the treatment effect in the target group using two approaches: direct risk-based 

standardization (section II.D) and CRAM (section II.H).   
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The sample size was N0 = N1 = 1000 for the treated and untreated groups in trial and 

observational sample, and Nt = 1000 in the target sample.  Binary outcomes were generated 

according to the following binomial model: 

logit(pr[Y=1 | A, X1, X2, U])  = b0 + bX A + b1 X1 + b2 X2 + bA1 A * X1 + bA2 A * X2 + bU U + bAU A*U 

      (14) 

where A = treatment indicator (0/1), X1, X2 = covariates, U = unobserved effect modifier. The 

outcome probability is independent of the study indicator meaning that the same outcome model 

applies to all samples.  We sampled U and X1 from a bivariate normal distribution: (X1, U) ~ N(, 

), where  = (1.0, 1.0) in the trial,  = (1.0, 0.5) in observational sample, and t = (0, 0.5) in 

target sample. The covariance matrices for the trial (observational (and target (t 

samples are: 

Σ0 =  Σt = (
0.5 0
0 0.5

) ; Σ1 =  (
1 0
0 1.5

) 

X2 is a binary covariate with prob(X2=1) = 0.5 in trial, 0.8 in observational, and 0.2 in the target 

sample.   

 

In the trial, the treatment A was randomly assigned with a probability of 0.5 to each participant. 

In the observational sample, the following assignment rule was used: 

logit(pr[A=1 | X1, X2, U])  = -0.5 + 0.5*X1 + 0.4 * X2 + 0.4 * U  (15) 

The outcome model parameters for (14) are: (b0, bA, b1, b2, bU, bA1, bA2, bAU) = (-0.5, 0.7, 0.4, 

0.4, 0.2, 0.2, 0.2, 0.1).  The parameters were chosen such that treatment effect varies with 

baseline risk of outcome (independent of treatment).  Specifically, treatment effect increases 

with increasing baseline risk of outcome. 

 

Now, by design, the participants in trial and target samples differ in terms of their observed (X1, 

X2) and unobserved (U) covariates.  Since these are also effect modifiers, the treatment effect 

obtained from the trial is not valid for the target sample.   

We first estimate the outcome risk, which is required for both CRAM and direct standardization 

approach. We use the untreated subjects (A=0) from the trial and observational samples to 

model the outcome risk as a function of observed covariates:   

logit(pr[Y=1 | A=0, X1, X2, S])  = a0 + a1 X1 + a2 X2 + a12 X1*X2 + aS S  
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We estimate outcome risk for the trial participants as r = r(x1, x2, S=0) = 1 / (1 + exp(-a0 - a1 x1 - 

a2 x2 - a12 x1*x2)).  This model is also used to estimate the baseline risk in the target sample.   

[Figure 2 about here] 

Figure 1 shows the baseline risk distributions for the trial, observational, and the target 

sample for a typical simulation.  The baseline risk in the trial is on average larger than that in the 

target sample, while the calibration (observational) sample has a broader risk distribution that 

spans both the trial and target samples. This is an essential requirement for the CRAM 

methodology that allows the observational sample to act as the bridging sample between the 

trial and target samples. In these simulations, there is a great deal of overlap between the trial 

and target samples in terms of the baseline risk distribution.  Therefore, we might expect that 

the direct risk-based standardization of trial result to target sample would perform as well as 

CRAM.   

We ran 100 simulations.  In each, we computed the following treatment effects: 

1. The treatment effect in the trial, which we call the naïve treatment effect, because this is 

what would be commonly used as the estimate for the target sample. This is valid only 

when either the distributions of effect modifiers are the same in the trial and target, or 

when there is no effect modification.  

2. Risk-standardized treatment effect in the trial as described in section II.D. 

3. CRAM projected estimate as described in sections II.G and II.H. 

4. The true treatment effect in the target sample under random treatment assignment. 

 

[Table 1 about here] 

The results are displayed in Table 1.  All of the methods overestimate the truth, with the naïve 

treatment effect being the worst. The CRAM estimate has a greater bias than the risk-

standardization estimate, but has a smaller variance.  Both CRAM and risk-standardized 

estimates have larger standard errors than the naïve estimate. 

 

We ran another set of simulations, where we considered a target sample that is more distant 

from the trial sample.  This is an important scenario because the standardization approach 

proposed by Cole and Stuart can be expected to be unstable when there is little overlap 

between the trial and target sample (a large proportion of trial participant would receive zero 

weights).  In contrast, CRAM is designed to address the lack of overlap with the bridge sample 

as an evidentiary bridge.  Specifically, in the second scenario the target sample had a 
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substantially lower baseline risk than the trial sample.  We sampled U and X1 from a bivariate 

normal distribution: (X1, U) ~ N(, ), where  = (1.0, 1.0) in the trial,  = (1.0, 0.5) in 

observational sample, and t = (0.05, -0.05) in target sample. The covariance matrices for the 

trial (observational (and target (t samples are: 

Σ0 =  (
0.1 0
0 0.1

) ; Σ1 =  (
1 0
0 1.5

) ;  Σt =  (
0.05 0

0 0.05
)  

X2 is a binary covariate with prob(X2=1) = 0.5 in trial, 0.8 in observational, and 0.05 in the target 

sample.  All other parameters are the same as in the first set of simulations. 

 

[Figure 3 about here] 

Figure 2 shows the baseline risk distributions for the trial, observational, and the target sample 

for a typical simulation.  The baseline risk in the trial is on average much larger than that in the 

target sample compared to the first set of simulations.  The calibration (observational) sample 

once again has a broader risk distribution that spans both the trial and target samples. 

[Table 2 about here] 

The results are displayed in Table 2.  The true effect is smaller compared to the first scenario.  

This makes sense since the target sample now has a smaller baseline risk on average 

compared to previous scenario. We also see that both the CRAM and risk-standardized 

estimates are smaller compared to the previous scenario.  Both estimates are still positively 

biased as in the first scenario. An important, but expected, observation is the dramatically 

increased variance of the risk-standardized estimate. This is because there is much less overlap 

between the trial and target sample in the second scenario compared to the first scenario.  The 

variance of the CRAM estimate also increased due to the same reason, but the estimate is 

much less variable compared to the risk-standardized estimate.  Thus, the CRAM approach, 

although biased, is more reliable than risk-standardization for distant target samples as long as 

there is substantial overlap between the observational bridge sample and the target sample. 

 

 

7. Discussion  

This report presents a novel method to project the estimation of a treatment effect from a trial 

(or trials) to people who were not in the trial using observational data.  In order to draw on 

strengths and address limitations that are inherent to each design, the method uses individual-

level data from a synthetic study design dyad of a trial and an observational study.  A calibration 

factor for unmeasured confounding for the observational study relative to the trial makes it 
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possible to estimate a treatment effect in the observational data and in the target sample.  In 

this way the method uses empirical data to inform a sensitivity analysis for unmeasured 

confounding of treatment effects for people not in the trial.  The proposed methods will facilitate 

the synthesis of evidence base provided by trials, under appropriate conditions, with evidence 

from target populations not included by trials.  The methods can be used for a trial and registry 

or a trial and a cohort study.  CRAM differs from standard meta-analysis, which typically 

combines the results of several studies with similar design, in two important ways: it integrates 

studies with different designs; and, it uses individual-level data to rigorously understand and 

account for HTE and biases.  The ability of CRAM to remove unmeasured confounding from the 

registry data in the calibration interval and provide a sensible estimate of treatment effects in the 

projection region is promising.   

 

The CRAM method makes several assumptions and has certain requirements. CRAM relies on 

individual-level data for important patient characteristics.  While the requirement of individual 

level data from trials and observational studies limits feasibility across scenarios, we believe that 

individual-level data is essential to validly account for HTE and treatment selection bias.  A real 

limitation is that we have presented a method to mainly account for heterogeneity due to 

patient-related characteristics, but not for design-related features. This is because design-

related features that contribute to HTE can vary from one study to another, and consequently it 

is much more challenging to develop a general methodology to account for all of them.  In order 

to perform calibration in CRAM it is necessary to have sufficient overlap in baseline risk 

distribution between a trial and observational study.  To obtain CRAM projection for the target 

sample, there must be sufficient overlap between the observational sample and the target 

sample.  Thus, the observational sample plays a critical role as a “bridge” between the trial and 

the target samples, facilitating the extension of trial results to the target sample.  If the trial 

sample overlaps substantially with the target sample, a direct standardization approach might 

be adequate and CRAM might not be warranted.  However, for target groups that are usually 

poorly represented in trials, including older women and older adults with multimorbidities, direct 

standardization might not provide reliable effect estimates. If we can find a “compatible” bridge 

sample, i.e. an observational study, we might be able to employ the CRAM methodology.  By 

compatibility, we mean that there are no major discrepancies between studies in terms of 

measurement of treatment, outcome and prognostic variables. For projecting a treatment effect 

for the target sample, CRAM assumes that the same outcome model that is used in the bridge 

sample also holds in the target sample.  
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CRAM is computationally intensive in large data sets, mainly due to the calibration step.  

Therefore, computing standard errors via resampling can be time consuming. Finally, CRAM 

assumes that the settings for unmeasured confounding obtained in the bridge sample are also 

applicable to the target sample. This is not too unrealistic.  It is also sensible, if CRAM is viewed 

as an analytic device that uses trial data to narrow the otherwise wide scope of sensitivity 

analyses for unmeasured confounding in observational data. 

 

In summary, CRAM integrates studies with different designs and uses individual-level data to 

rigorously understand and account for heterogeneity of treatment effects and biases in 

observational data in order to apply treatment effects from a trial to people not adequately 

represented in the trial. In a companion paper, we provide an external validation in the SOLVD 

prevention trial showing that the CRAM projected treatment effect is proximal to the actual 

treatment effect.  
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TABLES AND FIGURES. 

Table 1. Treatment effect estimate for the target sample and its standard deviation for different 

approaches (100 simulations). 

 

Method Mean SD MSE 

Naïve 1.08 0.14 0.09 

Risk standardized 0.94 0.36 0.15 

CRAM  1.01 0.20 0.08 

Truth 0.81 0.14 0.02 

 

Abbreviations: MSE is mean squared error. SD is standard deviation. 

 

Table 2. Treatment effect estimate for a more distant target sample and its standard deviation 

for different approaches: second set of simulations (100 simulations). 

Method Mean SD MSE 

Naïve 1.09 0.14 0.09 

Risk standardized 0.88 1.47 2.19 

CRAM  0.93 0.46 0.26 

Truth 0.72 0.12 0.01 

 

Abbreviations: MSE is mean squared error. SD is standard deviation. 
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Figure 2.  Distributions of baseline risk of outcome (probability of outcome independent of the 

treatment) in the trial, calibration, and target samples.  
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Figure 3.  Distributions of baseline risk of outcome (probability of outcome independent of the 

treatment) in the trial, observational, and target samples in the second set of simulations for a 

more distant target sample.  
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Appendix 1: Proof that a single variable is sufficient to capture all unmeasured confounding 

(Courtesy: Constantine Frangakis, personal communication).   

 

Suppose we have a binary treatment A, with potential outcomes Y(A=a), a=0,1.  Ignorability (or 

no further confounding) after conditioning on a covariate would mean that {Y(0), Y(1) } is 

independent of A  given a vector of covariates X.  This implies that  

 

{Y(0), Y(1)} is independent of A  given e(X),         (A1) 

 

where e(X) = prob(A=1 | X). 

 

Now, obviously {Y(0),Y(1)} is independent of A  given {Y(0),Y(1)}, which, from (A1)  implies that 

{Y(0),Y(1)} is independent of A  given e({Y(0),Y(1) }), where e({Y(0), Y(1)}) = prob(A=1 

| Y(0),Y(1)) =: U.  The latter variable, U, is a scalar. This completes the proof.   

This U is the simplest scalar that balances the covariates X between the treatment groups in the 

sense that it is a function of any other variable that creates such a balance.  U can be either 

continuous or categorical.   
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