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Abstract

We present a general method for estimating the effect of a treatment on an ordinal outcome in ran-
domized trials. The method is robust in that it does not rely on the proportional odds assumption. Our
estimator leverages information in prognostic baseline variables, and has all of the following proper-
ties: (i) it is consistent; (ii) it is locally efficient; (iii) it is guaranteed to match or improve the precision
of the standard, unadjusted estimator. To the best of our knowledge, this is the first estimator of the
causal relation between a treatment and an ordinal outcome to satisfy these properties. We demon-
strate the estimator in simulations based on resampling from a completed randomized clinical trial of
a new treatment for stroke; we show potential gains of up to 39% in relative efficiency compared to the
unadjusted estimator. The proposed estimator could be a useful tool for analyzing randomized trials
with ordinal outcomes, since existing methods either rely on model assumptions that are untenable in
many practical applications, or lack the efficiency properties of the proposed estimator. We provide R
code implementing the estimator.

1 Introduction
Our methods are motivated by questions that arose in a randomized trial of a new treatment for stroke.
This trial is fully described in Section 2, and is summarized here. The outcome is an individual’s score
on the modified Rankin Scale (mRS), which takes integer values from 0 to 6 representing his/her degree
of functional disability. The goal is to estimate the marginal effect of the treatment versus control on
this ordinal outcome. We leverage information in prognostic baseline variables to improve precision in
estimating the unconditional treatment effect. We propose a new class of estimators for this problem,
which can be applied in randomized trials or more generally in observational studies.

In randomized trials with ordinal outcomes, a standard approach is to estimate the marginal treat-
ment effect by assuming the proportional odds model. A downside is that this approach relies on the
proportional odds assumption, which may be untenable in many practical applications. To address this,
we introduce a nonparametric extension of the parameter in the proportional odds model. This parameter
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is a summary measure for comparing any pair of ordered, multinomial distributions. It equals the aver-
age of the cumulative log odds ratios across categories. We propose an estimator of this parameter that
incorporates information in prognostic baseline variables and is guaranteed to be consistent, without re-
quiring parametric model assumptions. Furthermore, this estimator is guaranteed to have greater or equal
asymptotic precision than the standard unadjusted estimator; our estimator is also locally semiparametric
efficient. The above claims hold under the assumption that outcomes are either all observed, or are miss-
ing completely at random as defined in Section 3.2. We also consider other ways that outcomes could be
missing, and describe how the estimator adjusts for informative loss to follow-up.

[13, 14, 17] laid the foundation for locally efficient estimation of causal effects, which has been ex-
tended to incorporate enhanced efficiency properties, e.g., by [19, 24, 28, 21, 5, 20, 15, 8]. Targeted
minimum loss based estimation of the effect of treatment on binary, continuous, and time to event out-
comes in randomized trials was first discussed in [10] and [18]. We build on the general ideas in [24] and
[8] to construct a targeted minimum loss based estimator of the new parameter defined in Section 3.1,
which represents the marginal effect of a treatment on an ordinal outcome, without making the propor-
tional odds assumption. Our main contribution is to develop an estimator with variance guaranteed to
be smaller or equal than the variance of the unadjusted estimator, asymptotically, for this parameter. Fo-
cusing on this goal allows us to develop estimators with computational advantages not available for the
estimators of [8], which were constructed to achieve additional efficiency properties. Specifically, our
estimators do not need to solve a non-convex optimization problem, which can be computationally chal-
lenging. We demonstrate our estimator in simulations based on resampling from a completed randomized
trial, where we show potential efficiency gains of up to 39% compared to the unadjusted estimator.

In Section 2, we describe the MISTIE II randomized trial, which motivated our work. In Section 3, we
define our estimation problem and present the nonparametric extension of the proportional odds model
along with a corresponding unadjusted estimator. In Sections 4 and 5, we develop a new estimator of this
nonparametric extension that is guaranteed to have asymptotic variance smaller or equal to the variance
of the unadjusted estimator. We present a simulation study based on data from the MISTIE II trial in
Section 6. We discuss directions for future research in Section 7.

2 Motivating Application: MISTIE II Trial
MISTIE II is a randomized, prospective Phase II trial comparing a novel, minimally invasive surgical
procedure to standard medical care among patients with intracerebral hemorrhage (ICH) [1]. The primary
outcome is the modified Rankin Scale (mRS) measured 180 days after randomization. The mRS measures
an individual’s degree of disability, and has seven ordinal levels. The following variables were collected
at baseline and are strongly correlated with the outcome: age, ICH volume, and National Institutes of
Health Stroke Scale (NIHSS) [4]. These variables are used in our adjusted estimator.

The treatment effect of interest is the average over levels of mRS of the cumulative log odds ratios
comparing treatment versus control, as defined in (24) in Section 3.1. For both the unadjusted and
adjusted estimators, we computed standard errors and confidence intervals based on the bias-corrected
and accelerated (BCa) bootstrap [6]. In the MISTIE II trial, the unadjusted estimate of the treatment
effect is 0.252 (standard error, SE = 0.401) with a 95% confidence interval of -0.558 to 1.047. The
adjusted estimate of the treatment effect is 0.356 (SE = 0.346) with 95% confidence interval -0.298 to
1.02. The estimated relative efficiency, i.e., the ratio of estimated variances comparing the unadjusted
estimator to the adjusted estimator, is 1.34. A relative efficiency of 1.34 means that the required sample
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size is reduced by 1 − (1/1.34) ≈ 25% when using the adjusted estimator compared to the unadjusted
estimator, in order to achieve a given power (e.g. 80% power) at a given alternative, asymptotically. This
gives an initial indication that adjusting for baseline variables has potential to improve precision in the
context of ordinal outcomes. Below, we present theoretical results and a simulation study comparing our
adjusted estimator versus the unadjusted estimator.

3 Problem Definition

3.1 Notation
Let O = (W,A,∆,∆Y ) ∼ P0 denote a random vector with unknown distribution P0, where Y denotes
an ordinal outcome taking values in {1, . . . , K} observed only when the censoring variable ∆ = 1; A
denotes a binary treatment; W denotes a vector of pre-treatment variables. We refer to the distribution
P0 as the observed data distribution, in contrast to the distribution of potential outcomes defined next.
Define the potential outcomes Ya : a ∈ {0, 1} to be the outcomes that would have been observed had
treatment A = a been assigned with probability one.

We consider randomized trials where all participants are randomly assigned to treatment or control
independent of baseline variables W . Therefore, the distribution of A given W is set by design, and
so is known. We assume that P0 ∈ M, where M is the model defined as all continuous densities on
(W,A,∆,∆Y ) with respect to a common measure ν, such that A is independent of W . The index naught
in P0 denotes the true distribution, and is added to the notation of any quantity whenever it is necessary
to avoid confusion, but is omitted otherwise. Denote θa(k) = P (Ya ≤ k), and θ = (θa(k) : k =
1, . . . , K − 1; a = 0, 1). Consider the following proportional odds model for ordinal outcomes:

logit θa(k) = αk + βpara, for a = 0, 1; k = 1, . . . , K − 1, (1)

where logit(x) = log{x/(1 − x)}. Setting a = 0 in the above display, it follows that αk = logit θ0(k).
Therefore, the main assumption of the proportional odds model is that logit θ1(k) − logit θ0(k) equals a
common value βpar for all k ≤ K − 1. The proportional odds assumption may be untenable in many
practical applications, and it is desirable to use a method that is robust to this assumption being false. To
address this, we define a univariate contrast between two ordered, multinomial distributions, using the
general approach for constructing nonparametric extensions outlined by [11]. Define the nonparametric
extension β(θ) of βpar as follows:

β(θ) = arg min
β′∈R

K−1∑
k=1

(logit θ1(k)− logit θ0(k)− β′)2.

The solution to the above minimization problem is

β(θ) =
1

K − 1

K−1∑
k=1

{logit θ1(k)− logit θ0(k)} =
1

K − 1

K−1∑
k=1

log

{
θ1(k)

1− θ1(k)

/
θ0(k)

1− θ0(k)

}
. (2)

This implies that β(θ) is the average of the cumulative log odds ratios across K − 1 categories. We
omit the dependence of β on θ whenever there is no confusion. The parameter β is well-defined without
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having to assume the proportional odds model; in cases where the proportional odds assumption does
hold, the above parameter coincides with the parameter βpar of the proportional odds model.

An estimator of β is called consistent if it converges to β in probability. We say an estimator of β is
locally efficient at P0 if it achieves the semiparametric efficiency bound in the modelM.

The above nonparametric extension of the proportional odds model has two main advantages com-
pared to assuming model (1). First, the interpretation of β as a contrast between marginal distributions
under treatment versus control averaged across categories does not depend on the correct specification of
(1). Second, this extension allows construction of estimators of the causal contrast β (and corresponding
standard errors) that are consistent regardless of whether assumption (1) holds.

Our goal is to estimate the parameter (24), which represents an unconditional treatment effect, i.e.,
a contrast between marginal distributions of the outcome under assignment to treatment versus control.
An alternative goal, not considered here, is to estimate a conditional effect of treatment, i.e., a contrast
between distributions conditioned on the values of certain baseline variables. Though we do not estimate
conditional effects, we do harness information in baseline variables in our estimators of unconditional
treatment effects.

3.2 Identification of β as a Function of P0

Under the ignorability assumption Ya⊥⊥(A,∆)|W for each a ∈ {0, 1}, the positivity assumption P (A =
a,∆ = 1|W ) > 0 with probability 1 for each a ∈ {0, 1}, and the consistency assumption that Ya = Y on
the event A = a, the treatment-specific probabilities θa(k) are identified as a function of P0 as [see, e.g.,
12]

θa(k) = E{p(k, a,W )}, (3)

for k ∈ {1, . . . , K − 1}, a ∈ {0, 1}, where p(k, a, w) = P0(Y ≤ k|∆ = 1, A = a,W = w) and the
expectation in (3) is with respect to the marginal distribution of W under P0. This implies that under
the above assumptions, the parameter β is identified as a function of observed data distribution P0 of
O = (W,A,∆,∆Y ), despite the definition of β being in terms of potential outcomes Ya.

In a randomized trial, (Ya,W )⊥⊥A by design, which we call the randomization assumption. This
assumption, combined with the assumption that outcomes are missing at random (i.e., Ya⊥⊥∆|A,W ,
denoted MAR [16]), implies the ignorability assumption above. If, in addition, the positivity and consis-
tency assumptions hold, then (3) follows. Throughout, we make the randomization and MAR assump-
tions.

We define the hazard representation of p(k, a, w) as follows:

p(k, a, w) =
k∑

m=1

h(m, a, w)
m−1∏
j=0

(1− h(j, a, w)), (4)

where we define
h(m, a, w) = P (Y = m|Y ≥ m,∆ = 1, A = a,W = w),

whenever P (Y ≥ m|∆ = 1, A = a,W = w) > 0, and h(m, a, w) = 0 otherwise. It follows that
h(0, a, w) = 0 and h(K, a, w) = 1 with probability 1. Under the assumptions in the first sentence of this
subsection, we can express θa(k) in terms of the function h as follows:

θa(k) =
k∑

m=1

∫
h(m, a, w)

m−1∏
j=0

(1− h(j, a, w)) dPW (w), (5)
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where PW is the marginal distribution of W . Substituting (5) into (24) gives an expression for β in terms
of the function h, which is identified from the observed data distribution P0.

We use the notation gA,0(a|w) = P0(A = a|W = w), g∆,0(a, w) = P0(∆ = 1|A = a,W = w),
and g0 = (gA,0, g∆,0). The randomization assumption implies gA,0(a|w) does not depend on w. Since the
randomization probability is set by design in our context of a randomized trial, gA,0 is known. However,
our adjusted estimators involve fitting a parametric model for gA,0; intuitively, this model fit captures
chance imbalances of the baseline variables W between arms, for a given data set. The general approach
of improving efficiency by estimating known nuisance parameters such as gA,0 has been shown, e.g., by
[14] and van der Laan and Robins [22, Theorem 2.3].

In the remainder of the paper our statistical parameter of interest is β(θ), where θ is defined in terms
of h and the marginal distribution of W through (5). Then β(θ) is a function of P0, with the caveat that
it only has a causal interpretation under the assumptions in the first sentence of this subsection. The
estimators of θa(k) and β developed in Sections 4 and 5 are substitution estimators, that is, estimators
constructed from (5) and (24) by replacing h and PW by estimates of these quantities. Substitution
estimators have the advantage that they remain within bounds of the parameter space, a characteristic
that is particularly desirable in estimation of the multinomial probabilities θa(k). The goal of this paper
is to construct a substitution estimator of β with the properties outlined in the abstract. We start by
discussing simpler estimators: the unadjusted estimator and a regression-based estimator.

3.3 Unadjusted Estimator
Under the assumption that outcomes are missing completely at random (i.e., (A,∆)⊥⊥(W,Ya), denoted
MCAR), it can be shown that θa(k) = P (Y ≤ k|∆ = 1, A = a). Then each θa(k) is consistently
estimated by the following unadjusted estimator that ignores baseline variables:

θ̂unadj,a(k) =

∑n
i=1 ∆i1{Ai = a, Yi ≤ k}∑n

i=1 ∆i1{Ai = a}
, (6)

where 1(X) is the indicator variable taking value 1 if X is true and 0 otherwise. Define the vector
θ̂unadj = (θ̂unadj,a(k) : k = 1, . . . , K − 1; a = 0, 1). The corresponding substitution estimator of β is
β̂unadj = β(θ̂unadj). The asymptotic behavior of β̂unadj is obtained through the delta method as

√
n(β̂unadj − β) =

1√
n

n∑
i=1

Sβ̂unadj
(Oi) + oP (1),

where

Sβ̂unadj
(O) =

1

K − 1

K−1∑
k=1

(
∆1{A = 1}

θ1(k)(1− θ1(k))g0,A(1|W )g0,∆(1,W )
[1{Y ≤ k} − θ1(k)]

− ∆1{A = 0}
θ0(k)(1− θ0(k))g0,A(0|W )g0,∆(1,W )

[1{Y ≤ k} − θ0(k)]

)
, (7)

is the influence function of β̂unadj. As a consequence, β̂unadj is asymptotically Gaussian with variance
V (Sβ̂unadj

(O))/n. Under the MCAR assumption, this estimator is consistent and efficient for the case

where only (A,∆,∆Y ) are observed; however, the unadjusted estimator is generally not efficient for
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the case where (W,A,∆,∆Y ) are observed. Intuitively, this is because the unadjusted estimator fails to
leverage prognostic information in baseline variables W . Furthermore, under the less restrictive missing
at random (MAR) assumption, the unadjusted estimator will generally not even be consistent, while our
proposed estimators are consistent under conditions given in Section 4.

3.4 Covariate Adjustment: Regression and Inverse Probability Weighted Esti-
mators

Consider an estimator p̂(k, a,W ) for the probability p(k, a,W ), for example, based on fitting an ordered
logistic regression model. Under correct specification of that model, the estimator 1

n

∑n
i=1 p̂(k, a,Wi) can

be shown to be consistent and efficient for θa(k). However, if that model is misspecified, this regression
estimator will generally be inconsistent, even in randomized trials in which an unadjusted, consistent
estimator exists [7]. This undesirable property discourages us from using the aforementioned estimator.

As an alternative, an inverse probability weighted (IPW) estimator of θa(k) is given by

θ̂ipw,a(k) =

∑n
i=1 ∆i1{Ai = a, Yi ≤ k} {ĝA(a|Wi)ĝ∆(a,Wi)}−1∑n

i=1 ∆i1{Ai = a} {ĝA(a|Wi)ĝ∆(a,Wi)}−1 ,

where ĝA(a|w) and ĝ∆(a, w) are estimators of gA and g∆, respectively. (An alternative definition of the
IPW estimator replaces the denominator in the above display by n). The IPW estimator β̂ipw = β(θ̂ipw)

is consistent for β if the estimators ĝA, ĝ∆ are consistent and converge to gA, g∆ at rate n−1/2. However,
the IPW estimator is generally not locally efficient.

4 Doubly Robust, Locally Efficient Estimation
We present a locally efficient, doubly robust estimator of θ. The corresponding substitution estimator of
β can be shown to satisfy similar properties using the delta method. The efficient influence function for
estimating θa(k) in the modelM is given by [see e.g., 2]

Dak(O) =
∆1{A = a}

gA(a|W )g∆(a,W )
{1(Y ≤ k)− p(k, a,W )}+ p(k, a,W )− θa(k), (8)

where, for conciseness, we suppress the dependence of Dak on g and p in our notation. The function Dak

has two important properties for estimation of θa(k). First, it is a doubly robust estimating function, i.e.,
for given estimators p̂, ĝ of p and g = (gA, g∆), respectively, the estimator of θa(k) formed by solving for
θa(k) in the following estimating equation:

0 =
n∑
i=1

Dak(Oi) =
n∑
i=1

[
∆i1{Ai = a}

ĝA(a|Wi)ĝ∆(a,Wi)
{1(Yi ≤ k)− p̂(k, a,Wi)}+ p̂(k, a,Wi)− θa(k)

]
, (9)

is consistent if at least one of p or g is estimated consistently at sufficient rate, as described below.
This double robustness property is desirable since it guarantees that improper adjustment for covariates
through a misspecified working model for p does not cause asymptotic bias in the estimator in randomized
trials if outcomes satisfy MCAR, or more generally if outcomes satisfy MAR and g∆ is consistently
estimated at a sufficient rate. Second, the efficient influence function characterizes the efficiency bound
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for estimation of θa(k) in the model M [3]. Specifically, under consistent estimation of p and g at
sufficient rate, the estimator θ̃a(k) that solves the estimating equation (9) has variance smaller or equal to
that of any regular, asymptotically linear estimator of θa(k) inM. If we also assume MCAR, then under
consistent estimation of p and g at sufficient rate, the corresponding substitution estimator β(θ̃) is equal
or superior to β̂unadj in terms of asymptotic precision.

Various estimators using Dak have been proposed in the context of a binary outcome, including the
augmented inverse probability weighted estimator, the doubly robust weighted least squares estimator,
and the targeted maximum likelihood estimator [see 2, 9, for a review]. In principle, those methods may
be used to estimate the multinomial probabilities θa(k) by considering K binary outcomes 1{Y ≤ k} :
k = 1, . . . , K separately. This approach, however, does not guarantee that the resulting estimates yield
a well defined multinomial distribution, i.e., there is no guarantee that the estimate of θa(k) will be less
than or equal to the estimate of θa(k + 1) for all k.

We next express the efficient influence function (8) in terms of the hazard functions h. Define I(k) =
1{Y = k} and Ī(k) = 1{Y ≥ k}. Intuitively, Ī(k) is an indicator of being at risk for having Y = k,
given only the information I(1), . . . , I(k − 1). The following is proved in Appendix 1:

Theorem 1 (Hazard Representation of Efficient Influence Function). The efficient influence function Dak

for the vector (θa(k) : k = 1, . . . , K − 1; a = 0, 1) in the modelM can be expressed as

Dak(O) =

[
K−1∑
j=1

Ī(j)Zak(j, A,W ){I(j)− h(j, A,W )}

]
+ p(k, a,W )− θa(k), (10)

where

Zak(j, A,W ) =
∆1{A = a}

gA(a|W )g∆(a,W )

1− p(k, a,W )

1− p(j, a,W )
1(j ≤ k), (11)

and p is defined as a function of h in (4).

We now describe a doubly robust, substitution estimator of θ, using targeted minimum loss based
estimation (TMLE).

Targeted Minimum Loss Based Estimator It will be convenient to sometimes use a modified data set
in which only observations Oi with ∆i = 1 are included, and each such observation Oi is repeated for
each j = 1, . . . , K − 1 with the indicators Ii(j) = 1{Yi = j} and Īi(j) = 1{Yi ≥ j} replacing Yi as the
outcome, i.e., the following data set:

{(j,Wi, Ai, Īi(j), Ii(j)) : ∆i = 1, j = 1, . . . , K − 1; i = 1, . . . , n}. (12)

This data set is referred to as the long form, and the original data set is referred to as the short form. An
observation in the long form data set is a vector of the form (j,Wi, Ai, Īi(j), Ii(j)) where ∆i = 1.

A TMLE for θ may be computed through the following iterative procedure:

Step 1. Initial estimators. Obtain initial estimators ĝA, ĝ∆, and ĥ of gA, g∆, and h, respectively.

Initial estimator of h. To estimate hwe use an approach borrowed from the survival analysis
literature: we pool the data and smooth across categories. An estimator ĥ may be obtained
by running a prediction algorithm of I(j) as a function of A, W , and j among observations
with Ī(j) = 1 in the long form data set (12).
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Initial estimators of gA and g∆. We estimate gA by fitting a parametric model for the
probability of {A = 1} as a function of W in the short form data set. We estimate g∆

analogously. In a randomized trial, gA is set by design; however, it can still improve effi-
ciency of the TMLE to estimate gA using, e.g., the proportion of individuals in the treatment
group, or a parametric model that contains baseline variables and an intercept. In general,
the functional relation between ∆ and (A,W ) is unknown to the researcher; one may apply
flexible prediction techniques such as model stacking [27] or super learning [25] to estimate
g∆.

Step 2. Iteratively update estimate of h by maximum likelihood in least favorable parametric model.
Initialize l = 0, and let ĥl = ĥ. In the long form data set, for each observation, augment it with
2(K − 1) covariates Z l

ak(j, A,W ) : k = 1, . . . , K − 1; a = 0, 1 by substituting the estimates ĥl

and ĝ in (11). This augmented long form data set is defined as{
(j, Z l

ak(j, Ai,Wi),Wi, Ai, Īi(j), Ii(j)) :

∆i = 1, j ≤ K − 1; i ≤ n; a ∈ {0, 1}; k ≤ K − 1} . (13)

Estimate the parameter vector ε = {εak : k = 1, . . . , K − 1; a = 0, 1} in the logistic hazard
submodel for h(j, a, w):

logithlε(j, a, w) = logit ĥl(j, a, w) +
K−1∑
k=1

ε1kZ
l
1k(j, a, w) +

K−1∑
k=1

ε0kZ
l
0k(j, a, w), (14)

by computing the following maximum likelihood estimator:

ε̂ = arg max
ε

n∑
i=1

K−1∑
j=1

Īi(j) log
{
hlε(j, Ai,Wi)

Ii(j)(1− hlε(j, Ai,Wi))
1−Ii(j)

}
. (15)

The maximizer ε̂ can be computed using standard statistical software by a logistic regression of
I(j) on the 2(K−1) variables {Z l

ak(j, A,W ) : k = 1, . . . , K−1; a = 0, 1} among observations
with Ī(j) = 1 in the augmented long form data set (13), and using logit ĥl(j, a, w) as an offset.
Define ĥl+1 = hlε̂. Since the gradient of the expression on right side of (15) is 0 at the maximizer
ε̂, it follows that ĥl+1 solves the estimating equations

n∑
i=1

K−1∑
j=1

Īi(j)Z
l
ak(j, Ai,Wi){Ii(j)− ĥl+1(j, Ai,Wi)} = 0, (16)

for each k = 1, . . . , K − 1, a = 0, 1.

Step 3. Iterate. Update l = l + 1 and iterate Step 2 until convergence. We use

1

n(K − 1)

∑
i

∑
j

{ĥl+1(j, Ai,Wi)− ĥl(j, Ai,Wi)}2 ≤ 10−4

n
, (17)

as a stopping criterion.
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Let ĥ? denote ĥl corresponding to the final iteration l of the above procedure. Define the TMLE of θa(k)
as

θ̂adj,a(k) =
1

n

n∑
i=1

ĥ?(k, a,Wi)
k−1∏
j=0

(1− ĥ?(j, a,Wi)).

Analogously, define the TMLE of β as β̂adj = β(θ̂adj). This is a substitution estimator, i.e., it is the result
of substituting estimates of h and PW into the parameter definitions (5) and (24). It follows from (16),
(17), and the representation of Dak in (10), that the efficient influence function estimating equation is
approximately solved at the last iteration, i.e.,

1

n

n∑
i=1

D̂?
ak(Oi) ≈ 0,

where D̂?
ak is obtained by substituting ĝA, ĝ∆, and ĥ? into (10) and (11).

First, consider the case where ĥ and ĝ converge to h and g, respectively, each at rate faster than n−1/4.
It follows from the general arguments in van der Laan and Rose [23, Appendix 18] that

√
n(θ̂adj,a(k)− θa(k)) =

1√
n

n∑
i=1

Dak(Oi) + oP (1),

which implies that θ̂adj,a(k) is efficient in the semiparametric modelM. The delta method implies

√
n(β̂adj − β) =

1√
n

n∑
i=1

S(Oi) + oP (1),

where

S(O) =
1

K − 1

K−1∑
k=1

{
D1k(O)

[1− θ1(k)]θ1(k)
− D0k(O)

[1− θ0(k)]θ0(k)

}
, (18)

is the efficient influence function for estimation of β inM. In this case, if we additionally assume MCAR,
local efficiency of β̂adj implies that β̂adj has asymptotic variance smaller or equal to the asymptotic
variance of β̂unadj.

Second, consider the case where ĥ does not converge to h (which could occur if the model for h
is misspecified) but does converge to some limit, and g is estimated consistently at rate n−1/2 (which
holds in our context of a randomized trial if gA, g∆ are estimated using parametric models that include
intercepts, and if either (i) outcomes satisfy MCAR or (ii) outcomes satisfy MAR and the parametric
model for g∆ is correct). Then β̂adj is consistent. However, in this case and under MCAR, there is no
guarantee that the asymptotic variance of β̂adj is at most that of β̂unadj. In the next section we present a
substitution estimator of β that has this guarantee.

5 Guaranteed Equal or Better Asymptotic Efficiency Compared to
the Unadjusted Estimator

We develop an adjusted estimator, denoted β̂adj,eff, that is guaranteed to be consistent and to have asymp-
totic variance smaller or equal to the asymptotic variance of β̂unadj, under MCAR and if the initial es-
timator for g is based on parametric models that include intercept terms. The corresponding estimator
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β̂adj,eff provides protection against biased estimates of h, allowing researchers to safely adjust for covari-
ates in the analysis of a randomized trial, with the goal of improving precision for estimating β, under
MCAR. Additionally, this estimator has the same double robustness and local efficiency properties as the
estimator in the previous section. In particular, if the outcome is MAR and the parametric model used
to estimate g∆ is correctly specified, then the convergence of β̂adj,eff to β still holds whereas β̂unadj will
generally be inconsistent.

The only difference between the TMLE algorithm for β̂adj in the previous section and the TMLE
algorithm for β̂adj,eff below is that the latter updates the estimators ĝA and ĝ∆ at each iteration. This
is done by fitting logistic regression models for the expectation of A and ∆ conditional on auxiliary
variables that are functions of the following:

Mak(W ) =
p(k, a,W )− θa(k)

gA(a|W )
, Hak(A,W ) =

1{A = a}
g∆(a,W )

Mak(W ). (19)

The TMLE algorithm for β̂adj,eff is given below:

Step 1. Initial estimators. Obtain initial estimators ĝA, ĝ∆, and ĥ of gA, g∆, and h, respectively. This
may be done as described in the previous section.

Step 2. Iteratively update estimates of h and g. Initialize l = 0, and let ĥl = ĥ, ĝlA = ĝA, ĝl∆ = ĝ∆.
Compute θ̂la(k) by substituting the estimate ĥl in the definition of θa(k) in (5), for each a ∈
{0, 1}, k ≤ K − 1.

(a) Update ĥl. This is the same as step 2 in the TMLE algorithm from Section 4, except using
the current updates of the estimators of g at each iteration, rather than always using the
initial estimators of g. Augment each observation in the long form data set (12) by 2(K −
1) covariates Z l

ak(j, A,W ) : k = 1, . . . , K − 1; a = 0, 1, where each Z l
ak(j, A,W ) is

constructed by substituting the estimates ĥl, ĝlA, and ĝl∆ in (11). Estimate ε by ε̂ in the
logistic hazard submodel (14) by maximum likelihood estimation as in (15).

(b) Update ĝlA. Let θ̂la(k) denote θa(k) with ĥl and the empirical distribution of W substituted
for h and PW , respectively, in (5). Let p̂(k, a, w) denote p(k, a, w) with ĥl substituted for
h in (4). Let M l

ak(W ) denote Mak(W ) with p̂, ĝlA, θ̂
l
a(k) substituted for the corresponding

components in (19). In the short form data set, compute the auxiliary covariate

M l(W ) =
K−1∑
k=1

{
M l

1k(W )

[1− θ̂l1(k)]θ̂l1(k)
− M l

0k(W )

[1− θ̂l0(k)]θ̂l0(k)

}
.

Estimate the parameter ν in the following logistic regression submodel for gA(1|w):

logit glA,ν(1|w) = logit ĝlA(1|w) + νM l(w),

by regressing A on W among all participants i = 1, . . . , n using a logistic regression model
with single covariate M l(W ) and offset logit ĝlA(1|W ); denote the corresponding maximum
likelihood estimate of ν by ν̂.
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(c) Update ĝl∆. Let H l
ak(A,W ) denote Hak(A,W ) with ĝl∆ and M l

ak(W ) substituted for g∆ and
Mak(W ), respectively, in (19). In the short form data set, compute the auxiliary covariate

H l(A,W ) =
K−1∑
k=1

{
H l

1k(A,W )

[1− θ̂l1(k)]θ̂l1(k)
− H l

0k(A,W )

[1− θ̂l0(k)]θ̂l0(k)

}
.

Estimate the parameter γ in the following logistic regression submodel for g∆(a, w):

logit gl∆,γ(a, w) = logit ĝl∆(a, w) + γH l(a, w),

by regressing ∆ on A,W among all participants i = 1, . . . , n using a logistic regression
model with single covariate H l(A,W ) and offset logit ĝl∆(A,W ); denote the corresponding
maximum likelihood estimate of γ by γ̂.

Define ĥl+1 = hlε̂, ĝ
l+1
A = glA,ν̂ , and ĝl+1

∆ = gl∆,γ̂ ,

Step 3. Update l = l + 1 and iterate the previous step until convergence. Analogous to the TMLE
algorithm in Section 4, we stop at the first iteration for which the mean of the squared difference
of predictions between step l and step l + 1 is smaller or equal to 10−4/n, but this time adding
the requirement that this holds for ĝl∆ and ĝlA as well.

Denote ĥ?, ĝ?A, and ĝ?∆ the estimators obtained in the last iteration of the above algorithm, and define the
corresponding TMLE estimator of θa(k) as

θ̂adj,eff,a(k) =
1

n

n∑
i=1

ĥ?(k, a,Wi)
k−1∏
j=0

(1− ĥ?(j, a,Wi)), (20)

and the corresponding estimator β̂adj,eff = β(θ̂adj,eff). Next, we present the main result of the paper
giving conditions under which β̂adj,eff is guaranteed to be at least as efficient as β̂unadj = β(θ̂unadj).

Theorem 2 (Guaranteed equal or greater asymptotic efficiency of β̂adj,eff compared to β̂unadj). Assume
that MCAR and the randomization assumption hold. Assume also that ĥ, ĝA, and ĝ∆ are estimated using
maximum likelihood estimation in parametric models containing at least an intercept term. Under the
additional assumption that the empirical means of the estimated efficient influence functions S(O) and
Sβ̂unadj

(O) are oP (1/
√
n) (presented formally in Appendix 2), we have

√
n(β̂adj,eff − β)→ N(0, σ2

adj,eff)
√
n(β̂unadj − β)→ N(0, σ2

unadj),

where σ2
adj,eff ≤ σ2

unadj. In addition, if ĥ? converges to h in L2(P0), then β̂adj,eff achieves the efficiency
bound in the semiparametric modelM.

A sketch of the proof along with the technical conditions is provided in Appendix 2. By construction
of the TMLE algorithm, it is expected that the empirical mean of the estimated efficient influence function
will converge to zero, thereby satisfying the assumptions of the theorem.
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6 Simulation Study: The MISTIE Trial of a New Surgical Treat-
ment for Stroke

6.1 Simulation Design
Our simulated distributions are based on resampling data from the completed MISTIE II trial described
in Section 2. This was done in order to make our simulations realistic, in that they mimic key features
of a real trial. We compare the performance of the unadjusted, IPW, and proposed targeted minimum
loss based estimator β̂adj,eff (referred to as TMLE below). The baseline variables for each participant are
W = (W1,W2,W3) = (age, ICH volume, NIHSS) and we assume there is no missing data; i.e., ∆ = 1
for all subjects. Below, we refer to β as the treatment effect.

Simulations are conducted under the following four different types of data generating distributions
(called scenarios):

(i) Y and W dependent; zero treatment effect (β = 0).

(ii) Y and W dependent; positive treatment effect (β > 0).

(iii) Y and W independent; zero treatment effect (β = 0).

(iv) Y and W independent; positive treatment effect (β > 0).

In scenarios (i) and (iii), we set β = 0 and in scenarios (ii) and (iv), the simulated data is generated
to replicate the estimated treatment effect reported in the MISTIE II trial, which is 0.252 (which equals
the unadjusted estimator directly applied to the trial data). In scenarios (i) and (ii), W is prognostic for
Y , and there is potential for efficiency gains from adjusting for W . In scenarios (iii) and (iv), baseline
variables are not prognostic for the outcome; we consider these scenarios in order to examine how much
efficiency loss occurs for the adjusted estimators when the baseline variables are pure noise.

For each scenario, we generated 100,000 simulated randomized trials, each with n = 412 participants.
This sample size was selected to mimic the projected size of the planned Phase III trial that is a follow-up
to the MISTIE II trial.

The primary outcome, mRS at 180 days after enrollment, is ordinal and takes integer values from 0
to 6, with 0 representing no disability and 6 representing death. In the Phase II MISTIE trial, the primary
outcome was always at least 1 and only one subject had mRS = 1. We combined the values 0,1,2 into a
single category in our analysis, denoted by 0-2.

Each simulated randomized trial is based on resampling triples (W,A, Y ) with replacement from the
MISTIE II trial data, followed by modifications described below. These modifications were necessary
since directly resampling with replacement corresponds to the empirical distribution from the MISTIE
II trial, and in this data set the variables A and W have small, non-zero correlations. Therefore, directly
resampling would correspond to a data generating distribution P0 in which A and W are dependent,
which violates the randomization assumption from Section 3.2 that under P0, the study arm A is assigned
independent of W . We next describe modifications to the empirical distribution of the MISTIE II data
that ensure the randomization assumption holds for the data generating distributions in our simulations.

For scenarios (i) and (ii), we resampled pairs (W,Y ) with replacement from the MISTIE II trial data.
This preserves the correlations between baseline variables and the outcome. In scenario (i), we generated
A independent of (W,Y ), with probability 1/2 of being treatment or control. The resulting treatment
effect for this data generating distribution is β = 0.
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Each simulated data set in scenario (ii) consists of first generating an initial data set as in scenario
(i), and then reassigning a subset of the outcome values using the algorithm described next. In order to
induce a treatment effect that mimics the effect from the MISTIE II trial (β = 0.252), for each participant
in the initial data set with A = 1 we randomly reassign the individual’s outcome with probability that
is a pre-computed function q(Y ) of his/her initial value of Y . If an individual’s outcome is reassigned,
it is replaced with a randomly generated outcome according to a pre-computed multinomial distribution.
This procedure is done for each participant independent of the other participants. The pre-computed
distributions, which were constructed to mimic features in the MISTIE II data, are given in Appendix 3.

For scenarios (iii) and (iv), baseline variables W for each participant were randomly drawn with
replacement from the MISTIE II trial data. This results in the marginal distribution of W being the
empirical distribution of the MISTIE II trial data. Study arm assignment A was generated independent
of W , with probability 1/2 of being treatment or control. In scenario (iii), Y is a random draw from a
multinomial distribution with probabilities 0.12, 0.20, 0.27, 0.16, 0.25 for mRS of 0-2, 3, 4, 5, 6, respec-
tively (which equal the corresponding empirical probabilities when pooling all participants in MISTIE
II). Since A is generated independent of (W,Y ), this results in β = 0. In scenario (iv), the condi-
tional distribution of Y given A = a and W is set to be a multinomial distribution with probabilities
0.11, 0.14, 0.32, 0.16, 0.27 and 0.12, 0.24, 0.24, 0.16, 0.24, respectively for a = 0, 1, which correspond to
the empirical probabilities in each arm in MISTIE II.

Logistic regression models are used to estimate gA in the IPW estimator, and are used in the initial
estimators in step 1 of the TMLE for both gA and h. The logistic regression model for gA includes an
intercept and a main term for each component of W . Since treatment is randomized in all scenarios, we
have P (A = 1|W ) = 1/2, which implies the model for gA is correctly specified. The logistic regression
model for h includes intercepts for the first K − 1 levels of Y , main terms W and A, and interaction
terms for the K − 1 intercepts with A and W .

In scenarios (i) and (ii), the simulation distribution of Y given A,W includes correlation between
Y and W based on resampling from the MISTIE data; therefore, non-saturated parametric models for h
such as those used in the TMLE estimator will generally be misspecified. We intentionally generate data
in this way, to mimic the realistic feature that h will be at least somewhat misspecified in practice. In
contrast, for scenarios (iii) and (iv), since Y and W are independent, the parametric model for h above is
correctly specified.

6.2 Simulation Results
The results of the simulation are presented in Table 1. In all scenarios, each estimator has very small bias.
In scenarios (i) and (ii), there are large gains in efficiency for both the IPW estimator and TMLE relative
to the unadjusted estimator. These gains are due to the strong correlation between W and Y . The gains
in efficiency are 4% greater for the TMLE relative to the IPW estimator. In scenarios (iii) and (iv), where
W is not prognostic for Y , there are efficiency losses between 0.7% and 0.9% from using the adjusted
estimators.
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Table 1: Results of the simulation study where Y is multinomial taking on values k = 1, ..., 5, (Y , W )
are simulated by resampling with replacement from the MISTIE II trial for a study size of 412 patients.
The relative efficiency is the ratio of the variance of the unadjusted estimator to the variance of the given
estimator. Values greater than 1 indicate an efficiency gain compared to the unadjusted estimator.

Scenario Estimator Bias Variance
Relative

Efficiency

(i)
Unadjusted 0.000 0.033 1.000

TMLE -0.001 0.024 1.392
IPW 0.000 0.024 1.353

(ii)
Unadjusted 0.004 0.035 1.000

TMLE -0.012 0.026 1.354
IPW 0.004 0.027 1.317

(iii)
Unadjusted 0.001 0.033 1.000

TMLE 0.001 0.034 0.991
IPW 0.001 0.034 0.992

(iv)
Unadjusted 0.004 0.034 1.000

TMLE 0.004 0.034 0.992
IPW 0.004 0.034 0.993

7 Discussion
The method we present may be extended to other cases. In particular, observational data (where A and
W are generally dependent) may be handled using the estimator β̂adj, under the ignorability assumption
from Section 3.2. Under certain regularity conditions, β̂adj is a doubly robust, locally efficient estimator
of β, which identifies the causal effect. We conjecture β̂adj,eff has asymptotic variance smaller or equal
than an inverse probability weighted estimator computed with g0 known, under stronger assumptions that
include consistent estimation of g0 at an appropriate rate, and other regularity conditions.

In addition, the natural formulation of the problem in terms of hazard functions allows the straight-
forward use of the methods to handle discrete time-to-event outcomes with no time varying covariates.
This is done by considering a categorical outcome taking values in an ordered set of discrete time points
{1, . . . , τ}. In this case, our parameter defines a contrast between the two survival functions, and our
method can be applied to estimate this parameter as well as the survival functions after accounting for
baseline covariates. The method we describe may be generalized to estimate other parameters of interest
relevant to time-to-event outcomes such as the relative hazard.

A Supplementary Materials

A.1 Derivation of Hazard Representation of the Efficient Influence Function in
Theorem 1

First, the component of the tangent space generated by scores for P (Y |∆ = 1, A,W ), which is the
component of the likelihood that is relevant for the parameter p(k, a, w), TY = {S(Y,A,W ) : E(S|∆ =
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1, A,W ) = 0}, can be decomposed as
K−1⊕
k=1

TI(k),

where TI(k) = {S(I1, . . . , I(k), A,W ) : E(S|I(1), . . . , I(k − 1),∆ = 1, A,W ) = 0}. Next, we take the
projection of

DY (O) =
∆1{A = a}

gA(a|W )g∆(a,W )
(1{Y ≤ k} − p(k, a,W )),

onto TI(j) for j ≤ k. This projection is equal to

Π[DY (O)|TI(j)] =
∆1{A = a}

gA(a|W )g∆(a,W )

(
E(1{Y ≤ k}|I(1), . . . , I(j), A = a,W )

−E(1{Y ≤ k}|I(1), . . . , I(j − 1), A = a,W )

)
.

Note that

E(1{Y ≤ k}|I(1), . . . , I(j), A = a,W ) = 1− Ī(j + 1)P (Y > k|Y > j,A = a,W )

= 1− (1− I(j))Ī(j)
P (Y > k|A = a,W )

P (Y > j|A = a,W )
.

This yields

E(1{Y ≤ k}|I(1), . . . , I(j − 1), A = a,W ) = 1− (1− h(j, a,W ))Ī(j)
P (Y > k|A = a,W )

P (Y > j|A = a,W )
,

which implies

Π[DY (O)|TI(j)] = Ī(j)(I(j)− h(j, a,W ))
∆1{A = a}

gA(a|W )g∆(a,W )

P (Y > k|A = a,W )

P (Y > j|A = a,W )
.

For j > k we have Π[DY (O)|TI(j)] = 0. Because TY =
⊕K−1

k=1 TI(k), we have

DY (O) =
K∑
j=1

Π[DY (O)|TI(j)],

and the result follows.

A.2 Sketch of Proof for Theorem 2
In this section we use the notation Pf to refer to

∫
f(o)dP (o), for a given function f of the data. We also

add an index naught to the notation to represent true quantities (e.g., gA,0), and use no index to denote
generic quantities (e.g., gA). In addition, we augment the notation of the paper by explicitly including the
dependence on the influence functions Dak, D′ak, and S on P . Thus, Dak(O) becomes Dak(P )(O), for
example.
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Define the following two quantities:

φak(p, g)(O) =
p(k, a,W )− θa(k)

gA,0(a|W )g∆,0(a|W )
(∆1{A = a} − gA(a|W )g∆(a|W ))

= Hak(g0, p)(A,W )(∆− g∆(a,W )) +Mak(g0)(W )(1{A = a} − gA(a,W ));

φ(p, g) =
∑

a∈{0,1}

K−1∑
k=1

dβ(θ0)

dθa,0(k)
φak(p, g).

Assumptions in the theorem:

1. Randomization assumption and missing completely at random assumption (defined in Sections 3.2
and 3.3).

2. The following assumption:

PnSβ̂unadj
(ĝ?, θ̂adj,eff) = oP (1/

√
n).

Intuitively, we expect that the above assumption will hold in many cases, due to the construction of
the TMLE. This is because the efficient influence function S may be decomposed as Sβ̂unadj

+ φ,

where φ is defined above. The TMLE is constructed to solve the estimating equations associated
with S and with φ. As a result, the estimating equation associated with Sβ̂unadj

is also solved and

the above assumption may be expected to hold.

3. Consistency of initial estimators of outcome hazard. (This assumption is only used for the claim in
the last sentence of the theorem.)

P0(ĥ? − h)2 = oP (1).

Lemmas:

1. Consistency of initial estimators of treatment/missingness. Under assumption (1) we have
√
nP0(ĝ?A − gA)2 = oP (1),
√
nP0(ĝ?∆ − g∆)2 = oP (1).

This follows since assumption (1) implies that the parametric models used for gA and g∆ are cor-
rectly specified. Applying the delta method and the continuous mapping theorem, we have that√
nP (ĝ?A(a, w) − gA(a, w)) = OP (1), and ĝ?A(a, w) − gA(a, w) = oP (1), for any fixed a and w.

This, together with OP (1)oP (1) = oP (1) and the continuous mapping theorem proves the lemma.

2. Asymptotic linearity of smooth functional of g. Assume

P0(φ(p0, ĝ
?)− φ(p0, g0)) = (Pn − P0)S† + oP (1/

√
n),

for some function S† of O. This is a direct consequence of the asymptotic linearity of the MLE in
a parametric model and the delta method.
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Claims:

1. Under assumptions (1,2) we have
√
n(β̂adj,eff − β)→ N(0, σ2

adj,eff),
√
n(β̂unadj − β)→ N(0, σ2

unadj),

where σ2
adj,eff ≤ σ2

unadj.

2. Under assumptions (1,2,3), we have
√
n(β̂adj,eff − β)→ N(0, σ2),

where σ2 is the efficiency bound for estimation of β in the nonparametric model.

Sketch of proof:

1. Claim 1. Let

Dunadj,a,k(g, θ)(O) =
∆1{A = a}

P (A = a,∆ = 1)
[1{Y ≤ k} − θa(k)] ,

be the influence function of θ̂unadj,a(k), where θa(k) is the corresponding component of θ. It
follows that

P0Dunadj,a,k(g, θ) = θa,0(k)− θa(k) + P0φak(p0, g) + o(||g − g0||2). (21)

Note that

β(θ)− β(θ0) =
∑

a∈{0,1}

K−1∑
k=1

dβ(θ0)

dθa,0(k)
(θa(k)− θa,0(k)) + o(||θ − θ0||2).

Solving (21) for (θa(k)− θa,0(k)), and noting that

Sβ̂unadj
(g, θ) =

K−1∑
k=1

dβ(θ0)

dθa,0(k)
Dunadj,a,k(g, θ)

we get

β(θ)− β(θ0) = −P0Sβ̂unadj
(g, θ) + P0φ(p0, g) + o(||θ − θ0||2) + o(||g − g0||2). (22)

Using equation (22) with g = ĝ? and θ = θ̂adj,eff, we obtain

β̂adj,eff − β0 = −P0Sβ̂unadj
(ĝ?, θ̂adj,eff) + P0φ(p0, ĝ

?) + oP (||θ̂adj,eff − θ0||2) + oP (||ĝ? − g0||2).

By Lemma 1 above, we have ||ĝ?− g0||2 = oP (1/
√
n). Since the TMLE is doubly robust, we have

||θ̂adj,eff − θ0||2 = oP (1/
√
n). In addition, by assumption (2), we have

PnSβ̂unadj
(ĝ?, θ̂adj,eff) = oP (1/

√
n),
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so that we can write

β̂adj,eff − β0 = (Pn − P0)Sβ̂unadj
(g0, θ0)+

(Pn − P0)(Sβ̂unadj
(ĝ?, θ̂adj,eff)− Sβ̂unadj

(g0, θ0)) + P0φ(p0, ĝ
?) + oP (1/

√
n).

Since ĝ? is a parametric model fit, it belongs to a Donsker class. In addition, since ĝ? is correctly
specified, it is consistent. As a result of the continuous mapping theorem we have P0(Sβ̂unadj

(ĝ?, θ̂adj,eff)−
Sβ̂unadj

(g0, θ0))2 = oP (1). The empirical process result in Theorem 19.24 of [26] then implies

β̂adj,eff − β0 = (Pn − P0)Sβ̂unadj
(g0, θ0) + P0φ(p0, ĝ

?) + oP (1/
√
n).

By Lemma 2 above we have

β̂adj,eff − β0 = (Pn − P0)(Sβ̂unadj
(g0, θ0)− S†) + oP (1/

√
n).

We can now use the arguments in the proof of Theorem 2.3 of [22] to show that

Sβ̂unadj
(g0, θ0)− S† = Π(Sβ̂unadj

(g0, θ0)|T⊥∆,A), (23)

where T⊥∆,A is the orthogonal complement (in L2
0(P )) of T∆,A, the tangent space of the parametric

model for P (A = a,∆ = δ|W = w) used in the TMLE algorithm.

The argument in the proof of the aforementioned theorem is as follows. Let Sβ̂unadj
(g0, θ0) and

S† be decomposed as Sβ̂unadj
(g0, θ0) = a + a⊥ and S† = b + b⊥ according to the orthogonal

decomposition L2
0(P0) = TA,∆ + T⊥A,∆. Since S† is an efficient influence function in the model

with (p0, PW,0) known, b⊥ = 0. We also have Sβ̂unadj
(g0, θ0) − S† is an influence function of a

regular, asymptotically linear estimator of β in the modelM, and hence is orthogonal to TA,∆, so
a− b = 0. Consequently, we have Sβ̂unadj

(g0, θ0)− S† = a⊥, completing the argument.

As a consequence of (23), we have

||Sβ̂unadj
(g0, θ0)− S†||2 = V (Sβ̂unadj

(g0, θ0)− S†) ≤ V (Sβ̂unadj
(g0, θ0)) = ||Sβ̂unadj

(g0, θ0)||2,

which together with

√
n(β̂unadj − β) =

1√
n

n∑
i=1

Sβ̂unadj
(Oi) + oP (1),

and the central limit theorem completes the sketch of the proof.

2. Claim 2 follows from Appendix 18 of [23].
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A.3 Data Generating Distribution for Simulation Scenario (ii)
In Section 6.1 of the main paper, it was stated that each simulated data set in scenario (ii) consists
of first generating an initial data set as in scenario (i), and then reassigning a subset of the outcome
values. Specifically, for each participant in the initial data set with A = 1 we randomly reassign the
individual’s outcome with probability that is a pre-computed function q(Y ) of his/her initial value of Y .
We set q(Y ) = 0, 0, 0.44, 0.06, 0.10 for Y in categories 0-2, 3, 4, 5, 6, respectively. If an individual’s
outcome is reassigned, it is replaced with a randomly generated outcome according to the pre-computed
multinomial distribution, denoted m, on the same set of categories, with probabilities 0.10, 0.90, 0, 0, 0
for the categories 0-2, 3, 4, 5, 6, respectively.

The above values were selected in order that the simulated distribution in scenario (ii) has β = 0.252,
which is the estimated treatment effect (unadjusted) in the MISTIE II trial. The above values were
obtained by working backward from β to θa(k), as we describe next. Recall that

β(θ) =
1

K − 1

K−1∑
k=1

log

{
θ1(k)

1− θ1(k)

/
θ0(k)

1− θ0(k)

}
. (24)

We select q and m in order that the resulting simulation distribution has

log

{
θ1(k)

1− θ1(k)

/
θ0(k)

1− θ0(k)

}
(25)

equal to the corresponding values where each θa(k) is replaced by the unadjusted estimator of that quan-
tity in the MISTIE II trial. For categories 0-2, 3, 4, 5, the corresponding value of (25) is set to 0.129,
0.575, 0.159, 0.146. This implies β(θ) = (0.129 + 0.575 + 0.159 + 0.146)/4 = 0.252. Since the dis-
tribution of Y |A = 0,W is already determined (see the construction of the data generating mechanism
for scenario (i)), we can compute θ0(k), and then compute θ1(k) using the aforementioned values of
(25). We then experimented with values of q and m that produce precisely the aforementioned values of
θa(k). Reproducing such values of θa(k) mimics the heterogenous log odds ratios across categories in
the MISTIE II trial.
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