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Giovanni Parmigiani

Abstract

Measurement error in time to event data used as a predictor will lead to inaccu-
rate predictions. This arises in the context of self-reported family history, a time
to event predictor often measured with error, used in Mendelian risk prediction
models. Using a validation data set, we propose a method to adjust for this type
of measurement error. We estimate the measurement error process using a non-
parametric smoothed Kaplan-Meier estimator, and use Monte Carlo integration to
implement the adjustment. We apply our method to simulated data in the con-
text of both Mendelian risk prediction models and multivariate survival prediction
models, as well as illustrate our method using a data application for Mendelian
risk prediction models. Results from simulations are evaluated using measures
of mean squared error of prediction (MSEP), area under the response operating
characteristics curve (ROC-AUC), and the ratio of observed to expected number
of events. These results show that our adjusted method mitigates the effects of
measurement error mainly by improving calibration and by improving total accu-
racy. In some scenarios discrimination is also improved.
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Abstract

Measurement error in time to event data used as a predictor will lead to inaccurate predictions. This

arises in the context of self-reported family history, a time to event predictor often measured with

error, used in Mendelian risk prediction models. Using a validation data set, we propose a method

to adjust for this type of measurement error. We estimate the measurement error process using a

nonparametric smoothed Kaplan-Meier estimator, and use Monte Carlo integration to implement

the adjustment. We apply our method to simulated data in the context of both Mendelian risk pre-

diction models and multivariate survival prediction models, as well as illustrate our method using a

data application for Mendelian risk prediction models. Results from simulations are evaluated using

measures of mean squared error of prediction (MSEP), area under the response operating charac-

teristics curve (ROC-AUC), and the ratio of observed to expected number of events. These results

show that our adjusted method mitigates the effects of measurement error mainly by improving

calibration and by improving total accuracy. In some scenarios discrimination is also improved.

Keywords

Risk prediction; Smoothed Kaplan-Meier; Measurement error; Survival data.
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1 Introduction

Measurement error in binary and continuous covariates has been studied extensively in the literature

(Carroll, 2006, among others). The focus of this paper is on measurement error in time to event

data which are used as predictors in a model. Time to event data are coded by two variables; T

indicating either time to event or censoring whichever occurs first, and δ indicating whether the

event occurred. We focus on scenarios in which both T and δ are measured with error. Because of

the relationship between T and δ, standard techniques adjusting for measurement error in binary

or continuous covariates cannot be applied directly. Previous work in this setting has focused on

measurement error in survival outcomes (Meier et al., 2003). Meier et al. consider a discrete setting

in which subjects are tested at predetermined time points until the time of first observed failure.

Using the sensitivity and specificity rates of failing, they develop a model for the measurement error

process based on a validation data set, and incorporate this into an adjusted proportional hazards

model. Their method cannot be extended to our setting for two reasons. The first, that our time

to event data is not obtained by repeated testing, instead we look at scenarios for which the time

to event data is measured with error at one time point. The second, that our interest is in time to

event data used as predictors in the model and not as outcomes. We are not aware of any literature

directly applicable to our setting.

We focus on scenarios for which a prediction model has first been developed based on error-free

time to event data and subsequently needs to be implemented in practical settings where time to

event data can be error-prone. This setting is motivated by Mendelian risk prediction models, which

use Mendelian laws of inheritance to calculate the probability that an individual carries a cancer

causing inherited mutation based on his/her family history. These models incorporate population

parameters such as mutation prevalence, and penetrance (the probability of having a disease at a

certain age given the mutation status) (Murphy and Mutalik, 1969). Several of these models are in

wide clinical use. All these models currently assume that family history is error-free. However, in

practice they often rely on self-reported family history, which is not always accurate. This trend is

increasingly relevant as models are being moved into primary care setting and web-based patient-
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oriented tools. The accuracy of self-reported family history has been evaluated in several studies

which show that sensitivity and specificity estimates for reported disease status vary by degree

of relative and type of cancer. For example, for breast cancer in first-degree relatives sensitivity

estimates vary from 65% to 95% while specificity estimates are usually around 98%−99% (Mai et al.,

2011; Ziogas and Anton-Culver, 2003). The effects of misreported family history on Mendelian risk

prediction models have been examined by Katki (2006). Both errors in underreporting of disease

status and rounding of age were considered, and it was shown that misreporting of family history,

especially in disease status, leads to distortions in predictions. A model based on these inaccurately

assessed predictors will not be well calibrated.

Although our work is motivated by the setting of Mendelian risk prediction models, it is appli-

cable to other scenarios, particularly in the context of multivariate survival prediction models. For

example, suppose one has developed a model predicting overall survival (OS) based on error-free

progression free survival (PFS). In reality however, PFS is often error-prone due to two main rea-

sons; assessment of tumor size based on imaging varies by the observer and to a lesser extent the

equipment, generating variation; and scans are taken at regularly scheduled intervals, generating

rounding (Korn et al., 2010). Gray et al. (2009) evaluated measurement error in the PFS endpoint

by comparing PFS assessment by an independent review facility (IRF) (which would be considered

the error-free PFS) to an investigator-based assessment (which would be considered the error-prone

PFS). They conducted an independent review of trial E2100, an open-label multi-center, random-

ized, phase III trial conducted by the Eastern Cooperative Oncology Group (ECOG). They saw

that for 6% of the patients a PFS event was only identified by IRF, and for 18.1% of the patients

a PFS event was only identified by local review. 43.5% of patients had PFS events identified by

both IRF and local review, and for those the date of PFS was the same for 54.5% of the patients

and within 6 weeks for 70.4% of the patients.

In this context, suppose one has developed a model to predict OS based on IRF determined

PFS. In practice, one might want to use the prediction model to predict OS using PFS determined

by local review as a covariate and not by IRF, since local review might be the only feasible option.

Another example could arise in the context of using short term survival as a predictor for long term
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survival (Parast et al., 2012). If one has developed a model based on error-free short term survival

outcomes, but in practice these are measured with error, our proposed method is again applicable.

In section 2 we formulate our proposed method. Flexible assumptions are being used for the

measurement error model via a non-parametric specification. We apply our proposed approach to

Mendelian risk prediction models in section 3, and to other multivariate survival prediction models

in section 4. Simulation results are presented in section 5. Finally, we illustrate our method using

a data application in the context of Mendelian risk prediction models, in section 6, and summarize

the main conclusions in section 7.

2 Model

2.1 Notations

We consider a setting in which we have an outcome Y and time to event data which are used as

predictors in a model for Y . More specifically, let T o be the true failure time, let C be the true

right-censoring time, T = min(T o, C) and δ = 1(T o ≤ C). We denote the error-free predictor as

H = (T, δ). We assume a model P (Y |H) has been developed elsewhere based on this true time to

event data.

Now, suppose when implementing this model the time to event data used as predictor has error.

We denote this error-prone predictor as H∗ = (T ∗, δ∗). We also assume we have a validation study

which includes both the error-free time to event data, H, and the error-prone time to event data,

H∗. We do not assume the validation data includes Y .

2.2 Proposed Method

Our goal is to predict the outcome Y based on the observed data H∗, namely to estimate P (Y |H∗).

We propose to rewrite P (Y |H∗) by applying the law of total probability and Bayes rule, as follows:

5
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P (Y |H∗) =

∫
H

P (Y,H|H∗) dH =

∫
H

P (Y |H,H∗)P (H|H∗) dH =

∫
H

P (Y |H)P (H|H∗) dH (1)

The measurement error process, P (H|H∗), is modeled in the validation study. Depending on

the data, integrating over all possible values of H might be computationally challenging. In these

cases, we propose using Monte Carlo integration, using P (H|H∗) to generate Monte Carlo samples.

We propose to model the measurement error process P (H|H∗) using a survival distribution

assuming conditional independence of event and censoring times given T ∗, δ∗:

P (T, δ|T ∗, δ∗) = λ(T |T ∗, δ∗)δS(T |T ∗, δ∗)h(T |T ∗, δ∗)1−δG(T |T ∗, δ∗). (2)

Here λ and S are the hazard and survival functions of the event time, and h and G are the hazard

and survival functions of the censoring time. Based on the validation data, one could estimate

the survival distribution P (T, δ|T ∗, δ∗) parametrically (for example using a Weibull distribution

or accelerated failure time model), semi-parametrically (for example using a Cox model), or non-

parametrically (for example using Kaplan-Meier estimators).

In our implementations we have used smoothed Kaplan-Meier estimators (Beran, 1981), re-

quiring no parametric assumptions on the hazard and survival functions involved. Specifically, we

stratify by δ∗, and estimate each conditional survival function while borrowing information from

the neighboring observations based on the values of T ∗.

2.3 Model Assumptions

The last equality in Equation (1) follows from the surrogacy assumption. We assume H∗ is a

surrogate for H; in other words H∗ contains no information on predicting Y in addition to the

information already contained in H. This is plausible in many applications since the probability of

the outcome conditional on both the error-free and error-prone predictor should only be influenced

by the error-free predictor.
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Our proposed approach assumes that the measurement error model P (H|H∗) is transportable;

that the measurement error model observed in the validation study can be applied to the population

of interest. For this to be true, the validation and the target population should be as similar as

possible. One should give thought to the choice of an appropriate validation study when applying

our proposed method.

We consider these assumptions further in the discussion section.

3 Mendelian Risk Prediction Models

Mendelian risk prediction models calculate the probability that an individual (termed the counse-

lee) carries an inherited susceptibility to a disease, based on information about his or her entire

family and are widely used in genetic counseling. Statistical software for evaluating these models

is available as part of the BayesMendel R package (Chen et al., 2004), which includes BRCAPRO

(Berry et al., 1997; Parmigiani et al., 1998), a model identifying individuals at high risk of breast

and ovarian cancer, MMRPro a model identifying individuals at high risk of Lynch Syndrome,

PancPRO a model identifying individuals at high risk of pancreatic cancer, and MelaPro a model

identifying individuals at high risk of melanoma.

For the purpose of our discussion we will consider a family of R members, and focus on a

single disease. Predictors are H = (H0, H1, . . . ,HR). For family member i, Hi = (Ti, δi) and

Ti = min(T oi , Ci) where T oi is the age of disease diagnosis, Ci is the current age or age of death,

and δi = 1(T oi ≤ Ci). Mendelian models calculate the counselee’s carrier probability P (γ0|H),

where 0 is the index of the counselee and γi = (γi1, . . . , γiM ), where γim = 1 indicates carrying the

genetic variants that confer disease risk for each individual i at a gene m = 1, . . . ,M , and γim = 0

otherwise.

Using Bayes rule and assuming conditional independence of family members’ phenotype given

their genotypes, we can write the carrier probability as follows:

P (γ0|H0, H1, . . . ,HR) =
P (γ0)

∑
γ1,...,γR

∏R
i=1 P (Hi|γi)P (γ1, . . . , γR|γ0)∑

γ0
P (γ0)

∑
γ1,...,γR

∏R
i=1 P (Hi|γi)P (γ1, . . . , γR|γ0)

. (3)
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These models are typically trained using validated family history H. For example the current

version of the BRCAPRO model assessed P (Hi|γi) via a meta-analysis of studies the majority of

which use family history information verified using medical records.

In practice, when these models are used clinically, the counselee provides his or her own recol-

lection of the medical history of the family members. We refer to this as the reported history H∗.

While validation of this history is sometimes possible, the majority of clinical implementations need

to provide a carrier probability using H∗ only. Normally, H∗ is simply plugged in instead of H.

Our goal is to assess P (γ0|H∗), addressing the measurement error present in H∗ for the counselee

at hand, and at the same time leveraging the models that have been previously trained on validated

data. Using Equation (1), this probability can be rewritten as follows:

P (γ0|H∗) =

∫
H

P (γ0|H)P (H|H∗) dH. (4)

P (γ0|H) is then calculated using Equation (3). The measurement error process, P (H|H∗), is esti-

mated by using smoothed Kaplan-Meier estimators based on a validation study, and the integration

is implemented using a Monte Carlo integration.

Similar considerations apply to the related task of estimating the probability of the counselee

remaining free of disease until time t, P (T o > t|H∗). Mendelian models for P (T o > t|H) can be

developed similarly to what is described above, and are also available as part of the BayesMendel R

package. Similarly, using Equation (1), our proposed method can be implemented in this context:

P (T o > t|H∗) =
∫
H
P (T o > t|H)P (H|H∗) dH.

4 Multivariate Survival Prediction Models

The problem of measurement error in time to event data can also be applicable to the context of

other multivariate survival prediction models. We continue our discussion of a hypothetical example

in the context of predicting overall survival (OS) using progression-free survival (PFS). Assuming

a prediction model for OS using error-free PFS has been developed, one might be interested in
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applying it in an environment where only error-prone PFS is available. In this scenario, we let

T o1 be OS time, H = (T2, δ2) be error-free PFS, and H∗ = (T ∗
2 , δ

∗
2) be error-prone PFS. The

existing prediction model based on error-free PFS is P (T o1 > t|H), while our application requires

P (T o1 > t|H∗). Using Equation (1) we can rewrite this probability as: P (T o1 > t|H∗) =
∫
H
P (T o1 >

t|H)P (H|H∗) dH. P (H|H∗) would be estimated using validation data containing paired error-free

PFS and error-prone PFS. Studies such as the one conducted by Gray et al. (2009), would be a

good source of validation data, since they compared PFS assessment conducted by IRF review

(error-free PFS) to PFS assessment conducted by local review (error-prone PFS). Similarly, this

notation can also be applicable if we were interested in predicting long term survival time (T o1 using

our notation), based on an error-prone short term survival (H∗ using our notation), assuming a

model for P (T o1 > t|H) has been developed elsewhere.

5 Simulations

5.1 Mendelian Risk Prediction Models

We begin with simulations whose goal is to quantify the impact of adjusting for measurement error

in the context of Mendelian risk prediction models. For each simulation scenario, we generated two

data sets; the first is used to model the measurement error process (the validation study), and the

second is used to apply our method and estimate the carrier probability of each counselee given

their family history. For the validation data set, 100, 000 families with 5 members (mother, father,

and three daughters) were simulated. These simulations focus on one gene, BRCA1, and only on

breast cancer. For the marginal carrier probability, P (γ = 1), we assumed the value 0.006098,

which is the estimated allele frequency of BRCA1 in the Ashkenazi Jewish population. Error-free

breast cancer failure times were simulated for each member based on fixed penetrance functions

for P (H|γ), the same used by BRCAPRO version 2.08. Error-free censoring times were simulated

from a normal distribution with mean 55 and standard deviation 10. A large validation data is used

because the allele frequency for BRCA1 is low. Since breast cancer failure times were generated

using the penetrance, a large data set is needed in order to generate a sufficient number of breast

9
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cancer events.

Two settings for the measurement error in disease status were considered. The first using

sensitivity=0.954 and specificity=0.974, taken from Ziogas and Anton-Culver (2003), the second

using sensitivity=0.649 and specificity=0.990, taken from Mai et al. (2011). Four settings for

the measurement error in age were considered. For the first three settings, we assume an additive

classical model; T ∗ = T+ε where ε ∼ N(0, σ2), and σ = 5, σ = 3, and σ = 1. For the fourth setting,

we assume a multiplicative measurement error model, T ∗ = TU , where U ∼ exp(1). P (H|H∗) was

estimated using smoothed Kaplan-Meier with the nearest neighborhoods kernel using the prodlim R

package (Gerds, 2011). The optimal bandwidths were calculated using the direct plug in approach

proposed by Sheather and Jones (1991).

We applied our method to 50,000 counselees whose family history was generated in a similar

manner. Specifically, for each of the 50, 000 families, carrier probability for the counselee based on

family history was calculated using BRCAPRO for three different approaches; based on the simu-

lated error-free history P (γ0|H), based on the simulated error-prone history by naively replacing H

by H∗, denoted by P̃ (γ0|H∗), and using our adjusted model P (γ0|H∗) =
∫
H
P (γ0|H)P (H|H∗) dH

(Table 1). For our adjusted model approach, Monte Carlo integration was applied by sampling 100

configurations of H based on P (H|H∗).

These approaches were evaluated using three different measures; ratio of observed to expected

events (O/E), mean squared error of prediction (MSEP), and area under the response operating

characteristics curve (ROC-AUC). Model calibration is evaluated using the ratio of observed to

expected events, which can be written as:
∑n
i=1 1(γi = 1)/

∑n
i=1 P̂i, where P̂i = ̂Pi(γ0|H) for the

O/E based on the error-free family history, P̂i = ̂P̃i(γ0|H∗) for the O/E based on the error prone

family history, and P̂i = ̂Pi(γ0|H∗) for the O/E based on the adjustment approach. Overall accuracy

is evaluated using MSEP, which we define here as the mean of the squared differences between the

P̂i and the error-free predictions. Therefore, MSEP based on the error-free data is always 0. For

the error-prone predictions MSEP is calculated by (1/n)
∑n
i=1{

̂P̃i(γ0|H∗)− ̂Pi(γ0|H)}2, and for the

adjustment approach it is calculated by (1/n)
∑n
i=1{ ̂Pi(γ0|H∗)− ̂Pi(γ0|H)}2 . Model discrimination

is evaluated using ROC-AUC. We used the verification R package (Gilleland, 2009) which calculates
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ROC-AUC following the process outlined by Mason and Graham (2002). ROC-AUC was calculated

using the three different predictions (error-free, error-prone, and based on the adjustment approach).

The ratio of observed to expected events (O/E) based on the error-free family history is close to 1

in all simulation settings. The O/E based on the error-prone family history is lower than one, when

using sensitivity=0.954 and specificity=0.974, and higher than one when using sensitivity=0.649

and specificity=0.990 (with the exception of the scenarios involving multiplicative error in age, for

which the O/E is always less than one). When the sensitivity is lower, we have more underreporting

of disease, which drives the O/E to be greater than one since the expected probabilities are lower.

In all simulations, adjusting the error-prone improves the O/E substantially, and shifts it so it is

closer to 1. For example, in the first simulation scenario, the O/E based on error-free family history

is 0.9773, based on error-prone family history it is 0.8190, and based on the adjustment it is 0.9712.

Thus, we are able to eliminate almost all the bias induced by errors in reported histories.

MSEP based on adjusting the error-prone data is lower than MSEP based on the error-prone

data alone for all simulations, by an amount that varies but can be substantial (Table 1). For

example, in the first simulation scenario the square root of the MSEP multiplied by 1000, based on

the error-prone family history is 19.1351, and based on the adjustment is 16.7405. ROC-AUC in all

simulations are higher based on the error-free data compared to the error-prone data. In simulations

involving additive error in age, ROC-AUC values are about the same using our adjustment compared

to the error-prone data alone. For example, in the first simulation scenario ROC-AUC was 0.8160

based on error-free family history, 0.8090 based on error-prone family history, and 0.8086 based

on the adjustment. In simulations involving a multiplicative error in age, where the error in age

is stronger, ROC-AUC is higher using our adjustment compared to the error-prone data alone.

For example, in the fourth simulation scenario, ROC-AUC was 0.8145 based on error-free family

history, 0.7185 based on error-prone family history, and 0.8020 based on the adjustment.

Figure 1 compares the three predictions in two scenarios. The first, shown in red, in the top

panel of Figure, corresponds to the first row in Table 1, representing a simulation setting with

sensitivity 0.954 and specificity 0.974. The second, shown in blue, in the bottom panel of Figure 1,

corresponds to the fifth row in Table 1, representing a simulation setting with sensitivity 0.649 and
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specificity 0.990. The first column on the left, shows predictions based on error-free family history

compared to error-prone family history. There is more underreporting of cancer (in the plot these

are individuals who are below the 45o line) in the second scenario, due to the lower sensitivity,

and more over-reporting (in the plot these are individuals who are above the 45o line) in the first

scenario, due to the lower specificity. In both scenarios, we have many individuals close to the 45o

line, corresponding to simulated families for which error-prone and error-free family histories were

the same. The second column in the middle, shows predictions based on error-free family history

compared to our adjustment. In both scenarios, we see more individuals below the 45o line, implying

our adjustment method slightly over adjusts by shifting probabilities down. The third column on

the right, shows predictions based on error-prone family history compared to our adjustment. We

can see that especially in the first scenario (which has more over-reporting of cancer than the second

scenario), our adjustment shifts individuals’ carrier probabilities down.

Overall, the adjustment method improves MSEP and calibration in all scenarios, while in some

scenarios ROC-AUC remains the same (in the scenarios of additive error in age), in other sce-

narios the adjustment method improves ROC-AUC (in the scenarios of multiplicative error in age

scenarios).

5.2 Multivariate Survival Prediction Models

We also preformed simulations in the context of predicting OS based on PFS. For these simulations,

we consider a hypothetical scenario in which one has developed a prediction model for OS using

error-free PFS as a predictor. In reality, however, PFS is measured with error, as shown in the

E2100 review conducted by Gray et al. (2009). Based on the results of this review, Korn et al.

(2010), performed simulations to assess the potential bias of measurement error in PFS on the

conclusions of a proportional hazards analysis of a randomized trials. We follow a similar approach

in generating the data for our simulations.

We generated three data sets for each simulation scenario. The first data set was generated to

obtain a prediction model for OS based on error-free PFS. We assume a scenario in which patients

were followed for progression free survival for a period of 25 months. Some of these patients will
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Figure 1: P(BRCA1) for simulated families based on error-free family history, error-prone family
history, and proposed adjustment. In red, a simulation setting with sensitivity 0.954 and specificity
0.974. In purple, a simulation setting with sensitivity 0.649 and specificity 0.990.
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have a progression event during this time interval, whereas others will be censored. We assume

that censoring represents the patient’s last visit to the clinician’s office. The goal is to predict the

overall survival of a patient, t months from the time they either have a progression event or are

censored.

For this first data set, we generate OS as well as error-free PFS for 1, 000 patients. For these sim-

ulations 1, 000 patients provide a large enough validation data, since the event rate is high (around

45%). We begin by simulating progression free survival times based on a Weibull distribution with

shape parameter=1.456 and scale parameter=11.063 (based on E2100). We assume a censoring

distribution between 0 and 25 months with density f(t) = 2(25− t)/625, resulting in approximately

55% censoring. To generate the overall survival times, for those who had a progression event, we

assume the probability of death in this subpopulation is 50%. We generate a time for this death

event based on an additive model; death time=progression time+|(N(12, 52))|. For those who did

not have a progression event, we assume the probability of death in this subpopulation is 10%.

We generate a time for this death event based on an additive model; death time=last clinician

visit+|(N(60, 52))|. For those who did not have a death event, for simplicity we assume no cen-

soring occurs, and assign them a survival time equal to their progression free survival time plus t

months (where t is fixed and equal for everyone). We fit a prediction model P (T o1 > t+ T2|T2, δ2)

using smoothed Kaplan-Meier estimators for δ2 = 0 and 1 separately.

The second data set was generated to model the measurement error process (the validation

study). For this data set, we generate error-free PFS as well as error-prone PFS for 1, 000 individ-

uals. We simulate error-free PFS as we did in the first data set. We then generate error-prone PFS

from the error-free PFS. We introduce error in PFS events using various sensitivities and specifici-

ties (E2100 had 88% sensitivity and 64% specificity). We introduce error in PFS time as follows. If

both error-free PFS and error-prone PFS are events: 55% of the time we assume agreement in the

time of the event (based on E2100). For those who don’t have complete agreement in the time of

the event, 35% were within 6 weeks of each other. Therefore, we use multiplicative measurement

error with log-normal distribution with standard deviation parameter log(1.5) (Korn et al., 2010).

If the patient does not progress according to both error-free PFS and error-prone PFS, we assume
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no error in PFS time. If error-free PFS is an event but error-prone PFS is not an event, we assign

the error-prone PFS time to be the censoring time. If error-free PFS is not an event but error-prone

PFS is an event, we assign the error-prone PFS time to be the minimum of the simulated progres-

sion failure time and end of study (25 months). We obtain error-free and error-prone PFS, and

determine the measurement error model, P (T2, δ2|T ∗
2 , δ

∗
2) using smoothed Kaplan-Meier estimators

based on this simulated data set.

The third data set was generated to apply the proposed adjustment method to. For the third

data set, we generate error-prone and error-free PFS as well as OS, for 1, 000 individuals as we

did for the first two data sets. We preform prediction calculations on this data set. We are able

to compare three different prediction calculations; the first using the error-free PFS as a covariate

and calculating P (T o1 > t|T2, δ2), the second by naively replacing the error-free PFS by the error-

prone PFS as a covariate and calculating P̃ (T o1 > t|T ∗
2 , δ

∗
2), and the third using our measurement

error adjustment: P (T o1 > t|T ∗
2 , δ

∗
2) =

∫
H
P (T o1 > t|T ∗

2 , δ
∗
2)P (T2, δ2|T ∗

2 , δ
∗
2) dH. All three prediction

calculations were done for a fixed t = 60.

In addition, we compare our proposed method to an alternative approach of modeling the mea-

surement error process. This approach, assumes the measurement error model does not consider

time, in other words P (T2, δ2|T ∗
2 , δ

∗
2) = P (δ2|δ∗2). We estimate P (δ2|δ∗2) (NPV and PPV) in the val-

idation study, and use it to adjust for measurement error as follows; P (T o1 > t|T ∗
2 , δ

∗
2) =

∫
H
P (T o1 >

t|T2, δ2)P (δ2|δ∗2) dH. We will refer to this as the time independent adjustment.

We conducted simulations for various values of sensitivity (varying in increments of 0.1 from 0.1

to 1) and specificity (varying in increments of 0.1 from 0.1 to 1). The O/E ratios based on error-free

covariates is close to one, and becomes even closer to one as sensitivity increases (Figure 2). The

O/E ratios based on the error-prone covariates, decrease as sensitivity increases, and increase as

specificity increases. A low sensitivity corresponds to underreporting of events, corresponding to

higher O/E ratios, whereas a low specificity corresponds to over-reporting of events, corresponding

to lower O/E ratios. Thus, as sensitivity increases O/E decreases, and as specificity increases O/E

decreases. The right combination of sensitivity/specificity can lead to ad O/E close to 1. Based on

the full adjustment method, O/E ratios are very close to one and do not vary much across sensitivity
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and specificity (Figure 2). O/E ratios based on the time independent adjustment increase slightly

as sensitivity increases, and decrease slightly as specificity increases.

The full adjustment preformed best in terms of MSEP compared to both no adjustment and

the time independent adjustment (Figure 3) (with the exception of two scenarios). MSEP based

on error-prone covariates decreases as sensitivity and specificity increase, that is, as we introduce

less error MSE improves. For both adjustment methods, MSEP increases and then decreases as

sensitivity increases, for lower specificities, while for higher specificities MSE decreases as sensitivity

increases.

In general, ROC-AUC was highest using the full adjustment method compared to both no

adjustment and the time independent adjustment. However, ROC-AUC was slightly higher based on

the error-free covariates (Figure 4). ROC-AUC based on the error-free covariates remained relatively

constant as sensitivity and specificity varied. ROC-AUC based on error-prone covariates increases

as sensitivity and specificity increase, that is, as we introduce less error ROC-AUC improves. For

both adjustment methods, ROC-AUC decrease and then increase as sensitivity increases, for lower

specificities, while for higher specificities ROC-AUC increases as sensitivity increases.

Overall, the full adjustment method preform best in terms of calibration, overall model accuracy,

and discrimination.

6 Data Application

We illustrate our proposed method using a data application in the context of Mendelian risk pre-

diction models focusing only on misreporting of breast cancer. For the counselees, we use data

from the Cancer Genetics Network (CGN) Model Validation Study. CGN consists of families with

personal or family history of cancer. The data set includes 2,038 families with 34,310 relatives.

9.2% of relatives have breast-cancer. For this study, only error-prone, self-reported family history

is available. In addition to family history, this data set also contains BRCA1/2 testing results for

each counselee.

For our validation study, we use data from University of California at Irvine (UCI) (Ziogas and
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Figure 2: O/E ratios for PFS/OS simulations varying sensitivity and specificity.
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MSEP ∗ 1000 for PFS/OS simulations varying sensitivity and specificity.

19

Hosted by The Berkeley Electronic Press



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
O

C
−

A
U

C

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●
●
●

●
●
●

●

●

Sensitivity 0.1,..,1 0.1,..,1 0.1,..,1 0.1,..,1 0.1,..,1 0.1,..,1 0.1,..,1 0.1,..,1 0.1,..,1 0.1,..,1
Specificity 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

●

Error−Free
Error−Prone
Full Adjustment
Time Independent Adjustment

Figure 4: ROC-AUC for PFS/OS simulations varying sensitivity and specificity.
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Anton-Culver, 2003). This study included cancer affected counselees with either breast, ovarian,

or colon cancer. The data set includes 719 families with 1,521 female relatives. 19.3% of relatives

have breast-cancer. Both error-free and error-prone family history are available in this data set.

We estimate the measurement error process using smoothed Kaplan-Meier estimators using the

UCI validation study. We then apply our method to the CGN counselees. For each counselee, using

BRCAPRO, we estimate her probability of being a carrier for a mutation given her error-prone

family history, as well as given our proposed adjustment. Using the true BRCA1/2 carrier status,

O/E ratios, Brier scores, and ROC-AUC were calculated based on the error-prone family history as

well as based on our proposed adjustment. The bandwidths for the smoothed Kaplan-Meier were

selected so that calibration for being a BRCA, BRCA1, and BRCA2 carrier in the CGN dataset

were closest to 1.

The respective O/E ratios of being a BRCA, BRCA1, and BRCA2 carrier are 1.007, 1.073, and

0.916 based on error-prone family history; and 0.976, 1.037, and 0.892 based on the adjustment.

The respective Brier scores for being a BRCA, BRCA1, and BRCA2 carrier are 0.141, 0.102, 0.058

based on error-prone family history; and 0.139, 0.102, and 0.057 based on the adjustment. The

respective ROC-AUC for BRCA, BRCA1, and BRCA2 carriers are 0.777, 0.791, and 0.725 based

on the error-free family history; and 0.776, 0.787, and 0.722 based on the adjustment.

Overall, we see a slight improvement in Brier score based on the adjustment. Before the adjust-

ment the model was well calibrated for BRCA, but not as well calibrated for BRCA1 and BRCA2

separately. The adjustment improves BRCA1 calibration, while the calibration of BRCA2 is slightly

worse. ROC-AUC are slightly worse using the adjustment.

Results of O/E ratios of being a BRCA carrier stratified by risk are shown in Figure 5. Indi-

viduals are ordered by their probabilities of being a BRCA carrier based on the error-prone family

history, and stratified into 10 strata. O/E ratios as well as 95% confidence intervals are calculated

for each strata. Using error-prone family history, the model is not well calibrated in the low risk

deciles. We see that the O/E ratio is greater than one in these deciles, implying that the model un-

derestimates the risk for these individuals. Insurance companies, will often approve genetic testing

only for individuals whose estimated carrier probability is above a certain cutoff, thus calibration is
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especially important in the low risk deciles, since clinical decisions will be made based on estimated

carrier probabilities. Our proposed adjustment improves calibration in the low risk deciles by an

extent which we expect will lead to better clinical decisions.

7 Discussion

In this paper we explore a method to adjust for measurement error in time to event data. Previous

literature has focused on adjusting for measurement error in survival outcomes, but not for time to

event data measured with error. Our method adjusts for measurement error in time to event data

used as covariates, and is applicable to both the setting of Mendelian risk prediction models and

multivariate survival prediction models.

Simulations studies in both of these settings show that models based on error-prone time to event

data are not well calibrated. The adjustment method improves model calibration substantially. The

adjustment method also improves total accuracy by improving MSEP. ROC-AUC in Mendelian risk

prediction models either remains the same or is improved using the adjustment method depending

on the simulation scenario, while ROC-AUC in multivariate survival prediction models improves

using the adjustment method. We also show that the adjustment method preforms better than an

alternative time independent adjustment approach in the context of multivariate survival prediction

models.

Our method assumes that the measurement error process is transportable from the validation

data to the main study. This assumption should be given careful thought, as there may be scenarios

for which this assumption will not hold for P (H|H∗), but will hold for P (H∗|H). In addition, the

methods presented in this paper for Mendelian risk prediction models assume only one disease,

whereas Mendelian risk predication models include multiple diseases. An extension of this work to

multiple diseases is presented elsewhere (Braun et al., 2014).

The work presented in this paper can be applicable to various scenarios, and was motivated by

the context of Mendelian risk prediction models. Self-reported family history is often reported with

error. Inaccurate reporting of family history could lead to inappropriate care Murff et al. (2004).
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Figure 5: Log of observed over expected ratios and 95% confidence intervals for being a BRCA
carrier for families in CGN data set stratified by risk deciles.
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Underreporting (false negatives) of cancer in the family, gives rise to an underestimation of cancer

risk, which can result in inadequate screening and substandard treatment Murff et al. (2004). On

the other hand, over-reporting (false positives) of cancer, gives rise to an overestimation of cancer

risk, which can cause stress Douglas et al. (1999), unnecessary procedures and genetic testing Fry

et al. (1999); Kerr et al. (1998); Sweet et al. (2002). For these reasons, methods to adjust predictions

based on self-reported family history are of clinical significance.

The method proposed in this paper can be incorporated into the BayesMendel R package, and

will be of great clinical use. Given a good validation study, Mendelian risk prediction models can

automatically incorporate this adjustment, so that clinicians will be able to obtain more accurate

risk predictions. In addition, we hope that this method will be incorporated by statisticians de-

veloping multivariate survival risk prediction models based on error-free time to event data, but

implementing them using error-prone time to event data.
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