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Abstract

Female menstrual cycle length is thought to play an important role in couple fecun-

dity, or the biologic capacity for reproduction irrespective of pregnancy intentions. A

complete assessment of the association between menstrual cycle length and fecundity

requires a model that accounts for multiple risk factors (both male and female) and the

couple’s intercourse pattern relative to ovulation. We employ a Bayesian joint model

consisting of a mixed effects accelerated failure time model for longitudinal menstrual

cycle lengths and a hierarchical model for the conditional probability of pregnancy in

a menstrual cycle given no pregnancy in previous cycles of trying, in which we include

covariates for the male and the female and a flexible spline function of intercourse

timing. Using our joint modeling approach to analyze data from the Longitudinal

Investigation of Fertility and the Environment Study, a couple based prospective preg-

nancy study, we found a significant quadratic relation between menstrual cycle length

and the probability of pregnancy even with adjustment for other risk factors, including

male semen quality, age, and smoking status.

Keywords:

Bayesian hierarchical model; Intercourse timing; Length-bias; Mixed effects accelerated

failure time model; Pregnancy probability.
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1. INTRODUCTION

Fecundity, or the biologic capacity of male and female for reproduction irrespective of

pregnancy intentions (Buck Louis 2011), can be measured in terms of multiple end-

points such as pubertal onset and progression, menstrual cycle regularity and length,

ovulation, semen quality, and pregnancy, among others. This list emphasizes the role

of both the male and female partner and the complexity of factors that contribute to a

couple becoming pregnant, yet few statistical models have been developed that model

more than one of these endpoints. Until recently available study data on fecundity con-

sisted mostly of retrospective pregnancy studies or prospective studies with fewer than

six months follow-up, and mainly of the female partner. However, investigators of a re-

cent prospective pregnancy study called the Longitudinal Investigation of Fertility and

the Environment (LIFE) Study (Buck Louis et al. 2011) approached fecundity from

a couple-based perspective, collecting measurements on exposures for both partners

with the goal of assessing the effects of exposures on multiple fecundity related out-

comes. We develop a joint model to investigate the relation between female menstrual

cycle length and the couple’s probability of pregnancy. We develop a framework that

allows for the assessment of time-constant exposures on the probability of pregnancy

as well as those mediated through the female menstrual cycle length. Furthermore, we

incorporate male factors which may be associated with the probability of pregnancy.

Statistical models of repeated measures of menstrual cycle length data have mainly

focused on extensions of mixed effects models to account for covariates, large and

heterogeneous within-female variability, and extreme cycle lengths. Harlow and Zeger

(1991) categorized menstrual cycle lengths as standard and non-standard and devel-

oped separate random effects models for the mean of the standard lengths and the risk

of having a non-standard length. Including only standard lengths, Lin et al. (1997) ex-

1

Hosted by The Berkeley Electronic Press



tended the linear mixed model to allow for heterogeneous within-female variability (see

Laird and Ware 1982; Diggle et al. 2002; Verbeke and Molenberghs 2009; Carlin and

Louis 2009, for details). Allowing for nonstandard cycle lengths, Guo et al. (2006)

proposed a marginal model with covariates for the population mean and variance,

assuming a mixture of Gaussian and shifted Weibull error distributions.

Focusing on prediction, Bortot et al. (2010) used a state space approach to de-

velop a predictive model of menstrual cycle length accounting for trend, autocorre-

lation and extremely long or short outlying lengths. McLain et al. (2012) proposed

a parametric model assuming a mixture of Gaussian and Gumbel error distributions

and incorporating random effects and covariates on the mean and variance parameters

of the Gaussian component. Assuming log-normal error distributions to address het-

eroscedasticity, Huang et al. (2014) developed a hierarchical framework consisting of

change point models for both the mean and variance of cycle length to study changes

at late reproductive ages. Building on these works, in the menstrual cycle sub-model

of our joint model we propose a Bayesian hierarchical, accelerated failure time model

with a mixture error distribution to allow for skewness in cycle length. In addition,

we account for length-bias in modeling the length of the cycle in which the couple is

enrolled and censoring of the length of the cycle in which the couple becomes pregnant.

Statistical modeling of pregnancy attempts has focused on assessing biological risk

factors in the context of the couple’s day-specific intercourse behavior (see Ecochard

2006, for a review). However, many models assume there exists a fixed, narrow (fer-

tile) window of days around ovulation outside of which there is no risk for pregnancy.

This restriction may not be reasonable, as evidenced by studies which assessed the

fertile window, including ovulation using the gold standard, i.e., serial vaginal ultra-

sound (Keulers et al. 2007). In contrast, Dominik et al. (2001) developed a method

that incorporates all intercourse acts in a menstrual cycle, modeling the day-specific

2
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probability of pregnancy as a quadratic function of distance of the intercourse act from

ovulation day (assumed to be day 14).

We generalize this approach to a Bayesian hierarchical model for the day-specific

probabilities of pregnancy using natural, cubic splines to model the probability of

pregnancy, incorporating cycle-specific information on the couple’s ovulation day as

measured using a fertility monitor, and using the joint model in Section 2 investigate

the association of female menstrual cycle length with the probability of pregnancy in

the context of male and female risk factors.

In addition to modeling the relation between menstrual cycle length and the prob-

ability of pregnancy, we include adjustment for the male contribution. For the LIFE

Study, Buck Louis et al. (2014) found significant associations between fecundity and

several semen quality parameters, when each parameter was entered into the model

individually. To account for the male contribution, we incorporate male age, smoking

status and multiple semen quality parameters in addition to female covariates in the

model for the probability of pregnancy. Here, we focus on four World Health Organi-

zation (WHO) semen quality parameters (morphology (strict criteria), semen volume,

sperm concentration, and total sperm count) which are common across many studies

of semen quality (see e.g. Cooper et al. 2010).

2. JOINT MODEL FOR MENSTRUAL CYCLE LENGTH AND PREGNANCY

For the ith couple (i = 1, . . . , n), let j (j = 1, . . . , ni) index the female menstrual cycles

with lengths Yij and ovulation dates Oij. For the kth(k = 1, . . . , Yij) day of the jth

cycle, let xijk ∈ {0, 1} be the observed day-specific intercourse indicator. For the jth

cycle, collect the intercourse indicators in the vector xij = (xij1, . . . , xijYij). Further,

Aij and δi are the cycle-specific and δi couple-specific pregnancy indicators.

3
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2.1 Sub-model for Longitudinal Menstrual Cycle Length

In the sub-model for menstrual cycle length, we model the relation between baseline

covariates (e.g., age, smoking status) and the expected menstrual cycle length, while

accounting for within-female correlation in longitudinal cycle lengths and extremely

short and long cycle lengths. To meet these challenges, we use a hierarchical accelerated

failure time model (see e.g., Kalbfleisch and Prentice 2011), which was adapted for

modeling menstrual cycle length by Lum et al. (2014). For the jth (j = 2, . . . , ni)

menstrual cycle length from the ith (i = 1, . . . , n) female, we assume

[εij | q, µ1, σ1, µ2, σ2]

∼ qGaussian(µ1, σ
2
1) + (1− q)Gumbel(µ2, σ

2
2), µ1 > 0, σ1 > 0, µ2 > 0, σ2 > 0;

[Wi | σW ] ∼ Gamma(1/σ2
W , 1/σ

2
W ), σW > 0;

Yij | Wi, exp(vi
>η), εij = Wi exp(vi

>η)εij. (1)

Here, vi is an r-dimensional vector of observed covariates with corresponding unknown

parameter vector η and Wi is a couple-specific random effect with support of the dis-

tribution function ∈ (0,∞). We assume a Gaussian/Gumbel mixture distribution for

the error variables to accommodate two groups of menstrual cycle lengths. We will

use Ti = 1 to denote normal cycle lengths from a Gaussian distribution and Ti = 2

to denote abnormal cycle lengths from a Gumbel distribution. As the mean of the

error distribution is non-zero, we do not include an intercept in the fixed effects and

we parameterize the random effect distribution such that E[W ] = 1 and V [W ] = σ2
W .

We assume the distribution of the covariates does not depend on (µ1, σ
2
1, µ2, σ

2
2) and

that the cycle lengths within a female are conditionally independent given vi and

Wi = wi. Let Fε(ε;µ1, σ
2
1, µ2, σ

2
2) denote the Gaussian-Gumbel cumulative distribution

4
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function (CDF). By a transformation, the CDF of Yij, i = 1, . . . , n, j = 2, . . . , ni is

F (yij | wi,vi;µ1, σ
2
1, µ2, σ

2
2, η) = Fε(yijw

−1
i exp(−vi

>η);µ1, σ
2
1, µ2, σ

2
2, η) and the prob-

ability density function is

f(yij | wi,vi;µ1, σ
2
1, µ2, σ

2
2, η) = w−1i exp(−vi

>η)fε(yijw
−1
i exp(−vi

>η);µ1, σ
2
1, µ2, σ

2
2, η).

2.1.1 Modeling the Length of the Enrollment Cycle

In Lum et al. (2014), we proposed a method for estimating the population menstrual

cycle length distribution using the enrollment cycle (i.e., the menstrual cycle during

which the women enrolled), that accounts for features of the sampling plan of the LIFE

Study, specifically length-bias and a selection process that is potentially a function of

the time since the last menstrual period (LMP). For the LIFE study, we found that

the estimated probability of enrollment was approximately constant with respect to

time from LMP. Based on this finding, we account for the sampling plan by assuming

a length-biased sampling distribution for Yi1

fY1(yi1 | wi,vi;µ1, σ
2
1, µ2, σ

2
2, η) =

yi1f(yi1 | wi,vi;µ1, σ
2
1, µ2, σ

2
2, η)

E(Yi | Wi, exp(vi
>η), q, µ1, µ2)

(2)

where E(Yi | Wi, exp(vi
>η), q, µ1, µ2) = Wi exp(vi

>η){qµ1 + (1− q)µ2}.

2.1.2 Modeling the Length of the Pregnancy Cycle

Menstrual cycle lengths were prospectively measured until the pregnancy cycle, during

which increased levels of progesterone preclude menstrual bleeding in preparation for

implantation of the blastocyst. Therefore, the length of the pregnancy cycle (i.e., the

menstrual cycle during which the couple becomes pregnant) is right censored. Let τini

be the time (in days) from the first day of the nthi cycle to the censoring day. We assume

the censoring distribution is non-informative and conditionally independent of Y given

5
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W = w and v. For enrollment pregnancy cycles, the contribution to the likelihood is

proportional to

{1 − F (τini
| wi,vi;µ1, σ

2
1, µ2, σ

2
2, η)}/E(Yi | Wi, exp(vi

>η), q, µ1, µ2); while for non-

enrollment pregnancy cycles, the contribution is proportional to 1−F (τini
| wi,vi;µ1, σ

2
1, µ2, σ

2
2, η).

2.1.3 Choice of Priors for Menstrual Cycle Length Submodel

Let φY = (η, σW , µ1, σ1, µ2, σ2) denote the unknown population parameters of the men-

strual cycle length model. We assume the components of φY are independent a priori,

such that [φY ] = [σW ][µ1][σ1][µ2][σ2]
R∏
r=1

[ηr]. We complete the hierarchical model with

the following specification of uniform (U) priors:

[ηr | aηr , bηr ] ∼ U(aηr , bηr), r = 1, . . . , R,

[σW ] ∼ U(0, bσW ), (3)

[µ1] ∼ U(aµ1 , bµ1),

[σ1] ∼ U(0, bσ1),

[µ2] ∼ U(aµ2 , bµ2),

[σ2] ∼ U(0, bσ2),

where we choose values for the hyperparameters that are scaled to determine vague

priors. In (3), we choose a uniform prior on the scale of the standard deviation of

the female-specific parameter so as not to bias the prior away from 0 (Gelman 2006).

If the posterior distribution of σW includes zero, for example, this would indicate no

between-female variability in the mean beyond that explained by the fixed effects. We

discuss alternative choices for the priors in Section 4.2.

6
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2.2 Submodel for the Probability of Pregnancy

The observed prospective pregnancy data include at the cycle level, pregnancy in-

dicated by Clearblue R©Easy pregnancy tests which detect levels of human chorionic

gonadotropin over 25 mIU/mL; and within each cycle, the ovulation day and the pat-

tern of intercourse acts. We aim to estimate the association between the female-specific

distribution of menstrual cycle length and the probability of pregnancy in a cycle, ac-

counting for intercourse pattern in both the current and previous cycles, the preceding

cycles of attempts ending without pregnancy, and male and female covariates.

For the jth cycle, let k′ (k′ = 1, . . . , K ′ij) index the intercourse acts in the cycle,

νijk′ denote the (possibly unobserved) indicator of fertilization at the (k′)th intercourse

act, dijk′ denote the time difference (in days) of the intercourse day from ovulation;

and let νij = (νij1, . . . , νijK′
ij

) and di = (di11, . . . , dijK′
ij

). We develop a model for the

conditional probability of pregnancy in the jth cycle given no pregnancy at each of the

intercourse acts in previous cycles and timing of all intercourse, denoted

Pr(Aij = 1 | Ai1 = . . . = Ai(j−1) = 0,νi1, . . . ,νi(j−1), K
′
ij,dij), j > 1.

We assume intercourse cannot be successful if the ovum has already been fertilized;

thus, νijk′ is dependent on {νi11, . . . , νij(k′−1)}. Let ρ(dijk′) be the conditional proba-

bility of fertilization at the (k′)th intercourse given no prior fertilization. For the (k′)th

intercourse, k′ > 1, we have

pr(νijk′ = 1 | νi11 = . . . = νij(k′−1) = 0) = ρ(dijk′),

pr(νijk′ = 1 | max(νi11, . . . , νij(k′−1)) = 1) = 0; (4)

where (4) follows from the fact that prior fertilization prevents subsequent. For the

cycles preceding the jth cycle, we observe νi1 = . . . = νi(j−1) = 0. However, if

pregnancy occurs in the jth cycle, νij is unobserved for K ′ij > 1. Therefore, we express

7
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the conditional probability of pregnancy in the jth cycle as the sum of the probabilities

of all possible permutations of (vij1, . . . , vijK′
ij

) under the condition
∑

k′ vijk′ = 1. In

the special case of one act of intercourse in the jth cycle,

Pr(Aij = 1 | Ai1 = . . . = Ai(j−1) = 0,νi1, . . . ,νi(j−1), K
′
ij = 1,di) = ρ(dij1).

For the probability of pregnancy in the jth cycle with two intercourse acts,

Pr(Aij = 1 | Ai1 = . . . = Ai(j−1) = 0,νi1, . . . ,νi(j−1), K
′
ij = 2,di) =ρ(dij1) + {1− ρ(dij1)}ρ(dij2);

and in general, for the probability of pregnancy in the jth cycle with K ′ij intercourse

acts,

Pr(Aij = 1 | Ai1 = . . . =Ai(j−1) = 0,νi1, . . . ,νi(j−1), K
′
ij,di) =

ρ(dij1) +
{ K′

ij∑
k′=2

([ k′−1∏
l=1

{1− ρ(dijl)}
]
ρ(dijk′)

)}K′
ij>1

. (5)

The conditional probability of no pregnancy in the jth cycle with K ′ij intercourse acts

is

Pr(Aij = 0 | Ai1 = . . . = Ai(j−1) = 0;νi1, . . . ,νi(j−1), K
′
ij,di) =

K′
ij∏

k′=1

{1− ρ(dijk′)}.

The expression in (5) is equivalent to

Pr(Aij = 1 | Ai1 = . . . = Ai(j−1) = 0,νi1, . . . ,νi(j−1), K
′
ij,di) = 1−

K′
ij∏

k′=1

{1− ρ(dijk′)}.

Let k (k = 1, . . . , Ÿij) index day of the menstrual cycle, where Ÿ = [Y ] and [. . .] denotes

the greatest integer function. Using xijk to indicate intercourse and xi to denote the

8

http://biostats.bepress.com/jhubiostat/paper268



full history of intercourse acts, we equivalently model

Pr(Aij = 1 | Ai1 = . . . = Ai(j−1) = 0,xi,di) = 1−
Ÿij∏
k=1

{1− ρ(dijk)}xijk .

One decision that must be made in fitting this model is which days of the menstrual

cycle to include. Various approaches have been suggested such as assuming the inter-

course act closest to ovulation is the one that fertilizes the ovum (Royston and Ferreira

1999) or assuming an intercourse act has a nonzero probability of success only if it falls

within a predetermined fixed window around the ovulation day (see e.g., Weinberg

et al. 1994; Dunson and Stanford 2005). We employ this second approach, but since a

wide variety of fixed windows have been reported (Lynch et al. 2006), we use a very

broad window, specifically excluding only intercourse acts more than 16 days before

ovulation or 18 days after ovulation. Approximately 5% of all observed intercourse

acts occurred outside this range. In a model of barrier contraceptive efficacy, Dominik

and Chen (2006) consider a broad window consisting of 13 days prior to and 16 days

after an assumed ovulation on day 14 of the cycle.

In the second level of the hierarchical model, we model the probability of pregnancy

by intercourse on the kth day of the cycle as a function of the latent female-specific

menstrual cycle length, denoted Ypi, with adjustment for male and female risk factors

and difference of day k from ovulation:

logit[ρ{mi,β, zi,γ, α0, g(dijk)}] = mi
>β + zi

>γ + α0 + g(dijk). (6)

In (6), mi is a vector composed of linear and potentially quadratic terms of Ypi, which

we incorporate by mixing over the posterior predictive distribution conditional on the

woman’s observed menstrual cycle lengths, priors and hyperpriors. The corresponding

9
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unknown regression coefficient vector β, links the menstrual cycle length and pregnancy

sub-models.

In separate models, we also consider the relation between the probability of preg-

nancy and the latent female-specific menstrual cycle length conditional on normal cycles

denoted Ypi | Ti = 1, and the corresponding conditional means, E(Ypi | Yi, φY ,Wi,vi)

and E(Ypi | Yi, φY ,Wi,vi, Ti = 1). In Section 4.3, we present results from models with

the following choices for mi
>β:

mi
>β = β1Ypi (Lin)

mi
>β = β1Ypi + β2(Ypi)

2 (LinQuad)

mi
>β = β1(Ypi | Ti = 1) (LinT=1)

mi
>β = β1(Ypi | Ti = 1) + β2(Ypi | Ti = 1)2 (LinQuadT=1)

mi
>β = β1E(Ypi | Yi, φY ,Wi,vi) (LinCmean)

mi
>β = β1E(Ypi | Yi, φY ,Wi,vi) + β2{E(Ypi | Yi, φY ,Wi,vi)}2 (LinQuadCmean)

mi
>β = β1E(Ypi | Yi, φY ,Wi,vi, Ti = 1) (LinCmeanT=1)

mi
>β = β1E(Ypi | Yi, φY ,Wi,vi, Ti = 1) + β2{E(Ypi | Yi, φY ,Wi,vi, Ti = 1)}2

(LinQuadCmeanT=1)

In (6) we also adjust for male and female risk factors denoted by zi with correspond-

ing parameter vector γ. Specifically, we consider four of the WHO male semen quality

parameters, male smoking status and female smoking status. As male and female age

are highly correlated, we incorporate the average and difference in male and female

ages. Additionally, we account for the time (in days) from intercourse to ovulation,

dijk = k−Oij. We model g(dijk) as a smooth function estimated by ĝ(·) =
∑L

l=1 αlBl(·),

where {B1(·), . . . , BL(·)} are the B-spline basis functions for a natural cubic spline. The

intercept is represented by the parameter α0. Previous specifications of g(dijk) found in

10
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the literature include a piecewise linear spline (Dominik et al. 2001), a quadratic func-

tion centered around ovulation (Dominik and Chen 2006), or a day-specific parameter

with restriction of k to a small window of days around ovulation (see e.g., Dunson and

Stanford 2005).

We denote the parameters of the pregnancy model by φA = (β,γ, α). Assuming

the components of φA are independent and are also independent of φY ; we complete

the model structure by choosing noninformative uniform priors for each parameter in

φA.

2.2.1 Modeling the Probability of Pregnancy in the Enrollment Cycle

As we describe in Section 4.1, the ovulation day is estimated based on day level data

collected using the Clearblue R©Easy fertility monitor. Since couples were allowed to

enroll on any day of the female menstrual cycle, the majority of the couples do not have

sufficient monitor data throughout the enrollment cycle to estimate the ovulation day.

Further, for the most fecund couples who become pregnant before the first observed

bleeding event (approximately 10%), the enrollment cycle is their only cycle under

observation. In order to include these couples in the analysis, we model the probability

of becoming pregnant in the enrollment cycle as a function of the couple’s baseline

covariates, average number of intercourse acts (IntcFreq) and the female menstrual

cycle length:

logit{P (Ai1 = 1;mi,β, γ, λ, zi)} = mi
>β + zi

>γ + λ0 + λ1IntcFreqi + λ2(IntcFreqi)
2.

3. ESTIMATION

We jointly model the longitudinal menstrual cycle lengths and the conditional prob-

ability of pregnancy per cycle, assuming these processes are independent conditional

11

Hosted by The Berkeley Electronic Press



on the shared random effect Wi. Further, we assume cycle lengths, (Yi1, . . . , Yini
), are

independent given (Wi,vi). Let Yo
i denote the observed menstrual cycle lengths and

Y u
i the unobserved length of the pregnancy cycle. Under these assumptions, the joint

distribution of (Yi,Ai, Ypi,Wi) can be factored as

[Yi,Ai, Ypi,Wi | φY , φA] = [Ai | Ypi, zi,xi,di,φA][Ypi | Yi,Wi,vi,φY ][Yi | Wi,vi,φY ][Wi | φY ],

where

[Yi | Wi,vi,φY ] = [Yo
i , Y

u
i | Wi,vi,φY ]

= [Y u
i | Yo

i ,Wi,vi,φY ]δi [Yo
i | Wi,vi,φY ]

= [Y u
i | Yo

i ,Wi,vi,φY ]δi [Y o
ini
| Wi,vi,φY ](1−δi)

ni−1∏
j=1

[Y o
ij | Wi,vi,φY ].

The unknown model parameters for couple i are: Y u
i , Ypi,Wi,φY , and φA; and

the observed data are D = (Yo
i ,vi,Ai,Oi, zi,xi,di), where xi is a vector composed of

the stacked vectors of day-specific intercourse indicators. For a couple with Aini
= 0

(i.e. no pregnancy), Yo
i = Yi (i.e. the lengths of all cycles j = 1, . . . , ni are observed)

and the contribution to the joint posterior distribution is given by

[Ypi,Wi,φY , φA|D;Aini
= 0] ∝( ni∏

j=1

[Y o
ij | Wi,vi,φY ][Aij = 0 | Ai1 = . . . = Ai(j−1) = 0;Ypi,xi,di, zi,φA]

)
× [Ypi | Yi,Wi,vi,φY ][Wi | φY ][φY ][φA].

For a couple with Aini
= 1 (i.e. pregnant), the contribution to the joint posterior

12
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distribution is given by

[Y u
i , Ypi ,Wi,φY , φA|D;Aini

= 1] ∝( ni−1∏
j=1

[Y o
ij | Wi,vi,φY ][Aij = 0 | Ai1 = . . . = Ai(j−1) = 0;Ypi,xi,di, zi,φA]

)
1{ni>1}

× [Y u
i | Yo

i ,Wi,vi,φY ][Aini
= 1 | Ai1 = . . . = Ai(ni−1) = 0;Ypi,xi,di, zi,φA]

× [Ypi | Yi,Wi,vi,φY ][Wi | φY ][φY ][φA].

We estimate the marginal posterior distributions of the parameters using Markov

chain Monte Carlo (MCMC) integration. We describe the details of implementing our

approach in Section 4.2.

4. APPLICATION TO THE LIFE STUDY, A PROSPECTIVE PREGNANCY

STUDY

The aim of our analysis is to investigate the relation between female menstrual cycle

length and couple fecundity, while accounting for both female and male risk factors

in keeping with the couple dependent nature of human reproduction. Specifically, we

use the joint model detailed in Section 2 to model the female-specific menstrual cycle

length distribution jointly with the couple’s fecundity, as measured by the probability

of pregnancy in a menstrual cycle. We assess the association between menstrual cycle

length and the probability of pregnancy adjusting for male and female smoking status,

average of male and female age, difference between male and female age, and four WHO

semen quality parameters; specifically semen volume, sperm concentration, total sperm

count, and morphology (strict criteria) as discussed in Cooper et al. (2010). While the

focus of Cooper et al. (2010) is defining cutpoints for the semen quality parameters,

we choose to use the continuous measurements. Furthermore, since total sperm count

13
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is the product of semen volume and sperm concentration, we fit two separate models

adjusting for either total sperm count or both semen volume and sperm concentration.

4.1 The LIFE Study

We apply our joint modeling approach to the LIFE Study, a couple-based, prospective

pregnancy study of 501 couples. Couples were accepted if they fulfilled the following in-

clusion criteria: married or in a committed relationship, females aged 18-40 and males

over age 18 years, English or Spanish speaking, self-reported menstrual cycle lengths

within 21-42 days, and no hormonal birth control injections in the past 12 months.

Couples were followed until pregnancy, exit from the study or one year attempting

pregnancy. Pregnancy was recognized using Clearblue R©Easy pregnancy tests admin-

istered at home on the day menstruation is expected. For the length of the pregnancy

attempt, both the male and female kept independent journals of daily intercourse fre-

quency. If the intercourse question was not answered on a particular day in the female

daily journal, we used the number of acts recorded in the male daily journal. If the

intercourse question was left blank by both members of the couple (approximately

2.9% of days), we assume the couple did not have intercourse on that day. Women

recorded daily bleeding observed on a scale of 0 (none) to 4 (heavy). The beginning

of the menstrual cycle is defined by menstruation, designated as the first day of bleed-

ing followed within one day by at least two additional days bleeding. The length of

the menstrual cycle is then defined as time (in days) from the first day of menstrual

bleeding to the day preceding menstrual bleeding of the next cycle. Measurements of

semen quality parameters were made at the National Institute for Occupational Safety

and Health’s andrology laboratory and a contract laboratory (Fertility Solutions) on

samples collected at home via masturbation without the use of any lubricant follow-

ing 2 days of abstinence. Morphology was assessed using the strict and WHO normal

14
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criteria (World Health Organization 1992; Rothmann et al. 2013). As both criteria

measure morphology, we choose to use the strict criteria. Additional details on the

collection of semen quality measurements can be found in Buck Louis et al. (2014).

Beginning on day six of the menstrual cycle, women used the Clearblue R©Easy fer-

tility monitor to measure daily levels of oestrone-3-glucuronide, a metabolite of oestra-

diol, and luteinizing hormone (LH). The ovulation day was identified as the peak day

detected using the Clearblue R©Easy fertility monitor. In the case of two consecutive

peak days, the latter of the two was designated as the ovulation day. If a peak was

not detected and the female tested on at least 90% of the 20 testing days, we assumed

the cycle was anovulatory (151 cycles) and therefore had zero risk for pregnancy; oth-

erwise, we imputed the mean of the couple’s observed ovulation days (250 cycles). If

ovulation was not observed in any cycles, we imputed the ovulation day as the day

with the highest LH peak (33 cycles). We excluded 20 cycles for which the ovulation

day could not be detected or imputed due to non-compliance in testing.

For this analysis, we consider a subset of the LIFE Study restricted to 436 couples

with complete data on the four WHO semen quality parameters so that we may inves-

tigate both male and female risk factors for pregnancy. Couples who exited the study

are censored on the last day of the cycle preceding their exit. We further excluded 10

couples who exited in the enrollment cycle and thus are missing data on intercourse

days, menstrual cycle length, and pregnancy success, bringing the size of the subset

to 426 couples (1934 menstrual cycles). Lastly, we excluded 23 cycles shorter than 9

or longer than 89 days. As the upper limit is more than twice the study’s inclusion

criteria of 42 days, lengths outside this range are likely an artifact of a missing cycle

stop/start.

15
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4.2 Implementation Details

The posterior distributions of the population and couple-specific parameters of the

joint model described in Section 3 are estimated using MCMC sampling methods im-

plemented using the OpenBUGS software. Convergence of parameters is checked by

visual inspection of trace plots. Based on these trace plots, we use a burn-in of 10000

iterations and a sample of 30000 iterations. While the regression coefficients of both

sub-models exhibit rapid mixing, the spline parameters are slower to converge.

To assess the sensitivity to the choice of uniform priors for (σ1, σ2, σW ), we fit the

model assuming uniform priors on the scale of the log standard deviations; and we

found that the corresponding posterior distributions were approximately the same. As

a separate sensitivity analysis, we also fit the model assuming a log-normal distribution

forWi, i = 1, . . . , n. Again, there was very little difference in the posterior distributions.

For the shape of the profile of pregnancy probabilities in the fecundity model,

we assume g(·) is a smooth function and estimate g by ĝ(·) =
∑L

l=1 αlBl(·), where

{B1(·), . . . , BL(·)} are the B-spline basis functions for a natural cubic spline. Brown

et al. (2005) suggest choosing the number of knots based on the model with the smallest

deviance information criterion (DIC). We separately fit models with 4-10 knots at

locations based on percentiles of the intercourse day data. We found that the DIC was

smaller for the models with 8, 9, or 10 knots; therefore, we chose to use 8 knots so that

the profile of pregnancy probabilities is informed by the intercourse data without the

addition of too many parameters. We exclude intercourse acts occurring more than 16

days prior to ovulation or 18 days post ovulation, or on the days following a positive

pregnancy test as these occur after conception; and we also exclude intercourse acts

on days occurring more than 45 days after the start of a cycle.

16

http://biostats.bepress.com/jhubiostat/paper268



20 25 30 35 40

26
28

30
32

34
Relation between age and mean cycle length

Age (in years)

M
ea

n 
m

en
st

ru
al

 c
yc

le
 le

ng
th

 (
in

 d
ay

s)

Figure 1: Median (solid) and 95% equal tail credible interval (dashed) for the posterior

distribution of mean menstrual cycle length (in days) versus female age (in years).

4.3 Analysis of the LIFE Study

We first describe the relation between the female-specific mean menstrual cycle length

and baseline age and smoking status. Table 1 shows the posterior medians and 95%

equal tail credible intervals (CI) of the parameters of the regression model for mean

menstrual cycle length (1). For the age range of the LIFE Study (18 to 40 years),

we found that the female-specific mean cycle length decreased with increasing age

(see Figure 1), which is in agreement with the findings by Harlow et al. (2000) in a

study of menstrual cycle characteristics by age. We also included a quadratic age

term, though this was not significant. For smoking status, with exposed defined as

cotinine level at least 10ng/mL, the posterior median of the coefficient was negative;

however, the percentage of exposed females was small and the posterior distribution

included zero. In the model for the length of the enrollment cycle (2) we accounted for

17
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Table 1: Posterior median and 95% equal-tail credible intervals for menstrual cycle

length parameters of joint model displayed as: LoMedian Up (Louis and Zeger 2009).

Age is standardized and smoking status (exposed) is defined as baseline cotinine level

≥ 10ng/mL. Restricted to 426 couples with data on semen quality who did not exit in

the enrollment cycle.

Menstrual cycle length sub-model

Parameter LoMedian Up

Age −0.04−0.03 −0.01

Age (squared) −0.02−0.01 0.00

Smoke (exposed/unexposed) −0.07−0.02 0.03

Probability of normal cycle 0.750.79 0.82

Mean, normal cycle 28.9029.33 29.85

Standard deviation, normal cycle 1.791.94 2.11

Mean, abnormal cycle 33.8435.18 37.02

Standard deviation, abnormal cycle 11.0612.34 13.60

Standard deviation, random effect 0.080.09 0.10

length-bias, which can be visualized by the right shift in the histogram of the female-

specific mean of the enrollment cycle lengths compared to that of the post-enrollment

cycles lengths (see Figure 2). Lastly, the parameters of the Gaussian-Gumbel mixture

distribution indicate that the probability of a normal cycle is approximately 79% (CI:

(75%, 82%)), and that the mean and standard deviation of the Gaussian distribution

are much smaller than that of the Gumbel distribution. In the supplementary materials,

we assess the fit of the menstrual cycle length sub-model.
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Distribution of mean menstrual cycle length
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Figure 2: Histograms and density estimates of the estimated woman-specific mean

menstrual cycle length (in days) for enrollment cycles (light gray bars, dashed line)

compared to that of post-enrollment cycles (dark gray bars, solid line). Estimates

shown are medians of the posterior distribution of woman-specific mean cycle length.

For the remainder of this section, we describe the results of the fecundity portion of

the joint model. For each couple, we estimated the probability of pregnancy in a cycle

conditional on no pregnancy in previous cycles of attempts, intercourse history, and

couple covariates. Figure 3 shows boxplots of the conditional probability of pregnancy

by cycle number. The conditional probability of pregnancy diminishes as the number

of cycles without pregnancy increases.

Table 2 shows the posterior medians and 95% CIs of the parameters of the regres-

sion model for the day-specific probability of pregnancy on menstrual cycle length,

without adjustment for other risk factors. We first fit a linear term for menstrual cy-

cle length (model Lin) and then added a quadratic term (model LinQuad) which we

found to be significant. For intercourse on a particular day of the menstrual cycle, we
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Figure 3: Box plots of conditional probability of pregnancy in a cycle given no preg-

nancy in previous cycles, intercourse history, menstrual cycle length, total sperm count,

sperm morphology (strict criterion), mean of male and female age, difference between

male and female age, male and female smoking status (exposed/unexposed).
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Table 2: Posterior median and 95% equal-tail credible intervals (CI) for association

between (mean) menstrual cycle length and probability of pregnancy (see models Lin-

LinQuadCmeanT=1) in Section 2.2. Posterior summaries displayed as: LoMedian Up

(Louis and Zeger 2009). Restricted to 426 couples with data on semen quality who did

not exit in the enrollment cycle.

Model Parameter LoMedian Up

Lin Menstrual cycle length 0.170.34 0.55

LinQuad Menstrual cycle length 0.140.46 0.77

Menstrual cycle length (squared) −0.62−0.35 −0.17

LinT=1 Menstrual cycle length, Normal cycle 0.090.25 0.43

LinQuadT=1 Menstrual cycle length, Normal cycle 0.050.40 0.72

Menstrual cycle length, Normal cycle (squared) −0.70−0.45 −0.16

LinCmean Conditional mean cycle length 0.050.21 0.38

LinQuadCmean Conditional mean cycle length 0.040.25 0.45

Conditional mean cycle length (squared) −0.28−0.10 0.05

LinCmeanT=1 Conditional mean cycle length, Normal cycle 0.060.21 0.38

LinQuadCmeanT=1 Conditional mean cycle length, Normal cycle 0.020.23 0.44

Conditional mean cycle length, Normal cycle (squared) −0.27−0.10 0.03

Hosted by The Berkeley Electronic Press



Figure 4: Median (solid) and 95% equal tail credible interval (dashed) for the uncon-

ditional probability of pregnancy due to intercourse on the day before ovulation versus

menstrual cycle length (in days) for (a) all cycles (b) conditional on normal cycles.

estimate the unconditional probability of pregnancy as a function of menstrual cycle

length and find the optimal cycle length. As an example, for a single intercourse act

on the day before ovulation, we see that the optimal cycle length is approximately

31.8 days (see Figure 4a). In a separate model, we considered the relation between

fecundity and menstrual cycle length conditional on cycles from the normal group

(models LinT=1 and LinQuadT=1). For a single intercourse act on the day before

ovulation, we found a similar quadratic relation with an optimal cycle length of 29.8

days (see Figure 4b). Lastly, we fit separate models to assess the relation between con-

ditional mean menstrual cycle length and day-specific probability of pregnancy (mod-

els LinCmean-LinQuadCmeanT=1). For these models, the coefficient on the quadratic

term was much smaller and was not significant (see bottom half of Table 2).

To further visualize the relation between menstrual cycle length and fecundity, we
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plot the day specific probability of pregnancy for the 25th, 50th, and 75th percentiles of

menstrual cycle length for all cycles and conditional on normal cycles (see Figure 5a-b).

The day specific probability of pregnancy is the unconditional probability of pregnancy

due to intercourse on a single day, and the values shown in Figure 5 are the medians

of the posterior distributions. The x-axis shows the difference in time between the

intercourse day and the ovulation day. In both plots, the profile for probability of

pregnancy is non-zero starting approximately seven days before ovulation, peaks the

day prior to ovulation and then drops sharply to zero one day post ovulation. The

probability of pregnancy is lower for the women in the 25th percentile of menstrual

cycle length.

Our finding of peak probability of pregnancy corresponding to a menstrual cycle

length of approximately 31.8 days agrees with the finding of Small et al. (2006) using

data from the Mount Sinai Study of Women Office Workers. In this study of both

pregnancy planners and nonplanners, menstrual cycle length was observed using daily

diaries and then categorized into 5 categories. To compare our results, we fit a separate

joint model in which menstrual cycle length is incorporated in the fecundity model as a

categorical variable using cutpoints as in Small et al. (2006). As shown in Figure 5c, the

group with menstrual cycle length of 30-31 days has the highest day specific probability

of pregnancy. This plot also illustrates the difficulty in choosing a priori cutpoints of

cycle length and then using these cutpoints to transform menstrual cycle length into

a categorical covariate as is frequently done in studies of menstrual cycle length and

pregnancy.

To assess the association between menstrual cycle length and the probability of

pregnancy in the context of both male and female risk factors, we incorporated co-

variates in the fecundity model for sperm morphology (strict criteria), total sperm
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Figure 5: Percentiles of menstrual cycle length and unconditional probability of preg-

nancy due to a single act of intercourse by difference of intercourse day from ovulation

day for (a) all cycles (b) conditional on normal cycles (c) all cycles with cycle length

(in days) categorized as in Small et al. (2006)
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count, semen volume, sperm concentration, mean of male and female age, difference

between male and female age, male smoking status (exposed/unexposed), and female

smoking status (exposed/unexposed). We first fit separate models for each covariate

to determine each one’s unadjusted estimated association with the probability of preg-

nancy. As shown in the ‘Unadjusted’ column in Table 3, each of the semen quality

parameters had a positive association with pregnancy, while the mean couple age and

smoking covariates had a negative association. Next, we fit the joint model adjusting

for multiple covariates simultaneously in the fecundity model. Since total sperm count

is the product of semen volume and sperm concentration, we fit two separate models

(A and B), where model A adjusts for total sperm count and model B adjusts for semen

volume and sperm concentration. In both adjusted models, the quadratic relation be-

tween female-specific menstrual cycle length and day-specific probability of pregnancy

remained significant (see Table 3). For each of the semen quality parameters, we found

a positive association with the probability of pregnancy though the coefficient was only

significant for sperm morphology (strict criteria). Figure 6 illustrates the positive re-

lation between sperm morphology and the day specific probability of pregnancy using

the 25th, 50th, and 75th percentiles of morphology. We also found that the probabil-

ity of pregnancy decreased with male and female smoking status and with mean age

and difference in ages; however, none of these were significant in the adjusted models.

Lastly, for the enrollment cycles, we found a quadratic relation between probability

of pregnancy and average intercourse frequency (see Figure 7) with a peak at 6 days

of intercourse, adjusted for cycle length, total sperm count, mean of male and female

age, difference between male and female age, female smoking status and male smoking

status.

25

Hosted by The Berkeley Electronic Press



Table 3: Posterior median and 95% equal-tail CI for pregnancy parameters of joint

model displayed as: LoMedian Up (Louis and Zeger 2009). Adjusted models A and B

correspond to two combinations of uncorrelated semen quality parameters. Smoking

status (exposed) is defined as baseline cotinine level ≥ 10ng/mL; and all other risk

factors are standardized. Restricted to 426 couples with data on semen quality who

did not exit in the enrollment cycle.

Parameters Unadjusted Model A Model B

Menstrual cycle length 0.140.46 0.77 −0.060.26 0.59 −0.050.27 0.58

Menstrual cycle length (squared) −0.62−0.35 −0.17 −0.52−0.27 −0.11 −0.52−0.27 −0.12

Morphology (strict criteria) 0.160.28 0.40 0.060.23 0.41 0.050.23 0.40

Total sperm count (log) 0.000.12 0.25 −0.090.08 0.25

Semen volume (log) −0.070.05 0.17 −0.130.03 0.20

Sperm concentration (log) −0.020.11 0.23 −0.090.09 0.27

Male smoke (exposed/unexposed) −0.76−0.38 −0.02 −0.86−0.37 0.13 −0.87−0.37 0.13

Female smoke (exposed/unexposed) −1.10−0.37 0.24 −1.01−0.13 0.74 −1.05−0.15 0.73

Male and female age (mean) −0.36−0.24 −0.11 −0.34−0.16 0.02 −0.35−0.17 0.01

Male and female age (difference) −0.120.01 0.14 −0.19−0.02 0.14 −0.19−0.03 0.14

Intercourse frequency 8.009.36 9.94 8.089.46 9.96 7.959.35 9.96

Intercourse frequency (squared) −0.87−0.79 −0.66 −0.87−0.80 −0.67 −0.87−0.79 −0.66
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Figure 6: Percentiles of morphology (strict criteria, in % normal forms) and uncondi-

tional probability of pregnancy due to a single act of intercourse by difference of in-

tercourse day from ovulation day. Estimates are adjusted for cycle length, total sperm

count, mean of male and female age, difference between male and female age, female

smoking status (exposed/unexposed), and male smoking status (exposed/unexposed).
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Figure 7: Median (solid) and 95% equal tail credible interval (dashed) for the prob-

ability of pregnancy in the enrollment cycle versus average number of days of inter-

course. Estimates are adjusted for menstrual cycle length, total sperm count, sperm

morphology (strict criteria), mean of male and female age, difference between male

and female age, female smoking status (exposed/unexposed), and male smoking status

(exposed/unexposed).

5. DISCUSSION

We employed a Bayesian hierarchical modeling approach for assessing the relation

between female menstrual cycle length and couple fecundity, while accounting for both

male and female risk factors for pregnancy. In the menstrual cycle length sub-model,

we addressed several challenges including length-biased sampling of enrollment cycles,

unobserved length of pregnancy cycles, and skewness of the underlying distribution.

In the fecundity sub-model, we proposed a model for the probability of pregnancy

conditional on no pregnancy in previous cycles of attempts. We adjusted for the couples

intercourse behavior in a cycle using a flexible spline that is a function of the difference

of day of intercourse from the ovulation day and gives weight to a broad window of days
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of intercourse in a cycle. We also incorporated a model for the probability of pregnancy

in the enrollment cycle as a function of the average frequency of intercourse.

A key aspect of our approach is the inclusion of regression models in both the

mean cycle length and day-specific probability of pregnancy models. For the LIFE

Study population, we found that mean cycle length decreases with increasing age and

that there is a quadratic relation between menstrual cycle length and the couple’s

probability of pregnancy, with an optimal cycle length of about 31.8 days. These

findings are consistent with others in the literature; therefore, we have developed the

framework for assessing the relation between exposures and both menstrual cycle length

and fecundity. The model can be extended by incorporating baseline exposure variables

to investigate potential associations between environmental chemicals, menstrual cycle

length, and fecundity.

It would also be of interest to develop a joint model of the three phases of the female

menstrual cycle (bleeding, proliferative, and secretory) and fecundity. The length of

the proliferative phase of the menstrual cycle is the time from the first day without

bleeding to the ovulation day. The range of days on which the female uses the fertility

monitor to test for ovulation is limited to at most 20 (e.g., day 6 through 26 of the

cycle); therefore, there is the additional challenge of interval censoring. Using the

predictive distribution, one could predict the unknown ovulation day as an alternative

to imputation of the average ovulation day. The length of the secretory phase is the

time from ovulation day to the next bleeding event. One could develop a model to

study the variability of both the proliferative and secretory phases and the relation

between these variabilities and fecundity.

Finally an extension of this work that focuses on the fecundity model is to incor-

porate an interaction between the spline function and menstrual cycle length. The

trend in modeling fecundity has been to allow for flexibility in the length of the fertile
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window, i.e. the window of days around ovulation for which the probability of preg-

nancy is nonzero. In the proposed model, we estimated the day-specific probability of

pregnancy for a broad window of days in the female menstrual cycle and found that

the probability of pregnancy consistently declines to zero just one day post ovulation,

while pre-ovulation, we found more variation in the number of days with a non-zero

probability of pregnancyacross female menstrual cycle length. Currently, we have in-

corporated menstrual cycle length in the fecundity model as a link-additive term, which

allows the profile of day-specific probabilities to shift up or down. By incorporating

an interaction with the spline function, we would allow for changes in the shape of the

profile of probabilities.
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