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Abstract
We consider the problem of estimating an average treatment effect for a target population from
a survey sub-sample. Our motivating example is generalizing a treatment effect estimated in a
sub-sample of the National Comorbidity Survey Replication Adolescent Supplement to the popu-
lation of U.S. adolescents. To address this problem, we evaluate easy-to-implement methods that
account for both non-random treatment assignment and a non-random two-stage selection mech-
anism. We compare the performance of a Horvitz-Thompson estimator using inverse probability
weighting (IPW) and two double robust estimators in a variety of scenarios. We demonstrate that
the two double robust estimators generally outperform IPW in terms of mean-squared error even
under misspecification of one of the treatment, selection, or outcome models. Moreover, the double
robust estimators are easy to implement, providing an attractive alternative to IPW for applied epi-
demiologic researchers. We demonstrate how to apply these estimators to our motivating example.

⇤krudolph@jhsph.edu
†idiaz@jhu.edu
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1

Hosted by The Berkeley Electronic Press



1 Introduction
Population-based cohorts and nationally representative surveys lend external validity to a study:
they allow inferences to be made about the target population of interest. In contrast, inferences
drawn from studies that use non-representative samples may be valid for the study sample but
may not generalize. External validity (also known as transportability (1)) of population-based
cohorts and surveys is threatened when estimation is performed on a non-random sub-sample.
Sub-sample effect estimates may not generalize to the population if selection probabilities depend
on effect modifiers and if sub-sample sampling weights are not utilized (2-3). In this paper, we
compare practical estimators of the population average treatment effect (PATE). These estimators
simultaneously account for non-randomized treatment assignment and sub-sample selection from
a population-based cohort, thereby addressing internal and external validity.

This paper was motivated by the problem of generalizing a treatment effect estimated in a
sub-sample created by a two-stage selection process. In the first stage, adolescents were selected
into a nationally representative survey of U.S. adolescent mental health, the National Comorbidity
Survey Replication Adolescent Supplement (NCS-A) (4). In the second stage, a sub-sample of
these participants had biomarker data measured. Our interest is in estimating the effect of a non-
randomized treatment, residence in a disadvantaged neighborhood, on cortisol slope (rate of decline
in cortisol levels over the course of an interview). Our scenario is different from the missing data
pattern generally considered in the causal inference and missing data literature because we do not
observe any data for individuals not in the survey. Our goal is to harness the available data and
the nationally representative sample to generalize our results to the U.S. population of adolescents.
This requires accounting for possible confounding due to the non-randomized treatment assignment
and possible lack of external validity due to the two-stage selection mechanism.

Previous research has suggested and evaluated methods for generalizing results from random-
ized trials to target populations (2, 3), but there is little written extending this to observational
studies. Double robust methods, which are consistent (converge to the true population average
effect as sample size goes to infinity) under certain types of model misspecification, have been
used to adjust for non-random treatment assignment and/or non-random selection, right-censoring,
or missing data (5-13). However, implementation of these estimators can be challenging. This
may contribute to the continued popularity of the simpler Horvitz-Thompson inverse-probability
weighted (IPW) estimators despite efficiency and robustness concerns (14). A recent advance is that
targeted maximum likelihood estimation (TMLE) was implemented in standard statistical software
(11), thereby facilitating its accessibility. However, we know of no literature implementing TMLE
in the context of survey data with weights. Furthermore, while a discussion of these methods is
taking place in the biostatistics literature, it has yet to receive much attention in the epidemiology
literature.

We first present results from a simulation study comparing performance of different estimators
under correct model specification and various model misspecifications. We compare three estima-
tors: IPW; a double robust, weighted least squares estimator (DRWLS); and a TMLE (15, 16).
We then demonstrate how to apply these methods to the motivating example: using data from a
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sub-sample of the NCS-A to estimate the effect of residence in a disadvantaged neighborhood on
cortisol slope in the target population of U.S. adolescents. We aim to provide practical guidance on
how to generalize average effect estimates from a survey sub-sample to a target population in the
presence of measured confounders, effect heterogeneity, and non-random sub-sample selection.

2 Methods
We consider a scenario in which individuals are selected into a survey with known probabilities.
Treatment information and covariates are fully observed for all participants selected into the survey,
but outcome data are only available for a subset of the survey sample. Let:

W = vector of baseline covariates.

A = binary (0/1) variable indicating treatment.

�

svy

= binary (0/1) variable indicating selection into survey sample.

�

sub

= binary (0/1) variable indicating selection into sub-sample.

Y = continuous outcome of interest.

In the language of potential outcomes, Y1i is the outcome for individual i under treatment A =

1; similarly, Y0i is the outcome for individual i under treatment A = 0. The difference in these
potential outcomes is the individual treatment effect.

Our estimand of interest is the PATE, E(Y1 � Y0), with the expectation taken across the target
population.(17) Other average treatment effects (ATEs) could be considered where the expecta-
tion is taken with respect to different target populations, e.g., the survey sample ATE, E(Y1 �

Y0|�svy=1), and the sub-sample ATE, E(Y1 � Y0|�sub

= 1). In Appendix A, we show identifica-
tion for each ATE under the assumptions of known survey sampling weights (a typical assumption
in the survey literature (18)), no unmeasured confounders, consistency, and positivity.

We compare three methods of estimating the PATE. R code to implement each is provided in
Appendix B.

2.1 IPW
The IPW estimator uses inverse probability of treatment and selection weights that are obtained
by multiplying inverse probability of survey selection weights, inverse probability of treatment
weights, and inverse probability of sub-sample selection weights as shown in Equation 1.
Inverse probability of survey selection weights are known and defined as:

w�svy=1
=

1

P (�

svy

= 1|W)

.
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Inverse probability of treatment weights are defined as:

wA=a|�svy=1
=

I(A = a)

P (A = a|�
svy

= 1,W)

for each a 2 {0, 1}.

Inverse probability of sub-sample selection weights are defined as:

w�sub=1|A=a,�svy=1
=

I(�
sub

= 1)

P (�

sub

= 1|A = a,�
svy

= 1,W)

for each a 2 {0, 1}.

For each a 2 {0, 1}, define:

wA=a,�svy=1,�sub=1
=

1

P (�

svy

= 1|W)

⇥

I(A = a)

P (A = a|�
svy

= 1,W)

⇥

I(�
sub

= 1)

P (�

sub

= 1|A = a,�
svy

= 1,W)

=

I(A = a,�
sub

= 1,�
svy

= 1)

P (A = a,�
sub

= 1,�
svy

= 1|W)

(1)

The above weights are inverse conditional probabilities, which can be estimated using logistic
regression. For example, P (A = a|�

svy

= 1,W) can be estimated using predicted probabilities
from a logistic regression where A is the outcome and W is a vector of covariates among those in
the survey.

The IPW estimator of the PATE is calculated using the above weights for the r individuals in
the sub-sample:

\PATE =

r

P

i=1
Y
i

w
A=1,�svy=1,�sub=1

i

r

P

i=1
w

A=1,�svy=1,�sub=1

i

�

r

P

i=1
Y
i

w
A=0,�svy=1,�sub=1

i

r

P

i=1
w

A=0,�svy=1,�sub=1

i

. (2)

2.2 TMLE
For the TMLE estimator, we modify the implementation available in the tmle R package (11) as
described in Appendix B. Additional details of TMLE implementation for estimating an ATE with
survey sample data are provided in Appendix A. Below we summarize the main steps involved.

Below we summarize the main steps involved.

1. Obtain predicted values ˆY 0 of the outcome conditional on the treatment and covariates using a
linear regression of Y as a function of A and W among participants for whom Y is observed.
Although we use a linear regression for comparability with DRWLS, described below, it
is also possible to use data-adaptive methods (e.g., machine learning) and for a variety of
outcome types.
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2. For every individual i, compute the covariate: H
i

= A
i

wA=1,�sub=1,�svy=1
i

�(1�A
i

)wA=0,�sub=1,�svy=1
i

.

3. Compute the estimated coefficient ˆ� in a regression of Y on H using ˆY 0 as an offset. Using
G-computation, compute the difference between the counterfactual outcomes predicted by
this regression under assignment to A = 1 and to A = 0 for each participant in the survey
sample. The TMLE is calculated as a weighted sum of this difference across the survey
sample participants using the survey weights.

For readers unfamiliar with G-computation, Snowden et al (2011) provide an introduction (19).
Briefly, G-computation uses the marginal distribution of covariates in a standardization procedure.
This can be thought of as an extension of standardizing mortality rates by the age distribution in
a standard population—a common epidemiologic practice. One fits a model of the outcome as
a function of treatment and covariates in the observed sample and then applies the model to the
distribution of covariates in the standard population to predict the counterfactual outcomes for each
individual.

2.3 DRWLS
The DRWLS estimator combines weighted regression with G-computation. This estimator was first
suggested by Marshall Joffe (14) and has been previously evaluated (5,14). It uses the following
steps:

1. Use wA=a,�sub=1,�svy=1 as weights in a weighted least squares (WLS) linear regression of
Y given A and W among participants in the sub-sample. Using G-computation, predict
counterfactual outcomes, standardized to the survey sample.

2. Use the counterfactual outcomes to estimate the survey sample ATE.

3. Weight this estimate by the survey weights to estimate the PATE.

TMLE and DRWLS are double robust estimators. In our application, double robustness means
that the estimators are consistent if either the outcome model is correct, or if the combined treatment-
selection weights wA=a,�sub=1,�svy=1

i

from Equation 1 are correct.

3 Simulation Study

3.1 Overview and set-up
We consider a simplified case with two continuous covariates: W = [W1,W2]

0. Let observed data
O = (�

svy

= 1, W, A, �
sub

, �
sub

Y ). We assume �

svy

probabilities are known, there are no
unobserved confounders, and no intermediate variables are observed between A and Y . Figure 1
depicts the data-generating mechanism.
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Figure 1: Data generating mechanism.

The simulation is designed to be similar to the case study, detailed further below. Figure 2 pro-
vides a diagram of the complete data and the observed data. Under the causal inference framework
we are using, it is assumed that the observed data generating process consists of several steps, the
order of which is necessary for the identification result and corresponding methods implementation
(20). First, selection into the survey is determined, where the probability of selection depends on
W1. For researchers designing the survey, W1 is known for all individuals in the population. For all
other analysts, W1 is not observed for those not selected into the survey. Second, for all individuals
selected into the survey, we observe W2 and A, where the probability of A = 1 depends on W2.
Third, selection into the sub-sample (�

sub

) is determined, where the probability of selection de-
pends on W1 and W2. Fourth, for those in the sub-sample, we observe one of two counterfactuals,
Y0 or Y1, corresponding to the treatment A actually received. We include a detailed description of
the data generating process and code to implement it in Appendix C.

As seen in Figure 1, W2 acts as a confounder. W1 directly modifies the treatment effect and
is related to selection into the survey and sub-sample. Figure 3 provides a summary of imbalance
in W1, W2, and Y across treatment groups and a summary of imbalance of W1, W2, and A across
selection groups. A consistent estimate of the sub-sample ATE requires adjusting for confounding
by W2. A consistent estimate of the PATE also requires adjusting for differential selection by W1.

The simulation reflects practical positivity violations (i.e., when subsets of the sample have
large weights) similar to the case study. Table 1 gives the treatment and selection weights for both
the simulation and case study.
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Figure 2: Simulation Set-up. X indicates data present.
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Table 1: Characteristics of Selection and Treatment Weights in Simulation and Case Study.12

Simulation Case Study
Weights Mean SD Min/Max Mean SD Min/Max
w�svy=1|W

|�

svy

= 1 1.009 1.009 0.020/20.300 0.948 1.166 0.041/13.460
wA=1|�svy=1,W

|A = 1 0.994 0.607 0.529/13.600 0.931 0.878 0.377/8.799
wA=0|�svy=1,W

|A = 0 0.998 0.655 0.491/16.580 1.020 0.826 0.641/19.180
w�sub=1|A=1,�svy=1,W

|�

sub

= 1 1.009 0.562 0.339/7.148 0.995 0.631 0.332/5.914
w�sub=1|A=0,�svy=1,W

|�

sub

= 1 1.003 0.593 0.280/6.044 1.002 0.574 0.401/5.598
w�sub=1,A=1|�svy=1,W

|�

sub

=

1, A = 1

0.992 1.177 0.182/22.620 0.883 1.110 0.152/14.560s

w�sub=1,A=0|�svy=1,W
|�

sub

=

1, A = 0

0.995 0.565 0.269/7.907 1.069 1.558 0.315/24.860

w�sub=1,A=1,�svy=1|W
|�

sub

=

1, A = 1

1.023 3.421 0.006/84.080 1.079 2.699 0.009/34.380

w�sub=1,A=0,�svy=1|W
|�

sub

=

1, A = 0

0.993 1.687 0.012/17.910 1.303 2.990 0.019/53.160

1The simulation weights shown are the true weights. In the case study, the survey weights are assumed known and
the remaining weights are estimated.

2Weights are stabilized by including the marginal probability in the numerator to facilitate comparison with simu-
lation weights. For example, wA=1|�svy=1

|A = 1 = mean(P (A=1|�svy=1,W))
P (A=1|�svy=1,W) .
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Figure 3: Balance across treatment and selection groups in the simulation. The standardized mean
difference is the difference in means between the two groups standardized by the standard deviation
in the first group. The vertical black dashed line corresponds to 20% standardized mean difference
and the grey dashed line corresponds to 10%.
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We evaluate how well IPW, TMLE, and DRWLS perform in estimating the PATE when all
models are correctly specified and when one or more models are misspecified (see Table 2 for
model specifications). We include misspecification of multiple models simultaneously but caution
that performance in these scenarios depends on the particulars of the data generating process and
misspecifications (14). Performance is evaluated by mean percent bias, mean variance, mean-
squared error (MSE), and 95% CI coverage across the 1,000 simulations. For each simulation
iteration, variance and the 95% CI are estimated from 500 bootstrapped samples. The percentile
method is used for the CI.
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Table 2: Model Misspecification.

Description Treatment Sub-sample Selec-
tion

Outcome

Correct Specification A ⇠ W2,
W2=Sum(Z1:Z16)

�
sub

⇠ W1 + W2,
W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Y ⇠ A + W2 +
AW1, W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Moderately Misspecified
Treatment

A ⇠ W2mod

,
W2mod

=Sum(Z2:Z16)
�

sub

⇠ W1 + W2,
W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Y ⇠ A + W2 +
AW1, W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Majorly Misspecified
Treatment

A ⇠ W1,
W1=Sum(Z1:Z6)

�
sub

⇠ W1 + W2,
W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Y ⇠ A + W2 +
AW1, W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Moderately Misspecified
Outcome

A ⇠ W2,
W2=Sum(Z1:Z16)

�
sub

⇠ W1 + W2,
W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Y ⇠ A + W2mod

+
AW1, W1=Sum(Z1:Z6),
W2mod

=Sum(Z2:Z16)
Majorly Misspecified (A)
Outcome

A ⇠ W2,
W2=Sum(Z1:Z16)

�
sub

⇠ W1 + W2,
W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Y ⇠ A + AW1,
W1=Sum(Z1:Z6)

Majorly Misspecified (B)
Outcome

A ⇠ W2,
W2=Sum(Z1:Z16)

�
sub

⇠ W1 + W2,
W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Y ⇠ A + W2 +
W1, W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Moderately Misspecified
Selection

A ⇠ W2,
W2=Sum(Z1:Z16)

�
sub

⇠

W1mod

+ W2,
W1mod

=Sum(Z2:Z6),
W2=Sum(Z1:Z16)

Y ⇠ A + W2 +
AW1, W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Majorly Misspecified Se-
lection

A ⇠ W2,
W2=Sum(Z1:Z16)

�
sub

⇠ W1 ,
W1=Sum(Z1:Z6)

Y ⇠ A + W2 +
AW1, W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Misspecified Treatment
and Selection

A ⇠ W1,
W1=Sum(Z1:Z6)

�
sub

⇠ W1,
W1=Sum(Z1:Z6)

Y ⇠ A + W2 +
AW1, W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Misspecified Treatment
and Outcome

A ⇠ W1,
W1=Sum(Z1:Z6)

�
sub

⇠ W1 + W2,
W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Y ⇠ A + W2 +
W1, W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Misspecified Selection
and Outcome

A ⇠ W2,
W2=Sum(Z1:Z16)

�
sub

⇠ W1 ,
W1=Sum(Z1:Z6)

Y ⇠ A + W2 +
W1, W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)

Misspecified Treatment,
Selection, and Outcome

A ⇠ W1,
W1=Sum(Z1:Z6)

�
sub

⇠ W1,
W1=Sum(Z1:Z6)

Y ⇠ A + W2 +
W1, W1=Sum(Z1:Z6),
W2=Sum(Z1:Z16)
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3.2 Results
Table 3 provides a summary of method performance. Generally, under correct and incorrect model
specification, DRWLS outperforms TMLE and IPW—corroborating results of other simulations
involving practical positivity violations (5, 14). Under correct specification of all models, DRWLS
and TMLE perform similarly and outperform IPW in terms of variance and MSE. This result re-
flects known efficiency problems with IPW that have been thoroughly discussed in the biostatistics
literature, but are perhaps less well known among epidemiology audiences (14). TMLE and IPW
perform similarly and worse than DRWLS in terms of percent bias and 95% CI coverage under
correct model specification. This result may seem surprising, and we discuss it further below.

The advantages of DRWLS and TMLE over IPW are pronounced under misspecification of the
treatment or selection models. This result is expected, because IPW relies exclusively on the inverse
probability weights to account for nonrandom sub-sample selection and nonrandom treatment as-
signment. In contrast, because DRWLS and TMLE are double robust, they will be consistent under
misspecification of the treatment or sub-sample selection models if the outcome model is correctly
specified.

Under correct specification of all models, we expect IPW, DRWLS, and TMLE estimates to
be consistent. However, several authors (e.g., 5-7, 14, 21, 22) have warned that IPW and double
robust estimators are sensitive in scenarios of practical positivity violations, as is the case in this
simulation. We may expect IPW to be the most sensitive to positivity violations, because there is no
outcome model to use for extrapolation. When the outcome model is correctly specified, we expect
DRWLS and TMLE to outperform IPW due to successful extrapolation using the outcome model.
This is true for DRWLS but not for this implementation of TMLE, which performs similarly to
IPW in terms of percent bias and 95% CI coverage. This is because in fitting the model used in
G-computation, DRWLS uses the combined treatment-selection weights for the treatment and se-
lection conditions actually observed whereas TMLE uses the combined treatment-selection weights
for the observed and unobserved counterfactual treatment and selection conditions. If individuals
usually receive their most likely treatment and selection assignment, then using the counterfactuals
can result in greater positivity violations, and thus, poorer performance of TMLE as compared to
DRWLS.

We examined the extent to which there is a penalty for unnecessary adjustment for non-random
treatment assignment or sample selection. We considered two scenarios for each of the treatment
and sub-sample selection models (see Table 4). In this limited simulation, there are no noticeable
penalties for over-adjusting. Table 5 shows the results from the more extreme second scenario.
Results from the first scenario were similar.
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Table 4: Model Misspecification, Overadjustment.

Description Treatment Sub-sample Selec-
tion

Outcome

Moderate Over-adjustment, Treatment
True Model random �

sub

⇠ W1 +W2 Y ⇠ A+W2 +AW1

Misspecified Model A ⇠ W2 �
sub

⇠ W1 +W2 Y ⇠ A+W2 +AW1

Major Over-adjustment, Treatment
True Model random �

sub

⇠ W1 +W2 Y ⇠ A+W2 +AW1

Misspecified Model A ⇠ W2 +W 2
2 �

sub

⇠ W1 +W2 Y ⇠ A+W2 +AW1

Moderate Over-adjustment, Selection
True Model A ⇠ W2 �

sub

⇠ W1 Y ⇠ A+W2 +AW1

Misspecified Model A ⇠ W2 �
sub

⇠ W1 +W2 Y ⇠ A+W2 +AW1

Major Over-adjustment, Selection
True Model A ⇠ W2 random Y ⇠ A+W2 +AW1

Misspecified Model A ⇠ W2 �
sub

⇠ W1 +W2 Y ⇠ A+W2 +AW1

Table 5: Results Under Misspecification of the Treatment and Selection Models: Adjustment When
the Treatment and Selection Mechanisms are Completely Random. Mean % Bias, Mean Variance
(Var), 95% CI Coverage (Cov), and Mean-squared Error (MSE) across the 1,000 Simulations.

Correct Specification Overadjustment
IPW DRWLS TMLE IPW DRWLS TMLE

Treatment
% Bias -1.887 -0.036 -6.554 -1.967 -0.037 -6.554
Var 88.8 95.1 82.6 89.4 95.1 82.5
Cov 6.625 0.195 0.227 6.619 0.195 0.227
MSE 7.330 0.197 0.296 7.291 0.197 0.296
Selection
% Bias -1.330 -0.731 -2.696 -1.855 -0.733 -2.699
Var 93.5 94.5 92.3 93.0 94.5 92.2
Cov 2.358 0.179 0.178 2.208 0.179 0.178
MSE 2.353 0.178 0.192 2.269 0.178 0.192

12

http://biostats.bepress.com/jhubiostat/paper265



4 Case Study

4.1 Overview and set-up
We now apply the estimators evaluated in the simulation to generalize the effect of disadvantaged
neighborhood residence on cortisol slope to the population of U.S. adolescents. The NCS-A has
been described previously (4, 23-25). Neighborhood disadvantage was measured using an estab-
lished scale (26) that has been used previously with NCS-A residence data geocoded to Census
tracts (27). Cortisol is a hormone involved in the hypothalamic-pituitary-adrenal axis (28). Sali-
vary cortisol samples were taken immediately before and after the survey interview. Cortisol slope
was defined as (pre-interview level – post-interview level) / length of interview. Cortisol samples
were assayed for a sub-sample of 2,490 participants because of budget limitations. Treatment and
covariate data were available for all participants. Analysis of the relationship between neighbor-
hood disadvantage and cortisol slope among the sub-sample of participants with cortisol data has
been previously reported (27). We excluded those adolescents whose cortisol levels may not be
at-risk to be influenced by a stressful neighborhood environment (e.g., current smokers, drug users,
those on birth control, steroid inhalers) as well as eight influential outliers for a total of N=6,566
participants in the survey sample and N=1,600 participants with cortisol measures. Informed assent
and consent were obtained from each adolescent and his/her parent or guardian. The Human Sub-
jects Committees of Harvard Medical School and the University of Michigan approved recruitment
and consent procedures.

Figure 4 depicts the extent to which 1) NCS-A participants with cortisol measures compare
to participants without across possible confounding variables (open dots), and 2) NCS-A partic-
ipants living in disadvantaged neighborhoods compare to those in non-disadvantaged neighbor-
hoods. Those with and without cortisol measures look similar with the exceptions of age, average
bedtime on the weekends, maternal work, and the interview taking place in the summer. In contrast,
participants living in disadvantaged neighborhoods differ from those in non-disadvantaged neigh-
borhoods in terms of expected demographic variables like race, income, and maternal education.

The survey weights and estimated inverse probability of treatment and selection weights for
these case study data are shown in Table 1. Positivity violations can be a substantial issue in ob-
servational studies (29, 30), and we see evidence of practical positivity violations here. The survey
weights are given and assumed known (25). Unlike in the simulation, we do not know the true treat-
ment and selection models. Consequently, it is likely that multiple models are misspecified with
the degree of misspecification unknown. For details on model specification and weight estimation,
see Appendix D.

4.2 Results
Figure 5 plots the estimates and 95% CIs for the expected effect of living in a disadvantaged neigh-
borhood on cortisol slope using different methods. The 95% CIs are calculated by the percentile
method using 1,000 bootstrapped samples. Results when the eight outliers were included are shown
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Figure 4: Covariate balance. Solid points represent the standardized mean differences between
the disadvantaged neighborhood group and non-disadvantaged neighborhood group. Open points
represent the standardized mean differences between those with cortisol measurement and those
without. The standardized mean difference is the difference in means between the two groups
standardized by the standard deviation in the first group. The vertical black dashed lines correspond
to 20% standardized mean difference and the grey dashed lines correspond to 10%.
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in Appendix E. The relative performance of the estimators was similar.
We first present simpler methods that adjust for none or only some of the sources of non-

randomness. These methods may be biased for the primary estimand of interest—the PATE—but
may consistently estimate other estimands, specifically, the survey sample ATE or the sub-sample
ATE.
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Figure 5: Illustrative example: population average effect estimates and 95% confidence intervals
using data from the NCS-A sub-sample.
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Under the naïve approach, there is no bias correction. The IPTW estimator adjusts for non-
random assignment of the treatment only. If the treatment model is correctly specified, the IPTW
estimate will be consistent for the NCS-A sub-sample ATE but may be biased for the PATE.
IPTSvyW adjusts for non-random treatment assignment and selection into the survey. If there
is nonrandom sub-sample selection, it may be biased for the population and survey sample ATEs.
IPTSubW adjusts for non-random treatment assignment and non-random sub-sample selection. If
the two models are correctly specified, IPTSubW will consistently estimate the survey sample ATE
but may be biased for the PATE. In the presence of treatment effect heterogeneity when sub-sample
selection probabilities depend on effect modifiers, the sub-sample ATE, survey sample ATE, and
PATE may differ. We see evidence of this in Figure 5. Although the estimates of the sub-sample
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ATE and survey sample ATE appear similar, they are slightly smaller than the estimate of the PATE.
The IPW, TMLE, and DRWLS estimators adjust for non-random assignment of the treatment,

non-random selection into the survey sample, and non-random selection into the sub-sample. Un-
der correct model specification, these methods are consistent estimators of the PATE. TMLE and
DRWLS have the additional advantage of double robustness. Using DRWLS, we conclude that
the cortisol rate difference comparing U.S. adolescents in disadvantaged versus non-disadvantaged
neighborhoods likely falls between -3.68 and �0.06⇥ 10

�2 ng/mL/hour.
The wider TMLE 95% CI relative to IPW may seem surprising given that TMLE was more

efficient than IPW in the simulation under correct model specification and under most model mis-
specifications. However, in scenarios where the outcome regression model was misspecified to
exclude treatment effect heterogeneity (either alone or in addition to other misspecified models,
including the realistic scenario where all models are misspecified), TMLE was not more efficient
than IPW. In these scenarios, the TMLE CI was wider than the IPW and DRWLS CIs by amounts
as or more extreme than the case study in several hundred of the 1,000 simulation draws. This
reflects the fact that under practical positivity violations and model misspecification, TMLE is not
necessarily expected to have smaller CI width than IPW. Just as we assess whether there are penal-
ties for unnecessarily adjusting for non-random treatment and non-random sub-sample selection in
the simulation study (see Table 5), we compare case study results using more parsimonious and
less parsimonious models. When more parsimonious sub-sample selection models are used, the CI
of each of the estimators slightly narrows but relative performance stays the same. Interval width
is insensitive to parsimony in the treatment model (see Appendix F).

5 Discussion
We evaluate estimators of the PATE in the presence of treatment effect heterogeneity, non-random
treatment assignment, a two-stage selection process, and practical positivity violations. Using a
simulation study, we find that a DRWLS estimator and a TMLE estimator have lower MSE than
an IPW estimator under correct model specification and in all but two model misspecification sce-
narios. DRWLS has the lowest percent bias, variance, and best CI coverage under correct model
specification and in most model misspecification scenarios. We derive the efficient influence func-
tion and present a TMLE estimator incorporating survey sampling weights in Appendix A, which
can be easily implemented using the available tmle package in R (code presented in Appendix B).

We agree with others (2, 3, 6, 14) that estimating an average effect standardized to a popula-
tion of interest is a practical goal. It can aid in the interpretability and applicability of a study’s
conclusions, provided one recognizes the assumptions and limitations involved. First, a PATE will
not provide information about treatment effect heterogeneity. Second, estimation can be difficult
in the presence of positivity violations. In cases where the weights are highly variable, a sensitivity
analysis varying model specifications is recommended (14), and there exist methods to identify
possible resulting biases (22, 31). Non-parametric methods of model specification may improve
robustness to model misspecification (32).
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Our demonstration of the poor performance of IPW is not new. IPW estimators have well-
known efficiency problems and can be biased due to structural or practical positivity violations (14).
Much has been published on this in the biostatistics literature (e.g., 7, 14), but IPW continues to be
widely used by epidemiologists—perhaps because it is straightforward to implement in standard
statistical software. We hope by demonstrating the similarly straightforward implementation of
DRWLS and TMLE coupled with their superior performance over IPW in terms of MSE, use of
these estimators may gain popularity.

We evaluated the robustness of our simulation results in a series of sensitivity analyses. First,
we truncated the most extreme 2% of treatment and selection weights. This may lessen both bias
and variance due to extreme weights, though it may also increase bias due to misspecification (22,
33). Generally, this resulted in higher percent bias across estimators (bias was particularly high
for IPW), smaller variance, larger MSE for IPW, and lower MSE for DRWLS and TMLE. Optimal
truncation strategies have been examined (34); identifying the best one for the data generating
mechanism considered here is an area for future work. Second, we reran the simulations removing
positivity violations in the data generating distributions. This resulted in consistent estimates, 95%
CI coverage of approximately 95%, and substantially lower variance and MSE across estimators
when the models were correctly specified. In this case, TMLE and DRWLS clearly outperformed
IPW. Third, we modified the data generating mechanism so that both W1 and W2 were associated
with probability of treatment and probability of selection. Performance of DRWLS was similar
and performance of IPW and TMLE worsened due to greater positivity violations. Fourth, we
repeated simulations under no effect heterogeneity. Weights were unchanged in this scenario, but
finite sample bias improved due to less data sparsity. Percent bias and CI coverage improved for
IPW and TMLE. Variance and MSE improved for all estimators.

In our simulation and example, we considered a scenario where the full set of covariates was
measured in the larger survey sample and selection into the sub-sample only affected missingness
of the outcome variable. One could also conceive of scenarios where the general missing data
pattern (due to non-response, sample selection, or right-censoring) extends to some subset of co-
variates. We explain how such a scenario would alter our assumptions and estimator performance
in Appendix F.

Our simulation study has some limitations. First, simulations can only give a rough approxima-
tion of the sampling distribution of the estimators (14). Second, there are nearly a dozen or more
estimators that could have been assessed and compared, including other implementations of TMLE
(6, 13, 35). We chose to focus on a smaller set of estimators that are particularly straightforward
to implement and used the implementation of TMLE that is available in the R software package
(11). Other estimators and TMLE implementations may have outperformed those we considered,
in particular the TMLE implementation where the weights are incorporated into a weighted logistic
regression model for the updated outcome expectation instead of as part of covariate H (defined in
Step 2 of the TMLE description) (36). Future work should develop easy-to-use software packages
implementing these estimators. Third, the approach shown in this paper is not a fully design-based
survey analysis. For example, we ignore survey sampling strata in our bootstrapping procedure.
This is another area for future work.
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In conclusion, we compared estimators of an average effect standardized to a target popula-
tion in the presence of non-random treatment assignment, a two-stage selection process, treatment
effect heterogeneity, and practical positivity violations. This scenario can apply to generalizing
results from a survey sub-sample to a specified target population (2, 3). We demonstrated that
DRWLS and TMLE estimators outperform an IPW estimator in terms of MSE and that DRWLS
generally performs best in terms of percent bias, variance, and CI coverage in our practical posi-
tivity scenario, even under misspecification of one or more of the treatment, selection, or outcome
models. Moreover, DRWLS and TMLE are easy to implement. Lastly, we demonstrated how DR-
WLS and TMLE estimators can be applied to everyday research questions, providing an attractive
alternative to IPW for applied epidemiologic researchers.
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Appendix A

Identification Results
We observe the following vector of data for each participant:

O = (�

svy

= 1,W1,W2, A,�sub

,�
sub

⇥ Y ),

where �
svy

is an indicator of sample selection that depends on a set of covariates W1; W2 is a vector
of post-sample covariates; A is a binary treatment or exposure of interest; �

sub

is an indicator of
the outcome Y being observed. We only observe O for those with �

svy

= 1; for those not in the
survey (i.e., who have �

svy

= 0) we observe no data. Let W = (W1,W2).
We assume each participant’s data vector O is an independent, random draw from the unknown

distribution P0 on O. We assume the sampling selection probabilities P (�

svy

= 1|W1) are known,
and denote them by ⇡(W1).

The objective is to estimate the population average treatment effect (PATE) defined to be

 f

= E(Y1 � Y0),

where for each a 2 {0, 1}, Y
a

denotes the counterfactual outcome that would be observed if treat-
ment A = a were assigned and �

svy

,�
sub

were both set to 1. Under assumptions given below, the
PATE can be represented as follows:

E(Y1 � Y0) = E



�

svy

P (�

svy

|W1)
E

✓

{µ(1,W)� µ(0,W)}

�

�

�

�

�

svy

= 1,W1

◆�

, (3)

where we define µ(A,W) = E(Y |A,�
sub

= 1,�
svy

= 1,W).
To explain the intuition for (3), first consider the term {µ(1,W)�µ(0,W)} on the right side of

(3). It is a contrast between the mean outcome distributions under treatment versus control for the
sub-sample population, conditioned on the variables W. The inner expectation on the right side of
(3) standardizes this contrast to the distribution of W given W1 for the survey sample population.
Lastly, the outer expectation standardizes this to the distribution of W1 for the target population
based on the survey-sampling weights. This overall process adjusts for measured confounders
among variables in W, and standardizes the average treatment effect to the target population. Since
W1 is observed only for individuals in the survey sample, the outer expectation cannot be directly
estimated from the observed data. However, we have the following relationships:

P (W1|�svy

= 1) = ⇡(W1)P (W1)/P (�

svy

= 1),

and
P (�

svy

= 1) = 1/E [1/⇡(W1)|�svy

= 1] ,

where ⇡(W1) ⌘ P (�

svy

= 1|W1) are known sample selection probabilities. These relationships
imply the following alternative representation of the PATE, which can be estimated from the ob-
served data:

E(Y1 � Y0) =
E(⇡�1

(W1)[µ(1,W)� µ(0,W)]|�

svy

= 1)

E(⇡�1
(W1)|�svy

= 1)

. (4)
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For comparison to the PATE in Equation 3, we next define two related quantities. Let the sub-
sample ATE be defined as E(Y1 � Y0|�sub

= 1). Under the assumptions at the end of this section,
it is identified by the equation:

E(Y1 � Y0|�sub

= 1) = E(Y |A = 1,�
sub

= 1,�
svy

= 1)� E(Y |A = 0,�
sub

= 1,�
svy

= 1).

Next, we define the survey sample ATE to be E(Y1�Y0|�svy

= 1), which under the same assump-
tions is identified by the equation:

E(Y1 � Y0|�svy

= 1) = E[µ(1,W)� µ(0,W)|�

svy

= 1].

In general, the above three ATEs differ. The goal of this paper is to estimate the PATE. To
highlight the contrast among the above estimands, we examine them in the Case Study Section.

Assumptions
The above identification results rely on the following assumptions:

1. Known survey sampling weights, denoted ⇡�1
(W1). That is, for each person in the survey

sample, we are given his/her corresponding sampling weight. This is a typical assumption in
the survey literature.[3]

2. No unmeasured confounders: for each a 2 {0, 1}, we have

Y
a

??�

svy

|W1; (5)

Y
a

??(A,�
sub

)|W,�
svy

= 1. (6)

3. Consistency: for each a 2 {0, 1}, we have Y
a

= Y on the event A = a,�
sub

= 1,�
svy

= 1.

4. Positivity: for each a 2 {0, 1}, we have P (A = a,�
sub

= 1,�
svy

= 1|W) and P (�

svy

=

1|W1) are strictly positive.

The no unmeasured confounders assumption is analogous to the sequential randomization assump-
tion (SRA) needed when estimating parameters of longitudinal data generating processes [1].
We next prove the relationship (3) holds under the above assumptions. We first have

E(Y |A = 1,�
sub

= 1,�
svy

= 1,W1,W2) = E(Y1|A = 1,�
sub

= 1,�
svy

= 1,W1,W2)

= E(Y1|�svy

= 1,W1,W2), (7)

where the first equality follows from the consistency assumption, and the second follows from (6).
Integrating (7) with respect to the distribution of W2 conditional on (W1,�svy

= 1), we get

E(Y1|W1,�svy

= 1) = E(E(Y |A = 1,�
sub

= 1,�
svy

= 1,W1,W2)|W1,�svy

= 1).
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By (5), the left side of the above display equals E(Y1|W1), which implies

E(Y1) = E
W1E(Y1|W1)

= E
W1{E[E(Y |A = 1,�

sub

= 1,�
svy

= 1,W1,W2)|W1,�svy

= 1]}

= E

⇢

�

svy

P (�

svy

|W1)
E[E(Y |A = 1,�

sub

= 1,�
svy

= 1,W1,W2)|W1,�svy

= 1]

�

where the positivity assumption is needed to justify the last line. By an analogous argument, we
have

E(Y0) = E

⇢

�

svy

P (�

svy

|W1)
E[E(Y |A = 0,�

sub

= 1,�
svy

= 1,W1,W2)|W1,�svy

= 1]

�

.

This completes the proof that the above assumptions imply (3).
We next describe the relationship between the no unmeasured confounders assumption and a

non-parametric structural equation model (NPSEM). The assumptions (5) and (6) of no unmeasured
confounders follow if we assume the following NPSEM:

W1 = f
W1(UW1)

�

svy

= f�svy(W1, U�svy)

W2 = �

svy

⇥ f
W2(W1, UW2)

A = �

svy

⇥ f
A

(W2,W1, UA

)

�

sub

= �

svy

⇥ f�sub
(A,W2,W1, U�sub

)

Y = �

sub

⇥�

svy

⇥ f
Y

(A,W2,W1, UY

),

In the NPSEM, the functions f are assumed unknown but fixed, and the error variables
U
W1 , U�svy , UW2 , UA

, U�sub
, U

Y

are assumed to be independent. The variable U�svy represents a
set of covariates used in computing the survey selection probabilities. For example, U�svy may
represent the size of the county or the household, variables that are often taken into account in
multi-stage survey sampling.

TMLE Implementation
The efficient influence function of the parameter  f in the model for O with ⇡(W1) known is given
by

D(O) =

1

⇡(W1)

✓

(2A� 1)�

sub

g(A,W)

(Y � µ(A,W)) + µ(1,W)� µ(0,W)�  

◆

,

where g(A,W) ⌘ P (A,�
sub

= 1|W). It can be verified that this function is double robust, i.e., it
has expectation zero if either µ or g are correctly specified.

We assume that Y is bounded, i.e., that for some values a, b we have P (Y 2 [a, b]) = 1. We
transform Y to be in the interval [0, 1] by defining the new variable Y ⇤

= (Y � a)/(b � a). The
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TMLE implementation below uses Y ⇤ in place of Y , and at the end the estimate ˆ is transformed
back to the original scale.

An implementation of TMLE for  is computed as follows (and is double robust):

1. Obtain initial estimates µ̂(A,W) and ĝ(A,W). In this paper we use logistic regression but
the TMLE template can be used with other data-adaptive estimation methods.

2. Define the following logistic regression model:

logitµ(A,W) = logit

�1
[logit {µ̂(A,W)}+ �H(A,�

sub

,W)] ,

where
H(A,�

sub

,W) =

(2A� 1)�

sub

⇡(W1)ĝ(A,W)

.

The maximum likelihood estimator ˆ� of � is computed by logistic regression of Y on H(A,W)

with offset logit µ̂(A,W), among all participants with �

sub

= �

svy

= 1. (Although Y may
take values in the interval [0, 1], logistic regression software in R still computes a solution ˆ�
to the corresponding score equations, which is used in what follows.)

3. Compute
µ̂1
(A,W) = expit

n

logit µ̂(A,W) +

ˆ�H(A,�
sub

,W)

o

4. The TMLE of  is defined as

ˆ =

1
n

P

n

i=1 ⇡
�1
(W1

i

)(µ̂1
(1,W

i

)� µ̂1
(0,W

i

))

1
n

P

n

i=1 ⇡
�1
(W1

i

)

.

In this paper we estimate the variance of the TMLE using the bootstrap.

Appendix B

1 ## These f u n c t i o n s can be used t o r e p l i c a t e t h e methods used i n : Rudolph KE ,

Diaz I , Rosenblum M, S t u a r t EA . E s t i m a t i n g p o p u l a t i o n t r e a t m e n t e f f e c t s

from a s u r v e y sub�sample .

2

3

4 # I n s t a l l t m l e Rpackage and loa d

5 r e q u i r e ( tm le )
6

7 # s u r v e y w e i g h t s are assumed known . p u t t h e w e i g h t s i n t h e f o l l o w i n g o b j e c t :

8 data $ s svywt<�data $ s u r v e y W e i g h t s
9

10 # t r e a t m e n t w e i g h t s
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11 t x w t s <� f u n c t i o n ( data , t xmode l ) {
12 sampled . data<�data
13

14 # e s t i m a t e t r e a t m e n t p r o b a b i l i t i e s from s u r v e y sample

15 sampled . data $ p s c o r e . svy <� p r e d i c t ( glm ( formula= txmode l , data= sampled .
data , f a mi ly =" b i n o m i a l " ) , t y p e =" r e s p o n s e " )

16 sampled . data $ t . wt <� i f e l s e ( sampled . data $ t ==1 , 1 / sampled . data $ p s c o r e .
svy , 1 / (1� sampled . data $ p s c o r e . svy ) )

17 re turn ( sampled . data $ t . wt )
18 }
19

20 # s e l e c t i o n w e i g h t s

21 s e l w t s <� f u n c t i o n ( data , s e l m o d e l ) {
22 sampled . data<�data
23

24 # e s t i m a t e sub�sample s e l e c t i o n p r o b a b i l i t i e s from s u r v e y sample

s e p a r a t e l y f o r t h o s e t r e a t e d ( A=1) and u n t r e a t e d ( A=0)

25 # f o r t r e a t e d A=1

26 sampled . data $ p s c o r e . subsamp1 [ sampled . data $ t ==1]<�p r e d i c t ( glm ( formula=
se lmode l , data= sampled . data [ sampled . data $ t = = 1 , ] , f a mi ly =" b i n o m i a l " )
, t y p e =" r e s p o n s e " )

27 sampled . data $ subsamp . wt [ sampled . data $ t ==1]<�1 / sampled . data $ p s c o r e .
subsamp1 [ sampled . data $ t ==1]

28

29 # f o r u n t r e a t e d A=0

30 sampled . data $ p s c o r e . subsamp1 [ sampled . data $ t ==0]<�p r e d i c t ( glm ( formula=
se lmode l , data= sampled . data [ sampled . data $ t = = 0 , ] , f a mi ly =" b i n o m i a l " )
, t y p e =" r e s p o n s e " )

31 sampled . data $ subsamp . wt [ sampled . data $ t ==0]<�1 / sampled . data $ p s c o r e .
subsamp1 [ sampled . data $ t ==0]

32 re turn ( sampled . data $ subsamp . wt )
33 }
34

35 #IPW e s t i m a t o r

36 ipw <� f u n c t i o n ( data , txmodel , s e l m o d e l ) {
37 sampled . data<�data
38

39 sampled . data $ t . wt <� t x w t s ( sampled . data , t xmode l )
40 sampled . data $ subsamp . wt <� s e l w t s ( sampled . data , s e l m o d e l )
41

42 # combine w e i g h t s

43 sampled . data $ s u b s v y t r t w t<� i f e l s e ( sampled . data $ i n s u b s a m p l e ==1 , sampled .
data $ t . wt⇤ sampled . data $ subsamp . wt⇤ sampled . data $ ssvywt , 0 )

44

45 # e s t i m a t e ATE

46 lm . s u b s v y t r t <� lm ( y ~ t , weight s = sampled . data [ sampled . data $
i n s u b s a m p l e ==1 , ] $ s u b s v y t r t w t , data= sampled . data [ sampled . data $
i n s u b s a m p l e = = 1 , ] )

47 a t e . ipw <� summary ( lm . s u b s v y t r t ) $ c o e f [ 2 , 1 ]
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48

49 re turn ( a t e . ipw )
50 }
51

52 #DRWLS e s t i m a t o r

53 d r w l s <� f u n c t i o n ( data , txmodel , s e l m o d e l ) {
54 sampled . data<�data
55

56 sampled . data $ t . wt <� t x w t s ( sampled . data , t xmode l )
57 sampled . data $ subsamp . wt <� s e l w t s ( sampled . data , s e l m o d e l )
58

59 # combine w e i g h t s

60 sampled . data $ s u b s v y t r t w t<� i f e l s e ( sampled . data $ i n s u b s a m p l e ==1 , sampled .
data $ t . wt⇤ sampled . data $ subsamp . wt⇤ sampled . data $ ssvywt , 0 )

61

62 # s p e c i f y outcome model f o r g�c o m p u t a t i o n s t e p

63 model<�glm ( y ~ t + z2 + t : z1 , data= sampled . data , weight s = sampled . data $
s u b s v y t r t w t , f a mi ly =" g a u s s i a n " )

64

65 data _new0<�sampled . data
66 data _new0$ t<�0
67 data _new1<�sampled . data
68 data _new1$ t<�1
69

70 #g�c o m p u t a t i o n s t e p

71 sampled . data $ y 1 h a t<�p r e d i c t ( model , newdata =data _new1 , t y p e =" r e s p o n s e " )
72 sampled . data $ y 0 h a t<�p r e d i c t ( model , newdata =data _new0 , t y p e =" r e s p o n s e " )
73 sampled . data $ d i f<�sampled . data $ y 1 h a t � sampled . data $ y 0 h a t
74 sampled . data $num<�sampled . data $ d i f ⇤ sampled . data $ s svywt
75

76 a t e . d r w l s <�sum ( sampled . data $num ) / sum ( sampled . data $ s svywt )
77

78 re turn ( a t e . d r w l s )
79 }
80

81 #TMLE e s t i m a t o r

82 t m l e f x n<� f u n c t i o n ( data , txmodel , se lmode l , ou tmode l ) {
83 sampled . data<�data
84

85 sampled . data $ p s c o r e . svy <� p r e d i c t ( glm ( formula=txmodel , data= sampled . data ,
f a mi ly =" b i n o m i a l " ) , t y p e =" r e s p o n s e " )

86

87 # e s t i m a t e subsample p r o b a b i l i t i e s from s u r v e y sample , s e p a r a t e l y f o r t h o s e

t r e a t e d and u n t r e a t e d

88

89 modelc<�glm ( formula= se lmode l , data= sampled . data , f a mi ly =" b i n o m i a l " )
90

91 data _new0<�sampled . data
92 data _new0$ t<�0
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93 data _new1<�sampled . data
94 data _new1$ t<�1
95

96 sampled . data $ a1s1 . ps<�p r e d i c t ( modelc , newdata =data _new1 , t y p e =" r e s p o n s e " )
97 sampled . data $ a0s1 . ps<�p r e d i c t ( modelc , newdata =data _new0 , t y p e =" r e s p o n s e " )
98

99 W<�as . matrix ( cbind (W1= sampled . data $z1 , W2= sampled . data $ z2 ) )
100

101 f i t . tm le<� tm le (Y= sampled . data $y , A= sampled . data $ t , W=W, D e l t a = sampled . data
$ i n subsample , Qform=outmodel , g1W= sampled . data $ p s c o r e . svy , p D e l t a 1 =(1 /
sampled . data $ s svywt ) ⇤ cbind ( sampled . data $ a0s1 . ps , sampled . data $ a1s1 . ps ) ,

gbound=c ( 0 , 1 ) )
102

103 sampled . data $ d i f<� f i t . tm le $ Q s t a r [ , 2 ] � f i t . tm le $ Q s t a r [ , 1 ]
104 sampled . data $num<�sampled . data $ d i f ⇤ sampled . data $ s svywt
105

106 a t e . tm le<�sum ( sampled . data $num ) / sum ( sampled . data $ s svywt )
107 re turn ( a t e . tm le )
108 }

Functions.R

Appendix C
For each of 1,000 simulations, we generate 20 million population members (similar to the pop-
ulation of U.S. adolescents), each with W1. W1 is the sum of six normally distributed covari-
ates. We generate an indicator of survey selection from a Bernoulli distribution with probability:
P (�

svy

= 1|W1) = Logit�1
(�7.5 + 0.07W1). Approximately 12,000 individuals (0.06%) are

retained in the survey. For those in the survey, we generate 1) W2 as the sum of 16 normally
distributed covariates, and 2) a treatment variable from a Bernoulli distribution with probability:
P (A = 1|W) = Logit�1

(�2.5 + 0.13W2). Approximately one-half of those in the survey sample
are exposed (A = 1). We then generate an indicator of sub-sample selection from a Bernoulli
distribution with probability: P (�

sub

= 1|�

svy

= 1,W) = Logit�1
(�2.5 + 0.05W1 + 0.05W2).

Approximately 3,000 (25% of survey sample) are retained in the sub-sample. Finally, we generate a
continuous outcome variable that exhibits linear effect heterogeneity: Y = �3+W2+3A+2AW1,
✏ ⇠ N(0, 2). The true PATE is -4.0. R code for generating this simulation scenario is included be-
low.

1 ## These f u n c t i o n s can be used t o r e p l i c a t e t h e da ta g e n e r a t i n g p r o c e s s used

i n : Rudolph KE , Diaz I , Rosenblum M, S t u a r t EA . E s t i m a t i n g p o p u l a t i o n

t r e a t m e n t e f f e c t s from a s u r v e y sub�sample .

2

3 l i b r a r y (MASS)
4

5 e x p i t<� f u n c t i o n ( p ) {
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6 exp ( p ) / (1+ exp ( p ) )
7 }
8

9 # d a t a s e t w i t h n⇤10 = 20 m i l l i o n i n d i v i d u a l s .

10 s e t . s e ed ( 1 3 2 )
11 n =2000000
12

13 # v a r i a n c e�c o v a r i a n c e m a t r i c e s f o r t h e two summary c o v a r i a t e s , W1 and W2

14 sigmaW1<�matrix ( data=c
( 1 0 0 , 7 , 2 , 4 , � 3 , 1 , 7 , 2 0 , . 3 , . 6 , � . 6 , . 2 , 2 , . 3 , 4 , . 6 , � . 3 , . 1 , 4 , . 6 , . 6 , 1 . 7 , � . 5 , . 1 , � 3 , � . 6 , � . 3 , � . 5 , 2 , . 1 , 1 , . 2 , . 1 , . 1 , . 1 , 1 )
, nrow =6 , byrow=TRUE)

15

16 sigmaW2<�matrix ( data=c ( 1 . 9 1 , �0.34 , 0 . 4 4 , �0.29 , 0 . 7 0 , �0.17 , 0 . 4 0 ,
�0.44 , 0 . 8 0 , 0 . 1 9 , 0 . 1 9 , 1 . 0 0 , �0.30 , 0 . 4 6 , �1.03 , �0.56 , �0.34 ,

1 . 8 9 , 0 . 9 9 , 1 . 0 6 , 0 . 7 8 , �0.17 , �0.22 , 0 . 2 6 , 0 . 3 7 , �0.10 , �0.91 ,
�0.92 , �0.02 , �0.29 , 0 . 4 5 , 0 . 1 6 , 0 . 4 4 , 0 . 9 9 , 2 . 2 6 , 0 . 9 6 , 1 . 8 3 ,
�0.30 , 0 . 7 8 , 1 . 2 8 , 0 . 1 5 , 0 . 0 4 , �0.64 , �0.20 , 1 . 2 1 , �0.78 , 1 . 3 4 ,
�0.63 , �0.29 , 1 . 0 6 , 0 . 9 6 , 3 . 2 6 , 1 . 3 8 , 0 . 5 7 , 1 . 1 8 , 0 . 9 4 , �0.48 ,
�0.04 , �2.16 , 0 . 1 0 , �0.72 , �1.78 , 0 . 3 5 , �1.06 , 0 . 7 0 , 0 . 7 8 , 1 . 8 3 ,

1 . 3 8 , 7 . 1 8 , �1.25 , 0 . 9 1 , 1 . 5 2 , �3.41 , 0 . 8 2 , �2.03 , 0 . 0 4 , 0 . 6 3 ,
�1.22 , 1 . 8 3 , 0 . 0 9 ,�0.17 , �0.17 , �0.30 , 0 . 5 7 , �1.25 , 1 . 7 6 , 0 . 6 5 ,
�0.66 , �0.04 , �0.83 , 0 . 1 7 , �0.32 , �1.15 , �1.60 , 0 . 6 2 , �0.12 , 0 . 4 0 ,
�0.22 , 0 . 7 8 , 1 . 1 8 , 0 . 9 1 , 0 . 6 5 , 4 . 1 4 , 1 . 7 5 , �1.85 , �0.94 , 0 . 3 3 ,

�0.07 , 1 . 2 6 , �0.91 , 1 . 6 7 , �1.57 , �0.44 , 0 . 2 6 , 1 . 2 8 , 0 . 9 4 , 1 . 5 2 ,
�0.66 , 1 . 7 5 , 8 . 2 3 , �2.65 , 0 . 8 4 , 0 . 1 2 , 0 . 3 2 , 0 . 3 3 , �0.45 , 2 . 5 3 ,
�1.19 , 0 . 8 0 , 0 . 3 7 , 0 . 1 5 , �0.48 , �3.41 , �0.04 , �1.85 , �2.65 , 9 . 6 2 ,

0 . 6 4 , 0 . 5 0 , �0.53 , �1.95 , 1 . 2 4 , �1.88 , �2.26 , 0 . 1 9 , �0.10 , 0 . 0 4
, �0.04 , 0 . 8 2 , �0.83 , �0.94 , 0 . 8 4 , 0 . 6 4 , 1 . 9 3 , �1.50 , 0 . 2 8 , �0.65
, 1 . 5 2 , 0 . 2 8 , �0.14 , 0 . 1 9 , �0.91 , �0.64 , �2.16 , �2.03 , 0 . 1 7 , 0 . 3 3

, 0 . 1 2 , 0 . 5 0 , �1.50 , 5 . 2 3 , �0.24 , 1 . 5 0 , 1 . 0 7 , �1.94 , 0 . 5 8 , 1 . 0 0 ,
�0.92 , �0.20 , 0 . 1 0 , 0 . 0 4 , �0.32 , �0.07 , 0 . 3 2 , �0.53 , 0 . 2 8 , �0.24 ,

2 . 0 7 , �0.79 , 0 . 7 0 , �1.12 , 0 . 7 6 , �0.30 , �0.02 , 1 . 2 1 , �0.72 , 0 . 6 3
, �1.15 , 1 . 2 6 , 0 . 3 3 , �1.95 , �0.65 , 1 . 5 0 , �0.79 , 5 . 9 0 , �0.47 , 1 . 0 9
, �0.88 , 0 . 4 6 , �0.29 , �0.78 , �1.78 , �1.22 , �1.60 , �0.91 , �0.45 ,
1 . 2 4 , 1 . 5 2 , 1 . 0 7 , 0 . 7 0 , �0.47 , 5 . 9 6 , �2.40 , 1 . 7 9 , �1.03 , 0 . 4 5 ,
1 . 3 4 , 0 . 3 5 , 1 . 8 3 , 0 . 6 2 , 1 . 6 7 , 2 . 5 3 , �1.88 , 0 . 2 8 , �1.94 , �1.12 ,
1 . 0 9 , �2.40 , 7 . 1 8 , 0 . 3 1 , �0.56 , 0 . 1 6 , �0.63 , �1.06 , 0 . 0 9 , �0.12 ,
�1.57 , �1.19 , �2.26 , �0.14 , 0 . 5 8 , 0 . 7 6 , �0.88 , 1 . 7 9 , 0 . 3 1 , 5 . 5 3

) , nrow =16 , byrow=TRUE)
17

18 # t h e f o l l o w i n g loop i s f o r speed , s i n c e 20 m i l l i o n i s a l o t o f p e o p l e

19 svysamp1<� l i s t ( rep (NA, 1 0 ) )
20 f o r ( j i n 1 : 1 0 ) {
21 #draw W1 c o v a r i a t e

22 w1vars<�mvrnorm ( n=n , mu=c ( 2 0 , �15 ,�10 , 2 .5 , �1 ,0 ) , Sigma=sigmaW1 )
23 #make summary c o v a r i a t e

24 z1<�rowSums ( w1vars )
25

26 # s e l e c t i o n i n t o s u r v e y sample
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27 b e t a 0 <� �7.5
28 b e t a 1 <� l o g ( 1 . 0 7 )
29 p rob . s e l <� e x p i t ( b e t a 0 + b e t a 1 ⇤ z1 )
30 s s<�rbinom ( n , 1 , p rob . s e l )
31 s svywt<�mean ( p rob . s e l ) / prob . s e l
32 pop<�data . frame ( z1 , prob . s e l , ss , ssvywt , w1vars )
33 colnames ( pop )<�c ( " z1 " , " prob . s v y s e l " , " i n s a m p l e " , " s svywt " , "w1" , "w2" , "

w3" , "w4" , "w5" , "w6" )
34

35 svysamp1 [ [ j ] ]<�pop [ s s ==1 , ]
36 }
37

38 svysamp<�rbind ( svysamp1 [ [ 1 ] ] , svysamp1 [ [ 2 ] ] , svysamp1 [ [ 3 ] ] , svysamp1 [ [ 4 ] ] ,
svysamp1 [ [ 5 ] ] , svysamp1 [ [ 6 ] ] , svysamp1 [ [ 7 ] ] , svysamp1 [ [ 8 ] ] , svysamp1 [ [ 9 ] ] ,
svysamp1 [ [ 1 0 ] ] )

39 rm ( svysamp1 )
40

41 #draw W2 c o v a r i a t e

42 w2vars<�mvrnorm ( n=nrow ( svysamp ) , mu=c ( 0 , 0 , 2 , 0 , 1 0 ,5 , �5 ,10 , �2 ,0 , 0 , 0 , 0 , 0 , 0 , 0 ) ,
Sigma=sigmaW2 )

43 svysamp $ z2<�rowSums ( w2vars )
44

45 # make t r e a t m e n t v a r i a b l e

46 svysamp $ prob . t r t <� e x p i t (�2.5 + ( l o g ( 1 . 1 4 ) ⇤ svysamp $ z2 ) )
47 svysamp $ t<�rbinom ( nrow ( svysamp ) , 1 , svysamp $ prob . t r t )
48

49 # make outcome v a r i a b l e

50 svysamp $meany0<� �3 + svysamp $ z2
51 svysamp $y0<�rnorm ( nrow ( svysamp ) , svysamp $meany0 , 2 )
52 svysamp $y1<�svysamp $y0 + 3 + 2⇤ svysamp $ z1 + rnorm ( nrow ( svysamp ) , 0 , . 5 )
53 svysamp $y<� i f e l s e ( svysamp $ t ==1 , svysamp $y1 , svysamp $y0 )
54

55 # s e l e c t i o n i n t o subsample t o d e t e r m i n e which outcome v a r i a b l e s are o b s e r v e d

56 b e t a 0 <� �2.5
57 b e t a 1 <� l o g ( 1 . 0 5 )
58 b e t a 2 <� l o g ( 1 . 0 5 )
59 svysamp $ prob . s u b s e l <� e x p i t ( b e t a 0 + b e t a 1 ⇤ svysamp $ z1 + b e t a 2 ⇤ svysamp $ z2 )
60 svysamp $ i n s u b s a m p l e<�rbinom ( nrow ( svysamp ) , 1 , svysamp $ prob . s u b s e l )

DataGenerationCode.R

Appendix D
Just as in the simulation study, we estimate each adolescent’s treatment weight as the inverse pre-
dicted probability of living in the type of neighborhood (disadvantaged or non-disadvantaged) that
the adolescent lives in from a logistic regression model with neighborhood disadvantage status as
the outcome and a vector of potential confounders as covariates. These potential confounders in-

29

Hosted by The Berkeley Electronic Press



clude: age, sex, race/ethnicity (Black, White, Hispanic, Other), maternal age at birth of the child,
maternal level of education, whether or not the adolescent lived with his/her father for his/her whole
life, urbanicity (urban center, urban fringe, non-urban), region of the country (Northeast, South,
Midwest, West), season (winter, spring, summer, fall), whether the sample was taken on a weekday
or weekend, and time of day that the sample was taken. Inclusion of these variables was supported
by both theory[2] and backward stepwise selection. For example, race/ethnicity and measures of
socioeconomic status (e.g., maternal age and education) are thought to be associated with (but not
caused by) residence in a disadvantaged neighborhood and also associated with cortisol levels. In
addition, several strong predictors of cortisol levels (e.g., season, weekday vs. weekend, sampling
time) may be differentially distributed by neighborhood disadvantage status and thereby act as
confounders. By assuming that these variables are potential confounders and not mediators, we
assume they are not affected by residence in a disadvantaged neighborhood. If they were affected,
our results may be biased.[4] It could be argued that maternal age at birth of the adolescent and
maternal level of education are influenced by neighborhood disadvantage if considered as part of a
multi-generational feedback loop. Ultimately, we included these variables to provide some control
for family socioeconomic status.

As in the simulation study, we estimate the sub-sample selection weights as inverse predicted
probabilities of being included in the sub-sample with cortisol measures, separately for those
treated (living in a disadvantaged neighborhood) and untreated (living in a non-disadvantaged
neighborhood). We use a logistic regression model with inclusion in the sub-sample as the outcome
and a vector of predictive variables as covariates. These predictive variables included: race/ethnic-
ity, father presence, urbanicity, region, season, sampling time (all of which were also included in
the treatment model), as well as: current anxiety or depressive disorder, history of psychological
abuse, parental employment, family income, weekend bedtime, and small for gestational age at
birth. These variables were determined by backward stepwise selection. We assume that selection
into the sub-sample conditional on these variables is independent of selection into the sub-sample
conditional on these variables and the vector of confounders included in the treatment model. This
assumption allows us to multiply the conditional treatment and sub-sample selection probabilities
to obtain the joint conditional probability of treatment status and sub-sample selection.
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Appendix E

Figure 6: Illustrative example: population average effect estimates and 95% confidence intervals
using the NCS-A sub-sample. Eight outlying, influential observations included.
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Appendix F
Unlike in the simulation, we do not know the true parametric model forms for the treatment, se-
lection, and outcome models in this case study. We chose the models using Akaike information
criterion (AIC) in a stepwise algorithm. Using the AIC may result in models that have better pre-
dictive ability but are less parsimonious. In the simulation, we paid no noticeable penalty for over-
adjusting or unnecessarily adjusting for non-random treatment and non-random selection (see Table
5). It is possible, though, that we may pay an efficiency penalty in the more complicated real-world
case study. To examine this, we compare (A) the IPW, TMLE, and DRWLS estimators that use the
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full, AIC-optimized treatment and selection models to (B) those that use the full, AIC-optimized
treatment model and a more parsimonious Bayesian information criterion (BIC)-optimized selec-
tion model, (C) those that use the BIC-optimized treatment model and the AIC-optimized selection
model, and (D) those that use the BIC-optimized selection and treatment models (see Figure 7).
When the more parsimonious selection model is used in panels B and D, the CI of each of the
estimators slightly narrows but relative performance stays the same. Interval width is insensitive to
parsimony in the treatment model.
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Figure 7: Illustrative example: marginal mean effect estimates and 95% confidence intervals under
different levels of parsimony in model specification. A=full treatment model, full selection model;
B=full treatment model, smaller selection model; C=smaller treatment model, full selection model;
D=smaller treatment and selection models.
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Appendix G
For example, let the full set of covariates be represented by W = (W1,W2). Participants in the
sub-sample have the full set of covariates (W1,W2), but participants in the survey sample have
only the subset (W1). In this case, the observed data would be O = (W1, �svy

= 1, A, �
sub

,
�

sub

⇥W2, �
sub

⇥ Y ). In order for the exchangeability assumption to hold, �
svy

and �

sub

must
be random conditional on W1, which implies P (�

svy

= 1|W1) = P (�

svy

= 1|W1,W2) and
P (�

sub

= 1|�

svy

= 1,W1) = P (�

sub

= 1|�

svy

= 1,W1,W2). Some additional assumptions
and modifications would be required for each of the three estimators evaluated to maintain their
unbiasedness properties, as described below.

For the IPW estimator, if W1 and W2 are both confounders of the treatment effect, then the
conditional probabilities with which we construct the combined inverse probability of treatment
and selection weights would need to change to:

wA=a,�svy=1,�sub=1
=

1

P (�

svy

= 1|W1)
⇥

I(�
sub

= 1)

P (�

sub

= 1|�

svy

= 1,W1)

⇥

I(A = a)

P (A = a)|�
svy

= 1,�
sub

= 1,W1,W2)

=

I(A = a,�
sub

= 1,�
svy

= 1)

P (A = a,�
sub

= 1,�
svy

= 1|W)

for a 2 {0, 1}. The IPW estimate would be unbiased if the treatment and selection models were
correctly specified. For the TMLE and DRWLS estimators, if W1 and W2 are both confounders
of the treatment effect, then these estimators would no longer be robust to misspecification of the
selection model. This is because the G-computation step could only standardize to the sub-sample,
meaning that the predicted individual treatment effects would need to be weighted by the combined
survey weights and sub-sample weights to compute the PATE. TMLE and DRWLS would be con-
sistent under correct model specification and either treatment or outcome model misspecification.
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