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Variable selection for zero-inflated and
overdispersed data with application to health
care demand in Germany

Zhu Wang, Shuangge Ma, and Ching-Yun Wang

Abstract

In health services and outcome research, count outcomes are frequently encoun-
tered and often have a large proportion of zeros. The zero-inflated negative bi-
nomial (ZINB) regression model has important applications for this type of data.
With many possible candidate risk factors, this paper proposes new variable se-
lection methods for the ZINB model. We consider maximum likelihood func-
tion plus a penalty including the least absolute shrinkage and selection operator
(LASSO), smoothly clipped absolute deviation (SCAD) and minimax concave
penalty (MCP). An EM (expectation-maximization) algorithm is proposed for es-
timating the model parameters and conducting variable selection simultaneously.
This algorithm consists of estimating penalized weighted negative binomial mod-
els and penalized logistic models via the coordinated descent algorithm. Further-
more, statistical properties including the standard error formula are provided. A
simulation study shows that the new algorithm not only has more accurate or at
least comparable estimation, also is more robust than the traditional stepwise vari-
able selection. The application is illustrated with a data set on health care demand
in Germany. The proposed techniques have been implemented in an open-source
R package mpath.
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1 Introduction

Demand for health services is rising and the costs of health are substantial
in many countries. There are numerous factors to drive tla¢ttheare demand.
For instance, there is a high prevalence of chronic conditisuch as cancer and
diabetes. On the other hand, it is important to understamd domsumers’ deci-
sions are grounded on utilizing health care. There are miamjes on this topic.
Deb and Trivedi (1997) investigated medical care demampussample from the
National Medical Expenditure Survey. The survey was cotetuin 1987 and 1988
to provide a comprehensive picture of how Americans use agdqr health ser-
vices. The six study outcomes are visits to a physician infiicecsetting, visits to
a physician in a hospital outpatient setting, visits to apbysician in an outpatient
setting, visits to an emergency room, and number of hosgiégls. Riphahn et al.
(2003) utilized a part of the German Socioeconomic PanelQB®) data set to
analyze the number of doctor visits and the number of hdspg#s. The original
data have twelve annual waves from 1984 to 1995 for a repiasensample of
German households, which provide broad information on &edth care utiliza-
tion, current employment status, and the insurance arra@ges under which sub-
jects are protected. Unlike the United States, the Germalthhmsurance system
provides almost complete coverage of the population. Thagéncome individ-
uals are required to have health insurance by a law excepivibservants and the
self-employed, who along with high-income persons can s@do remain unin-
sured, to sign up one of the mandatory health insurancesvaginsurance, or a
combination of two. Consequently, the employment charatites were thought
to be linked with health care demand.
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The above mentioned study outcomes are examples of inted@eds/ count
data, which are frequently encountered in health serviodsoatcome research.
For analysis with risk factors, standard regression moutkide Poisson and
negative binomial (NB) regression. The count data, howavety have a high
frequency of zero values and therefore the aforementionedets may fail to de-
scribe the data adequately. In the German data, Figure 1sstiavmany study
participants didn’t have doctor office visits. One may assuhmat the popula-
tion consists of no-demanding healthy individuals who naweed to visit the
doctor, and usual-demanding and less healthy individu&ls may or may not
visit the doctor, depending on the health status and otlora To take into ac-
count the extra zero observations, the zero-inflated Poi&sll) and NB model
(ZINB) have been applied in many fields. For instance, seeleatn(1992);
Atienza et al. (2008); Hur et al. (2002); Lee et al. (2005)ieAra et al. (2008);
Singh and Ladusingh (2010). The zero-inflated count modelirass a latent mix-
ture model consisting of a count component and a degenezatedcomponent
which has a unit point mass at zero. The count component camodeled as a
Poisson or NB distribution. For the Poisson distributidreg variance is assumed to
be equal to the mean, which may be violated in real data. Itrasinthe NB distri-
bution has less constraint than the Poisson distributitverdfore, the ZINB model
is more appropriate to incorporate extra overdispersidrancounted for through
zero-inflation by the Poisson model. The methodology fdirigsZINB regression
models against ZIP models was proposed in Ridout et al. (20@L et al. (2003)
discussed the ZINB mixed model with an EM (expectation-mmazation) algo-
rithm. Garay et al. (2011) proposed influence diagnosticgtfe ZINB models.
The ZINB model characterizes the study population into twougs as the no-
demanding group corresponding to the zero component, andstial-demanding
group for the count component. For the zero component, skefaictors have ef-
fect on probability that an individual has no-demandingr. the count component,
the risk factors have effect on the count outcome, giventti@individual is in a
usual-demanding group.

Among many potential risk factors, researchers are ofterested in iden-
tifying a small subset. A parsimonious model often offertidseinterpretation,
which will be demonstrated in this paper when analyzing tleen@an data. In
statistical literature, variable selection is one of thesmactive research areas.
Buu et al. (2011); Tang et al. (2014); Wang et al. (2014a) psep variable se-
lection methods for the ZIP model in which computing alduoris for penalized
log-likelihood functions were investigated. The penaltpdtions include the least
absolute shrinkage and selection operator (LASSO) (Tibehi1996), smoothly
clipped absolute deviation (SCAD) (Fan and Li, 2001) andimé&x concave penalty
(MCP) (zhang, 2010). In penalized regression algorithmspeificient below
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Figure 1: Empirical distribution of number of doctor officisits
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some threshold value is set to zero and otherwise will benhtaward zero.
The LASSO is a convex penalty function which has computati@dvantages
than non-convex penalties MCP and SCAD. The LASSO, howeweoduces bias
when shrinking large coefficients toward zero. The MCP andS@re successful
to reduce the bias and have an additional oracle propertgrisame conditions.
Namely, the MCP and SCAD performs like there is a prior knalgkon whether
a variable has zero or non-zero coefficient. A Bayesian bkriaelection proce-
dure was introduced to compute posterior inclusion pradibisi for variables in
the zero-inflated Poisson log-normal model (Jochmann, Rah3the current pa-
per, we extend the work in Wang et al. (2014a) to the penald&i model and
propose an EM algorithm for the penalties LASSO, MCP and SQ&Bpectively.
There are at least three distinct features in the new melbggo(a) The extended
model can incorporate additional overdispersion, thefiébgg much better than
a ZIP model for the German data. The penalized ZIP is a speasa of the cur-
rent paper. (b) In Wang et al. (2014a), the algorithm adeftivescales a shrink-
age parameter for the nonconcave MCP and SCAD penaltieeg¢Byeand Huang,
2011). While this strategy may help select tuning pararmsethe EM algorithm
can be substantially slow to converge for the penalized Zih®&lel. This is be-
cause the adaptive rescaling violates the non-decreasopgny of the EM algo-
rithm and estimating the dispersion parameter further dicates the algorithm.
In this paper, the algorithm avoids the adaptive rescaliegding to much im-
proved computing efficiency. (c) Wang et al. (2014a) usedtwstrap procedure
to estimate standard errors for the penalized ZIP model. édevwy bootstrapping
penalized ZINB models is very computationally demandirgl tdn this paper, we
establish standard error formula for the penalized ZINB ef®dT his task doesn’t
involve methodology challenge and is built on the Hessiatrimaf the ZINB log-
likelihood function. The Hessian matrix can be numericatlynputed as in many
statistical software systems. However, our experimenggest that closed-form
formulas are required since computing Hessian matrix ofNBzZinodel without
closed-form formulas can be numerically challenging awoevslin the literature,
there are published results on the Hessian matrix. Howexehelieve valid for-
mulas are needed. As a by-product, we independently dewldpvalidate the
elements of the Hessian matrix for the ZINB model, which aed.for computing
the standard errors of estimators.

The rest of the paper is organized as follows. Section 2dnites a penalized
ZINB model, and presents statistical properties and esitmanethods. A simula-
tion study is conducted in Section 3 to evaluate the propossitiods and compare
with competing methods. In Section 4, the proposed methoelgaplied to the
German data. A conclusion is drawn in Section 5. Some teahdetails are in the
Appendix.
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2 Penalized ZINB regression model

In this section, we present new methodologies for penalzBid regression mod-
els, theoretical properties of estimates, an EM algoritbredtimate parameters,
and standard error formula of estimators.

2.1 Variableselection of ZINB regression model

Consider a ZINB regression model. Assumg = 1,...,n has a probability func-
tion

Pr(Y; —yi) = P+ (- pi)(5%5)°, ifyi =0,
I — 1) — A A . .
(1= P ryatie (aite) (gfa)’s 1y >0

where 0< p; < 1,1 > 0 and 10 is the positive overdispersion parameter. The
mean and variance afd — pi)i and (1 — pi) (5 + pu2/6 + pip?), respectively.
The model is reduced to the negative binomial distributiop; i= 0. In a ZINB
regression, assume lengthpredictor vector; and lengthg, vectory; are associ-
ated withy; and p;, respectively. Let lofu;) = x' 8 and Iog(l%im) = v/ { where

B = (Bo, B, -, By ) @nd{ = (o, {1, ..., {g,) are unknown parameters. Hgsgand

{o are intercepts. Fom independent random samples, det= (87,06,Z7)T, the
log-likelihood function is given by

0
Up) =Y | i ) (——)°
@) YiZOOg[p+(1 p)(lli+9)
o F(6+yi) L o, 0 g
+ygolog{(1 p')r(yi+1)F(6)(pi+9)y(ui+9) ;
wherepy; = eXp(XiTB) andp; = %

For variable selection, consider a penalized ZINB model:

pl(p) = £(@) — p(B,4),

where the nonnegative penalty function is given by

01 7]
p(B.{) = nZ P(Ane; ﬁj\)-l-nkz p(Aei; | <kl),
j=1 =1

with tuning parameterdyg and Ag, determined by data-driven methods. Notice
that intercepts and scaling parameéare not penalized. The following three
penalty functions are investigated:
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(a) the LASSO penalty (Tibshirani, 1996), for> 0, p(A;|€]) = A [€].
(b) the MCP penalty (Zhang, 2010), far> 0 andy > 1, the derivative of

p(A; &) with respect tcf is given byp/'(A;&) = (A —&/y)I(§ < yA), wherel (+)
is an indicator function.
(c) the SCAD penalty (Fan and Li, 2001)

P(A,E)=A {I(E <A)+ ({Sjl‘f)zjl(f 2)\)} for A > 0 andy > 2, wheret,
denotes the positive part tf

2.2 Oracleproperties of the MCP and SCAD estimates

Assume true parameter vectgyhas element&3jo, {ko), j =0,1,...,01,k=0,1,...,0p.
Decomposem = (@, ;)T and assumeyg contains all zero coefficients.

Theorem 1. Let u,...,u, be independent and identically distributed, each with a
probability distribution satisfying regularity conditis (a)-(d) in Appendix A. If

diol)| : Bjo # 0, ko # 0} — 0,

then there exists a local maximizerof pl(@) such that

P’ (Agin;

max{ | p"(Angn; | Bjol)

)

10— @l|| = Op(n" Y% +ay),

where|| - || is the Euclidean norm and

an = max{|p'(Anen; IBjol)|, | P'(Aein; | kol )| = Bjo # 0, ko # O} .

Theorem 2. Let u,...,u, be independent and identically distributed, each with a
probability distribution satisfying conditions (a)-(dy iAppendix A. Assume that
the penalty function satisfies

R Fret® [ / S i i /
|ILT1)IOr<]f Iianllorf p)\NB?n(B)/)\.\,&n > 0, I'nm_fﬂf “zrllollf pABLn(Z)/ABLn > 0.

If )\NB,n — O, \/ﬁ)\NB,n — °°7)\Bl,n — O, \/ﬁ)\BI,n — 00 as n— oo, then with prob-
ability tending to 1, the root-n consistent local maxim&erin Theorem 1 must
satisfy:

i Sparsity: @ = 0.
il Asymptotic normality:

V{l1(@0) +Z} (@1 — @ro) +vnb— N(O, I1(¢n0))
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in distribution, where4(@0) = l1(¢10, 0), the Fisher information knowing, =
0, and _
z = dlag{()? pXNB,n(’B10’)7 ey pl)fNB‘n(’Bw‘)’

0, p/)(BLn(‘ZlOD? S pﬁ\lsl,n(‘ZtOD}’

b= (0, Phyg, (1B101)SGN(B10), s Phys., (1Bs0])SIN o)
07 p;\B|$n(|ZlO|)Sgr(ZlO)v [RX) p;\B|$n(|Zt0|)Sgr(Zt0))7

where s and t are the numbers of non-zero components (emglirtiercepts)
in B1o and {10, respectively.

Theorem 1 and 2 are direct applications of the respectivadines in Fan and Li
(2001). Therefore, iAngn — Oa)\BI,n — 0, \/ﬁ)\NB,n — o0 and \/ﬁ)\Bl,n — o0, then
the ZINB-MCP and ZINB-SCAD estimators hold the oracle prtyewith prob-
ability tending to 1, the estimate of coefficients without effect is 0, and the
estimate for coefficients with an effect has an asymptotronad distribution with
mean being the true value and variance which approximatglgle the submatrix
of the Fisher information matrix knowing coefficients inezft.

2.3 TheEM algorithm

Letz = 1if Y; is from the zero state arngl = 0 if Y; is from the NB state. Since
z=(z,...,z,)" is not observable, it is often treated as missing data. The EM
algorithm is particularly attractive to missing data peshk. With datdY,z), the
complete-data penalized log-likelihood function is gi®n

PLe0) = 5 {(wZ —I0g(L+expud) + (1-2)Iog(1(4;6.6))} ~ p(B.2).

. 0+ i \Vi ;
where f (i B.68) = i Faitg ()" (3%)°. With i = exp(x| B). The EM al-

gorithm computes the expectation of the complete-datdiketjhood, which is

linear inz. Thus, the E-step simplifies to updatdy its conditional expectation
given the observed data and previous parameter estimatesifigally, the condi-
tional expectation ot at iterationm is provided by

2(m) o 10N
Z(m) ot <1+ exp(—vi{\™) [W] > , ifyi=0
0, if yi > 0.

Therefore, the expectation of the complete-data logilikeld can be calculated:

Q(el¢™) = E(ple(@ly.2)ly. 9™) = Qu(B. 6]¢™ + Qx(¢|0'™),

7
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where

n

~ 1
Qu(B,0]¢"™ = Zl(l—z(w)'o@f(Yi,Bae) —n’y p(is,|Bil)
= =1

2
Qa({|p™ 21; i —log(1+exp(vi{) —nkzlp()\sr,tzkt)

Next, the EM algorithm updates the estimates by maximigdg|¢™), which is
handy sinc€, 8) and{ are in two disjoint terms. The first terr@®; (3, 6[(2)("‘) [

a weighted penalized NB log-likelihood function and thecsettermQ,(Z|¢™)
is a penalized logistic log-likelihood function. The comate descent algorithm
has been proposed to optimize generalized linear modeksd¢(Rran et al., 2010;
Breheny and Huang, 2011; Wang et al., 2014b). The EM itaratere repeated
for the E-step and M-step until convergency.

2.4 Selection of tuning parameters

The penalty parametefdng, Agi) can be determined based on the BIC (Schwarz,
1978): R
BIC = —2/(¢; Ang, Asi) +log(n)df,

where(Ap are the estimated parameteidy s, Ag) are tuning parameters and) is

.....

O} + Ykeo,..q H{k # O} + 1 which includes the degree of freedom for the scal-
ing parametel8. We first construct a solution path based on the paired shrink
age parameters. To begin with, the algorithm generates éeedsing sequences

}tlsllé > )\,@... > )\lﬁl'\é) and }téf) > )\éf). > )\é’,\"). Then, we pair the sequences:
(A,E,lB),)\éll)),...,()\,E,'\Q,)\é'lv')). In principle, large values)\NB, él)) can be chosen
such that all the coefficients are zeros except the intescept refined method

suggests that the smallest vall,(e\';,{I ) can be calculated from data for the
LASSO penalty (Wang et al., 2014a) For other penalties, ollevi the same
strategy.

25 Standard error formula

A sandwich formula can be used as an estimator of the cowariahthe non-zero
estimatesp, (Fan and Li, 2001; Fan and Peng, 2004):

cov(@) = {02(@n) +nZ(@r; Ang, Aer) s oVl (@n) {D2( @) + NS (s Ans, Aer) )
(1)
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B(0)) = 5 3 00 () - {%immm} {%immm} ,
2
at(e) - Z02) cp) - g;gf;j

For the ZINB regression model, the element§1éf( ;) are provided in Appendix
B. It is worth noting that most of the results in Appendix B alifferent from
Garay et al. (2011). Indeed there is a mistake in the lodHtiged function pre-
sented in that paper.

3 A simulation study

We investigate performance of the proposed methods witlpleasizen = 300
andq; = g2 = 20 in the simulation study. Additional simulations for largample
sizen = 1000 are conducted although we omit the results below. Tadigor
variables were randomly drawn from multivariate normatréisitions No(0,Z),
whereZ has elementp“*”(i,j =1,...,20). The correlation among predictor vari-
ables was fixed ap = 0.4. We setf = 2 for the scaling parameter of the NB
distribution. We simulated 100 replications for each sepafameters described
below. These parameters were chosen to have a differenterushbeffective pre-
dictors and different levels of zero inflation.

(1) Inexample 1, set the parameters
g =(.10,0,0,0,-0.36,0,0,0,0,0,0,0,0,-0.32,0,0, 0, 0,0)
¢{ =(0.30, -0.48,0,0,0,0.4,0,0,0,0,0.44,0,0.44,0,0, 0,0, 0, 0).
The zero inflation is about 55%.

(2) In example 2, we kept all elements Bfin example 1 and only changed the
first element off from 0.30 to -1.20, which has about 25% zero inflation.

(3) In example 3, we remained all elementsfofn example 1 and changed the
first element o from 0.30 to -0.35, leading to about 43% zero inflation.

(4) In example 4, we doubled the number of ineffective priedécfrom the above
examples, and the parameters were set to obtain about 2@%n#ation:

B =(1.50, 0,0, 0, -0.22, 0, 0, 0, -0.25, 0, 0.20, 0, 0.30, -003®, 0, 0.20, 0, O,
0)
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7=(-1.05, 0, 0.45, 0, -0.3, 0, 0, 0, 0, 0, -0.33, 0, -0.39, 0,.8, 0, 0, 0, 0.36,
0).

Statistical methods evaluated are penalized NB regress@alized ZINB re-
gression, a backward stepwise elimination (BE) procedaresignificance lev-
elsa = 0.15730.05,0.01 following Sauerbrei et al. (2008), and an oracle ZINB
model assuming the true non-zero coefficients are known.BE @) procedure,
insignificant variables are removed from a full ZINB modelcfuding all predictor
variables in the NB and zero component), then a model is réfittive remaining
predictors. This procedure is repeated until all variallessignificant based on
the a level. Estimation accuracy is measured by ratio of meanrsquarror of
parameters (MSE) between a specific model and the full ZINBehdlo evaluate
performance of variable selection, we calculated seilityijproportion of correctly
identified number of non-zero coefficients) and specifigityportion of correctly
identified number of zero coefficients). To compare preditaccuracy, we gen-
erated 300 test observations from each model, and complwebbg-likelihood
values using the parameters estimated from the trainirgy dabally, we evaluate
standard errors of the estimated non-zero regression deets.

Estimation and variable selection results are summarizd@ble 1-4, where
bold fonts indicating the best values (excluding the oractelel). It is clear that
the penalized zero-inflated NB models have better perfocadhnan their coun-
terparts when ignoring the zero-inflation. Successfullyonporating extra zeros,
the estimates of ZINB model have smaller MSEs, larger geitgiand specificity,
and have more accurate scaling paraméteTo adapt to data with the extra zero-
inflation, a very small value of is estimated in the NB models. Within the penal-
ized ZINB models, the LASSO estimates can be less accurttie IB component
but are more comparable in the zero component; howeve tkano universal
winner on variable selection. The BE procedure is sensitivine choice of the
significance levelr. For a largeax value, the BE procedure keeps more predictor
variables with increased sensitivity. For a smalNalue, more variables are elimi-
nated to increase specificity. It would be interesting tedatne an optimal value
of a so that there is a trade-off between sensitivity and spégifi¢iowever, it
appears that even a small changexofalue can select variables quite differently.
In comparison, the penalized ZINB models provide comparablutions to the
BE procedure, if not better. Specifically, in example 1 andxgJuding the oracle
model, ZINB-MCP has the most accurate estimation of pararsetith smallest
MSEs in both the NB and zero components. In example 2, ZINBISGas the
smallest MSEs in the NB and zero components. In example 4BAWCP is com-
parable with BE(0.01). In all examples, ZINB-MCP and ZINB+/D have good
performance on variable selection in the NB componentsedhffe predictors are

10
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Table 1. Simulation results with example 1, n=300. Mediad eobust standard
deviations (in parentheses) of the MSE ratio between thalzex model and full
model, and the estimatéd Mean and standard deviations of sensitivity and speci-
ficity.

Method MSE Sensitivity Specificity 0
NB component
NB-LASSO 2.529 (1.434) 0.559 (0.427) 0.895 (0.123) 0.27@Q0)
NB-MCP 3.514 (2.149) 0.713(0.355) 0.869 (0.093) 0.30999)0
NB-SCAD 3.434 (1.991) 0.644 (0.392) 0.854 (0.129) 0.3000)
ZINB-LASSO 0.243 (0.202) 0.862 (0.278) 0.924 (0.087) 2.p2984)
ZINB-MCP 0.1(0.133) 0.846 (0.243) 0.974 (0.048) 2.286 (0.868)
ZINB-SCAD 0.167 (0.214) 0.856 (0.239) 0.958 (0.0562.119 (0.881)
BE(0.1573) 0.614 (0.279) 0.956 (0.161) 0.748 (0.129) 3.138(1.46)
BE(0.05) 0.404 (0.353) 0.918 (0.201) 0.879 (0.113) 2.668638)
BE(0.01) 0.177 (0.235) 0.824 (0.273) 0.968 (0.053) 2.2036)0
ZINB-ORACLE 0.042 (0.042) 1 (0) 1(0) 2.127 (0.759)
Zero component
ZINB-LASSO 0.381 (0.343) 0.614 (0.306) 0.973 (0.043)
ZINB-MCP 0.327 (0.282) 0.745 (0.201) 0.938 (0.09)
ZINB-SCAD 0.382(0.316) 0.59(0.234) 0.981 (0.036)
BE(0.1573) 0.607 (0.24) 0.83(0.174) 0.788 (0.134)
BE(0.05) 0.406 (0.319) 0.731(0.212) 0.922 (0.085)
BE(0.01) 0.403 (0.308) 0.58 (0.241) 0.987 (0.029)
ZINB-ORACLE 0.119(0.091) 1 (0) 1(0)

selected most of the time, ranging from 85986% of sensitivity while variables
having no effect are ignored with a probability more than 96%

Determining predictors in zero components is more diffithéin determining
predictors in the count components (Buu et al., 2011; Ward £014a; Jochmann,
2013). Sensitivities for the zero components are typicllyer than the corre-
sponding sensitivities for the NB components. As arguedoichthann (2013),
this is to be anticipated since the data generally are ngtimésrmative about the
hidden components of the observations.

Table 5 reports the predictive log-likelihood values. Thagized ZINB mod-
els have better prediction than the penalized NB modelsaentetter or compara-
ble to the BE procedure. ZINB-MCP has the most accurate giediin example

11
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Table 2: Simulation results with example 2, n=300. Mediad eabust standard
deviations (in parentheses) of the MSE ratio between thalzex model and full
model, and the estimatéd Mean and standard deviations of sensitivity and speci-

ficity.

Method MSE Sensitivity Specificity 0
NB component

NB-LASSO 0.806 (0.47) 0.971 (0.15) 0.907 (0.092) 0.768@8)1
NB-MCP 0.826 (0.522) 0.971 (0.118) 0.944 (0.072) 0.80516)1
NB-SCAD 0.826 (0.54) 0.979 (0.101) 0.904 (0.097) 0.799@9)1
ZINB-LASSO 0.308 (0.228) 0.979 (0.12) 0.949 (0.067) 2.42478)
ZINB-MCP 0.136 (0.155) 0.933(0.171) 0.984 (0.045) 2.32(0.782)
ZINB-SCAD 0.102 (0.106) 0.962 (0.133) 0.979 (0.047)2.262 (0.65)
BE(0.1573) 0.598 (0.249) 1 (0) 0.755 (0.131) 2.777 (1.028)
BE(0.05) 0.281 (0.248) 0.995 (0.047) 0.916 (0.091) 2.4781®)
BE(0.01) 0.105 (0.11) 0.973(0.114) 0.982 (0.038) 2.31858)
ZINB-ORACLE 0.063 (0.057) 1(0) 1(0) 2.26 (0.576)

Zero component
ZINB-LASSO 0.292 (0.32) 0.578(0.287) 0.932 (0.087)

ZINB-MCP 0.521 (0.448) 0.786 (0.201) 0.765 (0.179)
ZINB-SCAD  0.279(0.269) 0.521 (0.255) 0.956 (0.069)
BE(0.1573) 0.609 (0.395) 0.743 (0.206) 0.761 (0.143)
BE(0.05) 0.412 (0.362) 0.597 (0.232) 0.929 (0.076)
BE(0.01) 0.348 (0.283) 0.358 (0.245)  0.983 (0.04)
ZINB-ORACLE 0.095 (0.096) 1 (0) 1 (0)
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Table 3: Simulation results with example 3, n=300. Mediad eabust standard
deviations (in parentheses) of the MSE ratio between thalzex model and full
model, and the estimatéd Mean and standard deviations of sensitivity and speci-
ficity.

Method MSE Sensitivity Specificity 0
NB component

NB-LASSO 1.787 (0.989) 0.82 (0.348) 0.889 (0.108) 0.45678)
NB-MCP 2.313(1.342) 0.851(0.281) 0.891 (0.089) 0.4831P)0
NB-SCAD 2.312 (1.353) 0.866 (0.275) 0.86 (0.109) 0.48176)0
ZINB-LASSO 0.289 (0.246) 0.938 (0.181) 0.924 (0.082) 22%89)
ZINB-MCP 0.077 (0.093) 0.923 (0.196) 0.982 (0.034) 2.197 (0.76)
ZINB-SCAD 0.168 (0.209) 0.923 (0.196) 0.962 (0.06) 2.17593)
BE(0.1573) 0.562 (0.225) 0.974 (0.111) 0.769 (0.124) 2.789 (0.961)
BE(0.05) 0.267 (0.264) 0.954 (0.163) 0.928 (0.071) 2.40860
BE(0.01) 0.099 (0.126) 0.918 (0.2) 0.979 (0.04)2.11 (0.684)
ZINB-ORACLE 0.049 (0.048) 1 (0) 1(0) 2.141 (0.656)

Zero component
ZINB-LASSO 0.385(0.288) 0.634 (0.302) 0.954 (0.065)

ZINB-MCP 0.367 (0.284) 0.791 (0.193) 0.917 (0.085)
ZINB-SCAD  0.377(0.263) 0.572 (0.242) 0.97 (0.047)
BE(0.1573) 0.624 (0.254) 0.835 (0.187) 0.778 (0.14)
BE(0.05) 0.423 (0.278) 0.729 (0.221) 0.927 (0.084)
BE(0.01) 0.408 (0.288) 0.508 (0.23)  0.979 (0.04)
ZINB-ORACLE 0.084 (0.067) 1 (0) 1 (0)
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Table 4: Simulation results with example 4, n=300. Mediad eabust standard
deviations (in parentheses) of the MSE ratio between thalzex model and full
model, and the estimatéd Mean and standard deviations of sensitivity and speci-

ficity.

Method MSE Sensitivity Specificity 0
NB component
NB-LASSO 2.291 (1.043) 0.638(0.338) 0.893 (0.108) 0.628)(0
NB-MCP 2.445 (1.088) 0.743(0.248) 0.922 (0.076) 0.67192)0
NB-SCAD 2.558 (1.172) 0.748 (0.278) 0.877 (0.096) 0.66889)
ZINB-LASSO 0.856 (0.489) 0.87 (0.243) 0.863 (0.112) 2.32%44)
ZINB-MCP 0.548 (0.372) 0.859 (0.185) 0.965 (0.06) 2.345%8)
ZINB-SCAD 0.584 (0.37)  0.889 (0.165) 0.935 (0.085) 2.38470
BE(0.1573) 0.719 (0.29) 0.956 (0.099) 0.809 (0.121) 2.51(0.549)
BE(0.05) 0.592 (0.336) 0.916 (0.125) 0.923 (0.092) 2.3971D)
BE(0.01) 0.538(0.411) 0.841(0.172) 0.98 (0.043) 2.301 (0.533)
ZINB-ORACLE 0.232(0.147) 1(0) 1(0) 2.352 (0.506)
Zero component
ZINB-LASSO  0.519(0.405) 0.454 (0.252) 0.948 (0.077)
ZINB-MCP 0.635 (0.276) 0.733(0.184) 0.777 (0.176)
ZINB-SCAD 0.619 (0.349) 0.429 (0.215) 0.962 (0.053)
BE(0.1573) 0.676 (0.252) 0.719 (0.179) 0.797 (0.123)
BE(0.05) 0.602 (0.299) 0.533(0.19) 0.927 (0.08)
BE(0.01) 0.655 (0.434) 0.292(0.192) 0.984 (0.033)
ZINB-ORACLE 0.177 (0.125) 1 (0) 1(0)
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Table 5: Mean and standard deviations (in parentheses)eopitédictive log-
likelihood values

example 1 example 2 example 3 example 4
NB-LASSO -452.5 (28.3) -608.2 (20.1) -533.4 (26) -705.2.126
NB-MCP -450.5 (27.9) -606.4 (19.8) -532.3(25.6) -701.2424
NB-SCAD -453.1 (28.7) -606.9 (20) -533.2 (25.7) -702.1835.
ZINB-LASSO -438 (29.3) -601.4 (22.4) -519.8 (26.8) -691.5 (26.6)
ZINB-MCP -435.4 (29.4) -607.4 (49.5) -516.6 (27.1) -689.4 (24.7)
ZINB-SCAD -437.1 (28.9) -605 (50.9) -519 (26.7) -689.8 (4.
BE(0.1573) -453.3 (35) -616.3 (29.2) -529.8 (30.6) -692@®3)
BE(0.05) -444.7 (31.9) -605 (26) -520.8 (29) -689.2 (25.1)
BE(0.01) -438.5 (29.7) -601.7 (23.2) -519.1(27.2) -6824.3)

ZINB-ORACLE -425.3 (27.1) -591.9(22.2) -508.6(26.3) -69%23)

1 and 3 and ZINB-LASSO is the best in example 2. In example MBZMCP and
ZINB-SCAD are comparable to BE.

Next we evaluate the standard error formula. For non-zegdfficent esti-
mates with example 1, we computed the median absolute @evidivided by
0.6745, denoted by SD in Table 6. The SD can be treated as thestandard
error. The median of stimated standard errors using forrfi)ladenoted by SE,
and the median absolute deviation of estimated standandsativided by 06745
in the parentheses (std(SE)), are used to compare with SBtdapace limitation,
only a handful coefficients are displayed for example 1 wiieilar conclusions
hold in other examples. The standard error formula perfamasonably well as
the differences between SD and SE are within twice std(SE)jlefthe estimated
standard error can underestimate the true SD (Hunter ar2DQB), it is less severe
when compared to the robust standard errors for the oratiheatsrs.

The proposed EM algorithm performs well even for small sagites. In the
BE procedure, the Newton-Raphson method requires to itiverttlessian matrix.
The inverted Hessian can be numerically unstable and thegicolmay diverge.
For instance, when estimating the full ZINB model in examplethe Newton-
Raphson method failed in 41 out of 141 (30%) simulated ddk $&s a conse-
guence, the BE procedure could not be implemented for theatil sibts. For the
remaining 100 data sets, even though the full ZINB model wasessfully esti-
mated, the BE procedure still failed five times. Such a phesman is not unique
to example 2, and can be more severe when the number of meiticteases, or
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Table 6: Standard deviations of estimators with example 1

Ba Bi3 41
SD SE SD SE SD SE
ZINB-LASSO ~ 0.119 0,089 (0.022)  0.113 0.089 (0.021) _ 0.14313G0.01)
ZINB-MCP 01  0086(0.023) 0096 0.085(0.023)  0.227 0.16629)

ZINB-SCAD  0.127 0.086(0.024)  0.109 0.085(0.021)  0.226 68.00.035)
ZINB-ORACLE 0.131 0.087 (0.019)  0.123 0.085(0.023)  0.259166 (0.034)

the sample size decreases.

4 Health care demand

We analyze the health care demand in Germany. The data gatronumber of
doctor office visits for 1,812 West German men aged 25 to 6Byiadhe last three
months of 1994. As shown in Figure 1, many doctor office viaits zeros, which
can be difficult to fit with a Poisson or NB model. We focus orozeflated models
and alternative models may be found in (Riphahn et al., 2008hmann, 2013).
The predictor variables are illustrated in Table 7. Follogvilochmann (2013),
instead of the original variablageand its square, we study more complex effect
of age. Namely, we include the linear spline variatdge30to age60and their
interaction terms with the health satisfactibealth (for instancehealth:age3).
We estimate the following three models: the full ZINB modabhdels selected by
the BE procedure and the penalized ZINB models. Amorg0.15730.05,0.01,
BE(0.01) produces the most parsimonious model with thelesid8IC value. The
results are given in Table 8.

The results indicate more utilization of health care frora gublicly issued
than from privately issued. The mean doctor visits are 2nt41a90, respectively.
ZINB-LASSO and ZINB-SCAD generated positive coefficientiresites for vari-
ablepublicin the NB component, consistent with Riphahn et al. (2008)hdann
(2013).

The data show higher health care utilization for the aged fmmtlicapped.
ZINB-LASSO and ZINB-MCP both have positive coefficientsage55in the NB
component. However, the estimate for the full ZINB modeld$2, which needs
caution when interpreting the results. Notice that BE(Di®hot able to selegqiub-
lic or an age variable. Faelf the ZINB-MCP and BE(0.01) estimates are -0.37,
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close to the estimate -0.356 in (Riphahn et al., 2003). Adiogty, the estimate
suggests that a self-employed individual visits doctor8d % less often than not
self-employed, which confirms incentive effects in the tieahre demand. Those
self-employed were lack of any financial compensation whsiting a doctor. In
the ZINB-MCP modelage55andage50are chosen in the NB and zero compo-
nents, respectively. Thus, males being 50 or order are nialy ko see a doctor,
and conditional on that males over 55 years old have moreatajmctor visits.
The penalized LASSO and MCP methods result in similar caehs. In the zero
component, the penalized methods all indicate a negatigetedf having children
on the demand of health care. The presence of children idike$g to increase
the chance to see a physician (Riphahn et al., 2003). Howehviirenwas elim-
inated by BE(0.01). As expected, people with high healtisfation are unlikely
to see a doctor and have low demand on health care. The ramdtsuggest that
interaction between health status and age is not correlatbaioctor office visits.
The results from penalized ZINB models are similar to thosgochmann (2013).
The five variables selected by the NB component in the ZINBRV®rrespond
to the top five inclusion probabilities by a Bayesian analydiochmann, 2013).
Similarly, the three variables selected by the zero compibimethe ZINB-MCP
correspond to the top three inclusion probabilities. Haevethe penalized model
has sparse representation, which is different from the 8lagemodel selection.
For instance, the interaction terms are not selected by tIR8-&ICP while two
interaction terms were selected by the Bayesian procediggite relatively small
inclusion probabilities. In this case, it can be subjectiveen making a cut-off
point of inclusion probability.

In the sequel, we focus on the ZINB-MCP method which has amiIC value
compared to BE(0.01), and largest log-likelihood value amllest AIC value.
The log-likelihood values from the reduced models are sinfilased on 10-fold
cross validation, and larger than that from the full ZINB rabdndicating bet-
ter prediction with parsimonious models. Between ZINB-M&# BE(0.01), we
compare the predicted probabilities from the two methodie Muong test (Vuong,
1989; Greene, 1994) has a p-vakieD.001 in favor of the penalized model. Be-
tween ZINB-MCP and NB-MCP, the Vuong test has a p-value Orefepring the
zero-inflated model again. When comparing to the full ZINBdwip a likelihood
ratio test returns a p-value 0.48 (chi-square statisti8 #bth degrees of freedom
46), which suggests that there is no statistically significhfference between the
reduced and full ZINB models. One would question if a sim@zl#? model can fit
the data as well as the ZINB model. To see this, we also fit pethZIP mod-
els. The ZIP-LASSO, ZIP-MCP and ZIP-SCAD have BIC (log-likeod) 9012.6
(-4405), 8944.2 (-4400.8) and 8958.2 (-4411.6), respelgtivT he penalized ZIP
models have substantial large values of BIC and small vabdfidsg-likelihood,
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Table 7: Variable descriptions

Variable Description

health health satisfaction, 0 (low) - 10 (high)

handicap 1 if handicapped, O otherwise

hdegree degree of handicap in percentage points

married 1 if married, O otherwise

schooling years of schooling

hhincome household monthly net income, in German marks® 100
children 1 if children under 16 in the household, 0 otherwise

self 1 if self employed, 0 otherwise

civil 1 if civil servant, O otherwise

bluec 1 if blue collar employee, 0 otherwise
employed 1 if employed, O otherwise

public 1 if public health insurance, 0 otherwise
addon 1 if add-on insurance, 0 otherwise

age30 1if age>= 30
age35 lifage-=35
age40 1if age>=40

age45 lifage-=45
age50 1if age>=50
ageb5 lifage-=55

age60 1 if age>= 60

leading to poorer fitting compared to the penalized ZINB nmdeverall, the

analysis provides evidence that the ZINB-MCP model fits thia dbest. Further-
more, it is interesting to compare with the non-penalizeNEImodel using the
variable selected by the ZINB-MCP. The estimated coeffisidrom the ZINB-

MCP method are very close to the non-penalized estimatéssfoovn) using the
variables selected by ZINB-MCP. Thus, this is an exampledhibough the MCP
penalty shrinks estimates, the bias can be reduced.
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Table 8: ZINB models on doctor office visits. The estimateefeo
ficients with standard errors in parentheses, log-likelthglog-
Lik), log-likelihood by cross-validation (logLik-CV), BI and

AIC values.

ZINB BE(0.01) ZINB-LASSO ZINB-MCP ZINB-SCAD
NB component
(Intercept) 2.41(0.32) 2.57(0.12) 2.31(0.15)  2.48(0.12) 2.10(0.15)
health -0.16(0.03) -0.20(0.02) -0.17(0.02) -0.20(0.02) 0.19(0.02)
handicap 0.27(0.22)  0.30(0.09) 0.16(0.10) 0.23(0.10) 6(0.20)
hdegree -0.002(0.005)
married -0.15(0.112)
schooling -0.005(0.01)
hhincome 0.004(0.02)
children 0.02(0.09)
self -0.36(0.19) -0.37(0.13) -0.37(0.12)
civil -0.27(0.16) -0.34(0.12) -0.33(0.12)
bluec 0.10(0.10)
employed -0.09(0.11)
public -0.01(0.14) 0.06(0.09) 0.31(0.09)
addon 0.36(0.30)
age30 0.09(0.35)
age35 -0.25(0.35)
age40 0.05(0.36)
age45 0.72(0.43)
age50 0.20(0.41) 0.04(0.10) 0.22(0.07)
age55 -0.52(0.33) 0.10(0.11)  0.22(0.09)
age60 0.40(0.33)
age30:health -0.01(0.05)
health:age35 0.04(0.05)
health:age40 -0.02(0.06)
health:age45 -0.10(0.07)
health:age50 -0.02(0.06)
health:age55 0.13(0.06)
health:age60 -0.10(0.06)
6 1.38(0.12) 1.27(0.11) 1.37(0.13) 1.27(0.13) 1.25(0.13)
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Table 8:(continued)

ZINB BE(0.01) ZINB-LASSO ZINB-MCP ZINB-SCAD
Zero component
(Intercept) -2.31(0.99) -2.98(0.38) -2.70(0.29) -3.3719 -3.62(0.41)
health 0.23(0.10) 0.30(0.04) 0.25(0.03)  0.32(0.05) @)
handicap -0.33(0.79)
hdegree -0.002(0.02)
married -0.40(0.27)
schooling 0.02(0.04)
hhincome -0.04(0.04)
children 0.51(0.25) 0.20(0.15)  0.44(0.18) 0.52(0.18)
self -0.25(0.65)
civil 0.02(0.42)
bluec 0.02(0.24)
employed -0.08(0.32)
public -0.23(0.39)
addon 0.30(0.53)
age30 -1.68(1.32)
age35 0.90(1.41)
age40 -0.65(1.33)
age45 3.00(1.05) -0.33(0.20)
age50 -2.96(1.35) -1.00(0.28) -0.40(0.18) -0.66(0.25)
age55 0.34(1.36)
age60 -2.34(2.76)
age30:health 0.23(0.16)
health:age35 -0.11(0.17)
health:age40 0.12(0.17)
health:age45 -0.41(0.14)
health:age50 0.25(0.17)
health:age55 0.11(0.18)
health:age60 0.20(0.35)
Summary
logLik -3625.9 -3656.3 -3664.5 -3648.8 -3654.7
BIC 7679.5 7380 7411.6 7380.2 7384.3
AlC 7365.9 7330.5 7351.1 7319.7 7329.3
logLik-CV -370.6 -368.7 -368.5 -368.0 -368.7
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5 Conclusion

Variable selection for mixture models is a challenging peab particularly when
the sample size is small to modest while the number of predids large. This
paper investigates the performance of an EM algorithm fdalée selection in the
ZINB model. An alternative algorithm may take Taylor approation of the log-

likelihood function. However, this approach requires teeit the Hessian matrix,
which can be numerically unstable for complex models (Bual.e2011). Indeed,
even with the non-penalized ZINB model, the local approxiomacan fail, thus
the traditional stepwise variable selection can encouatéilure. The simula-
tion study supports that the proposed algorithm does ndéérsafich deficiency,
thus is more reliable than the stepwise variable selectiothie ZINB regression
models. In addition, the new algorithm can be potentiallgfulseven with high-

dimensional variables. The developed methods can be dpiplienany studies
including but not limited to health care utilization and\see. To facilitate public
usage, the algorithm has been implemented in the free seftwyzat h available

atwww. r - proj ect. org.
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Appendix A Regularity conditions

The oracle property of ZINB with MCP or SCAD may be developedda on
the following regularity conditions, which also lead to agytotic normality of
the non-penalized maximum likelihood estimate of the ZINBdel. Lety, =

(X,Yi),i=1,...,nbe independent and identically distributed from the ZINBd&lo
The regularity conditions are as follows:

(a) There exists an open subsgbf Q containing the true parameter pogtsuch
that for almost ally;, £( ¢, u;) admits all third derivatived>/( ¢, u)/0@0@da
forall g € w.

(b) The first and second partial derivatives/0p, u;) satisfy the equations

E [‘M("” “‘)] _0forj=1,..4d,
0(,0]'
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and

[—%] _E [Ma"(’l%“‘) agéﬁui)] — 1y () for j.k=1,....d.
(c) The Fisher information matrik( @) is finite and positive definite for afp € .
(d) There exist functionM; such that
93
‘a@ N
wheremjiy = Eq [Mji (Ui)] < oo for all j, k1.

(@,ui)| < Mjk (u) for all @ € w,

Appendix B Elements of Hessian matrix

Let pi = exp(XB), & = exp(Vly), pi = &/(1+&),ri = 0/(6 + ), s = /(6 +
i), = rie,hi = & +1t. For ease of notation, the subscrigs suppressed in the
sequel. Furthermoréd’(-) denotes the trigamma function.

lo,0 = Z {t63(log(r))?€ + 2tlog(r)ué& (log(r) +1)6°

2} 1
6(6+ u)?h?

s yi+6 1
W(yi+6)—W(0)+> _
+2;{ B s

+u2Et (2log(r) + 1+ (log(r))?) 6 + p2Et + p?t

—tu& + &t +12) H(6+yi)

02u(
| . = — k+ — 5 Xij X|k7
Pi e inO (CED. y.ZO 6+u 2

< Otséx;jvik
IBj’Zk_inO h2 4
A - S —x;j {62tlog(r)& + 6tlog(r)u& +tOUE +tué +t2u}u+ 5 — U (=i + H)%j
0 — ;
i ((6+p)h)? &0 (0+p)

12,40 :inoVijVik (—p+ p*+ % - (%)2> + > —P(1—p)vijVik,

yi>0

lz6= Zo_h_lzt (log(r) +s) & vik.
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