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Variable selection for zero-inflated and
overdispersed data with application to health

care demand in Germany

Zhu Wang, Shuangge Ma, and Ching-Yun Wang

Abstract

In health services and outcome research, count outcomes are frequently encoun-
tered and often have a large proportion of zeros. The zero-inflated negative bi-
nomial (ZINB) regression model has important applications for this type of data.
With many possible candidate risk factors, this paper proposes new variable se-
lection methods for the ZINB model. We consider maximum likelihood func-
tion plus a penalty including the least absolute shrinkage and selection operator
(LASSO), smoothly clipped absolute deviation (SCAD) and minimax concave
penalty (MCP). An EM (expectation-maximization) algorithm is proposed for es-
timating the model parameters and conducting variable selection simultaneously.
This algorithm consists of estimating penalized weighted negative binomial mod-
els and penalized logistic models via the coordinated descent algorithm. Further-
more, statistical properties including the standard error formula are provided. A
simulation study shows that the new algorithm not only has more accurate or at
least comparable estimation, also is more robust than the traditional stepwise vari-
able selection. The application is illustrated with a data set on health care demand
in Germany. The proposed techniques have been implemented in an open-source
R package mpath.
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1 Introduction

Demand for health services is rising and the costs of health care are substantial
in many countries. There are numerous factors to drive the health care demand.
For instance, there is a high prevalence of chronic conditions such as cancer and
diabetes. On the other hand, it is important to understand how consumers’ deci-
sions are grounded on utilizing health care. There are many studies on this topic.
Deb and Trivedi (1997) investigated medical care demand using a sample from the
National Medical Expenditure Survey. The survey was conducted in 1987 and 1988
to provide a comprehensive picture of how Americans use and pay for health ser-
vices. The six study outcomes are visits to a physician in an office setting, visits to
a physician in a hospital outpatient setting, visits to a non-physician in an outpatient
setting, visits to an emergency room, and number of hospitalstays. Riphahn et al.
(2003) utilized a part of the German Socioeconomic Panel (GSOEP) data set to
analyze the number of doctor visits and the number of hospital visits. The original
data have twelve annual waves from 1984 to 1995 for a representative sample of
German households, which provide broad information on the health care utiliza-
tion, current employment status, and the insurance arrangements under which sub-
jects are protected. Unlike the United States, the German health insurance system
provides almost complete coverage of the population. Thoselow-income individ-
uals are required to have health insurance by a law except forcivil servants and the
self-employed, who along with high-income persons can choose to remain unin-
sured, to sign up one of the mandatory health insurances, a private insurance, or a
combination of two. Consequently, the employment characteristics were thought
to be linked with health care demand.
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The above mentioned study outcomes are examples of integer valued count
data, which are frequently encountered in health services and outcome research.
For analysis with risk factors, standard regression modelsinclude Poisson and
negative binomial (NB) regression. The count data, however, may have a high
frequency of zero values and therefore the aforementioned models may fail to de-
scribe the data adequately. In the German data, Figure 1 shows that many study
participants didn’t have doctor office visits. One may assume that the popula-
tion consists of no-demanding healthy individuals who never need to visit the
doctor, and usual-demanding and less healthy individuals who may or may not
visit the doctor, depending on the health status and other factors. To take into ac-
count the extra zero observations, the zero-inflated Poisson (ZIP) and NB model
(ZINB) have been applied in many fields. For instance, see Lambert (1992);
Atienza et al. (2008); Hur et al. (2002); Lee et al. (2005); Atienza et al. (2008);
Singh and Ladusingh (2010). The zero-inflated count model assumes a latent mix-
ture model consisting of a count component and a degeneratedzero component
which has a unit point mass at zero. The count component can bemodeled as a
Poisson or NB distribution. For the Poisson distribution, the variance is assumed to
be equal to the mean, which may be violated in real data. In contrast, the NB distri-
bution has less constraint than the Poisson distribution. Therefore, the ZINB model
is more appropriate to incorporate extra overdispersion not accounted for through
zero-inflation by the Poisson model. The methodology for testing ZINB regression
models against ZIP models was proposed in Ridout et al. (2001). Yau et al. (2003)
discussed the ZINB mixed model with an EM (expectation-maximization) algo-
rithm. Garay et al. (2011) proposed influence diagnostics for the ZINB models.
The ZINB model characterizes the study population into two groups as the no-
demanding group corresponding to the zero component, and the usual-demanding
group for the count component. For the zero component, the risk factors have ef-
fect on probability that an individual has no-demanding. For the count component,
the risk factors have effect on the count outcome, given thatthe individual is in a
usual-demanding group.

Among many potential risk factors, researchers are often interested in iden-
tifying a small subset. A parsimonious model often offers better interpretation,
which will be demonstrated in this paper when analyzing the German data. In
statistical literature, variable selection is one of the most active research areas.
Buu et al. (2011); Tang et al. (2014); Wang et al. (2014a) proposed variable se-
lection methods for the ZIP model in which computing algorithms for penalized
log-likelihood functions were investigated. The penalty functions include the least
absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996), smoothly
clipped absolute deviation (SCAD) (Fan and Li, 2001) and minimax concave penalty
(MCP) (Zhang, 2010). In penalized regression algorithms, acoefficient below
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Figure 1: Empirical distribution of number of doctor office visits
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some threshold value is set to zero and otherwise will be shrunk toward zero.
The LASSO is a convex penalty function which has computational advantages
than non-convex penalties MCP and SCAD. The LASSO, however,introduces bias
when shrinking large coefficients toward zero. The MCP and SCAD are successful
to reduce the bias and have an additional oracle property under some conditions.
Namely, the MCP and SCAD performs like there is a prior knowledge on whether
a variable has zero or non-zero coefficient. A Bayesian variable selection proce-
dure was introduced to compute posterior inclusion probabilities for variables in
the zero-inflated Poisson log-normal model (Jochmann, 2013). In the current pa-
per, we extend the work in Wang et al. (2014a) to the penalizedZINB model and
propose an EM algorithm for the penalties LASSO, MCP and SCAD, respectively.
There are at least three distinct features in the new methodology: (a) The extended
model can incorporate additional overdispersion, therebyfitting much better than
a ZIP model for the German data. The penalized ZIP is a specialcase of the cur-
rent paper. (b) In Wang et al. (2014a), the algorithm adaptively rescales a shrink-
age parameter for the nonconcave MCP and SCAD penalties (Breheny and Huang,
2011). While this strategy may help select tuning parameters, the EM algorithm
can be substantially slow to converge for the penalized ZINBmodel. This is be-
cause the adaptive rescaling violates the non-decreasing property of the EM algo-
rithm and estimating the dispersion parameter further complicates the algorithm.
In this paper, the algorithm avoids the adaptive rescaling,leading to much im-
proved computing efficiency. (c) Wang et al. (2014a) used thebootstrap procedure
to estimate standard errors for the penalized ZIP model. However, bootstrapping
penalized ZINB models is very computationally demanding task. In this paper, we
establish standard error formula for the penalized ZINB models. This task doesn’t
involve methodology challenge and is built on the Hessian matrix of the ZINB log-
likelihood function. The Hessian matrix can be numericallycomputed as in many
statistical software systems. However, our experiments suggest that closed-form
formulas are required since computing Hessian matrix of a ZINB model without
closed-form formulas can be numerically challenging and slow. In the literature,
there are published results on the Hessian matrix. However,we believe valid for-
mulas are needed. As a by-product, we independently developand validate the
elements of the Hessian matrix for the ZINB model, which are used for computing
the standard errors of estimators.

The rest of the paper is organized as follows. Section 2 introduces a penalized
ZINB model, and presents statistical properties and estimation methods. A simula-
tion study is conducted in Section 3 to evaluate the proposedmethods and compare
with competing methods. In Section 4, the proposed methods are applied to the
German data. A conclusion is drawn in Section 5. Some technical details are in the
Appendix.
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2 Penalized ZINB regression model

In this section, we present new methodologies for penalizedZINB regression mod-
els, theoretical properties of estimates, an EM algorithm to estimate parameters,
and standard error formula of estimators.

2.1 Variable selection of ZINB regression model

Consider a ZINB regression model. AssumeYi , i = 1, ...,n has a probability func-
tion

Pr(Yi = yi) =

{
pi +(1− pi)(

θ
µi+θ )

θ , if yi = 0,

(1− pi)
Γ(θ+yi)

Γ(yi+1)Γ(θ )(
µi

µi+θ )
yi ( θ

µi+θ )
θ , if yi > 0

where 0≤ pi ≤ 1,µi ≥ 0 and 1/θ is the positive overdispersion parameter. The
mean and variance are(1− pi)µi and (1− pi)(µi + µ2

i /θ + piµ2
i ), respectively.

The model is reduced to the negative binomial distribution if pi = 0. In a ZINB
regression, assume lengthq1 predictor vectorxi and lengthq2 vectorvi are associ-
ated withµi and pi, respectively. Let log(µi) = xT

i β and log( pi
1−pi

) = vT
i ζ where

β = (β0,β1, ...,βq1) andζ = (ζ0,ζ1, ...,ζq2) are unknown parameters. Hereβ0 and
ζ0 are intercepts. Forn independent random samples, letφ = (β T ,θ ,ζ T )T , the
log-likelihood function is given by

ℓ(φ) = ∑
yi=0

log

[
pi +(1− pi)(

θ
µi +θ

)θ
]

+ ∑
yi>0

log

[
(1− pi)

Γ(θ +yi)

Γ(yi +1)Γ(θ)
(

µi

µi +θ
)yi (

θ
µi +θ

)θ
]
,

whereµi = exp(xT
i β ) andpi =

exp(vT
i ζ )

1+exp(vT
i ζ ) .

For variable selection, consider a penalized ZINB model:

pℓ(φ) = ℓ(φ)− p(β ,ζ ),

where the nonnegative penalty function is given by

p(β ,ζ ) = n
q1

∑
j=1

p(λNB; |β j |)+n
q2

∑
k=1

p(λBI; |ζk|),

with tuning parametersλNB andλBI determined by data-driven methods. Notice
that intercepts and scaling parameterθ are not penalized. The following three
penalty functions are investigated:
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(a) the LASSO penalty (Tibshirani, 1996), forλ ≥ 0, p(λ ; |ξ |) = λ |ξ |.
(b) the MCP penalty (Zhang, 2010), forλ ≥ 0 andγ > 1, the derivative of

p(λ ;ξ ) with respect toξ is given byp′(λ ;ξ ) = (λ − ξ/γ)I(ξ ≤ γλ ), whereI(·)
is an indicator function.

(c) the SCAD penalty (Fan and Li, 2001)

p′(λ ,ξ ) = λ
{

I(ξ < λ )+ (γλ−ξ )+
(γ−1)λ I(ξ ≥ λ )

}
for λ ≥ 0 andγ > 2, wheret+

denotes the positive part oft.

2.2 Oracle properties of the MCP and SCAD estimates

Assume true parameter vectorφ0 has elements(β j0,ζk0), j = 0,1, ...,q1,k= 0,1, ...,q2.
Decomposeφ0 = (φ⊺

10,φ
⊺

20)
⊺ and assumeφ20 contains all zero coefficients.

Theorem 1. Let u1, ...,un be independent and identically distributed, each with a
probability distribution satisfying regularity conditions (a)-(d) in Appendix A. If

max
{∣∣p′′(λNB,n; |β j0|)

∣∣ ,
∣∣p′′(λBI,n; |ζk0|)

∣∣ : β j0 6= 0,ζk0 6= 0
}
→ 0,

then there exists a local maximizerφ̂ of pℓ(φ) such that

‖φ̂ −φ0‖= Op(n
−1/2+an),

where‖ · ‖ is the Euclidean norm and

an = max
{∣∣p′(λNB,n; |β j0|)

∣∣ ,
∣∣p′(λBI,n; |ζk0|)

∣∣ : β j0 6= 0,ζk0 6= 0
}
.

Theorem 2. Let u1, ...,un be independent and identically distributed, each with a
probability distribution satisfying conditions (a)-(d) in Appendix A. Assume that
the penalty function satisfies

lim inf
n→∞

lim inf
β→0+

p′λNB,n
(β )/λNB,n > 0, lim inf

n→∞
lim inf
ζ→0+

p′λBI,n
(ζ )/λBI,n > 0.

If λNB,n → 0,
√

nλNB,n → ∞,λBI,n → 0,
√

nλBI,n → ∞ as n→ ∞, then with prob-
ability tending to 1, the root-n consistent local maximizers φ̂ in Theorem 1 must
satisfy:

i Sparsity: φ̂2 = 0.

ii Asymptotic normality:

√
n{I1(φ10)+Σ}(φ̂1−φ10)+

√
nb→ N(0, I1(φ10))

6
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in distribution, where I1(φ10) = I1(φ10,0), the Fisher information knowingφ2 =
0, and

Σ = diag
{

0, p′′λNB,n
(|β10|), ..., p′′λNB,n

(|βs0|),
0, p′′λBI,n

(|ζ10|), ..., p′′λBI,n
(|ζt0|)

}
,

b=
(
0, p′λNB,n

(|β10|)sgn(β10), ..., p
′
λNB,n

(|βs0|)sgn(βs0),

0, p′λBI,n
(|ζ10|)sgn(ζ10), ..., p

′
λBI,n

(|ζt0|)sgn(ζt0)
)
,

where s and t are the numbers of non-zero components (excluding intercepts)
in β10 andζ10, respectively.

Theorem 1 and 2 are direct applications of the respective theorems in Fan and Li
(2001). Therefore, ifλNB,n → 0,λBI,n → 0,

√
nλNB,n → ∞ and

√
nλBI,n → ∞, then

the ZINB-MCP and ZINB-SCAD estimators hold the oracle property: with prob-
ability tending to 1, the estimate of coefficients without aneffect is 0, and the
estimate for coefficients with an effect has an asymptotic normal distribution with
mean being the true value and variance which approximately equals the submatrix
of the Fisher information matrix knowing coefficients in effect.

2.3 The EM algorithm

Let zi = 1 if Yi is from the zero state andzi = 0 if Yi is from the NB state. Since
z= (z1, ...,zn)

T is not observable, it is often treated as missing data. The EM
algorithm is particularly attractive to missing data problems. With data(Yi ,zi), the
complete-data penalized log-likelihood function is givenby

pℓc(φ) =
n

∑
i=1

{(ziviζ − log(1+exp(viζ ))+ (1−zi) log( f (yi ;β ,θ))}− p(β ,ζ ),

where f (yi ;β ,θ) = Γ(θ+yi)
Γ(yi+1)Γ(θ )(

µi
µi+θ )

yi ( θ
µi+θ )

θ , with µi = exp(xT
i β ). The EM al-

gorithm computes the expectation of the complete-data log-likelihood, which is
linear in z. Thus, the E-step simplifies to updatez by its conditional expectation
given the observed data and previous parameter estimates. Specifically, the condi-
tional expectation ofzat iterationm is provided by

ẑ(m)
i =





(
1+exp(−vi ζ̂ (m))

[
θ̂ (m)

exp(xi β̂ (m))+θ̂ (m)

]θ̂ (m)
)−1

, if yi = 0

0, if yi > 0.

Therefore, the expectation of the complete-data log-likelihood can be calculated:

Q(φ |φ̂ (m)) = E(pℓc(φ |y,z)|y, φ̂ (m)) = Q1(β ,θ |φ̂ (m)+Q2(ζ |φ̂ (m)),

7
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where

Q1(β ,θ |φ̂ (m) =
n

∑
i=1

(1− ẑ(m)
i ) log f (yi ,β ,θ)−n

q1

∑
j=1

p(λNB, |β j |)

Q2(ζ |φ̂ (m)) =
n

∑
i=1

ẑ(m)
i viζ − log(1+exp(viζ ))−n

q2

∑
k=1

p(λBI , |ζk|)

Next, the EM algorithm updates the estimates by maximizingQ(φ |φ̂ (m)), which is
handy since(β ,θ) andζ are in two disjoint terms. The first term,Q1(β ,θ |φ̂ (m) is
a weighted penalized NB log-likelihood function and the second termQ2(ζ |φ̂ (m))
is a penalized logistic log-likelihood function. The coordinate descent algorithm
has been proposed to optimize generalized linear models (Friedman et al., 2010;
Breheny and Huang, 2011; Wang et al., 2014b). The EM iterations are repeated
for the E-step and M-step until convergency.

2.4 Selection of tuning parameters

The penalty parameters(λNB,λBI) can be determined based on the BIC (Schwarz,
1978):

BIC =−2ℓ(φ̂ ;λNB,λBI)+ log(n)df,

whereφ̂ are the estimated parameters,(λNB,λBI) are tuning parameters, andℓ(·) is
the log-likelihood function. The degrees of freedom are given by df=∑ j=0,...,q1

1{β j 6=
0}+∑k=0,...,q2

1{ζk 6= 0}+ 1, which includes the degree of freedom for the scal-
ing parameterθ . We first construct a solution path based on the paired shrink-
age parameters. To begin with, the algorithm generates two decreasing sequences
λ (1)

NB > λ (2)
NB... > λ (M)

NB and λ (1)
BI > λ (2)

BI ... > λ (M)
BI . Then, we pair the sequences:

(λ (1)
NB,λ

(1)
BI ), ...,(λ

(M)
NB ,λ (M)

BI ). In principle, large values(λ (1)
NB,λ

(1)
BI ) can be chosen

such that all the coefficients are zeros except the intercepts. A refined method
suggests that the smallest values(λ (1)

NB,λ
(1)
BI ) can be calculated from data for the

LASSO penalty (Wang et al., 2014a). For other penalties, we follow the same
strategy.

2.5 Standard error formula

A sandwich formula can be used as an estimator of the covariance of the non-zero
estimatesφ1 (Fan and Li, 2001; Fan and Peng, 2004):

ĉov(φ1)=
{

∇2ℓ(φ̂1)+nΣ(φ̂1;λNB,λBI)
}−1

ĉov∇(φ1)
{

∇2ℓ(φ̂1)+nΣ(φ̂1;λNB,λBI)
}−1

,
(1)
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where

ĉov∇(φ1)) =
1
n

n

∑
i=1

∇i(φ1)∇i(φ1)
⊺−

{
1
n

n

∑
i=1

∇i(φ1)

}{
1
n

n

∑
i=1

∇i(φ1)

}
⊺

,

∇ℓ(φ1) =
∂ℓ(φ1)

∂φ1
, ∇2ℓ(φ1) =

∂ 2ℓ(φ1)

∂φ1∂φ⊺

1
.

For the ZINB regression model, the elements of∇2ℓ(φ1) are provided in Appendix
B. It is worth noting that most of the results in Appendix B aredifferent from
Garay et al. (2011). Indeed there is a mistake in the log-likelihood function pre-
sented in that paper.

3 A simulation study

We investigate performance of the proposed methods with sample sizen = 300
andq1 = q2 = 20 in the simulation study. Additional simulations for large sample
sizen = 1000 are conducted although we omit the results below. The predictor
variables were randomly drawn from multivariate normal distributions N20(0,Σ),
whereΣ has elementsρ |i− j|(i, j = 1, ...,20). The correlation among predictor vari-
ables was fixed atρ = 0.4. We setθ = 2 for the scaling parameter of the NB
distribution. We simulated 100 replications for each set ofparameters described
below. These parameters were chosen to have a different number of effective pre-
dictors and different levels of zero inflation.

(1) In example 1, set the parameters

β = (1.10, 0, 0, 0, -0.36, 0, 0, 0, 0, 0, 0, 0, 0, -0.32, 0, 0, 0, 0, 0,0, 0)

ζ = (0.30, -0.48, 0, 0, 0, 0.4, 0, 0, 0, 0, 0.44, 0, 0.44, 0, 0, 0, 0,0, 0, 0, 0).

The zero inflation is about 55%.

(2) In example 2, we kept all elements ofβ in example 1 and only changed the
first element ofζ from 0.30 to -1.20, which has about 25% zero inflation.

(3) In example 3, we remained all elements ofβ in example 1 and changed the
first element ofζ from 0.30 to -0.35, leading to about 43% zero inflation.

(4) In example 4, we doubled the number of ineffective predictors from the above
examples, and the parameters were set to obtain about 29% zero inflation:

β =(1.50, 0, 0, 0, -0.22, 0, 0, 0, -0.25, 0, 0.20, 0, 0.30, -0.32,0, 0, 0, 0.20, 0, 0,
0)

9
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ζ=(-1.05, 0, 0.45, 0, -0.3, 0, 0, 0, 0, 0, -0.33, 0, -0.39, 0, 0, 0.3, 0, 0, 0, 0.36,
0).

Statistical methods evaluated are penalized NB regression, penalized ZINB re-
gression, a backward stepwise elimination (BE) procedure for significance lev-
els α = 0.1573,0.05,0.01 following Sauerbrei et al. (2008), and an oracle ZINB
model assuming the true non-zero coefficients are known. In aBE(α) procedure,
insignificant variables are removed from a full ZINB model (including all predictor
variables in the NB and zero component), then a model is refit with the remaining
predictors. This procedure is repeated until all variablesare significant based on
the α level. Estimation accuracy is measured by ratio of mean squared error of
parameters (MSE) between a specific model and the full ZINB model. To evaluate
performance of variable selection, we calculated sensitivity (proportion of correctly
identified number of non-zero coefficients) and specificity (proportion of correctly
identified number of zero coefficients). To compare prediction accuracy, we gen-
erated 300 test observations from each model, and computed the log-likelihood
values using the parameters estimated from the training data. Finally, we evaluate
standard errors of the estimated non-zero regression coefficients.

Estimation and variable selection results are summarized in Table 1-4, where
bold fonts indicating the best values (excluding the oraclemodel). It is clear that
the penalized zero-inflated NB models have better performance than their coun-
terparts when ignoring the zero-inflation. Successfully incorporating extra zeros,
the estimates of ZINB model have smaller MSEs, larger sensitivity and specificity,
and have more accurate scaling parameterθ̂ . To adapt to data with the extra zero-
inflation, a very small value ofθ is estimated in the NB models. Within the penal-
ized ZINB models, the LASSO estimates can be less accurate inthe NB component
but are more comparable in the zero component; however, there is no universal
winner on variable selection. The BE procedure is sensitiveto the choice of the
significance levelα . For a largeα value, the BE procedure keeps more predictor
variables with increased sensitivity. For a smallα value, more variables are elimi-
nated to increase specificity. It would be interesting to determine an optimal value
of α so that there is a trade-off between sensitivity and specificity. However, it
appears that even a small change ofα value can select variables quite differently.
In comparison, the penalized ZINB models provide comparable solutions to the
BE procedure, if not better. Specifically, in example 1 and 3,excluding the oracle
model, ZINB-MCP has the most accurate estimation of parameters with smallest
MSEs in both the NB and zero components. In example 2, ZINB-SCAD has the
smallest MSEs in the NB and zero components. In example 4, ZINB-MCP is com-
parable with BE(0.01). In all examples, ZINB-MCP and ZINB-SCAD have good
performance on variable selection in the NB components. Effective predictors are

10
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Table 1: Simulation results with example 1, n=300. Median and robust standard
deviations (in parentheses) of the MSE ratio between the penalized model and full
model, and the estimatedθ . Mean and standard deviations of sensitivity and speci-
ficity.

Method MSE Sensitivity Specificity θ̂
NB component

NB-LASSO 2.529 (1.434) 0.559 (0.427) 0.895 (0.123) 0.277 (0.067)
NB-MCP 3.514 (2.149) 0.713 (0.355) 0.869 (0.093) 0.309 (0.059)
NB-SCAD 3.434 (1.991) 0.644 (0.392) 0.854 (0.129) 0.304 (0.067)
ZINB-LASSO 0.243 (0.202) 0.862 (0.278) 0.924 (0.087) 2.229(0.784)
ZINB-MCP 0.1 (0.133) 0.846 (0.243) 0.974 (0.048) 2.286 (0.868)
ZINB-SCAD 0.167 (0.214) 0.856 (0.239) 0.958 (0.056)2.119 (0.881)
BE(0.1573) 0.614 (0.279) 0.956 (0.161) 0.748 (0.129) 3.138 (1.46)
BE(0.05) 0.404 (0.353) 0.918 (0.201) 0.879 (0.113) 2.666 (1.136)
BE(0.01) 0.177 (0.235) 0.824 (0.273) 0.968 (0.053) 2.207 (0.86)
ZINB-ORACLE 0.042 (0.042) 1 (0) 1 (0) 2.127 (0.759)

Zero component
ZINB-LASSO 0.381 (0.343) 0.614 (0.306) 0.973 (0.043)
ZINB-MCP 0.327 (0.282) 0.745 (0.201) 0.938 (0.09)
ZINB-SCAD 0.382 (0.316) 0.59 (0.234) 0.981 (0.036)
BE(0.1573) 0.607 (0.24) 0.83 (0.174) 0.788 (0.134)
BE(0.05) 0.406 (0.319) 0.731 (0.212) 0.922 (0.085)
BE(0.01) 0.403 (0.308) 0.58 (0.241) 0.987 (0.029)
ZINB-ORACLE 0.119 (0.091) 1 (0) 1 (0)

selected most of the time, ranging from 85%−96% of sensitivity while variables
having no effect are ignored with a probability more than 96%.

Determining predictors in zero components is more difficultthan determining
predictors in the count components (Buu et al., 2011; Wang etal., 2014a; Jochmann,
2013). Sensitivities for the zero components are typicallylower than the corre-
sponding sensitivities for the NB components. As argued in Jochmann (2013),
this is to be anticipated since the data generally are not very informative about the
hidden components of the observations.

Table 5 reports the predictive log-likelihood values. The penalized ZINB mod-
els have better prediction than the penalized NB models, andare better or compara-
ble to the BE procedure. ZINB-MCP has the most accurate prediction in example
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Table 2: Simulation results with example 2, n=300. Median and robust standard
deviations (in parentheses) of the MSE ratio between the penalized model and full
model, and the estimatedθ . Mean and standard deviations of sensitivity and speci-
ficity.

Method MSE Sensitivity Specificity θ̂
NB component

NB-LASSO 0.806 (0.47) 0.971 (0.15) 0.907 (0.092) 0.768 (0.104)
NB-MCP 0.826 (0.522) 0.971 (0.118) 0.944 (0.072) 0.805 (0.116)
NB-SCAD 0.826 (0.54) 0.979 (0.101) 0.904 (0.097) 0.799 (0.109)
ZINB-LASSO 0.308 (0.228) 0.979 (0.12) 0.949 (0.067) 2.424 (0.578)
ZINB-MCP 0.136 (0.155) 0.933 (0.171) 0.984 (0.045) 2.32 (0.782)
ZINB-SCAD 0.102 (0.106) 0.962 (0.133) 0.979 (0.047)2.262 (0.65)
BE(0.1573) 0.598 (0.249) 1 (0) 0.755 (0.131) 2.777 (1.028)
BE(0.05) 0.281 (0.248) 0.995 (0.047) 0.916 (0.091) 2.471 (0.818)
BE(0.01) 0.105 (0.11) 0.973 (0.114) 0.982 (0.038) 2.312 (0.653)
ZINB-ORACLE 0.063 (0.057) 1 (0) 1 (0) 2.26 (0.576)

Zero component
ZINB-LASSO 0.292 (0.32) 0.578 (0.287) 0.932 (0.087)
ZINB-MCP 0.521 (0.448) 0.786 (0.201) 0.765 (0.179)
ZINB-SCAD 0.279 (0.269) 0.521 (0.255) 0.956 (0.069)
BE(0.1573) 0.609 (0.395) 0.743 (0.206) 0.761 (0.143)
BE(0.05) 0.412 (0.362) 0.597 (0.232) 0.929 (0.076)
BE(0.01) 0.348 (0.283) 0.358 (0.245) 0.983 (0.04)
ZINB-ORACLE 0.095 (0.096) 1 (0) 1 (0)
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Table 3: Simulation results with example 3, n=300. Median and robust standard
deviations (in parentheses) of the MSE ratio between the penalized model and full
model, and the estimatedθ . Mean and standard deviations of sensitivity and speci-
ficity.

Method MSE Sensitivity Specificity θ̂
NB component

NB-LASSO 1.787 (0.989) 0.82 (0.348) 0.889 (0.108) 0.456 (0.078)
NB-MCP 2.313 (1.342) 0.851 (0.281) 0.891 (0.089) 0.483 (0.072)
NB-SCAD 2.312 (1.353) 0.866 (0.275) 0.86 (0.109) 0.481 (0.076)
ZINB-LASSO 0.289 (0.246) 0.938 (0.181) 0.924 (0.082) 2.29 (0.689)
ZINB-MCP 0.077 (0.093) 0.923 (0.196) 0.982 (0.034) 2.197 (0.76)
ZINB-SCAD 0.168 (0.209) 0.923 (0.196) 0.962 (0.06) 2.172 (0.694)
BE(0.1573) 0.562 (0.225) 0.974 (0.111) 0.769 (0.124) 2.789 (0.961)
BE(0.05) 0.267 (0.264) 0.954 (0.163) 0.928 (0.071) 2.401 (0.861)
BE(0.01) 0.099 (0.126) 0.918 (0.2) 0.979 (0.04)2.11 (0.684)
ZINB-ORACLE 0.049 (0.048) 1 (0) 1 (0) 2.141 (0.656)

Zero component
ZINB-LASSO 0.385 (0.288) 0.634 (0.302) 0.954 (0.065)
ZINB-MCP 0.367 (0.284) 0.791 (0.193) 0.917 (0.085)
ZINB-SCAD 0.377 (0.263) 0.572 (0.242) 0.97 (0.047)
BE(0.1573) 0.624 (0.254) 0.835 (0.187) 0.778 (0.14)
BE(0.05) 0.423 (0.278) 0.729 (0.221) 0.927 (0.084)
BE(0.01) 0.408 (0.288) 0.508 (0.23) 0.979 (0.04)
ZINB-ORACLE 0.084 (0.067) 1 (0) 1 (0)

13

Hosted by The Berkeley Electronic Press



Table 4: Simulation results with example 4, n=300. Median and robust standard
deviations (in parentheses) of the MSE ratio between the penalized model and full
model, and the estimatedθ . Mean and standard deviations of sensitivity and speci-
ficity.

Method MSE Sensitivity Specificity θ̂
NB component

NB-LASSO 2.291 (1.043) 0.638 (0.338) 0.893 (0.108) 0.628 (0.1)
NB-MCP 2.445 (1.088) 0.743 (0.248) 0.922 (0.076) 0.671 (0.092)
NB-SCAD 2.558 (1.172) 0.748 (0.278) 0.877 (0.096) 0.663 (0.084)
ZINB-LASSO 0.856 (0.489) 0.87 (0.243) 0.863 (0.112) 2.329 (0.544)
ZINB-MCP 0.548 (0.372) 0.859 (0.185) 0.965 (0.06) 2.345 (0.558)
ZINB-SCAD 0.584 (0.37) 0.889 (0.165) 0.935 (0.085) 2.384 (0.57)
BE(0.1573) 0.719 (0.29) 0.956 (0.099) 0.809 (0.121) 2.51 (0.549)
BE(0.05) 0.592 (0.336) 0.916 (0.125) 0.923 (0.092) 2.39 (0.577)
BE(0.01) 0.538 (0.411) 0.841 (0.172) 0.98 (0.043) 2.301 (0.533)
ZINB-ORACLE 0.232 (0.147) 1 (0) 1 (0) 2.352 (0.506)

Zero component
ZINB-LASSO 0.519 (0.405) 0.454 (0.252) 0.948 (0.077)
ZINB-MCP 0.635 (0.276) 0.733 (0.184) 0.777 (0.176)
ZINB-SCAD 0.619 (0.349) 0.429 (0.215) 0.962 (0.053)
BE(0.1573) 0.676 (0.252) 0.719 (0.179) 0.797 (0.123)
BE(0.05) 0.602 (0.299) 0.533 (0.19) 0.927 (0.08)
BE(0.01) 0.655 (0.434) 0.292 (0.192) 0.984 (0.033)
ZINB-ORACLE 0.177 (0.125) 1 (0) 1 (0)
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Table 5: Mean and standard deviations (in parentheses) of the predictive log-
likelihood values

example 1 example 2 example 3 example 4
NB-LASSO -452.5 (28.3) -608.2 (20.1) -533.4 (26) -705.2 (26.1)
NB-MCP -450.5 (27.9) -606.4 (19.8) -532.3 (25.6) -701.2 (24.4)
NB-SCAD -453.1 (28.7) -606.9 (20) -533.2 (25.7) -702.1 (25.2)
ZINB-LASSO -438 (29.3) -601.4 (22.4) -519.8 (26.8) -691.5 (26.6)
ZINB-MCP -435.4 (29.4) -607.4 (49.5) -516.6 (27.1) -689.4 (24.7)
ZINB-SCAD -437.1 (28.9) -605 (50.9) -519 (26.7) -689.8 (24.7)
BE(0.1573) -453.3 (35) -616.3 (29.2) -529.8 (30.6) -692.8 (26.3)
BE(0.05) -444.7 (31.9) -605 (26) -520.8 (29) -689.2 (25.1)
BE(0.01) -438.5 (29.7) -601.7 (23.2) -519.1 (27.2) -689.5 (24.3)
ZINB-ORACLE -425.3 (27.1) -591.9 (22.2) -508.6 (26.3) -675.8 (23)

1 and 3 and ZINB-LASSO is the best in example 2. In example 4, ZINB-MCP and
ZINB-SCAD are comparable to BE.

Next we evaluate the standard error formula. For non-zero coefficient esti-
mates with example 1, we computed the median absolute deviation divided by
0.6745, denoted by SD in Table 6. The SD can be treated as the truestandard
error. The median of stimated standard errors using formula(1), denoted by SE,
and the median absolute deviation of estimated standard errors divided by 0.6745
in the parentheses (std(SE)), are used to compare with SD. Due to space limitation,
only a handful coefficients are displayed for example 1 whilesimilar conclusions
hold in other examples. The standard error formula performsreasonably well as
the differences between SD and SE are within twice std(SE). While the estimated
standard error can underestimate the true SD (Hunter and Li,2005), it is less severe
when compared to the robust standard errors for the oracle estimators.

The proposed EM algorithm performs well even for small sample sizes. In the
BE procedure, the Newton-Raphson method requires to invertthe Hessian matrix.
The inverted Hessian can be numerically unstable and the solution may diverge.
For instance, when estimating the full ZINB model in example2, the Newton-
Raphson method failed in 41 out of 141 (30%) simulated data sets. As a conse-
quence, the BE procedure could not be implemented for the 41 data sets. For the
remaining 100 data sets, even though the full ZINB model was successfully esti-
mated, the BE procedure still failed five times. Such a phenomenon is not unique
to example 2, and can be more severe when the number of predictor increases, or
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Table 6: Standard deviations of estimators with example 1

β̂4 β̂13 ζ̂1

SD SE SD SE SD SE
ZINB-LASSO 0.119 0.089 (0.022) 0.113 0.089 (0.021) 0.143 0.13 (0.01)
ZINB-MCP 0.1 0.086 (0.023) 0.096 0.085 (0.023) 0.227 0.168 (0.029)
ZINB-SCAD 0.127 0.086 (0.024) 0.109 0.085 (0.021) 0.226 0.168 (0.035)
ZINB-ORACLE 0.131 0.087 (0.019) 0.123 0.085 (0.023) 0.259 0.166 (0.034)

the sample size decreases.

4 Health care demand

We analyze the health care demand in Germany. The data set contains number of
doctor office visits for 1,812 West German men aged 25 to 65 years in the last three
months of 1994. As shown in Figure 1, many doctor office visitsare zeros, which
can be difficult to fit with a Poisson or NB model. We focus on zero-inflated models
and alternative models may be found in (Riphahn et al., 2003;Jochmann, 2013).
The predictor variables are illustrated in Table 7. Following Jochmann (2013),
instead of the original variableageand its square, we study more complex effect
of age. Namely, we include the linear spline variablesage30to age60and their
interaction terms with the health satisfactionhealth (for instancehealth:age30).
We estimate the following three models: the full ZINB model,models selected by
the BE procedure and the penalized ZINB models. Amongα = 0.1573,0.05,0.01,
BE(0.01) produces the most parsimonious model with the smallest BIC value. The
results are given in Table 8.

The results indicate more utilization of health care from the publicly issued
than from privately issued. The mean doctor visits are 2.74 and 1.90, respectively.
ZINB-LASSO and ZINB-SCAD generated positive coefficient estimates for vari-
ablepublic in the NB component, consistent with Riphahn et al. (2003); Jochmann
(2013).

The data show higher health care utilization for the aged andhandicapped.
ZINB-LASSO and ZINB-MCP both have positive coefficients onage55in the NB
component. However, the estimate for the full ZINB model is -0.52, which needs
caution when interpreting the results. Notice that BE(0.01) is not able to selectpub-
lic or an age variable. Forself, the ZINB-MCP and BE(0.01) estimates are -0.37,
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close to the estimate -0.356 in (Riphahn et al., 2003). Accordingly, the estimate
suggests that a self-employed individual visits doctor about 31% less often than not
self-employed, which confirms incentive effects in the health care demand. Those
self-employed were lack of any financial compensation when visiting a doctor. In
the ZINB-MCP model,age55andage50are chosen in the NB and zero compo-
nents, respectively. Thus, males being 50 or order are more likely to see a doctor,
and conditional on that males over 55 years old have more repeat doctor visits.
The penalized LASSO and MCP methods result in similar conclusions. In the zero
component, the penalized methods all indicate a negative effect of having children
on the demand of health care. The presence of children is lesslikely to increase
the chance to see a physician (Riphahn et al., 2003). However, childrenwas elim-
inated by BE(0.01). As expected, people with high health satisfaction are unlikely
to see a doctor and have low demand on health care. The resultsalso suggest that
interaction between health status and age is not correlatedwith doctor office visits.
The results from penalized ZINB models are similar to those in Jochmann (2013).
The five variables selected by the NB component in the ZINB-MCP correspond
to the top five inclusion probabilities by a Bayesian analysis (Jochmann, 2013).
Similarly, the three variables selected by the zero component in the ZINB-MCP
correspond to the top three inclusion probabilities. However, the penalized model
has sparse representation, which is different from the Bayesian model selection.
For instance, the interaction terms are not selected by the ZINB-MCP while two
interaction terms were selected by the Bayesian procedure despite relatively small
inclusion probabilities. In this case, it can be subjectivewhen making a cut-off
point of inclusion probability.

In the sequel, we focus on the ZINB-MCP method which has similar BIC value
compared to BE(0.01), and largest log-likelihood value andsmallest AIC value.
The log-likelihood values from the reduced models are similar based on 10-fold
cross validation, and larger than that from the full ZINB model, indicating bet-
ter prediction with parsimonious models. Between ZINB-MCPand BE(0.01), we
compare the predicted probabilities from the two methods. The Vuong test (Vuong,
1989; Greene, 1994) has a p-value< 0.001 in favor of the penalized model. Be-
tween ZINB-MCP and NB-MCP, the Vuong test has a p-value 0.01 preferring the
zero-inflated model again. When comparing to the full ZINB model, a likelihood
ratio test returns a p-value 0.48 (chi-square statistic 45.8 with degrees of freedom
46), which suggests that there is no statistically significant difference between the
reduced and full ZINB models. One would question if a simplerZIP model can fit
the data as well as the ZINB model. To see this, we also fit penalized ZIP mod-
els. The ZIP-LASSO, ZIP-MCP and ZIP-SCAD have BIC (log-likelihood) 9012.6
(-4405), 8944.2 (-4400.8) and 8958.2 (-4411.6), respectively. The penalized ZIP
models have substantial large values of BIC and small valuesof log-likelihood,
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Table 7: Variable descriptions

Variable Description
health health satisfaction, 0 (low) - 10 (high)
handicap 1 if handicapped, 0 otherwise
hdegree degree of handicap in percentage points
married 1 if married, 0 otherwise
schooling years of schooling
hhincome household monthly net income, in German marks / 1000
children 1 if children under 16 in the household, 0 otherwise
self 1 if self employed, 0 otherwise
civil 1 if civil servant, 0 otherwise
bluec 1 if blue collar employee, 0 otherwise
employed 1 if employed, 0 otherwise
public 1 if public health insurance, 0 otherwise
addon 1 if add-on insurance, 0 otherwise
age30 1 if age>= 30
age35 1 if age>= 35
age40 1 if age>= 40
age45 1 if age>= 45
age50 1 if age>= 50
age55 1 if age>= 55
age60 1 if age>= 60

leading to poorer fitting compared to the penalized ZINB models. Overall, the
analysis provides evidence that the ZINB-MCP model fits the data best. Further-
more, it is interesting to compare with the non-penalized ZINB model using the
variable selected by the ZINB-MCP. The estimated coefficients from the ZINB-
MCP method are very close to the non-penalized estimates (not shown) using the
variables selected by ZINB-MCP. Thus, this is an example that although the MCP
penalty shrinks estimates, the bias can be reduced.
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Table 8: ZINB models on doctor office visits. The estimated coef-
ficients with standard errors in parentheses, log-likelihood (log-
Lik), log-likelihood by cross-validation (logLik-CV), BIC and
AIC values.

ZINB BE(0.01) ZINB-LASSO ZINB-MCP ZINB-SCAD
NB component
(Intercept) 2.41(0.32) 2.57(0.12) 2.31(0.15) 2.48(0.12) 2.10(0.15)
health -0.16(0.03) -0.20(0.02) -0.17(0.02) -0.20(0.02) -0.19(0.02)
handicap 0.27(0.22) 0.30(0.09) 0.16(0.10) 0.23(0.10) 0.26(0.10)
hdegree -0.002(0.005)
married -0.15(0.11)
schooling -0.005(0.01)
hhincome 0.004(0.02)
children 0.02(0.09)
self -0.36(0.19) -0.37(0.13) -0.37(0.12)
civil -0.27(0.16) -0.34(0.12) -0.33(0.12)
bluec 0.10(0.10)
employed -0.09(0.11)
public -0.01(0.14) 0.06(0.09) 0.31(0.09)
addon 0.36(0.30)
age30 0.09(0.35)
age35 -0.25(0.35)
age40 0.05(0.36)
age45 0.72(0.43)
age50 0.20(0.41) 0.04(0.10) 0.22(0.07)
age55 -0.52(0.33) 0.10(0.11) 0.22(0.09)
age60 0.40(0.33)
age30:health -0.01(0.05)
health:age35 0.04(0.05)
health:age40 -0.02(0.06)
health:age45 -0.10(0.07)
health:age50 -0.02(0.06)
health:age55 0.13(0.06)
health:age60 -0.10(0.06)
θ̂ 1.38(0.12) 1.27(0.11) 1.37(0.13) 1.27(0.13) 1.25(0.13)
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Table 8:(continued)

ZINB BE(0.01) ZINB-LASSO ZINB-MCP ZINB-SCAD
Zero component
(Intercept) -2.31(0.99) -2.98(0.38) -2.70(0.29) -3.37(0.41) -3.62(0.41)
health 0.23(0.10) 0.30(0.04) 0.25(0.03) 0.32(0.05) 0.34(0.04)
handicap -0.33(0.79)
hdegree -0.002(0.02)
married -0.40(0.27)
schooling 0.02(0.04)
hhincome -0.04(0.04)
children 0.51(0.25) 0.20(0.15) 0.44(0.18) 0.52(0.18)
self -0.25(0.65)
civil 0.02(0.42)
bluec 0.02(0.24)
employed -0.08(0.32)
public -0.23(0.39)
addon 0.30(0.53)
age30 -1.68(1.32)
age35 0.90(1.41)
age40 -0.65(1.33)
age45 3.00(1.05) -0.33(0.20)
age50 -2.96(1.35) -1.00(0.28) -0.40(0.18) -0.66(0.25)
age55 0.34(1.36)
age60 -2.34(2.76)
age30:health 0.23(0.16)
health:age35 -0.11(0.17)
health:age40 0.12(0.17)
health:age45 -0.41(0.14)
health:age50 0.25(0.17)
health:age55 0.11(0.18)
health:age60 0.20(0.35)

Summary
logLik -3625.9 -3656.3 -3664.5 -3648.8 -3654.7
BIC 7679.5 7380 7411.6 7380.2 7384.3
AIC 7365.9 7330.5 7351.1 7319.7 7329.3
logLik-CV -370.6 -368.7 -368.5 -368.0 -368.7
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5 Conclusion

Variable selection for mixture models is a challenging problem particularly when
the sample size is small to modest while the number of predictors is large. This
paper investigates the performance of an EM algorithm for variable selection in the
ZINB model. An alternative algorithm may take Taylor approximation of the log-
likelihood function. However, this approach requires to invert the Hessian matrix,
which can be numerically unstable for complex models (Buu etal., 2011). Indeed,
even with the non-penalized ZINB model, the local approximation can fail, thus
the traditional stepwise variable selection can encountera failure. The simula-
tion study supports that the proposed algorithm does not suffer such deficiency,
thus is more reliable than the stepwise variable selection for the ZINB regression
models. In addition, the new algorithm can be potentially useful even with high-
dimensional variables. The developed methods can be applied in many studies
including but not limited to health care utilization and service. To facilitate public
usage, the algorithm has been implemented in the free software mpath available
atwww.r-project.org.
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Appendix A Regularity conditions

The oracle property of ZINB with MCP or SCAD may be developed based on
the following regularity conditions, which also lead to asymptotic normality of
the non-penalized maximum likelihood estimate of the ZINB model. Let ui =
(xi ,yi), i = 1, ...,n be independent and identically distributed from the ZINB model.
The regularity conditions are as follows:

(a) There exists an open subsetω of Ω containing the true parameter pointφ0 such
that for almost allui , ℓ(φ ,ui) admits all third derivatives∂ 3ℓ(φ ,ui)/∂φ j∂φk∂φl

for all φ ∈ ω .

(b) The first and second partial derivatives ofℓ(φ ,ui) satisfy the equations

E

[
∂ℓ(φ ,ui)

∂φ j

]
= 0 for j = 1, ...,d,
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and

E

[
−∂ 2ℓ(φ ,ui)

∂φ j∂φk

]
= E

[
∂ℓ(φ ,ui)

∂φ j

∂ℓ(φ ,ui)

∂φk

]
= I jk(φ) for j,k= 1, ...,d.

(c) The Fisher information matrixI(φ) is finite and positive definite for allφ ∈ ω .

(d) There exist functionsM jkl such that
∣∣∣∣

∂ 3

∂φ j∂φk∂φl
ℓ(φ ,ui)

∣∣∣∣≤ M jkl (ui) for all φ ∈ ω ,

wheremjkl = Eφ0[M jkl (ui)]< ∞ for all j,k, l .

Appendix B Elements of Hessian matrix

Let µi = exp(x⊺i β ),ξi = exp(v⊺i γ), pi = ξi/(1+ ξi), r i = θ/(θ + µi),si = µi/(θ +
µi), ti = rθ

i ,hi = ξi + ti . For ease of notation, the subscripti is suppressed in the
sequel. Furthermore,Ψ′(·) denotes the trigamma function.

Iθ ,θ = ∑
yi=0

{
tθ3(log(r))2ξ +2t log(r)µξ (log(r)+1)θ2

+µ2ξ t
(
2log(r)+1+(log(r))2)θ +µ2ξ t +µ2t2} 1

θ(θ +µ)2h2

+ ∑
yi>0

{
Ψ′(yi +θ)−Ψ′(θ)+

s
θ
+

yi +θ
(θ +µ)2 −

1
θ +µ

}
,

Iβ j ,βk
= ∑

yi=0

−θ2µ(−tµξ +ξ t + t2)

((θ +µ)h)2 xi j xik+ ∑
yi>0

−θ µ(θ +yi)

(θ +µ)2 xi j xik,

Iβ j ,ζk
= ∑

yi=0

θ tsξ xi j vik

h2 ,

Iβ j ,θ = ∑
yi=0

−xi j
{

θ2t log(r)ξ +θ t log(r)µξ + tθ µξ + tµξ + t2µ
}

µ
((θ +µ)h)2 + ∑

yi>0

−µ(−yi +µ)xi j

(θ +µ)2 ,

Iζ j ,ζk
= ∑

yi=0

vi j vik

(
−p+ p2+

ξ
h
− (

ξ
h
)2
)
+ ∑

yi>0

−p(1− p)vi j vik,

Iζk,θ = ∑
yi=0

− 1
h2 t (log(r)+s)ξ vik.
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