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Abstract

In population studies on the etiology of disease, one goal is the estimation of the

fraction of cases attributable to each of several causes. For example, pneumonia is

a clinical diagnosis of lung infection that may be caused by viral, bacterial, fungal,

or other pathogens. The study of pneumonia etiology is challenging because directly

sampling from the lung to identify the etiologic pathogen is not standard clinical

practice in most settings. Instead, measurements from multiple peripheral specimens

are made. This paper considers the problem of estimating the population etiology dis-

tributionand the individual etiology probabilities. We formulate the scientific problem

in statistical terms as estimating the posterior distribution of mixing weights and

latent class indicators under a partially-latent class model (pLCM) that combines

∗Email: zhwu@jhu.edu
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heterogeneous measurements with different error rates obtained from a case-control

study. We introduce the pLCM as an extension of the latent class model. We also

introduce graphical displays of the population data and inferred latent-class frequen-

cies. The methods are illustrated with simulated and real data sets. The paper closes

with a brief description of extensions of the pLCM to the regression setting and to

the case where conditional independence among the measures is relaxed.

Keywords: Bayesian method; Case-control; Etiology; Latent class; Measurement

error; Pneumonia
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1 Introduction

Identifying the pathogens responsible for infectious diseases in a population poses signifi-

cant statistical challenges. Consider the measurement problem in the Pneumonia Etiology

Research for Child Health (PERCH), a case-control study that has enrolled 9, 500 children

from 7 sites around the world. Pneumonia is a clinical syndrome that develops because of

an infection of the lung tissue by bacteria, viruses, mycobacteria or fungi (Levine et al.,

2012). The appropriate treatment and public health control measures vary by pathogen.

Which pathogen is infecting the lung usually cannot be directly observed and must there-

fore be inferred from multiple peripheral measurements with differing error rates. The

primary goals of the PERCH study are to integrate the multiple sources of data to: (1)

aid the attribution of which pathogen or pathogens have caused a particular case’s lung

infection, and (2) estimate the prevalences of the etiologic pathogens in a population of

children.

The basic statistical framework of the problem is pictured in Figure 1. Let Yi represent

whether the child is a pneumonia case (Yi = 1) or control (Yi = 0). For a child with

pneumonia, let ILi indicate which pathogen causes the lung infection. ILi takes values in

{0, 1, 2, ...J} where 0 represents no infection (control) and ILi = j, j = 1, ..., J , represents the

jth pathogen from a pre-specified cause-of-pneumonia or pneumonia etiology list. Among

the J candidate pathogens being tested, we assume only one is the primary cause. Because,

for most cases, it is not possible to directly sample the lung, we do not know with certainty

which pathogen infected the lung, so we seek to infer the infection status ILi based upon a

series of laboratory measurements of specimens from various body fluids and body sources

S (MS
i ).

The measurement error rates differ by type of measurement. In the motivating PERCH

application and the following discussions, the error rates refer to epidemiologic error rates
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that characterize the probability of the pathogen’s presence/absence in specimen tests given

whether it infected the lung. For this and possibly other applications, it is convenient to

categorize measures into three subgroups referred to as “gold”, “silver”, and “bronze”

standard measurements. A gold-standard (GS) measurement is assumed to have both

perfect sensitivity and specificity. A silver-standard (SS) measurement is assumed to have

perfect specificity, but imperfect sensitivity. Culturing bacteria from blood samples (B-

Cx) is an example of silver standard measurements in PERCH. Finally, bronze-standard

(BrS) measurements are assumed to have imperfect sensitivity and specificity. Polymerase

chain reaction (PCR) evaluation of bacteria and viruses from nasopharyngeal samples is an

example. In the PERCH study, both SS and BrS measurements are available in all cases.

BrS measures are also available for controls. A goal of this study is to develop a statistical

model that combines GS and SS measurements from cases, with bronze data from cases and

controls to estimate the distribution of pathogens in the population of pneumonia cases,

and the conditional probability that each of the J pathogens is the primary cause of an

individual child’s pneumonia given her or his set of measurements. Even in applications

where GS data is not available, a flexible modeling framework that can accommodate GS

data is useful for both the evaluation of statistical information from BrS data (Section

3) and the incorporation of GS data if it becomes available as measurement technology

improves.

Latent class models (LCM) (Goodman, 1974) have been successfully used to integrate

multiple diagnostic tests or raters’ assessments to estimate a binary latent status D ∈ {0, 1}

for all study subjects (Hui and Walter, 1980; Qu and Hadgu, 1998; Albert et al., 2001; Al-

bert and Dodd, 2008). (In these applications, D = 1 if IL > 0.) In the LCM framework,

conditional distributions [M |D = j], j = 0, 1, are specified to use multivariate measure-

ments M to maximize the likelihood as a function of the disease prevalence, sensitivities
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and specificities. This framework has also been extended to infer ordinal latent status

(Wang et al., 2011).

There are three salient features of the PERCH childhood pneumonia problem that

require extension of the typical LCM approach. First, we have partial knowledge of the

latent lung state IL for some subjects as a result of the case-control design. In the standard

LCM approach, the study population comprises subjects with completely unknown class

membership D. In this study, the latent etiology IL = 0 is applied to all controls because

absent clinical disease, the lung is assumed to be non-infected. Also, were gold standard

measurements available from the lung for some cases, their latent variable would be directly

observed. As the latent state is known for a non-trivial subset of the study population, we

refer to the model posited below as a partially-Latent Class Model or pLCM.

Second, in most LCM applications, the number of diagnostic test results on a subject

is much larger than the number of latent state categories. Here, the number of diagnostic

tests is of the same order, and often equal to the number of categories that IL can assume.

For example, if we consider only the PERCH study BrS data, we simultaneously observe

the presence/absence of J pathogens for each child. Even with additional control data, the

larger number of latent categories of IL leads to weak model identifiability as is discussed

in more detail in Section 2.1.

Lastly, measurements with differing error rates (i.e. GS, SS, BrS) need to be integrated

in this application. Understanding the relative value of each level of measurements is

important to optimally invest resources into data collection (number of subjects, type of

samples) and laboratory assays. An important goal is therefore to estimate the relative

information from each type of measurements about the population and individual etiology

distributions. Albert and Dodd (2008) studied a model where some subjects are selected to

verify their latent status (i.e. collect from them GS measurements) with the probability of
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verification depending on the previous test results or completely at random. They showed

GS data can make model estimates more robust to model misspecifications. We quantify

how much GS data reduces the variance of model parameter estimates for design purposes.

Also, they considered binary latent status and did not have available control data. Another

related literature that uses both GS and BrS data is on verbal autopsy (VA) in the setting

where no complete vital registry system is established in the community (King and Lu,

2008). Quite similar to the goal of inferring pneumonia etiology from lab measurements,

the goal of VA is to infer the cause of death (ID) from a pre-specified list by asking close

family members questions about the presence/absence of K symptoms. King and Lu (2008)

proposed estimating the cause-of-death distribution in community P (ID = j), j = 1, ...J,

(similar to etiology) using data on K dichotomous symptoms and GS data from the hospital

where cause-of-death and symptoms are both recorded. However, their method involves

nonparametric estimation of J K-way probability contingency tables and therefore requires

a sizable sample of GS data, especially when the number of symptoms is large. In addition,

a key difference between VA and most infectious disease etiology studies is that the VA

studies are by definition case-only.

Another approach previously used with case and control data is to perform logistic

regression of case status Y on laboratory measurements M and then to calculate point

estimates of population attributable risks for each pathogen (Bruzzi et al., 1985; Black-

welder et al., 2012). This method does not account for imperfect laboratory measurements

and cannot use GS data if available. Also, zero prevalence is assigned to pathogens whose

estimated odds ratios are smaller than 1, without taking account of their statistical uncer-

tainty.

In this paper, we define and apply a partially-latent class model (pLCM) with condi-

tional independent assumptions to incorporate these three features: known infection status
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for controls, a large number of latent classes, and multiple types of measurements. We

use a hierarchical Bayesian formulation to estimate: (1) the population etiology distribution

or etiology fraction —the frequency with which each pathogen “causes” clinical pneumo-

nia in the case population. and (2) the individual etiology probabilities—the probabilities

that a case is “caused” by each of the candidate pathogens, given observed specimen mea-

surements for that individual. Shrinkage of the individual’s predictive distribution toward

the population etiology distribution is controlled in a natural way by the estimated case

pathogen prevalences, and the differences in the estimated true positive rates relative to

false positive rates (Section 3); and (3) the relative information content of GS, SS, and BrS

data (Section 3 and 4).

The remainder of this paper proceeds as follows. In section 2, we formulate the pLCM

and the Gibbs sampling algorithms for implementation. In Section 3, we evaluate our

method through simulations tailored for the childhood pneumonia application. Section

4 presents the application of our methodology to a subsample of the PERCH data to

demonstrate its applicability. Lastly, Section 5 concludes with a discussion of results and

limitations, a few natural extensions of the pLCM also motivated by the PERCH data, as

well as future directions of research.

2 A partially-latent class model for multiple indirect

measurements

We develop pLCM to address two characteristics of the motivating pneumonia problem: (1)

a partially-latent state variable because the pathogen infection status is known for controls

but not cases; and (2) multiple categories of measurements with different error rates across

classes. As shown in Figure 1, let ILi , taking values in {0, 1, 2, ...J}, represent the true state

5
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of child i’s lung (i = 1, ..., N) where 0 represents no infection (control) and ILi = j, j =

1, ..., J , represents the jth pathogen from a pre-specified cause-of-pneumonia list that is

assumed to be exhaustive. Let MS
i represent the J × 1 vector of binary indicators of the

presence/absence of each pathogen in the measurement at site S, where, in our application

S can be nasopharyngeal (NP), blood (B), or lung (L). Let mS
i be the actual observed

values. In the following, we replace S with BrS, SS, or GS, because they correspond to the

measurement types at NP, B, and L, respectively.

Let Yi = yi ∈ {0, 1} represent the indicator of whether child i is a control or case. Note

ILi = 0 given Yi = 0. To formalize the pLCM, we define three sets of parameters:

• π = (π1, ..., πJ)T for the probability Pr(IL = j | Y = 1,π), j = 1, ..., J

• ψSj = Pr(MS
j = 1|IL = 0), the marginal false positive rate (FPR) for measurement j

at site S

• θSj = Pr(MS
j = 1|IL = j), the marginal true positive rate (TPR) for measurement j

at site S for a person whose lung is infected by pathogen j.

We further let ψS = (ψS1 , ..., ψ
S
J )T and θS = (θS1 , ..., θ

S
J )T . Using these definitions, we have

FPR ψBrSj = 0 and TPR θBrSj = 1 for GS measurements, so that MGS
j = 1 if and only if

ILi = j (perfect sensitivity and specificity). Let δi be the binary indicator of a case i having

GS measurements; it equals 1 if the case has available GS data and 0 otherwise. For SS

measurements, FPR ψSSj = 0 so that MSS
j = 0 if ILi 6= j (perfect specificity).

We formalize the model likelihood for each type of measurement. We first describe the

model for BrS measurement MBrS for a control or a case. For control i, positive detection

of the jth pathogen is a false positive representation of the non-infected lung. Therefore,

we assume MBrS
ij | ψBrS ∼ Bernoulli(ψSj ), j = 1, ..., J , with conditional independence, or

6
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equivalently,

P 0,BrS
i = Pr(MBrS

i = m | ψBrS ) =
J∏
j=1

(
ψBrSj

)mj
(

1− ψBrSj

)1−mj

,m = mBrS
i .(2.1)

For a case infected by pathogen j, the positive detection rate for the jth pathogen in BrS

assays is θBrSj . Since we assume a single cause for each case, detection of pathogens other

than j will be false positives with probability equal to marginal FPR as in controls: ψBrSl ,

l 6= j. This nondifferential misclassification across the case and control populations is the

essential assumption of the latent class approach because it allows us to borrow information

from control BrS data to distinguish the true cause from background colonization. We

further discuss it in the context of the pneumonia etiology problem in the final section.

Then,

P 1,BrS
i′ = Pr(MBrS

i′ = m | π,θBrS ,ψBrS )

=
J∑
j=1

πj ·
(
θBrSj

)mj
(

1− θBrSj

)1−mj ∏
l 6=j

(
ψBrSl

)ml
(

1− ψBrSl

)1−ml

,m = mBrS
i′ (2.2)

is the likelihood contributed by BrS measurements from case i′. Convenient for Gibbs

sampler, we introduce the latent lung infection state ILi′ and represent (2.2) by the following

two-stage sampling scheme:

(i) multinomial sampling of lung infection state among cases: ILi′ | π, Yi′ = 1 ∼ Multinomial(π),

(ii) measurement stage given lung infection state:

MBrS
i′j | ILi′ ,θBrS ,ψBrS ∼ Bernoulli

(
1{IL

i′=j}
θBrSj +

(
1− 1{IL

i′=j}

)
ψBrSj

)
, j = 1, ..., J ,

conditionally independent, where 1{·} is the indicator function and equals one if the

statement in {·} is true; otherwise, zero.

Similarly, likelihood contribution from a case i′’s SS measurements can be written as

P 1,SS
i′ = Pr(MSS

i′ = m | π,θSS ) =
J ′∑
j=1

πj ·
(
θSSj

)mj

(1− θSSj )1−mj1{∑J′
l=1ml≤1}, (2.3)
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for m = mSS
i′ , noting the perfect specificity of SS measurements, where J ′ ≤ J represents

the number of actual SS measurements on each case, and θSS =
(
θSS1 , ...θSSJ ′

)
. SS mea-

surements only test for a subset of all J pathogens, e.g., blood culture only detects bacteria

and J ′ is the number of bacteria that are potential causes. Finally, GS measurement MGS
i′

that accurately indicates the actual cause for case i′, is assumed to follow multinomial

distribution with likelihood:

P 1,GS
i′ = Pr

(
MGS

i′ = m | π
)

=
J∏
j=1

π
1{mj=1}
j 1{∑j mj=1},m = mGS

i′ . (2.4)

Combining likelihood components (2.1)—(2.4), the total model likelihood for BrS, SS,

and GS data across independent cases and controls is

L(γ;D) =
∏
i:Yi=0

P 0,BrS
i

∏
i′:Yi′=1,δi′=1

P 1,BrS
i′ · P 1,SS

i′ · P 1,GS
i′

∏
i′′:Yi′′=1,δi′′=0

P 1,BrS
i′′ · P 1,SS

i′′ ,(2.5)

where γ = (θBrS ,ψBrS ,θSS ,π)T stacks all unknown parameters, andD =

{{
mBrS

i

}
i:Yi=1

}
∪{{

mBrS
i′ ,mGS

i′ ,mSS
i′

}
i′:Yi′=1,δi′=1

}
∪
{{
mBrS

i′′
,mSS

i′′

}
i′′ :Y

i
′′=1,δ

i
′′=0

}
collects all the avail-

able measurements on study subjects. Our primary statistical goal is to estimate the

posterior distribution of the population etiology distribution π, and obtain individual

etiology (IL∗ ) prediction given a case’s measurements (mBrS
∗ ,mSS

∗ ), i.e., Pr(IL∗ = j |

mBrS
∗ ,mSS

∗ ,D), j = 1, ..., J .

To enable Bayesian inference, prior distributions on model parameters are specified

as follows: π ∼ Dirichlet(a1, . . . , aJ), ψBrSj ∼ Beta(b1j, b2j), θ
BrS
j ∼ Beta(c1j, c2j), j =

1, ..., J , and θSSj ∼ Beta(d1j, d2j), j = 1, ..., J ′. Hyperparameters for etiology prior,

a1, ..., aJ , are usually 1s to denote equal and non-informative prior weights for each pathogen

if expert prior knowledge is unavailable. The FPR for the jth pathogen, ψBrSj , generally

can be well estimated from control data, thus b1j = b2j = 1 is the default choice. For TPR

parameters θBrSj and θSSj , if prior knowledge on TPRs is available, we choose (c1j, c2j) so

8
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that the 2.5% and 97.5% quantiles of Beta distribution with parameter (c1j, c2j) match the

prior minimum and maximum TPR values elicited from pneumonia experts . Otherwise, we

use default value 1s for the Beta hyperparameters. Similarly we choose values of (d1j, d2j)

either by prior knowledge or default values of 1. We finally assume prior independence

of the parameters as [γ] = [π][ψBrS ][θBrS ][θSS ], where [A] represents the distribution

of random variable or vector A. These priors represent a balance between explicit prior

knowledge about measurement error rates and the desire to be as objective as possible for

a particular study. As described in the next section, the identifiability constraints on the

pLCM require specifying a reasonable subset of parameter values to identify parameters of

greatest scientific interest.

2.1 Model identifiability

Potential non-identifiability of LCM parameters is well-known. For example, an LCM with

four observed binary indicators and three latent classes is not identifiable despite provid-

ing 15 degree-of-freedom to estimate 14 parameters (Goodman, 1974). In principle, the

Bayesian framework avoids the non-identifiability problem in LCMs by incorporating prior

information about unidentified parameter subspaces (Garrett and Zeger, 2000). Many au-

thors point out that the posterior variance for non-identifiable parameters does not decrease

to zero as sample size approaches infinity (e.g., Kadane (1974); Gustafson et al. (2001);

Gustafson (2005)). For scientific investigations, when data are not fully informative about

a parameter, an identified set of parameter values consistent with the observed data shall,

nevertheless, be valuable in a complex application (Gustafson, 2009) like PERCH.

This identifiability issue for the pLCM only occurs in the absence of GS data. Here we

restrict attention to the scenario with only BrS data for simplicity but similar arguments

pertain to the BrS + SS scenario. The problem can be understood from the form of the

9
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marginal positive measurement rates for pathogens among cases. In the pLCM likelihood

for BrS data (only retaining components in (2.5) with superscripts BrS ), the marginal

positive rate for pathogen j is a convex combination of the TPR and FPR:

Pr
(
MBrS

i′j = 1 | πj, θBrSj , ψBrSj

)
= πjθ

BrS
j + (1− πj)ψBrSj , (2.6)

where the left-hand side of the above equation can be estimated by the observed marginal

positive rate of pathogen j among cases. Although the control data provide ψBrSj esti-

mates, the two parameters, πj and θBrSj , are not both identified. GS data, if available,

identifies πj and resolves the lack of identifiability. Otherwise, we need to incorporate prior

scientific information on one of them, usually the TPR (θBrSj ), derived from infectious

disease and laboratory experts (Murdoch et al., 2012) and/or from vaccine probe studies

(Feikin et al., 2014). If the observed case marginal positive rate is much higher than the

rate in controls (ψBrSj ), only large values of TPR (θBrSj ) are supported by the data making

etiology estimation more precise (Section 2.2).

In more generality, the full model identification can be characterized by inspecting the

Jacobian matrix of the transformation (F ) from model parameters (γ) to the distribution

of the observables (p): p = F (γ). Let γ = (θBrS ,ψBrS , π1, ..., πJ−1)
T represent the

3J−1-dimensional unconstrained model parameters. The pLCM defines the transformation

(p1,p0)
T = F (γ), where p1 and p0 are the two contingency probability distributions for the

BrS measurements in the case and control populations. It can be shown that the Jacobian

matrix Γ(γ) has J−1 of its singular values being zero, which means model parameters γ are

not fully identified from the data. The FPRs (ψBrSj , j = 1, ..., J) in pLCM are, however,

identifiable parameters that can be estimated from control data. Therefore, pLCM is

termed partially identifiable (Jones et al., 2010).
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2.2 Parameter estimation and individual etiology prediction

The parameters in likelihood (2.5) include the population etiology distribution (π), TPRs

and FPRs for BrS measurements (ψBrS and θBrS ), and TPRs for SS measurements (θSS ).

The posterior distribution of these parameters can be estimated by constructing approxi-

mating samples from the joint posterior via Gibbs sampler. The full conditional distribu-

tions for the Gibbs sampler are detailed in Section 1 of the supplementary material.

We use freely available software WinBUGS 1.4, to fit the partially-latent class model.

Convergence was monitored via Markov chain Monte Carlo (MCMC) chain histories, auto-

correlations, kernel density plots, and Brooks-Gelman-Rubin statistics (Brooks and Gel-

man, 1998). The statistical results below are based on 10, 000 iterations of burn-in followed

by 10, 000 production samples from each of three parallel chains.

The Bayesian framework naturally allows individual within-sample classification (in-

fection diagnosis) and out-of-sample prediction. This section describes how we calculate

the etiology probabilities for an individual with measurements m∗. We focus on the more

challenging inference scenario when only BrS data are available; the general case follows

directly.

The within-sample classification for case i′ is based on the posterior distribution of

latent indicators given the observed data, i.e. Pr(ILi′ = j | D), j = 1, ..., J , which can be

obtained by averaging along the cause indicator (ILi′ ) chain from MCMC samples. For a

case with new BrS measurements m∗, we have

Pr(ILi′ = j |m∗,D) =

∫
Pr(ILi′ = j |m∗,γ) Pr(γ |m∗,D)dγ, j = 1, ...J, (2.7)

where the second factor in the integrand can be approximated by the posterior distribution

given current data, i.e., Pr(γ | D). For the first term in the integrand, we explicitly ob-

tain the model-based, one-sample conditional posterior distribution, Pr(ILi′ = j |m∗,γ) =

11
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πj`j(m∗;γ)

/∑
m πrm`m(m∗;γ), j = 1, ..., J , where `m(m∗;γ) =

(
θBrSj

)m∗j (
1− θBrSj

)1−m∗j ∏
l 6=j

(
ψBrSl

)m∗l (
1− ψBrSl

)1−m∗l
is the mth mixture component likelihood function evaluated at m∗. The log relative prob-

ability of ILi = j versus ILi = l is

Rjl = log

(
πj
πl

)
+log


(
θBrSj

ψBrSj

)m∗j (
1− θBrSj

1− ψBrSj

)1−m∗j
+log


(
ψBrSl

θBrSl

)m∗l
(

1− ψBrSl

1− θBrSl

)1−m∗l
 .

The form of Rjl informs us about what is required for correct diagnosis of an individual.

Suppose ILi = j, then averaging over m∗, we have E[Rjl] = log (πj/πl) + I(θBrSj ;ψBrSj ) +

I(ψBrSl ; θBrSl ), where I(v1, v2) = v1 log(v1/v2) + (1 − v1) log ((1− v1)/(1− v2)) is the in-

formation divergence (Kullback, 2012) that represents the expected amount of information

in m∗j ∼ Bernoulli(v1) for discriminating against m∗j ∼ Bernoulli(v2). If v1 = v2, then

I(v1; v2) = 0. The form of E[Rjl] shows that there is only additional information from BrS

data about an individual’s etiology in the person’s data when there is a difference between

θBrSj and ψBrSj , j = 1, ..., J .

Following (2.7), we average Pr(ILi′ = j |m∗,γ) over MCMC iterations with γ replaced

by its similated values γ)∗ at each iteration. Repeating for j = 1, ..., J , we obtain a J

probability vector, pi′ = (pi′1, ..., pi′J)T , that sums to one. This scheme is especially useful

when a newly examined case has a BrS measurement pattern not observed in D, which often

occurs when J is large. The final decisions regarding which pathogen to treat can then be

based upon estimated p̂i′ . In particular, the pathogen with largest posterior value might

be selected. It is Bayes optimal under mean misclassification loss. Individual etiology

predictions described here generalize the positive/negative predictive value (PPV/NPV)

from single to multivariate binary measurements and can aid diagnosis of case subjects

under other user-specified misclassification loss functions.
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3 Simulation for three pathogens case with GS and

BrS data

One key question for studies like PERCH is what fraction of the total evidence about

etiology derives from the BrS sources relative to from GS or SS sources if available. In

this simulation, we illustrate the extent to which BrS case-control data can supplement

observation of the etiologic agent directly from the site of infection. We discuss the role of

SS measurements in Section 4 through application to the PERCH data set.

We simulate BrS data sets with 500 cases and 500 controls for three pathogens, A, B,

and C using pLCM specifications. We focus on three states to facilitate viewing of the π

estimates and individual predictions in the 3-dimensional simplex S2. We use the ternary

diagram (Aitchison, 1986) representation where the vector π = (πA, πB, πC)T is encoded

as a point with each component being the perpendicular distance to one of the three sides.

The parameters involved are fixed at TPR = θ = (θA, θB, θC)T = (0.9, 0.9, 0.9)T , FPR =

ψ = (ψA, ψB, ψC)T = (0.6, 0.02, 0.05)T , and π = (πA, πB, πC)T = (0.67, 0.26, 0.07)T . We

focus on BrS and GS data here and drop the “BrS ” superscript on the parameters for

simplicity. We further let the fraction of cases with GS measurements (∆) be either 1%

or 10%. Although GS measurements are rare in the PERCH study, we investigate a large

range of ∆ to understand in general how much statistical information is contained in BrS

measurements relative to GS measurements.

For any given data set, three distinct subsets of the data can be used: BrS-only, GS-only,

and BrS+GS, each producing its posterior mean of π, and 95% credible region (Bayesian

confidence region) by transformed Gaussian kernel density estimator for compositional

data (Chacón et al., 2011). To study the relative importance of the GS and BrS data, the

primary quantity of interest in the simulations is the relative sizes of the credible regions
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for each data mix. Here, we use uniform priors on θ, ψ, and Dirichlet(1, ..., 1) prior for π.

The results are shown in Figure 2.

First, in Figures 2(a) (1% GS) and 2(b) (10% GS), each region covers the true etiology

π. In data not shown here, the nominal 95% credible regions covers slightly more than 95%

of 100 simulations. Credible regions narrow in on the truth as we combine BrS and GS

data, and as the fraction of subjects with GS data (∆) increases. Also, the posterior mean

from the BrS+GS analysis is a result of optimal balance between information contained in

the GS and BrS data.

We then fix ψ and π, while varying the TPR θ on the grid (0.6, 0.7, 0.8, 0.9, 0.95, 0.99)

to test the estimation performance under a variety of signal-to-noise ratios, measured by

the difference between the TPRs and FPRs. At each (θ, ∆) grid point, we run analyses

on each of 100 simulated data sets. We quantify the gain in precision by adding the

BrS data to the GS data following Xu and Zeger (2001). For pathogen A, let gA(θ) =(
d0A − dBrS +GS

A (θ)
)
/
(
d0A − dGSA (θ)

)
, where d0A, dGSA (θ) and dBrS +GS

A (θ) are the length

of 95% highest density interval from the prior, length of 95% credible interval using GS

data, and length of the 95% credible interval using BrS and GS data, respectively. This

quantity (gA(θ)) is the ratio of the reduction of the 95% interval widths with and without

the BrS data at TPR value θ. If gA(θ) = 1, then there is no additional gain in the

precision of πA when BrS data is added to GS data. When ∆ = 1%, we observe the

expected increase in gA as TPR θ approaches 1. For pathogen A, gA(0.8) has mean value

1.7 across 100 simulated data sets with standard error 0.3; gA(0.95) further increase to

3.0(standard error 0.3). Similar patterns are also observed for pathogen B and C.

Using the same simulated data sets, Figures 2(a) and 2(b) also show individual etiology

predictions for each of the 8(= 23) possible BrS measurements (mA,mB,mC)T ,mj = 0, 1,

obtained by the methods from Section 2.2. Consider the example of a newly enrolled case
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without GS data and with no pathogen observed in her BrS data: m = (0, 0, 0). Suppose

she is part of a case population with 10% GS data. In the case illustrated in Figure 2(b),

her posterior predictive distribution has highest posterior probability (0.76) on pathogen A

reflecting two competing forces: the FPRs that describe background colonization (coloniza-

tion among the controls) and the population etiology distribution; Given other parameters,

m = (0, 0, 0) gives the smallest likelihood for ILi = A because of its high FPR that reflects

its background colonization rate, ψA = 0.6. However, prior to observing (0, 0, 0), πA is well

estimated to be much larger than πB and πC . Therefore the posterior distribution for this

case is heavily weighted towards pathogen A.

For a case with observation (1, 1, 1), because it is rare to observe pathogen B in a case

whose pneumonia is not caused by B, the prediction favors B. Although B is not the most

prevalent cause among cases, the presence of B in the BrS measurements gives the largest

likelihood when ILi = B. For any measurement pattern with a single positive, the case is

always classified into that category in this example.

Most predictions are stable with increasing ∆. Only 000 cases have predictions that

move from near the center to the corner of A. This is mainly because that TPR θ and

etiology fractions π are not as precisely estimated in GS-scarce scenarios relative to GS-

abundant ones. Averaging over a wider range of θ and π produces 000 case predictions

that are ambiguous, i.e. near the center. As ∆ increases, parameters are well estimated,

and precise predictions result.

4 Analysis of PERCH data

The Pneumonia Etiology Research for Child Health (PERCH) study is a standardized and

comprehensive evaluation of etiologic agents causing severe and very severe pneumonia

among hospitalized children aged 1-59 months in seven low and middle income countries.
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The study sites include countries with a significant burden of childhood pneumonia and a

range of epidemiologic characteristics (Levine et al., 2012). PERCH is a case-control study

that has enrolled over 4, 000 patients hospitalized for severe or very severe pneumonia and

over 5, 000 controls selected randomly from the community frequency-matched on age in

each month. More details about the PERCH design are available in Deloria-Knoll et al.

(2012).

To illustrate the application of pLCM model for the analysis of PERCH study data,

we have focused on preliminary data from one site with good availability of both SS and

BrS laboratory results. Results for all 7 countries will be reported elsewhere upon study

completion. Included in the current illustrative analysis are BrS data (nasopharyngeal

specimen with PCR detection of pathogens) for 432 cases and 479 frequency-matched

controls on 11 species of pathogens (7 viruses and 4 bacteria with their abbreviations in

Figure 3, and full names in Section 2 of the supplementary material), and SS data (blood

culture results) on the 4 bacteria for only the cases.

In PERCH, prior scientific knowledge of measurement error rates is incorporated into

the analysis. The TPR of our BrS measurements, θBrSj is assumed to be in the range of

90%− 97% (Murdoch et al., 2012). Observations from vaccine probe studies—randomized

clinical trials of pathogen-specific vaccines in which non-specific clinical endpoints such

as clinical pneumonia are evaluated thereby revealing the contribution of the pathogen

to the burden of that syndrome— illustrate that the total number of clinical pneumonia

cases prevented by the vaccine is much larger than the few laboratory-confirmed cases

prevented. Comparing the total preventable disease burden to the number of blood culture

(SS) positive cases prevented provides information about the TPR of the bacterial blood

culture measurements, θSSj , j = 1, ..., 4. In our analysis, we use the range 10 − 20% for

the SS TPRs of four bacteria. We set Beta priors that match these ranges (Section 2) and
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assumed Dirichlet(1, ..., 1) prior on etiology fractions π.

In latent variable models like the pLCM, key variables are not directly observed. It is

therefore essential to picture the model inputs and outputs side-by-side to better under-

stand the analysis performed. In this spirit, Figure 3 displays for each of the 11 pathogens,

a summary of the BrS and SS data in the left two columns, along with some of the interme-

diate model results; and the prior and posterior distributions for the etiology fractions on

the right (rows ordered by posterior means). The observed BrS rates (with 95% confidence

intervals) for cases and controls are shown on the far left with solid dots. The conditional

odds ratio contrasting the case and control rates given the other pathogens is listed with

95% confidence interval in the box to the right of the BrS data summary. Below the case

and control observed rates is a horizontal line with a triangle. From left to right, the line

starts at the estimated false positive rate (FPR, ψ̂BrSj ) and ends at the estimated true pos-

itive rate (TPR, θ̂BrSj ), both obtained from the model. Below the TPR are two boxplots

summarizing its posterior (top) and prior (bottom) distributions for that pathogen. These

box plots show how the prior assumption influences the TPR estimate as expected given

the identifiability constraints discussed in Section 2.1. The triangle on the line is the model

estimate of the case rate to compare to the observed value above it. As discussed in Section

2.1, the model-based case rate is a linear combination of the FPR and TPR with mixing

fraction equal to the estimated etiology fraction. Therefore, the location of the triangle,

expressed as a fraction of the distance from the FPR to the TPR, is the model-based point

estimate of the etiologic fraction for each pathogen. The SS data are shown in a similar

fashion to the right of the BrS data. By definition, the FPR is 0.0 for SS measures and

there is no control data. The observed rate for the cases is shown with its 95% confidence

interval. The estimated SS TPR (θ̂SSj ) with prior and posterior distributions is shown as

for the BrS data, except that we plot 95% and 50% credible intervals for SS TPR above
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its prior distribution boxplot.

On the right side of the display are the marginal posterior and prior distributions of the

etiologic fraction for each pathogen. We appropriately normalized each density to match

the height of the prior and posterior curves. The posterior mean with 50% and 95% credible

intervals are shown above the density.

Figure 3 shows that respiratory syncytial virus (RSV), Streptococcus pneumoniae (PNEU),

rhinovirus (RHINO), and human metapneumovirus (HMPV A B) occupy the greatest frac-

tions of the etiology distribution, from 10% to 30% each. That RSV has the largest esti-

mated mean etiology fraction reflects the large discrepancy between case and control posi-

tive rates in the BrS data: 25.3% versus 0.8% (marginal odds ratio 38.5 (95%CI (18, 128.7)

) as shown on the left of the display. RHINO has marginal case and control rates that

are close to each other, yet its estimated mean etiology fraction is 15.9%. This is because

the model considers the joint distribution of the pathogens, not the marginal rates. The

conditional odds ratio of case status with RHINO given all the other pathogen measures is

estimated to be 1.5 (1.1, 2.1) as compared to the marginal odds ratio close to 1 (0.8, 1.3).

As discussed in Section 2.1, the data alone cannot precisely estimate both the etiologic

fractions and TPRs absent prior knowledge. This is evidenced by comparing the prior and

posterior distributions for the TPRs in the BrS boxes for each pathogen (i.e. left hand

column of Figure 3). The posteriors are similar to their priors indicating little else about

TPR is learned from the data. The posteriors for some pathogens making up π (i.e. shown

in the right hand column of Figure 3) are likely to be sensitive to the prior specifications

of the TPRs.

We performed sensitivity analyses using multiple sets of priors for the TPRs. At one

extreme, we ignored background scientific knowledge and let the priors on the FPR and

TPR be uniform for both the BrS and SS data. The results are shown in Figure 7. Ignoring
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prior knowledge about error rates lowers the etiology estimates of the bacteria PNEU and

Haemophilus influenzae (HINF). The substantial reduction in the etiology fraction for

PNEU, for example, is a result of the difference in the TPR prior for the SS measurements.

In the original analysis (Figure 3), the informative prior on the SS sensitivity (TPR) place

95% mass between 10−20%. Hence the model assumes almost 85% of the PNEU infections

are being missed in the SS sampling. When a uniform prior is substituted (Figure 4), the

fraction assumed missed is greatly reduced. For RSV, its posterior mean etiology fraction

increases from 27.3% to 31.7%. The etiology estimates for other pathogens are fairly stable,

with changes in posterior means between −0.4% and 3.3%.

Under the original priors for TPR, PARA1 has an estimated etiologic fraction of 5.2%,

even though it has conditional odds ratio 5.8 (2.5, 15). In general, pathogens with larger

conditional odds ratios have larger etiology fraction estimates. Also, a pathogen still needs

a reasonably high observed case positive rate to be allocated a high etiology fraction. The

posterior etiology fraction estimate of 5.2% for PARA1 results because the prior for the

TPR takes values in the range of 0.9 − 0.97. By Equation (2.6), the TPR weight in the

convex combination with FPR (around 1.5%) has to be very small to explain the small

observed case rate 5.5%. When a uniform prior is placed on TPR instead, the PARA1

etiology fraction increases to 10.2% with a wider 95% credible interval (Figure 4).

Furthermore, when uniform priors on TPR and FPR are used, PARA1 is still allocated

a smaller etiology fraction than RHINO despite PARA1 having a larger conditional odds

ratio. This is related to the dependence structure among case measurements. RHINO

has the highest negative association with RSV among cases (standardized log odds ratio

−14). Under the conditional independence assumption of the pLCM, this dependence is

partly induced by multinomial correlation among the latent cause indicators: ILi = RSV

versus ILi = RHINO that is −πRSVπRHINO. RSV has strong evidence as a frequent cause
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with a stable estimate π̂RSV around 30%. The strong negative association in the cases’

measurements between RHINO and RSV is contributing to the increased etiologic fraction

estimate π̂RHINO relative to other pathogens that have less or no association with RSV

among the cases. The conditional independence assumption is leveraging information from

the associations between pathogens in estimation of the etiologic fractions.

We have checked the model in two ways by comparing the characteristics of the observed

measurements joint distribution with the same characteristic for the distribution of new

measurements generated by the model from a population of the same size. By generating

the new data characteristics at every iteration of the MCMC chain, we can integrate the

predictive distribution over the posterior distribution of the parameters as discussed in

Garrett and Zeger (2000). Figure 5 displays the observed frequency of the 10 most common

measurement outcomes for the BrS data, separately for cases and controls to compare to

the predictive distributions based upon the model. Among the cases, the 95% predictive

interval includes the observed values in all but two of the BrS patterns and even there the fits

are reasonable. Among the controls, there is evidence of lack of fit for the most common BrS

pattern with only PNEU and HINF. There are fewer cases with this pattern observed than

predicted under the pLCM. This lack of fit is due to associations of pathogen measurements

in control subjects. Note that the FPR estimates remain consistent regardless of such

correlation as the number of controls increases, however posterior variances for them may

be underestimated.

Figure 6 presents standardized log odds ratios (SLORs) for cases (lower triangle) and

controls (upper triangle). Each entry is the observed log odds ratio for a pair of BrS

measurements minus the mean LOR for the predictive data distribution value divided by

the standard deviation of the LOR predictive distribution. The first significant digit of the

absolute SLOR is shown in blue for negative and red for positive values. Absolute SLORs
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less than 2 are omitted from the table for graphical effect. We see two large deviations

among the cases: RSV with RHINO and RSV with HMPV. These are caused by strong

seasonality in RSV that is out of phase with weaker seasonality in the other two. Otherwise,

the associations are roughly what is expected under the assumed model.

An attractive feature of using MCMC to estimate posterior distributions is the ease

of estimating posteriors for functions of the latent variables and/or parameters. One in-

teresting question from a clinical perspective is whether viruses or bacteria are the major

cause and among each subgroup, which species predominate. Figure 7 shows the poste-

rior distribution using expert TPR prior for viruses versus bacteria on the top, and then

the conditional distributions of the two leading bacteria (viruses) among bacterial (viral)

causes below. The posterior shape of the viral etiologic fraction is more concentrated com-

pared to the prior shape, with mode around 63% and 95% credible interval (54%, 71%).

Of all viral cases, RSV is estimated to cause about 43% (36%, 51%), and RHINO about

25% (17%, 34%). PNEU accounts for most bacterial cases (71% (48%, 87%)), and HINF

accounts for 19% (4%, 42%). In both the viral and bacterial categories, the 95% credible

intervals for the first most common pathogen does not overlap that of the second most

common one.

5 Discussion

In this paper, we estimated the frequency with which pathogens cause disease in a case

population using a partially-latent class model (pLCM) to allow for known states for a

subset of subjects and for multiple types of measurements with different error rates. In a

case-control study of disease etiology, measurement error will bias estimates from traditional

logistic regression and attributable fraction methods. The pLCM avoids this pitfall and

more naturally incorporates multiple sources of data. Here we considered three levels of
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measurement error rates.

Absent GS data, we show that the pLCM is only partially identified because of the

relationship between the estimated TPR and prevalence of the associated pathogen in the

population. Therefore, the inferences are sensitive to the assumptions about the TPR.

Uncertainty about their values persists in the final inferences from the pLCM regardless of

the number of subjects studied.

The current model provides a novel solution to the analytic problems raised by the

PERCH Study. This paper illustrates the design and application of the pLCM using a

preliminary and limited set of data from one PERCH study site. Confirmatory laboratory

testing, incorporation of additional pathogens, and adjustment for various factors are likely

to change the scientific findings that will be reported in the complete analysis of the study

results.

An essential assumption relied upon in the pLCM is that the probability of detecting

one pathogen at a peripheral body site depends on whether that pathogen is infecting the

child’s lung, but is unaffected by the presence of other pathogens in the lung, that is, the

non-differential misclassification error assumption, [MSS
ij | ILi = l] = [MSS

ij | ILi = k],

∀l, k 6= j. We have formulated the model to include GS measures even though they are

infrequently available from PERCH cases. In general, the availability of GS measures makes

it possible to test this assumption as has been discussed by Albert and Dodd (2008).

Several extensions have potential to improve the quality of inferences drawn and are

being developed for PERCH. First, because the control subjects have known class, we

can model the dependence structure among the BrS measurements and use this to avoid

aspects of the conditional independence assumption central to most LCM methods. The

approach is to extend the pLCM to have K subclasses within each of the current disease

classes. These subclasses can introduce correlation among the BrS measurements given
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the true disease state. An interesting question is about the bias-variance trade-off for

different values of K. This ideas follows previous work on the PARAFAC decomposition of

probability distribution for multivariate categorical data (Dunson and Xing, 2009). This

extension will enable model-based checking of the standard pLCM.

Second, in our analyses to date, we have assumed that the pneumonia case definition

is error-free. Given new biomarkers and availability of chest radiograph that can improve

upon the clinical diagnosis of pneumonia, one can introduce an additional latent variable

to indicate true disease status and use these measurements to probabilistically assign each

subject as a case or control. Finally, regression extensions of the pLCM will allow PERCH

investigators to study how the etiology distributions vary with HIV status, age group, and

season.
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A Full conditional distributions in Gibbs sampler

In this section, we provide analytic forms of full conditional distributions that are essential

for Gibbs sampling algorithm. We use data augmentation scheme by introducing latent lung

state ILi into the sampling chain and we have the following full conditional distributions:

•
[
ILi | others

]
. If MGS

i is available, Pr
(
ILi = j | others

)
= 1, if MGS

ij = 1 and MGS
il =

0, for l 6= j; otherwise zero. If MGS
i is missing, according as whether MSS

i is

available, the full conditional is given as

Pr(ILi = j | others) ∝(
θBrSj

)MBrS
ij

(
1− θBrSj

)1−MBrS
ij

∏
l 6=j

(
ψBrSl

)MBrS
il

(
1− ψBrSl

)1−MBrS
il

·

[(
θSSj

)MSS
ij

(1− θSSj )1−M
SS
ij 1{∑

l 6=j M
SS
il =0

}
]1{j≤J′}

· πj; (A.1)

if SS measurement is not available for case i, we remove terms involving MSS
ij .

•
[
ψBrSj | others

]
∼ Beta

(
Nj + b1j, n1 −

∑
i:Yi=1 1{ILi =j} + n0 −Nj + b2j

)
, where n1

and n0 are number of cases and controls, respectively, and Nj =
∑

i:Yi=1,ILi 6=j
MBrS

ij +∑
i:Yi=0M

BrS
ij is the number of positives at position j for cases with ILi 6= j and all

controls.

•
[
θBrSj | others

]
∼ Beta

(
Sj + c1j,

∑
i:Yi=1 1{ILi =j} − Sj + c2j

)
, where Sj =

∑
i:Yi=1,ILi =jM

BrS
ij

is the number of positives for cases with jth pathogen as their causes.

•
[
θSSj | others

]
∼ Beta

(
Tj + d1j,

∑
i:Yi=1,SS available 1{ILi =j} − Tj + d2j

)
, where

Tj =
∑

i:Yi=1,ILi =j,SS available

MSS
ij .

When no SS data is available, this conditional distribution reduces to Beta(d1j, d2j),

the prior.
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•
[
π | ILi , i : Yi = 1

]
∼ Dirichlet(a1 + U1, ..., aJ + UJ), where Uj =

∑
i:Yi=1 1{ILi =j}.

B Pathogen names and their abbreviations

Bacteria: HINF- Haemophilus influenzae; PNEU-Streptococcus pneumoniae; SASP-Salmonella

species; SAUR-Staphylococcus aureus.

Viruses: ADENOVIRUS-adenovirus; COR 43-coronavirus OC43; FLU C-influenza virus

type C; HMPV A B-human metapneumovirus type A or B; PARA1-parainfluenza type 1

virus; RHINO-rhonovirus; RSV A B-respiratory syncytial virus type A or B.
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Figure 1: Directed acyclic graph (DAG) illustrating relationships among lung infection state

(IL), imperfect lab measurements on the presence/absence of each of a list of pathogens at

each site(MNP , MB and ML), disease outcome, and covariates (X). For a subject missing

one or more of the three types of measurements, we remove the corresponding measurement

component(s). For example, if a case does not have lung aspirate (LA) measurement, we

remove ML from the DAG.
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Figure 2: Population and individual etiology estimations for a single sample with 500 cases

and 500 controls with true π = (0.67, 0.26, 0.07)T and either 1%N = 5) or 10%(N = 50)

GS data on cases. In (a) or (b), Red circled plus shows the true population etiology

distribution π. The closed curves are 95 percent credible regions: blue dashed lines “- - -”,

light green solid lines “—”, black dotted lines “· · · ” correspond to analysis using BrS data

only, BrS+GS data, GS data only, respectively; Solid square/dot/triangle are corresponding

posterior means of π; The 95 percent highest density region of uniform prior distribution

is also visualized by red “· − ·−” for comparison. 8(= 23) BrS measurement patterns

and predictions for individual children are shown with different shapes, with measurement

patterns attached to them. The radii of circles and numbers at the vertices show empirical

frequencies GS measurements belonging to A, B, or C.
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Figure 3: Results using expert priors on TPRs. The observed BrS rates (with 95% confidence intervals)

for cases and controls are shown on the far left. The conditional odds ratio given the other pathogens

is listed with 95% confidence interval in the box to the right of the BrS data summary. Below the case

and control observed rates is a horizontal line with a triangle. From left to right, the line starts at the

estimated false positive rate (FPR, ψ̂BrSj ) and ends at the estimated true positive rate (TPR, θ̂BrSj ),

both obtained from the model. Below the TPR are two boxplots summarizing its posterior (top) and prior

(bottom) distributions. The location of the triangle, expressed as a fraction of the distance from the FPR

to the TPR, is the model-based point estimate of the etiologic fraction for each pathogen. The SS data

are shown in a similar fashion to the right of the BrS data. The observed rate for the cases is shown with

its 95% confidence interval. The estimated SS TPR (θ̂SSj ) with prior and posterior distributions is shown

as for the BrS data, except that we plot 95% and 50% credible intervals for SS TPR above the boxplot for

its prior distribution. See Appendix for pathogen name abbreviations.
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Figure 4: Results on using uniform priors on TPRs. As in Figure 3 with uniform priors on

the TPRs.
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Figure 5: Posterior predictive checking for 10 most frequent BrS measurement patterns

among cases and controls with expert priors on TPRs.
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measurements minus the mean LOR for the posterior predictive distribution divided by

the standard deviation of the posterior predictive distribution. The first significant digit of
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Figure 7: Summary of posterior distribution of pneumonia etiology estimates using expert

(left) and uniform (right) priors on TPRs. In each subfigure, top: posterior (solid) and

prior (dashed) distribution of viral etiology; bottom left: posterior etiology distribution

for top two bacterial causes given bacteria is a cause; bottom right: posterior etiology

distribution for top two viral causes given virus is a cause. B-rest and V-rest stand for the

rest of bacteria and viruses other than the top two species, respectively. The nested blue

circles are 95%, 80%, and 50% credible regions for population etiology estimates within

bacterial or viral group.
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