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Abstract

Bias due to unobserved confounding can seldom be ruled out with certainty when using non-

experimental data to draw inferences about causal effects. The instrumental variable (IV) design

offers under certain assumptions, the opportunity to tame confounding bias, without directly ob-

serving all confounders. The IV approach is very well developed in the context of linear regression

but also for certain generalized linear models with non-linear link function. However, IV methods

are not as well developed for censored survival outcomes. In this paper, the authors develop

the instrumental variable approach in a survival context, under an additive hazards model, and

they describe two simple strategies for estimating causal effects for this context. The first strategy

entails a straightforward two stage regression approach analogous to two stage least squares com-

monly used for IV estimation in linear models, whereby the fitted value from a first stage regression

of the exposure on the IV is entered in place of the exposure in the second stage hazard model

to recover the causal effect in view. The second strategy is a so-called control function approach,

which entails adding as confounding control covariate to the additive hazards regression model for

the exposure effect, the residual from a first stage regression of the exposure on the IV. Formal

conditions are given justifying each strategy, and the methods are illustrated in a novel application

to a Mendelian randomization study of the causal association between diabetes status at start of

follow-up and mortality using data from the Health and Retirement Study. It is also shown that

analogous estimation strategies can also be used under a proportional hazards model specification

provided the outcome is rare over the entire follow-up period under consideration.
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Confounding bias remains to date a major potential source of bias in observational studies con-

ducted in epidemiology. In recent years, epidemiologists have slowly expanded their analytic

toolbox to account for unobserved confounding, by adopting the instrumental variable design, an

approach for analyzing non-experimental studies, historically favored by economists and other so-

cial scientists.1,2 The IV design entails selecting an observed pre-exposure variable which is known

to only be associated with the outcome to the extent that the latter is causally affected by the

exposure of interest, and the IV is directly related to the exposure. Thus, the IV is selected such

that it does not directly affect the outcome (known as the exclusion restriction), and, although

correlated with the exposure in view, it is independent of confounders of the exposure-outcome

relation. A valid IV may be hard to find in practice, but when successfully selected to meet these

criteria, an IV can sometimes be used to account for unobserved confounding bias.1−4

Instrumental variable methods are particularly well developed in the context of linear models,4,5

and similar methods are likewise well developed for regression analysis with certain nonlinear link

functions (e.g. log, logit, probit).5−7 Right censored survival outcomes are of common occur-

rence in epidemiologic practice, and regression analysis on the hazard scale is typically used. The

Cox proportional hazards model is perhaps the most popular regression framework for survival

data,8 and recently, Aalen’s additive hazards model has also gained popularity as an alternative

framework.9 An important appeal of the additive hazards framework is that, unlike proportional

hazards models, the class of additive hazards models is closed under marginalization over regres-

sors. Specifically, collapsing over a continuous regressor in an additive hazards model can under

fairly reasonable assumptions, produce a marginal additive hazards model. This property is known

not to generally hold for the Cox proportional hazards model, except perhaps for a disease that

remains rare over the follow-up period of the study. In this paper, the authors exploit the col-

lapsibility of additive hazards to develop two straightforward strategies for IV estimation with a
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censored survival outcome. The first strategy entails a straightforward two stage regression ap-

proach analogous to two stage least squares commonly used for IV estimation in linear models.5

The current setting differs from that of standard two stage least squares in that, here, the fitted

value from the first stage regression of the exposure on the IV is entered in place of the exposure

in a second stage additive hazards model, instead of a standard linear regression model to recover

the causal effect in view. The second proposed strategy is a so-called control function approach,5

which entails adding to the additive hazards regression model for the exposure effect, the residual

from a first stage regression of the exposure on the IV also known as a control function. Formal

conditions are given justifying each strategy, and the methods are illustrated in a novel applica-

tion to a Mendelian randomization study of the causal association between diabetes diagnosis and

mortality using data from the Health and Retirement Study.10 Finally, it is shown that when the

disease outcome is rare, in the sense that its cumulative incidence remains low over the follow-up

period under consideration, then analogous two stage regression and control function strategies

may be used under a Cox proportional hazards model.

Two-stage regression approach

Suppose one has observed independent and identically distributed data on (T ∗, A, Z) for a sample

of size n, where A is an exposure of interest, Z is the candidate IV, T is the time to event outcome

and T ∗ = min(T, Y ) with Y the potential censoring time. Unless stated otherwise, we assume that

Y is independent of (T,A) conditional on Z. To introduce the causal model of interest, suppose

that the effect of the IV Z on the outcome T is unconfounded, however, we will suppose that

the effect of A on T remains confounded whether one conditions on Z or not. Let U denote the

unobserved confounder of the effect of A on T, so that conditioning on U recovers the causal effect

of A on T . To further ground ideas, we will suppose the data are generated under the Aalen
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additive hazards model

h (t|A,U, Z) = b0 (t) + ba (t)A+ bu(U, t) (1)

where h (t|A,U, Z) is the hazard function of T evaluated at t, conditional on A,U and Z, and the

functions (b0 (·) , ba (·) , bu (·, ·)) are unrestricted. The model states that conditional on U, the effect

of A on T encoded on the additive hazards scale is linear in A for each t, however, the effect size

ba (t) may vary with t. The model is quite flexible in the unobserved confounder association with

the outcome bu (·, ·), which is allowed to remain unrestricted at each time point t and across time

points. In the Mendelian randomization study we will consider below, A represents diabetes status

measured at start of follow-up coded as a binary variable (1 if diabetic and 0 otherwise), T is

time to death, and Z is defined as a genetic risk score for diabetes, which combines several genetic

variants previously established to predict diabetes risk. The approach is described in additional

detail below. More generally, A could be continuous, such as say body mass index (BMI), in which

case the above Aalen model assumes linearity of the conditional hazards difference at each t. The

null hypothesis of no causal effect of A (BMI or diabetes status) on T (mortality) is encoded by

ba (t) = 0 for all t. An important sub-model to consider is the constant hazards difference model

obtained by setting

ba (t) = ba (2)

where ba is an unknown constant. Crucially, the model assumes no interaction between A and

U . Collapsibility over U makes ba (t) interpretable as a marginal causal hazards difference (upon

standardization with respect to the population distribution of U), which is an appealing feature

of the model since it would indeed be uncomfortable to come up with an effect size that is only

interpretable conditional on the unobserved U . The baseline hazard function b0 (t) is a priori

unrestricted. Finally, the right hand side of equation (1) does not depend on Z, even though the
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left hand side of the equation conditions on Z, so that the model encodes explicitly the assumption

that Z and T are conditionally independent given (U,A), i.e. the exclusion restriction condition.11

In practice, additional pre-exposure covariates X (e.g. age, gender, education, ...etc) may be

observed, and one may wish to account for such covariates in an IV analysis. In order to ease the

presentation, we will first describe the proposed methodology without covariates, so as to more

easily focus on key ideas, however, later, we will describe how the methods can be modified to

incorporate such covariates.

Until otherwise stated, suppose that A is continuous, e.g. body mass index (BMI). Then, in

addition to equation (1) , one may specify a standard linear model for A :

A = c0 + czZ + ∆, where ∆ is mean zero residual error independent of Z (3)

We do not further specify the distribution of ∆, and we allow for U and ∆ to be conditionally

associated given Z, i.e. COV (∆,U |Z) 6= 0, inducing confounding by U . Throughout, we will

assume that cz 6= 0 so that there is a non-null association between Z and A. However, cz may not

have a causal interpretation, in the event of unobserved confounding of the effect of Z on A. We

will however assume that any unobserved common cause of Z and A must be independent of U.

Let M = m (Z) = E(A|Z) = c0 + czZ.

The proposed two-stage approach is based on the following result, which provides an analytic

expression for the conditional hazard model h̃(t|Z), of T evaluated at t, conditional on Z, under

model restrictions (1) and (3) .

RESULT 1: Under assumptions (1) and (3) , and assuming that U is independent of Z, one has

that

h̃(t|Z) = b̃0 (t) + ba (t)M (4)
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for b̃0 (t) a baseline hazard function.

Result 1 states that under assumptions (1), (3) and the assumption of independence of U and

Z, the hazard function of T at t conditional on Z is linear in M = m(Z). Suppose for a moment

that, contrary to fact, M = E(A|Z) were observed, thus rendering model (4) a standard Aalen

additive hazards model with covariateM. Inference about B(t) =
(
b̃0 (t) , ba (t)

)T
for such a model

has been well studied and can be obtained using the R package TIMEREG.12 Let B∗(t) denote

Aalen’s least squares estimator of B(t) under model (4) which we provide in the Appendix for

completeness and which can be computed using TIMEREG. The proposed two-stage approach

entails in the first stage, estimating M with M̂, the fitted value of the ordinary least squares

regression of A on Z, i.e. M̂ = ĉ0 + ĉzZ, where (ĉ0, ĉz) is the ordinary least squares estimator

of (c0, cz) . The second stage then involves obtaining Aalen’s least squares estimator B̂∗(t) of

B(t), defined similarly to B∗(t), with M̂ substituted for M. Estimation under assumption (2) is

also easily accommodated in TIMEREG.12,13 However, some care is generally required to obtain

valid inferences about the regression parameter B(t), because one must acknowledge in computing

standard errors and confidence intervals, the additional uncertainty due to the first stage estimation

of M. Standard errors obtained in R will fail to appropriately account for this extra variability

and thus will tend to understate uncertainty. A simple remedy is to perform either the jackknife

or the nonparametric bootstrap, either of which will produce more accurate estimates of standard

errors.14 For completeness, we also provide in the Appendix, an analytic expression of a consistent

estimator of the corrected standard error of B̂∗(t).

Occasionally, the first stage OLS estimate (ĉ0, ĉz) may be obtained from an independent sample

to that used for the second stage estimation of (4) . This type of IV design, known as a split IV

design,15 has become quite common in Mendelian randomization studies in which genetic variants

define the IV, so that the first stage regression may be obtained in a sample that only includes data
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on the genetic variants and the phenotype defining the exposure of interest, but no information

on the outcome. The approach then entails obtaining from an independent sample, an estimate

of the causal hazards difference, by combining (ĉ0, ĉz) with genotype information in the second

sample to construct M̂, which is then used to fit the hazard model. Note that information on

phenotype A need not be available in the second sample in which the outcome is available. Also,

the split sample IV design is known in linear models to confer robustness to the weak instrumental

variable problem, in that, in the event of a (nearly) null relation between the IV and the exposure

of interest, the approach is guaranteed to deliver an effect estimate that is biased towards the

null.15 A similar robustness property is expected to hold for the above two-stage linear-additive

hazards regression analysis. An additional appeal of the split IV design is that, uncertainty in

the first stage estimation can essentially be ignored, if as in the case in the empirical example

presented below, the sample size for the first stage is considerably larger than that of the second

stage.

Control function approach

In this section, we will consider an alternative approach to two-stage regression for estimation.

Consider the sub-model of (1) which further specifies

bu(U, t) = ρ0 (t) ∆ + ε(t) (5)

where ∆ is the residual error defined in (3) , ε (t) is a random error independent of (∆, Z), which

may not have mean zero, and the unknown function ρ0 (t) is a priori unrestricted. The model

makes explicit the dependence between ∆ and U, encoded in a nonnull value of ρ0 (t) 6= 0, and

induces confounding bias. The residual error ε(t) introduces additional variability to ensure that

the relation between U and ∆ is not assumed deterministic, however, beside for independence
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with (∆, Z), the distribution of ε(t) is otherwise unrestricted (up to certain regularity conditions

provided in the Appendix). Let h(t|A,Z) denote the observed hazard function of T given (A,Z),

evaluated at t. Then, we have the following result:

RESULT 2: Under assumptions (1), (3) and (5) one has that

h(t|A,Z) = b0 (t) + ba (t)A+ ρ0 (t) ∆ (6)

for b0 (t) a baseline hazard function.

Result 2 provides an explicit parametrization of the hazard function of T conditional on A and

Z, under assumptions (1), (3) and (5) . This result shows that an appropriate model specification of

h(t|A,Z) is essentially obtained upon replacing bu(U, t) with ρ0 (t) ∆, and by allowing the baseline

hazard function b0 (t) to differ from b0 (t) . Intuitively, the residual ∆ captures any variation due

to unobserved correlates of A, not accounted for in M, that may also be associated with T, and

thus serves as a proxy measure of unobserved confounding. For this reason, "ρ0 (t) ∆” is referred

to as a control function, akin to the control function sometimes used in IV estimation of linear

and nonlinear models.5 For estimation, we propose to use ∆̂ = A − M̂ as an estimate of the

unobserved residual ∆ which we use to fit an additive hazards model, with regressors
(
A, ∆̂

)
under (8) . Such an additive hazards model can be estimated using the methods and statistical

software described in the previous section and the nonparametric bootstrap equally applies as an

approach to appropriately account for uncertainty due to in-sample estimation of ∆̂. In situations

where a split sample IV design is adopted, the first sample estimation can essentially be ignored,

when the size of the sample is much greater than that used in the second stage. Furthermore, as in

the previous section, the first stage sample does not need to include outcome data, however, unlike
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in the previous section, the second stage sample must have data collected on the IV, the exposure

and the outcome for all observations. The model is easily modified to incorporate heterogeneity

with respect to Z in the degree of confounding bias, by simply extending model (5) with the

additional covariate ∆Z, such that

bu(U, t) = (ρ0 (t) + ρ1 (t)Z) ∆ + ε(t),

where ε (t) is a random error independent of (∆, Z). This in turn yields the conditional hazard

model

h(t|A,Z) = b0 (t) + ba (t)A+ ρ0 (t) ∆ + ρ1 (t) ∆Z

such that the null hypothesis of no confounding bias, now corresponds to the joint null hypothesis

ρ0 (t) = ρ1 (t) = 0 for all t.

Finally, one may note that it suffi ces for the control function approach, that censoring is

independent of T conditional on (A,Z), a somewhat weaker independent censoring assumption

than needed for the stage regression approach.

Binary exposure

The control function approach can also be used in the context of a binary or more general dis-

crete exposure. In the simple case of a binary exposure, the methods described in the previ-

ous section apply upon estimating M with an appropriate regression model for binary data, e.g.

logitM =logitm (Z) =logitPr(A = 1|Z) = c0 + czZ. The approach can be motivated under a mod-

ified set of assumptions to account for the binary nature of the treatment. Specifically, suppose
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that

bu(U, t) = E {bu(U, t)|A,Z}+ ε(t) (7)

where ε(t) is an independent error, and both A and Z are binary. The assumption is best under-

stood if bu(U, t) = b∗u(t)U is linear in U, in which case the assumption amounts to a location shift

model for the density of U conditional on A and Z, i.e. (A,Z) are associated with U only on the

mean scale. The assumption is certain to hold say if U were normal with constant variance, but

the model also allows for a more flexible distribution. Then, we have the following result.

RESULT 3: Assuming Z is a valid binary IV and both assumptions (1) and (5) hold, one has that

h(t|A,Z) = b̃0 (t) + ba (t)A+ {ρ0 (t) + ρ1 (t)Z}∆, (8)

for b̃0 (t) a baseline hazard function, and

∆ = A− Pr(A = 1|Z).

The model of equation (8) is again an Aalen additive hazards model which can be estimated

in a manner analogous to the control function approach described in the previous section for a

continuous exposure. Although the result assumes binary Z, we may nonetheless use model (8)

with continuous Z, under an additional assumption that E {bu(U, s)|A,Z} is linear in Z.

Sensitivity analysis

We briefly describe a sensitivity analysis technique that may be used to assess the extent to which a

violation of the exclusion restriction might impact inference. The approach is motivated by noting
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that a violation of the assumption can be encoded by modifying the Aalen model (1) as followed

h (t|A,U, Z) = b0 (t) + ba (t)A+ bz (t)Z + bu(U, t)

whereby bz (t) encodes the causal effect of Z on T on the additive hazards scale, so that bz (t) = 0 for

all t recovers model (1) , while bz (t) 6= 0 for some t implies violation of the exclusion restriction.

The function bz (t) cannot be identified from the model, and entails a sensitivity parameter. To

fix ideas, it is convenient to take bz (t)=bz independent of t. A sensitivity analysis is then obtained

by setting bz to a specific value b∗z 6= 0 and to obtain inferences under the assumed departure from

the exclusion restriction. This can be achieved by simply including the term "b∗zZ” as a known

offset to the additive hazards model which may then be estimated via either two stage regression

or the control function approach. A sensitivity analysis is obtained by varying the assumed value

b∗z and subsequently obtaining inferences about the effect of A for each assumed value.

Covariate Adjustment

Suppose that one has collected a vector of pre-exposure confounders X of the effects of (Z,A)

on Y. In this section, we show how the proposed IV methods are easily modified to incorporate

X. Formal justification for the approach is relegated to the Appendix. The first stage regression

model can be formulated as followed to make explicit the dependence on X,

A = c0 + czZ + c
T

xX + ∆ (9)

where cx encodes the regression association of X with A conditional on Z, and ∆ is assumed to be

independent of Z given X. In the Appendix, we show that under certain assumptions, the second
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stage regression obtained in Result 1 can be modified to account for X using the more general

Aalen model

h̃(t|Z,X) = b̃0 (t) + ba (t)M + b
T

x (t)X (10)

with M = m(X,Z) = c0 + czZ + c
T

xX and b
T

x (t) encoding the effect of X on the hazard of

T at t, conditional on M on the additive hazards scale. Two stage estimation using the above

regression models can be implemented in R using the same procedure as previously described

without additional diffi culty. The control function approach can also be modified along the same

lines, by fitting the regression model

h(t|A,Z) = b0 (t) + ba (t)A+ b
T

x (t)X + ρ0 (t) ∆ (11)

instead of (8) . Formal justification for this modification can be obtained for continuous A by

replacing assumption (5) with

bu(U,X, t) = ρ (t) ∆ + b
T

x (t)X + ε(t) (12)

where ε (t) is a random error independent of (∆, Z,X). We briefly note that previous state as-

sumptions about censoring will need to be modified by also conditioning on X.

IV for Cox proportional hazards model

Suppose that the underlying failure time outcome follows the proportional hazards model

h (t|A,U, Z) = h0 (t) exp (baA+ bu(U, t)) (13)

where ba is the log-hazards ratio encoding the effect of exposure, and bu(U, t) denotes the effect of an
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unmeasured confounder U at time t, so that COV (∆,U |Z) 6= 0, where ∆ is given by the exposure

model (3) , and Z is independent of U. Equation (13) also encodes the exclusion restriction by

defining the left hand-side conditional on (A,Z, U), while the right-hand side does not depend on

Z. In the following, we focus on the fairly common setting, of a rare outcome, which we encode by

near unity conditional survival curve throughout follow-up:

S(t|A,U, Z) = P (T ≥ t|A,U, Z)

≈ 1

for all t during follow-up. Let f (T |A,U, Z) denote the density of T given (A,U, Z) , and recall

that the conditional hazard function is defined as h (t|A,U, Z) = f (t|A,U, Z) /S(t|A,U, Z). Then,

we have that:

f (t|A,U, Z) = h (t|A,U, Z)S(t|A,U, Z)

≈ h (t|A,U, Z)

Likewise, by the rare disease assumption,

f (t|Z) = E [f (t|A,U, Z) |Z]

= h (t|Z)S(t|Z)

≈ h (t|Z)
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therefore under the exposure model (3) , one obtains:

h (t|Z) ≈ E [h (t|A,U, Z) |Z]

= E [h0 (t) exp (baA+ bu (U, t)) |Z]

= E [h0 (t) exp (baM + ba∆ + bu (U, t)) |Z] by equation (3)

= h∗0 (t) exp (baM) by independence of (U,∆) with Z. (14)

where h∗0 (t) = E [exp (ba∆ + bu (U, t))]h0 (t). The above derivation formally justifies the use of

two stage regression analysis, analogous to the two stage procedure previously described for the

Aalen model, whereby the fitted value M̂ obtained via standard OLS, is used as a regressor in

place ofM in the standard Cox proportional hazards regression defined with equation (14) , which

can then be estimated via standard maximum partial likelihood. A similar argument provides

justification for the use of a control function approach for Cox regression under rare disease. In

this vein, suppose that bu(U, t) follows equation (5) , so that

h (t|A,Z) ≈ E [h (t|A,U, Z) |A,Z]

= E [h0 (t) exp (baA+ bu (U, t)) |A,Z]

= E [h0 (t) exp (baA+ ρ (t) ∆ + ε(t)) |A,Z]

= h∗∗0 (t) exp (baA+ ρ (t) ∆)

where h∗∗0 (t) = h0 (t)E [exp (ε(t))] .One immediately recovers a standard Cox proportional hazards

model by letting ρ (t) = ρ, so that (ρ, ba) can be estimated via standard maximum partial likelihood,

upon substituting ∆̂ for ∆. For inference, we recommend either the jackknife or the nonparametric

bootstrap. It is also fairly straightforward to incorporate covariate adjustment in an analogous
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manner to the additive hazards setting, details are omitted.

Intuition for the above results for Cox regression can be gained upon noting that a Cox regres-

sion analysis is essentially a loglinear regression for the risk of the outcome performed repeatedly

over the follow-up period, among persons that remain at risk for the outcome. For a rare outcome,

the joint distribution of the instrumental variable, the unobserved confounder and the exposure in

view, is nearly stable across risk sets, so that the IV assumptions are ensured to hold within each

risk set, and the exclusion restriction is satisfied within each risk set. The framework then essen-

tially reduces to IV for loglinear regression analysis, for which two stage regression has previously

been shown to apply under assumptions analogous to those considered here.16

Empirical illustration.

The prevalence of type 2 diabetes mellitus (T2DM) is increasing across all age groups in the

United States possibly as a consequence of the obesity epidemic.17,18 In addition, no decline has

been observed in the excess mortality among persons suffering from T2DM relative to persons

without T2DM.19 Obtaining an unbiased estimate of the mortality risk associated with T2DM is

key to predicting the future health burden in the population and to evaluate the effectiveness of

possible public health interventions.

In order to illustrate the proposed instrumental variable approach for survival analysis, we used

data from the Health and Retirement Survey (HRS), a public survey with repeated assessments

every 2 years initiated in 1992, to investigate the mortality risk associated with T2DM being instru-

mented by externally validated, genetic predictors of T2DM. HRS is a well-documented nationally

representative sample of individuals 50 years of age or older and their spouses.10 Genotype data was

collected on a subset of HRS respondents in 2006 and 2008. Genotyping was completed on the Illu-

mina Omni-2.5 chip platform and imputed using the 1000G phase 1 reference panel and filed with
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the Database for Genotypes and Phenotypes (dbGaP, study accession number: phs000428.v1.p1)

in April 2012. Exact information on the process performed for quality control is available via

HRS and dbGaP21.20 From the 12,123 HRS participants for whom genotype data was available,

we restricted the sample to 8,446 Non-Hispanic Whites with valid self-reported diabetes status at

baseline. For deaths occurring between 1998-2008 the date of death was confirmed through the

National Death Index. Mortality status for 2008-2010 was obtained by interviewing surviving rela-

tives. Follow-up was determined as years since sampling of DNA (2006 or 2008 respectively). The

current analysis was exempt by the Institutional Review Board at the Harvard School of Public

Health.

We used the control function approach discussed previously to estimate the relationship between

diabetes status (coded 1 for diabetic and 0 otherwise) on Mortality. As genetic instrument we

used 39 independent single nucleotide polymorphisms previously established to be significantly

associated with T2DM.21 In addition we created a polygenic risk score calculated on the basis of

these 39 established genetic variants and their “external” effect size based on the meta-analysis

of 34,840 T2DM cases and 114,981 controls from Morris et al.21 The polygenic risk score was

calculated by multiplying each log odds ratio coeffi cient by the corresponding number of risk

alleles and summing across the products.

For comparison, we first performed an observational analysis, which entailed fitting a standard

Aalen additive hazards model for T2DM. Next, we implemented the proposed control function

instrumental variable approach, which is appropriate for binary endogenous variable. In addition

to the first stage residual, we also adjusted for possible effect heterogeneity of the degree of selection

bias by including an interaction between the first stage residual and the first stage risk score. All

regression models further adjusted for: age, sex and the top four genomewide principal components

to account for possible population stratification. Inferences were based on 5000 nonparametric
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bootstrap samples.

Participants were on average 68.5 years old (Standard Deviation (SD): 10.4) at baseline and

1,891 self-reported diabetics (22.4%). The average follow-up time was 4.10 years (SD = 1.10). In

total we observed 644 deaths over 34035 person-years. The 39 SNPs jointly included in a first stage

logistic regression model to predict diabetes status explained 3.4 % of the variation in diabetes in

the study sample (Nagelkerke R2).

Table 1 shows results from both observational and IV analyses. In the observational analysis,

being diabetic was associated with an increase in the hazard rate of beta=0.03 (95%-Confidence

Interval (95%-CI): 0.025 —0.035) per person-year. This means approximately 3 additional deaths

occured for each year of follow-up for every hundred diabetic persons, than for every hundred

diabetic-free persons. The genetic IV approach produced a notably larger effect associated with

T2DM, with a T2DM increase in the mortality rate of beta = 0.08 (95%CI: 0.075 —0.090) per

person-year, nearly three times the rate estimated by the observational additive hazards model.

We obtained further evidence of significant negative confounding bias reflected by an association

between the first stage residual and mortality rate, beta=-0.023 (95%CI:-0.028,-0.017), as well as

marginal evidence of confounding bias heterogeneity beta=-0.024 (95%CI:-0.052,0.001).

Using the external genetic risk score as a single IV gave essentially the same results, which are
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not reported.

Closing remarks

In this paper, the authors describe an instrumental variable framework of inference about causal

effects of a continuous or binary exposure on a right censored failure time under an additive hazards

regression model. Two strategies for estimation are described, a two stage regression approach for

continuous exposure, similar to two stage least squares commonly used in linear regression IV

settings, and a control function approach that equally applies for binary and continuous exposure.

A notable distinction from the classical linear regression setting is that, in the current context

unlike in the latter, the first stage regression model for the exposure must be correctly specified

in order for the proposed methods to generally remain valid. An important exception holds for

the two stage regression approach under the null hypothesis of no causal effect of A, in which case

the first stage regression can be mis-specified without altering the nominal type 1 error rate of the

corresponding test statistic. A variety of extensions of the methods are also discussed, including a

simple strategy for covariate adjustment, and a sensitivity analysis approach for assessing the extent

to which a violation of the exclusion restriction assumption could impact inference. In certain

settings, both the exposure of interest and the instrumental variable may be time-updated, in which

case, the methods described above may not directly apply. Instrumental variable estimation of the

joint effects of time-updated exposures present several challenges beyond the scope of the current

manuscript, and to the best of our knowledge, methods are currently not available to address these

challenges for either the additive hazards model, or the Cox proportional hazards model studied

herein, although IV methods for joint effects are available under alternative modeling assumptions,

such as the semiparametric accelerated failure time model.22 However, available methods for the

semiparametric accelerated failure time model, whether for point or time varying exposures, may be
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computationally challenging in practice, because they sometimes require censoring a set of subjects

(defined according to the causal parameter) whose event time was observed for unbiasedness.

In the point exposure scenario, alternative IV methods have been proposed under a structural

proportional hazards model,23,24 which do not require artificial censoring and which do not rely

on a rare disease assumption, however, in contrast with the methods we have developed herein

for a proportional hazards model, earlier proposals were limited to either binary instrumental

variable or binary exposure variable.23,24 In a more recent proposal, MacKenzie and colleagues

use an instrumental variable to estimate a Cox proportional hazards model subject to additive

unobserved confounding.25 Specifically, they specify a so-called additive multiplicative hazards

model,26,27

h (t|A,U, Z) = h0 (t) exp (baA) + bu(U, t)) (15)

with the key restriction

E {bu(U, t)|T (a) ≥ t} = 0 (16)

where T (a) is the potential outcome of T under treatment a. The model combines features of

models (1) and (13) since it incorporates both an additive effect of U and a multiplicative effect of

A. The restriction (16) ensures that the marginal hazard model of T (a) follows a Cox proportional

hazards model. The authors note that this restriction is generally satisfied if bu(U, t) can be written

d(t)U + ln mgfU {d(t)} , where mgfU stands for the moment generating function of U. Under such

unobserved confounding, the authors show that a valid IV can be used to recover a consistent

estimator of ba. Although interesting this model may be more contrived than initially meets the

eye, because supposing that U were observed, assumptions (15) and (16) imply that the conditional

hazard function of T (a) at time t given U does not only depend on the value of U , but further

depends on the underlying distribution of the unobserved confounder. For instance, if U were
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normally distributed N(µ, σ2U), we would have ln mgfU {d(t)} = µd(t) + σ2Ud(t)2/2. The model

would then imply that the density of T conditional on (A,U) is made to depend explicitly on the

parameters (µ, σ2U) of the density of the covariate U. Such a parametrization is nonstandard and

somewhat artificial in the sense that it would not naturally be entertained by an analyst if U were

in fact observed.

Finally, the control function approach described in this paper may also be seen as an extension

of the two stage residual inclusion (2SRI) approach of Terza et al.28 In order to ease a comparison

between the two methods, it is helpful to restate the key assumption underlying 2SRI within our

context using our notation. This is easiest achieved by simply replacing equation (5) with the more

restrictive model:

bu(U, t) = ρ0 (t) ∆ (17)

obtained by setting ε(t) ≡ 0 for all t, thus essentially assuming the relationship between U and ∆

is deterministic. This assumption may be unrealistic in most health related applications, since it

essentially rules out the existence of any other (unobserved) cause of A, that like Z may not be

directly related to the outcome, a possibility that cannot generally be ruled out with certainty. By

allowing for ε(t) in equation (5) avoids this type of restriction. It is also notable that assumption

(17) may be overly restrictive for binary (or discrete) A, since the distribution of the residual ∆

is completely determined by the mean M(Z) of A, and therefore the IV assumption that Z is

independent of U is not compatible with the model. In this paper, we have provided an alternative

formulation of the control function approach for binary A, which circumvents this diffi culty.
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APPENDIX

Aalen’s least squares estimator: Consider the Aalen additive hazards model:

h (t|C) = B′
T

(s)C

with C a vector of covariates with first entry equal to 1, to encode the baseline hazard function.

Let R(t) denote the at risk process at time t. The least squares estimator of B′ (t) due to Aalen

can be written:

B̂′ (t) =

{∑
i

Ri(t)CiC
T
i

}−1∑
i

CidNi(t)

where G−1 denotes the inverse of the matrix G, and dNi(t) is the counting process associated with

Ti, at time t.

A consistent estimator of the asymptotic variance:We use notation V = c0 + czZ and let M(t) be

the martingale with respect to the filtration where V is also observed. Let also c = (c0, cz), we

then have n1/2(ĉ− c) = n−1/2
∑

i ε
c
i + op (1), where the εci’s are zero-mean iid terms.

Let V̂i = ĉ(1, Zi)
T and V̂ (t) be the n × 2-matrix with ith row (Ri(t), Ri(t)V̂i). The estimator

of B(t) = (B̃0(t), Ba(t))
T is therefore

B̂(t) =

∫ t

0

{V̂ (t)T V̂ (t)}−1V̂ (t)TdN(t),

where N(t) is the vector counting processes. We have

Ri(t)V̂i = Ri(t) Vi +Ri(t)(ĉ− c)(1, Zi)T ,
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and

n−1V̂ (t)T V̂ (t), n−1V (t)TV (t)

are therefore asymptotically equivalent since ĉ is a consistent estimator of c. Throughout, we freely

assume without formally stating the necessary regularity conditions hold to establish asymptotic

stochastic convergence results.29 Then, we can further write

V̂ (t)TdN(t) = V (t)TdN(t) + {0, (ĉ− c)
∑
i

Ri(t)(1, Zi)
TdNi(t)}T .

But then

n1/2B̂(t) =

∫ t

0

{n−1V̂ (t)T V̂ (t)}−1n−1/2V̂ (t)TdN(t)

=

∫ t

0

{n−1V (t)TV (t)}−1n−1/2V (t)TdN(t)

+

∫ t

0

{n−1V (t)TV (t)}−1{0, n1/2(ĉ− c)n−1
∑
i

Ri(t)(1, Zi)
TdNi(t)}T ,

and

∫ t

0

{n−1V (t)TV (t)}−1n−1/2V (t)TdN(t) = n1/2B(t) +

∫ t

0

{n−1V (t)TV (t)}−1n−1/2V (t)TdM(t).

Hence,

n1/2{B̂(t)−B(t)} =

∫ t

0

{n−1V (t)TV (t)}−1n−1/2V (t)TdM(t)

+

∫ t

0

{n−1V (t)TV (t)}−1{0, n1/2(ĉ− c)n−1
∑
i

Ri(t)(1, Zi)
TdNi(t)}T

+ oP (1).
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This gives us that

n1/2{B̂(t)−B(t)} = n−1/2
∑
i

εBi (t),

where the εBi (t) are iid zero-mean processes that can be estimated by

ε̂Bi (t) =

∫ t

0

{n−1V̂ (s)T V̂ (s)}−1Yi(s)(1, V̂i)TdM̂i(s)

+

∫ t

0

{n−1V̂ (t)T V̂ (t)}−1{0, ε̂cin−1
∑
i

Ri(t)(1, Zi)
TdNi(t)}T .

with dM̂i(t) = dNi(t)−Ri(t)(1, V̂i)dB̂(t) and

ε̂ci = {n−1(1, Zi)T (1, Zi)}−1(1, Zi)TAi.

Hence the variance of B̂(t) is consistently estimated by
∑

i ε̂
B
i (t){ε̂Bi (t)}T . We can likewise construct

uniform confidence bands and do testing investigating for instance the hypothesis H0 : ba(t) = ba.

The first term of ε̂Bi (t) is the usual martingale term pretending that c is known while the second

term gives the needed extra variation due to that c is estimated.

Proof of Result 1: We consider a more general model which allows for covariates X. In this vein,

suppose that conditional on (U,X,Z) , the hazard function of T follows the semiparametric Aalen

model

h (t|A,U,X,Z) = b0 (s) + ba (s)A+ bx,u(X,U, s)
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The corresponding survival function is given by

S (t|A,U,X,Z) = exp

{
−
∫ t

0

[b0 (s) + ba (s)A+ bx,u(X,U, s)] ds

}
= exp

{
−
∫ t

0

b0 (s) + ba (s)Mds

}
× exp

{
−
∫ t

0

ba (s) ∆ + bx,u(X,U, s)ds

}

which induces the following survival function at time t conditional on (X,Z) upon marginalization

with respect to (A,U):

S (t|X,Z) = E [S (t|A,U,X,Z) |X,Z]

= exp

{
−
∫ t

0

[b0 (s) + ba (s)M ] ds

}
× E

[
exp

{
−
∫ t

0

[ba (s) ∆ + bx,u(X,U, s)] ds

}
|X,Z

]
= exp

{
−
∫ t

0

[b0 (s) + ba (s)M ] ds+Q(t,X)

}

where

Q(t,X) = logE

[
exp

{
−
∫ t

0

[ba (s) ∆ + bx,u(X,U, s)] ds

}
|X,Z

]
= logE

[
exp

{
−
∫ t

0

[ba (s) ∆ + bx,u(X,U, s)] ds

}
|X
]

In the absence of covariates, one recovers the result given in the text, where

b̃0 (t) = b0 (t)− ∂Q(t)

∂t
= b0 (t)−

∂ logE
[
exp

{
−
∫ t
0

[ba (s) ∆ + bx,u(U, s)] ds
}]

∂t

More generally, in the presence of covariates, one obtains the additive hazard function:

h̃(t|Z,X) = b0 (t) + ba (t)M −
∂ logE

[
exp

{
−
∫ t
0

[ba (s) ∆ + bx,u(U, s)] ds
}
|X
]

∂t
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which reduces to equation (10) under linear specification of the above function,i.e.

b0 (t)−
∂ logE

[
exp

{
−
∫ t
0

[ba (s) ∆ + bx,u(U, s)] ds
}
|X
]

∂t
= b̃0 (t) + b

T

x (t)X

Proof of Result 2: To allow for covariates, suppose the following Aalen additive hazards model

holds:

h (t|A,U, Z) = b0 (t) + ba (t)A+ bu(U, t)

and further assume (9) and (12) hold, then:

h (t|A,U,X,Z) = b0 (s) + ba (s)A+ bx,u(X,U, s)

= b0 (s) + ba (s)A+ ρ (t) ∆ + b
T

x (t)X + ε(t)

The corresponding survival function is then given by

S (t|A,U,X,Z) = exp

{
−
∫ t

0

[
b0 (s) + ba (s)A+ ρ (s) ∆ + b

T

x (s)X + ε(s)
]
ds

}
= exp

{
−
∫ t

0

[
b0 (s) + ba (s)A+ ρ (s) ∆ + b

T

x (s)X
]
ds

}
× exp

{
−
∫ t

0

ε(s)ds

}

This in turn induces the conditional survival curve given (A,X,Z)

S (t|A,X,Z) = exp

{
−
∫ t

0

[
b0 (s) + ba (s)A+ ρ (s) ∆ + b

T

x (s)X
]
ds

}
× E

[
exp

{
−
∫ t

0

ε(s)ds

}]
= exp

{
−
∫ t

0

[
b0 (s) + ba (s)A+ ρ (s) ∆ + b

T

x (s)X
]
ds+ logE

[
exp

{
−
∫ t

0

ε(s)ds

}]}
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with corresponding hazard function

b0 (t) + ba (t)A+ ρ (t) ∆ + b
T

x (t)X

where

b0 (t) = b0 (t)−
∂ logE

[
exp

{
−
∫ t
0
ε(s)ds

}]
∂t

Proof of Result 3: Under assumptions (1) and (5) one has that

S (t|A,U,X,Z) = exp

{
−
∫ t

0

[b0 (s) + ba (s)A+ E {bu(U, s)|A,Z}+ ε(s)] ds

}
= exp

{
−
∫ t

0

[b0 (s) + ba (s)A+ E {bu(U, s)|A,Z} − E {bu(U, s)|Z}] ds
}

exp

{
−
∫ t

0

(ε(s)− E {bu(U, s)|Z}) ds
}

= exp

{
−
∫ t

0

[b0 (s) + ba (s)A+ (ρ0 (s) + ρ1 (s)Z) (A−m(Z))] ds

}
exp

{
−
∫ t

0

(ε(s)− E {bu(U, s)}) ds
}

where

ρ0 (s) = E {bu(U, s)|A = 1, Z = 0} − E {bu(U, s)|A = 0, Z = 0}

ρ1 (s) = E {bu(U, s)|A = 1, Z = 1} − E {bu(U, s)|A = 0, Z = 1}

− E {bu(U, s)|A = 1, Z = 0}+ E {bu(U, s)|A = 0, Z = 0}
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and we use the fact that for binary A and Z,

E {bu(U, s)|A,Z} = [E {bu(U, s)|A = 1, Z} − E {bu(U, s)|0, Z}]A

+ E {bu(U, s)|0, Z}

= {E {bu(U, s)|A = 1, Z = 1} − E {bu(U, s)|0, Z = 1}

−E {bu(U, s)|A = 1, Z = 0}+ E {bu(U, s)|0, Z = 0}}ZA

+ E {bu(U, s)|A = 1, Z = 0} − E {bu(U, s)|0, Z = 0}A

+ [E {bu(U, s)|0, Z = 1} − E {bu(U, s)|0, Z = 0}]Z

+ E {bu(U, s)|0, Z = 0}

and

E {bu(U, s)|Z} = E {bu(U, s)}

by the independence property of the IV with U. We may conclude that

S (t|A,X,Z) = E {S (t|A,U,X,Z) |A,X,Z}

= exp

{
−
∫ t

0

[b0 (s) + ba (s)A+ (ρ0 (s) + ρ1 (s)Z) (A−m(Z))] ds

}
E

[
exp

{
−
∫ t

0

(ε(s)− E {bu(U, s)}) ds
}]

= exp

{
−
∫ t

0

[
b̃0 (t) + ba (s)A+ (ρ0 (s) + ρ1 (s)Z) ∆

]
ds

}

with

b̃0 (t) = b0 (t)−
∂ logE

[
exp

{
−
∫ t
0

[ε(s)− E {bu(U, s)}] ds
}]

∂t

proving the result.
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