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Entering the Era of Data Science: Targeted
Learning and the Integration of Statistics and

Computational Data Analysis

Mark J. van der Laan and Richard J.C.M. Starmans

Abstract

This outlook article will appear in Advances in Statistics and it reviews the re-
search of Dr. van der Laan’s group on Targeted Learning, a subfield of statistics
that is concerned with the construction of data adaptive estimators of user-supplied
target parameters of the probability distribution of the data and corresponding con-
fidence intervals, aiming to only rely on realistic statistical assumptions. Targeted
Learning fully utilizes the state of the art in machine learning tools, while still pre-
serving the important identity of statistics as a field that is concerned with both ac-
curate estimation of the true target parameter value and assessment of uncertainty
in order to make sound statistical conclusions. We also provide a philosophical
historical perspective on Targeted Learning, also relating it to the new develop-
ments in Big Data. We conclude with some remarks explaining the immediate
relevance of Targeted Learning to the current big data movement.



1 Introduction

In Section 2 we start out with reviewing some basic statistical concepts such
as data probability distribution, statistical model, and target parameter, al-
lowing us to define the field Targeted Learning, a sub-field of statistics that
develops data adaptive estimators of user supplied target parameters of data
distributions based on high dimensional data under realistic assumptions (e.g.,
incorporating the state of the art in machine learning) while preserving sta-
tistical inference. This also allows us to clarify how Targeted Learning distin-
guishes from typical current practice in data analysis that relies on unrealistic
assumptions, and describe the key ingredients of targeted minimum loss based
estimation (TMLE), a general tool to achieve the goals set out by Targeted
Learning: a substitution estimator, construction of initial estimator through
super-learning, targeting of the initial estimator to achieve asymptotic linearity
with known influence curve by solving the efficient influence curve estimating
equation, and statistical inference in terms of a normal limiting distribution.

Targeted learning resurrects the pillars of statistics such as that a model
represents actual knowledge about the data generating experiment and that a
target parameter represents the feature of the data generating distribution we
want to learn from the data. In this manner, targeted learning defines a truth,
and sets a scientific standard for estimation procedures, while current practice
typically defines a parameter as a coefficient in a misspecified parametric model
(e.g., logistic linear regression, repeated measures generalized linear regression)
or small unrealistic semi parametric regression models (e.g., Cox proportional
hazards regression), where different choices of such misspecified models yield
different answers. This lack of truth in current practice, supported by state-
ments such as ”All models are wrong but some are useful”, allows a user to
make arbitrary choices even though these choices result in different answers
to the same estimation problem. In fact, this lack of truth in current practice
presents a fundamental drive behind the epidemic of false positives and lack
of power to detect true positives our field is suffering from. In addition, this
lack of truth makes many of us question the scientific integrity of the field we
call statistics and makes it impossible to teach statistics as a scientific disci-
pline, even though the foundations of statistics, including a very rich theory,
are purely scientific. That is, our field has suffered from a disconnect between
the theory of statistics and the practice of statistics, while practice should
be driver by relevant theory and theoretical developments should be driven
by practice. For example, a theorem establishing consistency and asymptotic
normality of a maximum likelihood estimator for a parametric model that is
known to be misspecified is not a relevant theorem for practice since the true
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data generating distribution is not captured by this theorem.
Defining the statistical model to actually contain the true probability dis-

tribution has enormous implications for the development of valid estimators.
For example, maximum likelihood estimators are now ill defined due to the
curse of dimensionality of the model. In addition, even regularized maximum
likelihood estimators are seriously flawed: A general problem with maximum
likelihood based estimators is that the estimate the density of the data dis-
tribution, where the maximum likelihood criterion only cares about how well
the density estimators fits the true density, resulting in a wrong trade-off for
the actual target parameter of interest. From a practical perspective, when
we use AIC, BIC, or cross-validated log-likelihood to select variables in our
regression model, then that procedure is ignorant of the specific feature of the
data distribution we want to estimate. That is, in large statistical models it is
immediately apparent that estimators need to be targeted towards their goal,
just like a human being learns the answer to a specific question in a targeted
manner, and maximum likelihood based estimators fail to do that.

In Section 3 we review the roadmap for targeted learning of a causal quan-
tity, involving defining a causal model and causal quantity of interest, estab-
lishing an estimand of the data distribution that equals the desired causal
quantity under additional causal assumptions, applying the pure statistical
targeted learning of the relevant estimand based on a statistical model com-
patible with the causal model but for sure containing the true data distribution,
and careful interpretation of the results. In Section 4 we proceed with describ-
ing our proposed targeted minimum loss-based estimation (TMLE) template,
which represents a concrete template for construction of targeted efficient sub-
stitution estimators which are not only asymptotically consistent, asymptoti-
cally normally distributed, and asymptotically efficient, but are also tailored to
have robust finite sample performance. Subsequently, in Section 5 we review
some of our most important advances in Targeted Learning, demonstrating the
remarkable power and flexibility of this TMLE methodology, and in Section 6
we describe future challenges and areas of research. In Section 7 we provide a
historical philosophical perspective of Targeted Learning. Finally, in Section
8 we conclude with some remarks, putting Targeted Learning in the context
of the modern era of Big Data.

We refer to our papers and book on targeted learning for overviews of
relevant parts of the literature that put our specific contributions within the
field of Targeted Learning in the context of the current literature, thereby
allowing us to focus on targeted learning itself in the current outlook article.
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2 Targeted Learning

Our research takes place in a sub-field of statistics we named Targeted Learn-
ing (82; 47). In statistics the data (O1, . . . , On) on n units is viewed as a
realization of a random variable, or equivalently, an outcome of a particular
experiment, and thereby has a probability distribution P n

0 , often called the
data distribution. For example, one might observe Oi = (Wi, Ai, Yi) on a
subject i, where Wi are baseline characteristics of the subject, Ai is a binary
treatment or exposure the subject received, and Yi is a binary outcome of
interest such as an indicator of death, i = 1, . . . , n. Throughout this article
we will use this data structure to demonstrate the concepts and estimation
procedures.

2.1 Statistical model

A statistical model Mn is defined as a set of possible probability distribu-
tions for the data distribution, and thus represents the available statistical
knowledge about the true data distribution P n

0 . In Targeted Learning, this
core-definition of the statistical model is fully respected in the sense that
one should define the statistical model to contain the true data distribution:
P n

0 ∈ Mn. So contrary to the often conveniently used slogan ”All models are
wrong, but some are useful” and erosion over time of the original true meaning
of a statistical model throughout applied research, Targeted Learning defines
the model for what it actually is (59). If there is truly no statistical knowl-
edge available, then the statistical model is defined as all data distributions.
A possible statistical model is the model that assumes that (O1, . . . , On) are
n independent and identically distributed random variables with completely
unknown probability distribution P0, representing the case that the sampling
of the data involved repeating the same experiment independently. In our ex-
ample, this would mean that we assume that (Wi, Ai, Yi) are independent with
a completely unspecified common probability distribution. For example, if W
is 10 dimensional, while A and Y are two dimensional, then P0 is described
by a 12-dimensional density, and this statistical model does not put any re-
strictions on this 12-dimensional density. One could factorize this density of
(W,A, Y ) as follows:

p0(W,A, Y ) = pW,0(W )pA|W,0(A | W )pY |A,W,0(Y | A,W ),

where pW,0 is the density of the marginal distribution of W , pA|W,0 is the
conditional density of A, given W , and pY |A,W,0 is the conditional density of Y ,
given A,W . In this model, each of these factors are unrestricted. On the other
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other hand, suppose now that the data is generated by a randomized controlled
trial in which we randomly assign treatment A ∈ {0, 1} with probability 0.5 to
a subject. In that case, the conditional density of A, given W , is known, but
the marginal distribution of the covariates and the conditional distribution of
the outcome, given covariates and treatment, might still be unrestricted. Even
in an observational study, one might know that treatment decisions where only
based on a small subset of the available covariates W , so that it is known that
pA|W,0(1 | W ) only depends on W through these few covariates. In the case
that death Y = 1 represents a rare event, it might also be known that the
probability of death PY |A,W (1 | A,W ) is known to be between 0 and some
small number (e.g., 0.03). This restriction should then be included in the
model M.

In various applications, careful understanding of the experiment that gen-
erated the data might show that even these rather large statistical models
assuming the the data generating experiment equals the independent repeti-
tion of a common experiment is too small to be true: see (69; 11; 10; 74; 71) for
models in which (O1, . . . , On) is a joint random variable described by a single
experiment, which nonetheless involves a variety of conditional independence
assumptions. That is, the typical statement that O1, . . . , On are independent
and identically distributed (i.i.d.) might already represent a wrong statistical
model. For example, in a community randomized trial it is often the case
that the treatments are assigned by the following type of algorithm: based
on the characteristics (W1, . . . ,Wn), one first applies an algorithm that aims
to split the n communities in n/2 pairs that are similar w.r.t. baseline char-
acteristics, subsequently, one randomly assigns treatment and control to each
pair. Clearly, even when the communities would have been randomly sampled
from a target population of communities, the treatment assignment mecha-
nism creates dependence so that the data generating experiment cannot be
described as an independent repetition of experiments: see (74) for a detailed
presentation.

In a study in which one observes a single community of n interconnected
individuals one might have that the outcome Yi for subject i is not only affected
by the subject’s past (Wi, Ai), but also affected by the covariate and treatment
of friends of subject i. Knowing the friends of each subject i would now
impose strong conditional independence assumptions on the density of the data
(O1, . . . , On), but one cannot assume that the data is a result of n independent
experiments: in fact, as in the community randomized trial example, such data
sets have sample size 1 since the data can only be described as the result of a
single experiment (71).

In group sequential randomized trials, one often may use a randomization
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probability for a next recruited i-th subject that depends on the observed
data of the previously recruited and observed subjects O1, . . . , Oi−1, which
makes the treatment assignment Ai a function of O1, . . . , Oi−1. Even when
the subjects are sampled randomly from a target population, this type of
dependence between treatment Ai and the past data O1, . . . , Oi−1 implies that
the data is the result of a single large experiment (again, the sample size equals
1) (69; 11; 10).

Indeed, many realistic statistical models only involve independence and
conditional independence assumptions, and known bounds (e.g., it is known
that the observed clinical outcome is bounded between [0,1] or the conditional
probability of death is bounded between 0 and a small number). Either way, if
the data distribution is described by a sequence of independent (and possibly
identical) experiments or by a single experiment satisfying a variety of con-
ditional independence restrictions, parametric models, although representing
common practice, are practically always invalid statistical models since such
knowledge about the data distribution is essentially never available.

An important by-product of requiring that the statistical model needs to
be truthful is that one is forced to obtain as much knowledge about the ex-
periment before committing to a model, which is precisely the role a good
statistician should play. On the other hand, if one commits to a parametric
model, then why would one still bother trying to find out the truth about the
data generating experiment?

2.2 Target Parameter

The target parameter is defined as a mapping Ψ : Mn → IRd that maps the
data distribution into the desired finite dimensional feature of the data distri-
bution one wants to learn from the data: ψn0 = Ψ(P n

0 ). This choice of target
parameter requires careful thought independent from the choice of statistical
model, and is not a choice made out of convenience. The use of parametric
or semi-parametric models such as the Cox-proportional hazards model are
often accompanied with the implicit statement that the unknown coefficients
represent the parameter of interest. Even in the unrealistic scenario that these
small statistical models would be true, there is absolutely no reason why the
very parametrization of the data distribution should correspond with the tar-
get parameter of interest. Instead, the statistical model Mn and the choice
of target parameter Ψ :Mn → IRd are two completely separate choices, and,
by no means, one should imply the other. That is, the statistical knowledge
about the experiment that generated the data and defining what we hope to
learn from the data are two important key steps in science that should not be
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convoluted. The true target parameter value ψn0 is obtained by applying the
target parameter mapping Ψ to the true data distribution P n

0 , and represents
the estimand of interest.

For example, if Oi = (Wi, Ai, Yi) are independent and have common proba-
bility distribution P0, then one might define the target parameter as an average
of the conditional W -specific treatment effects:

ψ0 = Ψ(P0) = EP0{EP0(Y | A = 1,W )− EP0(Y | A = 0,W )}.

By using that Y is binary, this can also be written as follows:

ψ0 =

∫
w

{PY |A,W,0(1 | A = 1,W = w)− PY |A,W,0(1 | A = 0,W = w)}PW,0(dw),

where PY |A,W,0(1 | A = a,W = w) denotes the true conditional probability of
death, given treatment A = a and covariate W = w.

For example, suppose that the true conditional probability of death is given
by some logistic function:

PY |A,W (1 | A,W ) =
1

1 + exp(−m0(A,W ))

for some function m0 of treatment A and W . The reader can plug-in a possible
form for m0 such as m0(a, w) = 0.3a+0.2w1 +0.1w1w2 +aw1w2w3. Given this
function m0, the true value ψ0 is computed by the above formula as follows:

ψ0 =

∫
w

(
1

1 + exp(−m0(1, w))
− 1

1 + exp(−m0(0, w))

)
PW,0(dw).

This parameter ψ0 has a clear statistical interpretaion as the average of all the
w-specific additive treatment effects {PY |A,W,0(1 | A = 1,W = w)−PY |A,W,0(1 |
A = 0,W = w)}.

2.3 The important role of models also involving non-
testable assumptions

However, this particular statistical estimand ψ0 has an even richer interpreta-
tion if one is willing to make additional so called causal (non-testable) assump-
tions. Let’s assume that W,A, Y are generated by a set of so called structural
equations:

W = fW (UW )

A = fA(W,UA)

Y = fY (W,A,UY ),
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where U = (UW , UA, UY ) are random inputs following a particular unknown
probability distribution, while the functions fW , fA, fY deterministically map
the realization of the random input U = u sequentially into a realization
of W = fW (uW ), A = fA(W,uA), Y = fY (W,A, uy). One might not make
any assumptions about the form of these functions fW , fA, fY . In that case,
these causal assumptions put no restrictions on the probability distribution
of (W,A, Y ), but through these assumptions we have parametrized P0 by a
choice of functions (fW , fA, fY ) and a choice of distribution of U . Pearl (35)
refers to such assumptions as a structural causal model for the distribution of
(W,A, Y ).

This structural causal model allows one to define a corresponding post-
intervention probability distribution that corresponds with replacing A =
fA(W,UA) by our desired intervention on the intervention node A. For ex-
ample, a static intervention A = 1 results in a new system of equations
W = fW (UW ), A = 1, Y1 = fY (W, 1, UY ), where this new random variable
Y1 is called a counterfactual outcome or potential outcome corresponding with
intervention A = 1. Similarly, one can define Y0 = fY (W, 0, UY ). Thus, Y0

(Y1) represent the outcome on the subject one would have seen if the subject
would have been assigned treatment A = 0 (A = 1). One might now define
the causal effect of interest as E0Y1 − E0Y0, i.e. the difference between the
expected outcome of Y1 and the expected outcome of Y0. If one also assumes
that A is independent of UY , given W , which is often referred to as the assump-
tion of no unmeasured confounding or the randomization assumption, then it
follows that ψ0 = E0Y1 − E0Y0. That is, under the structural causal model,
including this no unmeasured confounding assumption, ψ0 cannot only be in-
terpreted purely statistically as an average of conditional treatment effects,
but it actually equals the marginal additive causal effect.

In general, causal models or, more generally, sets of non-testable assump-
tions, can be used to define underlying target quantities of interest, and cor-
responding statistical target parameters that equal this target quantity under
these assumptions. Well known classes of such models are models for censored
data in which the observed data is represented as a many to one mapping
on the full data of interest and censoring variable, and the target quantity is
a parameter of the full data distribution. Similarly, causal inference models
represent the observed data as a mapping on counterfactuals and the observed
treatment (either explicitly as in the Neyman-Rubin model or implicitly as
in the Pearl structural causal models), and one defines the target quantity
as a parameter of the distribution of the counterfactuals. One is now often
concerned with providing sets of assumptions on the underlying distribution
(i.e., of the full-data) that allow identifiability of the target quantity from
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the observed data distribution (e.g. coarsening at random or randomization
assumption). These non testable assumptions do not change the statistical
model M and, as a consequence, once one has defined the relevant estimand
ψ0, do not affect the estimation problem either.

2.4 Estimation problem

The estimation problem is defined by the statistical model (i.e., (O1, . . . , On) ∼
P n

0 ∈ Mn), and choice of target parameter (i.e., Ψ : Mn → IR). Targeted
learning is now the field concerned with the development of estimators of
the target parameter that are asymptotical consistent as the number of units
n converges to infinity, and whose appropriately standardized version (e.g.,√
n(ψn − ψn0 )) converges in probability distribution to some limit probability

distribution (e.g., normal distribution), so that one can construct confidence
intervals that for large enough sample size n contain with a user supplied
high probability the true value of the target parameter. In the case that
O1, . . . , On ∼iid P0, a common method for establishing asymptotic normality of
an estimator is to demonstrate that the estimator minus truth can be approx-
imated by an empirical mean of a function of Oi. Such an estimator is called
asymptotically linear at P0. Formally, an estimator ψn is asymptotically linear
under i.id.. sampling from P0 if ψn − ψ0 = 1

n

∑n
i=1 IC(P0)(Oi) + oP (1/

√
n),

where O → IC(P0)(O) is the so called influence curve at P0. In that case,
the central limit theorem teaches us that

√
n(ψn − ψ0) converges to a normal

distribution N(0, σ2) with variance σ2 = EP0IC(P0)(O)2 defined as the vari-
ance of the influence curve. An asymptotic 0.95-confidence interval for ψ0 is
then given by ψn±1.96σn/

√
n, where σ2

n is the sample variance of an estimate
ICn(Oi) of the true influence curve IC(P0)(Oi), i = 1, . . . , n.

The empirical mean of the influence curve IC(P0) of an estimator ψn rep-
resents the first order linear approximation of the estimator as a functional
of the empirical distribution, and the derivation of the influence curve is a
by-product of the application of the so called functional delta-method for sta-
tistical inference based on functionals of the empirical distribution (18; 83; 19).
That is, the influence curve IC(P0)(O) of an estimator, viewed as a mapping
from the empirical distribution Pn into the estimated value Ψ̂(Pn), is defined
as the directional derivative at P0 in the direction (Pn=1 − P0), where Pn=1 is
the empirical distribution at a single observation O.
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2.5 Targeted Learning respects both local and global
constraints of the statistical model

Targeted learning is not just satisfied with asymptotic performance such as
asymptotic efficiency. Asymptotic efficiency requires fully respecting the local
statistical constraints for shrinking neighborhoods around the true data distri-
bution implied by the statistical model, defined by the so called tangent space
generated by all scores of parametric submodels through P n

0 (5), but it does
not require respecting the global constraints on the data distribution implied
by the statistical model (e.g., see (21)). Instead Targeted Learning pursues the
development of such asymptotically efficient estimators that also have excellent
and robust practical performance by also fully respecting the global constraints
of the statistical model. In addition, Targeted Learning is also concerned with
the development of confidence intervals with good practical coverage. For
that purpose, our proposed methodology for Targeted Learning, so called tar-
geted minimum loss based estimation discussed below, does not only result in
asymptotically efficient estimators, but the estimators 1) utilize unified cross-
validation to make practically sound choices for estimator construction that
actually work well with the very data set at hand (75; 84; 76; 80; 38), 2)
focusses on the construction of substitution estimators that by definition also
fully respect the global constraints of the statistical model, and 3) uses influ-
ence curve theory to construct targeted computer friendly estimators of the
asymptotic distribution, such as the normal limit distribution based on an
estimator of the asymptotic variance of the estimator.

Let’s succinctly review the immediate relevance to Targeted Learning of
the above mentioned basic concepts: influence curve, efficient influence curve,
substitution estimator, cross-validation and super-learning. For the sake of
discussion, let’s consider the case that the n observations are independent and
identically distributed: Oi ∼i.i.d. P0 ∈ M, and Ψ : M → IRd can now be
defined as a parameter on the common distribution of Oi, but each of the
concepts have a generalization to dependent data as well (e.g., see (71)).

2.6 Targeted Learning is based on a substitution esti-
mator

Substitution estimators are estimators that can be described as the target
parameter mapping applied to an estimator of the data distribution that is
an element of the statistical model. More generally, if the target parameter is
represented as a mapping on a part Q0 = Q(P0) of the data distribution P0

(e.g. factor of likelihood), then a substitution estimator can be represented
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as Ψ(Qn), where Qn is an estimator of Q0 that is contained in the parameter
space {Q(P ) : P ∈ M} implied by the statistical model M. Substitution
estimators are known to be particularly robust by fully respecting that the
true target parameter is obtained by evaluating the target parameter mapping
on this statistical model. For example, substitution estimators are guaranteed
to respect known bounds on the target parameter (e.g. it is a probability or
difference between two probabilities) as well as known bounds on the data
distribution implied by the model M.

In our running example, we can define Q0 = (QW,0, Q̄0), where QW,0 is the
probability distribution of W under P0, and Q̄0(A,W ) = EP0(Y | A,W ) is
the conditional mean of the outcome, given the treatment and covariates, and
represent the target parameter

ψ0 = Ψ(Q0) = EQW,0
{Q̄0(1,W )− Q̄0(0,W )}

as a function of the conditional mean Q̄0 and the probability distribution QW,0

of W . The model M might restrict Q̄0 to be between 0 and a small number
delta < 1, but otherwise puts no restrictions on Q0. A substitution estimator
is now obtained by plugging in the empirical distribution QW,n for QW,0 and a
data adaptive estimator 0 < Q̄n < δ of the regression Q̄0:

ψn = Ψ(QW,n, Q̄n) = 1/n
n∑
i=1

{Q̄n(1,Wi)− Q̄n(0,Wi)}.

Not every type of estimator is a substitution estimator. For example, an
inverse probability of treatment type estimator of ψ0 could be defined as

ψn,IPTW =
1

n

n∑
i=1

2Ai − 1

Gn(Ai | Wi)
Yi,

where Gn(· | W ) is an estimator of the conditional probability of treatment
G0(· | W ). This is clearly not a substitution estimator. In particular, if
Gn(Ai | Wi) is very small for some observations, this estimator might not be
between −1 and 1, and thus completely ignores known constraints.

2.7 Targeted estimator relies on data adaptive estima-
tor of nuisance parameter

The construction of targeted estimators of the target parameter requires con-
struction of an estimator of infinite dimensional nuisance parameters, specif-
ically the initial estimator of the relevant part Q0 of the data distribution in
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the TMLE, and the estimator of the nuisance parameter G0 = G(P0) that is
needed to target the fit of this relevant part in the TMLE. In our running
example, we have Q0 = (QW,0, Q̄0) and the G0 is the conditional distribution
of A, given W .

2.8 Targeted Learning uses super-learning to estimate
the nuisance parameter

In order to optimize these estimators of the nuisance parameters (Q0, G0), we
use a so called super-learner that is guaranteed to asymptotically outperform
any available procedure by simply including it in the library of estimators that
is used to define the super-learner.

The super-learner is defined by a library of estimators of the nuisance
parameter, and uses cross-validation to select the best weighted combination
of these estimators. The asymptotic optimality of the super-learner is implied
by the oracle inequality for the cross-validation selector that compares the
performance of the estimator that minimizes the cross-validated risk over all
possible candidate estimators with the oracle selector that simply selects the
best possible choice (as if one has available an infinite validation sample).
The only assumption this asymptotic optimality relies upon is that the loss
function used in cross-validation is uniformly bounded, and that the number of
algorithms in the library does not increase at a faster rate than a polynomial
power in sample size when sample size converges to infinity (75; 84; 76; 80; 38)
However, cross-validation is a method that goes beyond optimal asymptotic
performance, since the cross-validated risk measures the performance of the
estimator on the very sample it is based upon, making it a practically very
appealing method for estimator selection.

In our running example, we have that Q̄0 = arg minQ̄EP0L(Q̄)(O), where
L(Q̄) = (Y − Q̄(A,W ))2 is the squared error loss, or, one can also use the
log-likelihood loss L(Q̄)(O) = −{Y log Q̄(A,W ) + (1− Y ) log(1− Q̄(A,W ))}.
Usually, there are a variety of possible loss functions one could use to define
the super-learner: the choice could be based on the dissimilarity implied by
the loss function (75), but probably should itself be data adaptively selected
in a targeted manner. The cross-validated risk of a candidate estimator of Q̄0

is then defined as the empirical mean over a validation sample of the loss of
the candidate estimator fitted on the training sample, averaged across differ-
ent spits of the sample in a validation and training sample. A typical way to
obtain such sample splits is so called V-fold cross-validation in which one first
partitions the sample in V subsets of equal size, and each of the V subsets play
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the role of a validation sample while its complement of V − 1 subsets equals
the corresponding training sample. Thus, V -fold cross-validation results in
V sample splits into a validation sample and corresponding training sample.
A possible candidate estimator is a maximum likelihood estimator based on a
logistic linear regression working model for P (Y = 1 | A,W ). Different choices
of such logistic linear regression working models result in different possible can-
didate estimators. So in this manner one can already generate a rich library
of candidate estimators. However, the statistics and machine learning litera-
ture has also generated lots of data adaptive estimators based on smoothing,
data adaptive selection of basis functions, and so on, resulting in another large
collection of possible candidate estimators that can be added to the library.
Given a library of candidate estimators, the super-learner selects the estima-
tor that minimizes the cross-validated risk over all the candidate estimators.
This selected estimator is now applied to the whole sample to give our final
estimate Q̄n of Q̄0. One can enrich the collection of candidate estimators by
taking any weighted combination of an initial library of candidate estimators,
thereby generating a whole parametric family of candidate estimators.

Similarly, one can define a super-learner of the conditional distribution of
A, given W .

The super-learner’s performance improves by enlarging the library. Even
though for a given data set, one of the candidate estimators will do as well
as the super-learner, across a variety of data sets, the super-learner beats an
estimator that is betting on particular subsets of the parameter space con-
taining the truth or allowing good approximations of the truth. The use of
super-learner provides on important step in creating a robust estimator whose
performance is not relying on being lucky but on generating a rich library so
that a weighted combination of the estimators provides a good approximation
of the truth, wherever the truth might be located in the parameter space.

2.9 Asymptotic efficiency

An asymptotically efficient estimator of the target parameter is an estimator
that can be represented as the target parameter value plus an empirical mean
of a so called (mean zero) efficient influence curve D∗(P0)(O), up till a second
order term that is asymptotically negligible (5). That is, an estimator is
efficient if and only if it is asymptotically linear with influence curve D(P0)
equal to the efficient influence curve D∗(P0):

ψn − ψ0 =
1

n

n∑
i=1

D∗(P0)(Oi) + oP (1/
√
n).
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The efficient influence curve is also called the canonical gradient and is
indeed defined as the canonical gradient of the pathwise derivative of the tar-
get parameter Ψ : M → IR. Specifically, one defines a rich family of one
dimensional submodels {P (ε) : ε} through P at ε = 0, and one represents the
pathwise derivative d

dε
Ψ(P (ε))

∣∣
ε=0

as an inner product (the covariance opera-
tor in the Hilbert space of functions of O with mean zero and inner product
〈h1, h2〉 = EPh1(O)h2(O)) EPD(P )(O)S(P )(O), where S(P ) is the score of
the path {P (ε) : ε}, and D(P ) is a so called gradient. The unique gradient that
is also in the closure of the linear span of all scores generated by the family of
one dimensional submodels through P , also called the tangent space at P , is
now the canonical gradient D∗(P ) at P . Indeed, the canonical gradient can be
computed as the projection of any given gradient D(P ) onto the tangent space
in the Hilbert space L2

0(P ). An interesting result in efficiency theory is that
an influence curve of a regular asymptotically linear estimator is a gradient.

In our running example, it can be shown that the efficient influence curve
of the additive treatment effect Ψ :M→ IR is given by

D∗(P0)(O) =
2A− 1

G0(A | W )
(Y −Q̄0(A,W ))+Q̄0(1,W )−Q̄0(0,W )−Ψ(Q0). (1)

As noted earlier, the influence curve IC(P0) of an estimator ψn also charac-
terizes the limit variance σ2

0 = P0IC(P0)2 of the mean zero normal limit distri-
bution of

√
n(ψn−ψ0). This variance σ2

0 can be estimated with 1/n
∑n

i=1 ICn(Oi)
2,

where ICn is an estimator of the influence curve IC(P0). Efficiency theory
teaches us that for any regular asymptotically linear estimator ψn its influ-
ence curve has a variance that is larger or equal than the variance of the
efficient influence curve, σ2∗

0 = P0D
∗(P0)2, which is also called the gener-

alized Cramer-Rao lower bound. In our running example, the asymptotic
variance of an efficient estimator is thus estimated with the sample vari-
ance of an estimate D∗n(Oi) of D∗(P0)(Oi) obtained by plugging in the es-
timator Gn of G0 and the estimator Q̄n of Q̄0, and Ψ(Q0) is replaced by
Ψ(Qn) = 1

n

∑n
i=1(Q̄n(1,Wi)− Q̄n(0,Wi)).

2.10 Targeted Estimator solves the efficient influence
curve equation

The efficient influence curve is a function of O that depends on P0 through
Q0 and possible a nuisance parameter G0, and it can be calculated as the
canonical gradient of the pathwise derivative of the target parameter mapping
along paths through P0. It is also called the efficient score. Thus, given the
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statistical model and target parameter mapping, one can calculate the efficient
influence curve whose variance defines the best possible asymptotic variance
of an estimator, also referred to as the generalized Cramer-Rao lower bound
for the asymptotic variance of a regular estimator. The principal building
block for achieving asymptotic efficiency of a substitution estimator Ψ(Qn),
beyond Qn being an excellent estimator of Q0 as achieved with super-learning,
is that the estimator Qn solves the so called efficient influence curve equation∑n

i=1 D
∗(Qn, Gn)(Oi) = 0, for a good estimator Gn of G0. This property

cannot be expected to hold for a super-learner, and that is why the TMLE
discussed in Section 4 involves an additional update of the super-learner that
guarantees that it solves this efficient influence curve equation.

For example, maximum likelihood estimators solve all score equations, in-
cluding this efficient score equation that targets the target parameter, but
maximum likelihood estimators for large semi parametric modelsM typically
do not exist for finite sample sizes. Fortunately, for efficient estimation of
the target parameter one should only be concerned with solving this par-
ticular efficient score tailored for the target parameter. Using the notation
Pf ≡

∫
f(o)dP (o) for the expectation operator, one way to understand why

the efficient influence curve equation indeed targets the true target parameter
value is that there are many cases in which P0D

∗(P ) = Ψ(P0) − Ψ(P ), and,
in general, as a consequence of D∗(P ) being a canonical gradient,

P0D
∗(P ) = Ψ(P0)−Ψ(P ) +R(P, P0), (2)

where R(P, P0) = o(‖ P − P0 ‖) is a term involving second order differences
(P −P0)2. This key property explains why solving P0D

∗(P ) = 0 targets Ψ(P )
to be close to Ψ(P0), and thus explains why solving PnD

∗(Qn, Gn) = 0 targets
Qn to fit Ψ(Q0).

In our running example, we have R(P, P0) = R1(P, P0)−R0(P, P0), where

Ra(P, P0) =
∫
w

(G−G0)(a|W )
G(a|W )

(Q̄ − Q̄0)(a,W )dPW,0(w). So in our example, the

remainder R(P, P0) only involves a cross-product difference (G−G0)(Q̄− Q̄0).
In particular, the remainder equals zero if either G = G0 or Q = Q0, which
is often referred to as double robustness of the efficient influence curve w.r.t.
(Q,G) in the causal and censored data literature (see e.g. (81)). This property
translates into double robustness of estimators that solve the efficient influence
curve estimating equation.

Due to this identity (2), an estimator P̂ that solves PnD
∗(P̂ ) = 0, and is

in a local neighborhood of P0 so that R(P̂ , P0) = oP (1/
√
n), approximately

solves Ψ(P̂ )−Ψ(P0) ≈ (Pn−P0)D∗(P̂ ) where the latter behaves a a mean zero
centered empirical mean with minimal variance that will be approximately
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normally distributed. This is formalized in an actual proof of asymptotic
efficiency in the next subsection.

2.11 Targeted estimator is asymptotically linear and ef-
ficient

In fact, combining PnD
∗(Qn, Gn) = 0 with (2) at P = (Qn, Gn) yields

Ψ(Qn)−Ψ(Q0) = (Pn − P0)D∗(Qn, Gn) +Rn,

where Rn is a second order term. Thus, if second order differences such as
(Qn−Q0)2, (Qn−Q0)(Gn−G0) and (Gn−G0)2 converge to zero at a rate faster
than 1/

√
n, then it follows that Rn = oP (1/

√
n). To make this assumption

as reasonable as possible one should use super-learning for both Qn and Gn.
In addition, empirical process theory teaches us that (Pn − P0)D∗(Qn, gn) =
(Pn−P0)D∗(Q0, g0)+oP (1/

√
n) if P0{D∗(Qn, Gn)−D∗(Q0, G0)}2 converges to

zero in probability as n converges to infinity (a consistency condition), and if
D∗(Qn, Gn) falls in a so called Donsker class of functions O → f(O) (83). An
important Donsker class is the class of all d-variate real valued functions that
have a uniform sectional variation norm that is bounded by some universal
M < ∞: that is, the variation norm of the function itself and the variation
norm of its sections are all bounded by this M < ∞. This Donsker class
condition essentially excludes estimators Qn, Gn that heavily over fit the data
so that their variation norms converge to infinity as n converges to infinity.
So under this Donsker class condition, Rn = oP (1/

√
n), and the consistency

condition, we have

ψn − ψ0 =
1

n

n∑
i=1

D∗(Q0, G0)(Oi) + oP (1/
√
n).

That is, ψn is asymptotically efficient. In addition, the right-hand side con-
verges to a normal distribution with mean zero and variance equal to the
variance of the efficient influence curve. So, in spite of the fact that the ef-
ficient influence curve equation only represents a finite dimensional equation
for an infinite dimensional object Qn, it implies consistency of Ψ(Qn) up till a
second order term Rn, and even asymptotic efficiency if Rn = oP (1/

√
n) under

some weak regularity conditions.
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3 Road map for targeted learning of causal

quantity or other underlying full-data tar-

get parameters.

This is a good moment to review the roadmap for targeted learning. We have
formulated a roadmap for Targeted Learning of a causal quantity that provides
a transparent roadmap (47; 35; 37), involving the following steps:

• Defining a full-data model such as a causal model and a parameterization
of the observed data distribution in terms of the full-data distribution
(e.g., the Neyman-Rubin-Robins counterfactual model (34; 53; 54; 24;
41; 42)) or the structural causal model (35));

• Defining the target quantity of interest as a target parameter of the
full-data distribution;

• Establishing identifiability of the target quantity from the observed data
distribution under possible additional assumptions that are not neces-
sarily believed to be reasonable;

• Committing to the resulting estimand and the statistical model that is
believed to contain the true P0;

• A sub-roadmap for the TMLE discussed below to construct an asymptot-
ically efficient substitution estimator of the statistical target parameter;

• Establishing an asymptotic distribution and corresponding estimator of
this limit distribution to construct a confidence interval;

• Honest interpretation of the results, possibly including a sensitivity anal-
ysis (52; 40; 57; 17).

That is, the statistical target parameters of interest are often constructed
through the following process. One assumes an underlying model of proba-
bility distributions, we will call the full-data model, and one defines the data
distribution in terms of this full-data distribution. This can be thought of as
modeling: i.e. one obtains a parameterization M = {Pθ : θ ∈ Θ} for the
statistical model M for some underlying parameter space Θ and parameteri-
zation θ → Pθ. The target quantity of interest is defined as some parameter
of the full-data distribution, i.e., of θ0. Under certain assumptions one es-
tablishes that the target quantity can be represented as a parameter of the
data distribution, a so called estimand: such a result is called an identifiability
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result for the target quantity. One might now decide to use this estimand as
the target parameter and develop a TMLE for this target parameter. Under
the non-testable assumptions the identifiability result relied upon, the esti-
mand can be be interpreted as the target quantity of interest, but importantly
it can always be interpreted as a statistical feature of the data distribution
(due to the statistical model being true), possibly of independent interest. In
this manner, one can define estimands that are equal to a causal quantity of
interest defined in an underlying (counterfactual) world. The TMLE of this
estimand, which is only defined by the statistical model and the target param-
eter mapping, and thus ignorant of the non-testable assumptions that allowed
the causal interpretation of the estimand, provides now an estimator of this
causal quantity. In this manner, Targeted Learning is in complete harmony
with the development of models such as causal and censored data models and
identification results for underlying quantities: the latter just provides us with
a definition of a target parameter mapping and statistical model, and thereby
the pure statistical estimation problem that needs to be addressed.

4 Targeted Minimum Loss Based Estimation

(TMLE)

The TMLE (82; 69; 47) is defined according to the following steps. Firstly,
one writes the target parameter mapping as a mapping applied to a part of
the data distribution P0, say Q0 = Q(P0), that can be represented as the
minimizer of a criterion at the true data distribution P0 over all candidate
values {Q(P ) : P ∈M} for this part of the data distribution: we refer to this
criterion as the risk RP0(Q) of the candidate value Q.

Typically, the risk at a candidate parameter value Q can be defined as the
expectation under the data distribution of a loss function (O,Q) 7→ L(Q)(O)
that maps the unit data structure and the candidate parameter value in a
real value number: RP0(Q) = EP0L(Q)(O). Examples of loss functions are
the squared error loss for a conditional mean and the log-likelihood loss for a
(conditional) density. This representation of Q0 as a minimizer of a risk allows
us to estimate it with (e.g., loss-based) super-learning.

Secondly, one computes the efficient influence curve (O,P ) 7→ D∗(Q(P ), G(P ))(O)
identified by the canonical gradient of the pathwise derivative of the target pa-
rameter mapping along paths through a data distribution P , where this effi-
cient influence curve does only depend on P through Q(P ) and some nuisance
parameter G(P ). Given an estimator Gn, one now defines a path {Qn,Gn(ε) : ε}
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with Euclidean parameter ε through the super-learner Qn whose score

d

dε
L(Qn,Gn(ε))

∣∣∣∣
ε=0

at ε = 0 spans the efficient influence curve D∗(Qn, Gn) at the initial estimator
(Qn, Gn): this is called a least-favorable parametric submodel through the
super-learner.

In our running example, we have Q = (Q̄, QW ) so that it suffices to con-
struct a path through Q̄ and QW with corresponding loss functions and show
that their scores span the efficient influence curve (1. We can define the path
{Q̄G(ε) = Q̄ + εC(G) : ε}, where C(G)(O) = (2A − 1)/G(A | W ) and loss
function L(Q̄)(O) = −{Y log Q̄(A,W )+(1−Y ) log(1− Q̄(A,W ))}. Note that

d

dε
L(Q̄G(ε))(O)

∣∣∣∣
ε=0

= D∗Y (Q̄, G) =
2A− 1

G(A | W )
(Y − Q̄(A,W )).

We also define the path QW (ε) = (1 + εD∗W (Q̄, QW ))QW with loss-function
L(QW )(W ) = − logQW (W ), where D∗W (Q)(O) = Q̄(1,W )− Q̄(0,W )−Ψ(Q).
Note that

d

dε
L(QW (ε))

∣∣∣∣
ε=0

= D∗W (Q).

Thus, if we define the sum loss function L(Q) = L(Q̄) + L(QW ), then

d

dε
L(Q̄G(ε), QW (ε))

∣∣∣∣
ε=0

= D∗(Q,G).

This proves that indeed these proposed paths through Q̄ and QW and corre-
sponding loss-functions span the efficient influence curve D∗(Q,G) = D∗W (Q)+
D∗Y (Q̄, G) at (Q,G), as required.

The dimension of ε can be selected to be equal to the dimension of the
target parameter ψ0, but by creating extra components in ε one can arrange to
solve additional score equations beyond the efficient score equation, providing
important additional flexibility and power to the procedure. In our running
example, we can use an ε1 for the path through Q̄ and a separate ε2 for the
path through QW . In this case, the TMLE update Q∗n will solve two score
equations PnD

∗
W (Q∗n) = 0 and PnD

∗
Y (Q̄∗n, Gn) = 0, and thus, in particular,

PnD
∗(Q∗n, Gn) = 0. In this example, the main benefit of using a bivariate

ε = (ε1, ε2) is that the TMLE does not update QW,n (if selected to be the
empirical distribution) and converges in a single step.

One fits the unknown parameter ε of this path by minimizing the empirical
risk ε→ PnL(Qn,Gn(ε)) along this path through the super-learner, resulting in
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an estimator εn. This defines now an update of the super-learner fit defined as
Q1
n = Qn,Gn(εn). This updating process is iterated till εn ≈ 0. The final update

we will denote with Q∗n, the TMLE of Q0, and the target parameter mapping
applied to Q∗n defines the TMLE of the target parameter ψ0. This TMLE
Q∗n solves the efficient influence curve equation

∑n
i=1 D

∗(Q∗n, Gn)(Oi) = 0,
providing the basis (in combination with statistical properties of (Q∗n, Gn)
for establishing that the TMLE Ψ(Q∗n) is asymptotically consistent, normally
distributed and asymptotically efficient, as shown above.

In our running example, we have ε1n = arg minε PnL(Q̄0
n,Gn

(ε)), while
ε2n = arg minPnL(QW,n(ε2)) equals zero. That is, the TMLE does not update
QW,n since the empirical distribution is already a nonparametric maximum
likelihood estimator solving all score equations. In this case Q̄∗n = Q̄1

n since
the convergence of the TMLE-algorithm occurs in one step, and, of course,
Q∗W,n = QW,n is just the initial empirical distribution function of W1, . . . ,Wn.
The TMLE of ψ0 is the substitution estimator Ψ(Q∗n).

5 Advances in Targeted Learning

As apparent from the above presentation, TMLE is a general method that
can be developed for all types of challenging estimation problems. It is a
matter of representing the target parameters as a parameter of a smaller Q0,
defining a path and loss-function with generalized score that spans the efficient
influence curve, and the corresponding iterative targeted minimum loss-based
estimation algorithm.

We have used this framework to develop TMLE in a large number of es-
timation problems that assumes that O1, . . . , On ∼iid P0. Specifically, we
developed TMLE of a large variety of effects (e.g., causal) of a single and mul-
tiple time point interventions on an outcome of interest that may be subject to
right-censoring, interval censoring, case-control sampling, and time-dependent
confounding: see e.g. (4; 69; 45; 46; 48; 29; 30; 31; 3; 33; 39; 49; 77; 62; 20;
50; 85; 12; 13; 15; 14; 16; 63; 70; 64; 28; 23; 22; 36; 7; 6; 56; 32; 27; 26; 65; 25;
87; 90; 89; 56; 8).

An original example of a particular type of TMLE (based on a double
robust parametric regression model) for estimation of a causal effect of a point-
treatment intervention was presented in (58) and we refer to (50) for a detailed
review of this earlier literature and its relation to TMLE.

It is beyond the scope of this overview article to get into a review of some
of these examples. For a general comprehensive book on Targeted Learning,
which includes many of these applications on TMLE and more, we refer to
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(47).
To provide the reader with a sense, consider generalizing our running exam-

ple to a general longitudinal data structureO = (L(0), A(0), . . . , L(K), A(K), Y ),
where L(0) are baseline covariates, L(k) are time dependent covariates realized
between intervention nodes A(k − 1) and A(k), and Y is the final outcome of
interest. The intervention nodes could both include censoring variables as well
as treatment variables: the desired intervention for the censoring variables is
always ”no censoring” since the outcome Y is only of interest when it is not
subject to censoring (in which case it might just be a forward imputed value,
for example).

One may now assume a structural causal model of the type discussed earlier
and be interested in the mean counterfactual outcome under a particular inter-
vention on all the intervention nodes, where these interventions could be static,
dynamic or even stochastic. Under the so called sequential randomization as-
sumption, this target quantity is identified by the so called G-computation
formula for the post-intervention distribution corresponding with a stochastic
intervention g∗:

P0,g∗(O) =
K+1∏
k=0

P0,L(k)|L̄(k−1),Ā(k−1)(L(k) | L̄(k − 1), Ā(k − 1))

K∏
k=0

g∗k(A(k) | Ā(k − 1), L̄(k)).

Note that this post-intervention distribution is nothing else than the actual
distribution of O factorized according to the time-ordering but with the true
conditional distributions of A(k), given L̄(k), Ā(k−1)), replaced by the desired
stochastic intervention. The statistical target parameter is thus EP0,g∗Yg∗ , i.e.,
the mean outcome under this post-intervention distribution. A big challenge in
the literature has been to develop robust efficient estimators of this estimand,
and, more generally, one likes to estimate this mean outcome under a user
supplied class of stochastic interventions g∗. Such robust efficient substitution
estimators have now been developed using the TMLE framework (23; 36),
where the latter is a TMLE inspired by important double robust estimators
established in earlier work of (2). This work thus includes causal effects de-
fined by working marginal structural models for static and dynamic treatment
regimens, time to event outcomes, incorporating right-censoring,

In many data sets one is interested in assessing the effect of one variable on
an outcome, controlling for many other variables, across a large collection of
variables. For example, one might want to know the effect of a single nucleotide
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polymorphism (SNP) on a trait of a subject across a whole genome, controlling
each time for a large collection of other SNP’s in the neighborhood of the SNP
in question. Or one is interested in assessing the effect of a mutation in the HIV
virus on viral load drop (measure of drug resistance) when treated with a par-
ticular drug class, controlling for the other mutations in the HIV virus and for
characteristics of the subject in question. Therefore, it is important to carefully
define the effect of interest for each variable. If the variable is binary, one could
use the target parameter Ψ(P ) = EP{EP (Y | A = 1,W )−EP (Y | A = 0,W )}
in our running example, but with A now being the SNP in question and W
being the variables one wants to control for, while Y is the outcome of interest.
We often refer to such a measure as a particular variable importance measure.
Of course, one now defines such a variable importance measure for each vari-
able. When the variable is continuous, the above measure is not appropriate.
In that case, one might define the variable importance as the projection of
EP (Y | A,W ) − EP (Y | A = 0,W ) onto a linear model such as βA, and use
β as the variable importance measure of interest (9), but one could think of a
variety of other interesting effect measures. Either way, for each variable, one
uses a TMLE of the corresponding variable importance measure. The stacked
TMLE across all variables is now an asymptotically linear estimator of the
stacked variable importance measure with stacked influence curve, and thus
approximately follows a multivariate normal distribution that can be estimated
from the data. One can now carry out multiple testing procedures controlling
a desired family wise type I error rate and construct simultaneous confidence
intervals for the stacked variable importance measure, based on this multivari-
ate normal limit distribution. In this manner, one uses targeted learning to
target a large family of target parameters while still providing honest statis-
tical inference taking into account multiple testing. This approach deals with
a challenge in machine learning in which one wants estimators of a prediction
function that simultaneously yield good estimates of the variable importance
measures. Examples of such efforts are random forest and LASSO, but both
regression methods fail to provide reliable variable importance measures, and
fail to provide any type of statistical inference. The truth is that if the goal
is not prediction but to obtain a good estimate of the variable importance
measures across the variables, then one should target the estimator of the pre-
diction function towards the particular variable importance measure, for each
variable separately, and only then one obtains valid estimators and statistical
inference. For TMLE of effects of variables across a large set of variables, a so
called variable importance analysis, including the application to genomic data
sets we refer to: (66; 67; 68; 85; 86; 9).

Software has been developed in the form of general R-packages implement-
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ing super-learning and TMLE for general longitudinal data structures: these
packages are publicly available on CRAN under the function names tmle(),
ltmle(), and superlearner().

Beyond the development of TMLE in this large variety of complex statisti-
cal estimation problems, as usual, the careful study of real world applications
resulted in new challenges for the TMLE, and in response to that we have
developed general TMLE that have additional properties dealing with these
challenges. In particular, we have shown that TMLE has the flexibility and
capability to enhance the finite sample performance of TMLE under the fol-
lowing specific challenges that come with real data applications.

Dealing with rare outcomes: If the outcome is rare, then the data is still
sparse even though the sample size might be quite large. When the data is
sparse w.r.t. the question of interest, the incorporation of global constraints
of the statistical model becomes extremely important and can make a real
difference in a data analysis. Consider our running example and suppose that
Y is the indicator of a rare event. In such cases it is often known that the
probability of Y = 1, conditional on a treatment and covariate configuration,
should not exceed a certain value δ > 0: e..g, the marginal prevalence is known
and it is known that there are no subpopulations that increase the relative risk
by more than a certain factor relative marginal prevalence. So the statistical
model should now include the global constraint that Q̄0(A,W ) < δ for some
known δ > 0. A TMLE should now be based on an initial estimator Q̄n

satisfying this constraint, and the least favorable submodel {Q̄n,Gn(ε) : ε}
should also satisfy this constraint for each ε so that it is a real submodel. In
(1) such a TMLE is constructed and it is demonstrated to very significantly
enhance its practical performance for finite sample sizes. Even though a TMLE
ignoring this constraint would still be asymptotically efficient, by ignoring this
important knowledge, its practical performance for finite samples suffers.

Targeted Estimation of nuisance parameter G0 in TMLE: Even though
an asymptotically consistent estimator Gn of G0 yields an asymptotically ef-
ficient TMLE, the practical performance of the TMLE might be enhanced by
tuning this estimator Gn not only w.r.t. to its performance in estimating G0,
but also w.r.t. how well the resulting TMLE fits ψ0. Consider our running
example. Suppose that among the components of W there is a Wj that is an
almost perfect predictor of A, but has no effect on the outcome Y . Inclusion of
such a covariate Wj in the fit of Gn makes sense if the sample size is very large
and one tries to remove some residual confounding due to not adjusting for
Wj, but in most finite samples adjustment for Wj in Gn will hurt the practical

22

http://biostats.bepress.com/ucbbiostat/paper327



performance of TMLE, and effort should be put in variables that are stronger
confounders than Wj. We developed a method for building an estimator Gn

that uses as criterion the change in fit between initial estimator of Q0 and the
updated estimator (i.e., the TMLE), and thereby selects variables that result
in the maximal increase in fit during the TMLE updating step. However,
eventually, as sample size converges to infinity, all variables will be adjusted
for so that asymptotically the resulting TMLE is still efficient. This version
of TMLE is called the collaborative TMLE since it fits G0 in collaboration
with the initial estimator Qn (47; 77; 23; 62; 20). Finite sample simulations
and data analyses have shown remarkable important finite sample gains of
C-TMLE relative to TMLE (see above references).

Cross-validated TMLE: The asymptotic efficiency of TMLE relies on a
so called Donsker class condition. For example, in our running example, it
requires that Q̄n and Gn are not too erratic functions of (A,W ). This condition
is not just theoretical but one can observe its effects in finite samples by
evaluating the TMLE when using a heavily over fitted initial estimator. This
makes sense, since if we use an over fitted initial estimator, there is little
reason to think that the εn that maximizes the fit of the update of the initial
estimator along the least favorable parametric model will still do a good job.
Instead, one should use the fit of ε that maximizes a honest estimate of the
fit of the resulting update of the initial estimator as measured by the cross-
validated empirical mean of the loss function. This insight results in a so called
cross-validated TMLE, and we have proven that one can establish asymptotic
linearity of this CV-TMLE without a Donsker class condition (88; 47);: thus
the CV-TMLE is asymptotically linear under weak conditions than the TMLE.

Guaranteed minimal performance of TMLE: If the initial estimatorQn is
inconsistent, but Gn is consistent, then the TMLE is still consistent for models
and target parameters in which the efficient influence curve is double robust.
However, there might be other estimators that will now asymptotically beat
the TMLE, since the TMLE is not efficient anymore. The desire for estimators
to have a guarantee to beat certain user supplied estimators was formulated
and implemented for double robust estimating equation based estimators in
(51). Such a property can also be arranged within the TMLE framework by
incorporating additional fluctuation parameters in its least favorable submodel
though the initial estimator so that the TMLE solves additional score equa-
tions that guarantee that it beats a user supplied estimator, even under heavy
misspecification of the initial estimator Qn (23; 25).
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Targeted selection of initial estimator in TMLE: In situations where it
is unreasonable to expect that the initial estimator Qn will be close to the true
Q0, such as in randomized controlled trials in which the sample size is small,
one may improve the efficiency of the TMLE by using a criterion for tuning the
initial estimator that directly evaluates the efficiency of the resulting TMLE of
ψ0. This general insight was formulated as empirical efficiency maximization in
(55) and further worked out in the TMLE context in chapter 12 and Appendix
of (47).

Double robust inference: If the efficient influence curve is double robust,
then the TMLE remains consistent if either Qn or Gn is consistent. However, if
one uses a data adaptive consistent estimator of G0 (and thus with bias larger
than 1/

√
n)), and Qn is inconsistent, then the bias of Gn might directly map

into a bias for the resulting TMLE of ψ0 of the same order. As a consequence,
the TMLE might have a bias w.r.t. ψ0 that is larger than O(1/

√
n), so that it

is not asymptotically linear. However, one can incorporate additional fluctu-
ation parameters in the least-favorable sub-model (by also fluctuating Gn) to
guarantee that the TMLE remains asymptotically linear with known influence
curve when either Qn or Gn is inconsistent, but we do not know which one (72).
So these enhancements of TMLE result in TMLE that are asymptotically lin-
ear under weaker conditions than a standard TMLE, just like the CV-TMLE
removed a condition for asymptotic linearity. These TMLE now involve not
only targeting Qn but also targeting Gn to guarantee that when Qn is misspec-
ified the required smooth function of Gn will behave as a TMLE, and if Gn is
misspecified, that the required smooth functional of Qn is still asymptotically
linear. The same method was used to develop an IPTW-estimator that targets
Gn so that the IPTW-estimator is asymptotically linear with known influence
curve even when the initial estimator of G0 is estimated with a highly data
adaptive estimator.

Super-learning based on CV-TMLE of the conditional risk of a can-
didate estimator: Super-learner relies on a cross-validated estimate of the
risk of a candidate estimator. The oracle inequalities of the cross-validation
selector assumed that the cross-validated risk is simply an empirical mean over
the validation sample of a loss function at the candidate estimator based on
training sample, averaged across different sample splits, where we generalized
these results to loss functions that depend on an unknown nuisance parameter
(which are thus estimated in the cross-validated risk).

For example, suppose that in our running example A is continuous, and
we are concerned with estimation of the dose-response curve (E0Ya : a), where
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E0Ya = E0E0(Y | A = a,W ). One might define the risk of a candidate
dose response curve as a mean squared error w.r.t. the true curve E0Ya.
However, this risk of a candidate curve is itself an unknown real valued target
parameter. Contrary, to standard prediction or density estimation, this risk is
not simply a mean of a known loss function, and, the proposed unknown loss
functions indexed by a nuisance parameter can have large values making the
cross-validated risk a non robust estimator. Therefore, we have proposed to
estimate this conditional risk of candidate curve with TMLE and, similarly,
the conditional risk of a candidate estimator with a CV-TMLE. One can now
develop a super-learner that uses CV-TMLE as an estimate of the conditional
risk of a candidate estimator (79; 16). We applied this to construct a super-
learner of the causal dose response curve for a continuous valued treatment,
and we obtained a corresponding oracle inequality for the performance of the
cross-validation selector (16).

6 Eye on the future of Targeted Learning

We hope that the above clarifies that targeted learning is an ongoing exciting
research area that is able to address important practical challenges. Each new
application concerning learning from data can be formulated in terms of a
statistical estimation problem with a large statistical model and a target pa-
rameter. One can now use the general framework of super-learning and TMLE
to develop efficient targeted substitution estimators and corresponding statis-
tical inference. As is apparent from the previous section, the general structure
of TMLE and super-learning appears to be flexible enough to handle/adapt to
any new challenges that come up, allowing researchers in targeted learning to
make important progress in tackling real world problems. By being honest in
the formulation, typically new challenges come up asking for expert input from
a variety of researchers, ranging from subject-matter scientists, computer sci-
entists, to statisticians. Targeted Learning requires multi-disciplinary teams,
since it asks for careful knowledge about data experiment, the questions of
interest, possible informed guesses for estimation that can be incorporated as
candidates in the library of the super-learner, and input from the state of the
art in computer science to produce scalable software algorithms implementing
the statistical procedures.

There are a variety of important areas of research in Targeted Learning we
began to explore.
Variance estimation: The asymptotic variance of an estimator such as the
TMLE, i.e. the variance of the influence curve of the estimator, is just an-
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other target parameter of great interest. It is common practice to estimate
this asymptotic variance with an empirical sample variance of the estimated
influence curves. However, in the context of sparsity, influence curves can be
large, making such an estimator highly non robust. In particular, such a sam-
ple mean type estimator will not respect the global constraints of the model.
Again, this is not just a theoretical issue since we have observed that in sparse
data situations standard estimators of the asymptotic variance often under
estimate the variance of the estimator, thereby, resulting in overly optimistic
confidence intervals. This sparsity can be due to rare outcomes or strong con-
founding or highly informative censoring, for example, and naturally occurs
even when sample sizes are large. Careful inspection of these variance estima-
tors shows that the essential problem is that these variance estimators are not
substitution estimators. Therefore, we are in the process to apply TMLE to
improve the estimators of the asymptotic variance of TMLE of a target param-
eter, thereby improving the finite sample coverage of our confidence intervals,
especially in sparse-data situations.

Dependent data: Contrary to experiments that involve random sampling
from a target population, if one observes the real world over time, then nat-
urally there is no way to argue that the experiment can be represented as
a collection of independent experiments, let alone, identical independent ex-
periments. An environment over time and space is a single organism that
cannot be separated out into independent units without making very artifi-
cial assumptions and losing very essential information: the world needs to be
seen as a whole to see truth. Data collection in our societies is moving more
an more towards measuring total populations over time, resulting in what we
often refer to as Big Data, and these populations consists of interconnected
units. Even in randomized controlled settings where one randomly samples
units from a target population, one often likes to look at the past data and
change the sampling design in response to the observed past, in order to op-
timize the data collection w.r.t. certain goals. Once again, this results in a
sequence of experiments that cannot be viewed as independent experiments,
the next experiment is only defined once one knows the data generated by the
past experiments.

Therefore we believe that our models that assume independence, even
though they are so much larger than the models used in current practice, are
still not realistic models in many applications of interest. On the other hand,
even when the sample size equals 1, things are not hopeless if one is willing to
assume that the likelihood of the data factorizes in many factors due to condi-
tional independence assumptions, and stationarity assumptions that state that
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conditional distributions might be constant across time or that different units
are subject tot the same laws for generating their data as a function of their
parent variables. In more recent research we have started to develop TMLE
for statistical models that do not assume that the unit-specific data structures
are independent, handling adaptive pair matching in community randomized
controlled trials, group sequential adaptive randomization designs, and studies
that collect data on units that are interconnected through a causal network
(69; 11; 10; 74; 71).

Data adaptive target parameters: It is common practice that people first
look at data before determining their choice of target parameter they want
to learn, even though it is taught that this is unacceptable practice since it
makes the p-values and confidence intervals unreliable. But, may be we should
view this common practice as a sign that a priori specification of the target
parameter (and null hypothesis) limits the learning from data too much, and
by enforcing it we only force data analysts to cheat. Current teaching would
tell us that one is only allowed to do this by splitting the sample, use one
part of the sample to generate a target parameter, and use the other part of
the sample to estimate this target parameter and obtain confidence intervals.
Clearly, this means that one has to sacrifice a lot of sample size for being
allowed to look at the data first. Another possible approach for allowing to
obtain inference for a data driven parameter is to a priori formulate a large
class of target parameters, and use multiple testing or simultaneous confidence
interval adjustments. However, also with this approach one has to pay a big
price through the multiple testing adjustment and one still needs to a priori
list the target parameters.

For that purpose, acknowledging that one likes to mine the data to find
interesting questions that are supported by the data, we developed statistical
inference based on CV-TMLE for a large class of target parameters that are
defined as functions of the data (78). This allows one to define an algorithm
that when applied to the data generates an interesting target parameter, while
we provide formal statistical inference in terms of confidence intervals for this
data adaptive target parameter. This provides a much broader class of a pri-
ori specified statistical analyses than current practice which requires a priori
specification of the target parameter, while still providing valid statistical in-
ference. We believe that this is a very promising direction for future research,
opening up many new applications which would normally be overlooked.

Optimal individualized treatment: One is often interested in learning
the best rule for treating a subject in response to certain time-dependent

27

Hosted by The Berkeley Electronic Press



measurements on that subject, where best rule might be defined as the rule
that optimizes the expected outcome. Such a rule is called an individualized
treatment rule, or dynamic treatment regimen, and an optimal treatment rule
is defined as the rule that minimizes the mean outcome for a certain outcome
(e.g. indicator of death or other health measurement). We started to address
data adaptive learning of the best possible treatment rule by developing super-
learners of this important target parameter, while still providing statistical
inference (and thus confidence intervals) for the mean of the outcome in the
counterfactual world in which one applies this optimal dynamic treatment to
everybody in the target population (73). In particular, this problem itself
provides a motivation for a data adaptive target parameter, namely the mean
outcome under a treatment rule fitted based on the data. Optimal dynamic
treatments has been an important area in statistics and computer science, but
we target this problem within the framework of targeted learning, thereby
avoiding reliance on unrealistic assumptions that cannot be defended and will
heavily affect the true optimality of the fitted rules.

Statistical inference based on higher order inference: Another key
assumption the asymptotic efficiency or asymptotic linearity of TMLE relies
upon is that the remainder/second order term Rn = oP (1/

√
n). For example,

in our running example this means that the product of the rate at which the
super-learner estimators of Q0 and G0 converge to their target converges to
zero at a faster rate than 1/

√
n. The density estimation literature proves that

if the density is many times differentiable, then it is possible to construct den-
sity estimators whose bias is driven by the last term of a higher order Tailor
expansion of the density around a point. Robins, van der Vaart, and col-
leagues (43) have developed theory based on higher order influence functions,
under the assumption that the target parameter is higher order pathwise dif-
ferentiable. Just as density estimators exploiting underlying smoothness, this
theory also aims to construct estimators of higher order pathwise differentiable
target parameters whose bias is driven by the last term of the higher order
Tailor expansion of the target parameter. The practical implementation of
the proposed estimators have been challenging and is suffering from a lack of
robustness. Targeted learning based on these higher order expansions (thus
not only incorporating the first order efficient influence function but also the
higher order influence functions that define the Tailor expansion of the target
parameter) appears to be a natural area of future research to further build on
these advances.

Online TMLE: Trading off statistical optimality and computing cost.
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We will be more and more confronted with online data bases that continuously
grow and are massive in size. Nonetheless, one wants to know if the new data
changes the inference about target parameters of interest, and one wants to
know it right away. Recomputing the TMLE based on the old data augmented
with the new chunk of data would be immensely computer intensive. There-
fore, we are confronted with the challenge on constructing an estimator that
is able to update a current estimator without having to recompute the estima-
tor, but instead one wants to update it based on computations with the new
data only. More generally, one is interested in high quality statistical proce-
dures that are scalable. We started doing research in such online TMLE that
preserve all or most of the good properties of TMLE but can be continuously
updated where the number of computations required for this update is only a
function of the size of the new chunk of data.

7 Historical Philosophical Perspective on Tar-

geted Learning: A reconciliation with ma-

chine learning

In the previous sections the main characteristics of TMLE/SL methodology
have been outlined. We introduced the most important fundamental ideas
and statistical concepts, urged the need for revision of current data-analytic
practice and showed some recent advances and application areas. Also re-
search in progress on such issues as dependent data and data adaptive target
parameters has been brought forward. In this section we put the methodology
in a broader historical-philosophical perspective, trying to support the claim
that its relevance exceeds the realms of statistics in a strict sense, and even
those of methodology. To this aim we will discuss both the significance of
TMLE/SL for contemporary epistemology and its implications for the current
debate on Big Data and the generally advocated, emerging new discipline of
Data Science. Some of these issues have been elaborated more extensively in
(59; 44; 60; 61) where we have put the present state of statistical data anal-
ysis in a historical and philosophical perspective with the purpose to clarify,
understand and account for the current situation in statistical data analysis
and relate the main ideas underlying TMLE/SL to it.

First and foremost, it must be emphasized that rather than extending the
toolkit of the data-analyst, TMLE/SL establishes a new methodology. From
a technical point of view it offers an integrative approach to data-analysis or
statistical learning by combining inferential statistics with techniques derived
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from the field of computational intelligence. This field includes such related
and usually eloquently phrased disciplines like machine learning, data mining,
knowledge discovery in databases and algorithmic data analysis. From a con-
ceptual or methodological point of view, it sheds new lights on several stages
of the research process, including such items as the research question, assump-
tions and background knowledge, modeling, causal inference and validation,
by anchoring these stages or elements of the research process in statistical the-
ory. According to TMLE/SL all these elements should be related to or defined
in terms of (properties of) the data generating distribution and to this aim the
methodology provides both clear heuristics and formal underpinnings. Among
other things this means that the concept of a statistical model is reestablished
in a prudent and parsimonious way, allowing humans to include only their true,
realistic knowledge in the model. In addition, the scientific question and back-
ground knowledge are to be translated into a formal causal model and target
causal parameter using the causal graphs and counterfactual (potential out-
come) frameworks, including specifying a working marginal structural model.
And, even more significantly, TMLE/SL reassigns to the very concept of es-
timation, canonical as it has always been in statistical inference, the leading
role in any theory of / approach to learning from data, whether it deals with
establishing causal relations, classifying or clustering, time series forecasting
or multiple testing. Indeed, inferential statistics arose at the background of
randomness and variation in a world represented or encoded by probability
distributions, and it has therefore always presumed and exploited the sample-
population dualism, that underlies the very idea of estimation. Nevertheless,
the whole concept of estimation seems to be discredited and disregarded in
contemporary data analytical practice.

In fact, the current situation in data analysis is rather paradoxical and in-
convenient. From a foundational perspective the field consists of several com-
peting schools with sometimes incompatible principles, approaches or view-
points. Some of these can be traced back to Karl Pearsons goodness-of-fit-
approach to data-analysis or to the Fisherian tradition of significance testing
and ML- estimation. Some principles and techniques have been derived from
the Neyman-Pearson school of hypothesis testing, such as the comparison be-
tween two alternative hypothesis and the identification of two kinds of errors of
usual unequal importance that should be dealt with. And, last but not least,
the toolkit contains all kinds of ideas taken from the Bayesian paradigm, that
rigorously pulls statistics into the realms of epistemology. We only have to
refer here to the subjective interpretation of probability and the idea that hy-
potheses should be analyzed in a probabilistic way by assigning probabilities
to these hypotheses, thus abandoning the idea that the parameter is a fixed,
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unknown quantity and thus moving the knowledge about the hypotheses from
the meta-language into the object language of probability calculus. In spite of
all this, the burgeoning statistical textbook market offers many primers and
even advanced studies, that wrongly suggest a uniform and united field with
foundations that are fixed, and on which full agreement has been reached. It
offers a toolkit based on the alleged unification of ideas and methods derived
from the aforementioned traditions. As pointed out in (59) this situation is
rather inconvenient from a philosophical point of view for two related reasons.

First, nearly all scientific disciplines have experienced a probabilistic rev-
olution since the late 19th century. Increasingly, their key notions are proba-
bilistic, their research methods, entire theories are probabilistic, if not the un-
derlying worldview is probabilistic, i.e. dominated by and rooted in probability
theory and statistics. When the probabilistic revolution emerged in the late
19th century, this transition became recognizable in old, established sciences
like physics (kinetic gas theory, statistical mechanics of Bolzmann, Maxwell
and Gibbs), but especially in new emerging disciplines like the social sciences
(Quetelet and later Durkheim), biology (evolution, genetics, zoology), agri-
cultural science and psychology. Biology even came to maturity due to close
interaction with statistics. Today, this trend has only further strengthened,
and as a result there is a plethora of fields of application of statistics ranging
from biostatistics, geostatistics, epidemiology and econometrics to actuarial
science, statistical finance, quality control and operational research in indus-
trial engineering and management science. Probabilistic approaches have also
intruded many branches of computer science; most noticeably they dominate
artificial intelligence.

Secondly, at a more abstract level, probabilistic approaches also dominate
epistemology, the branch of philosophy committed to classical questions on
the relation between knowledge and reality like: What is reality? Does it exist
mind-independent? Do we have access to it? If yes, how? Do our postulated
theoretical entities exist? How do they correspond to reality? Can we make
true statements about it? If yes, what is truth and how is it connected to
reality? The analyses conducted to address these issues are usually intrin-
sically probabilistic. As a result these approaches dominate key-issues and
controversies in epistemology such as the scientific realism debate, the struc-
ture of scientific theories, Bayesian confirmation theory, causality, models of
explanation and natural laws. All too often scientific reasoning seems nearly
synonymous with probabilistic reasoning. In view of the fact that scientific in-
ference more and more depends on probabilistic reasoning and that statistical
analysis is not as well-founded as might be expected, the issue addressed in
this chapter is of crucial importance for epistemology (59).
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Despite these philosophical objections against the hybrid character of in-
ferential statistics, its successes were enormous in the first decades of the
twentieth century. In newly established disciplines like psychology and eco-
nomics significance testing and maximum likelihood estimation were applied
with methodological rigor in order to enhance prestige and apply scientific
method to their field. Although criticism that a mere chasing of low p-values
and naive use of parametric statistics did not do justice to specific character-
istics of the sciences involved, emerged from the start of the application of
statistics, the success story was immense. However, this rise of the inference
experts, like Gigerenzer calls them in The Rise of Statistical Thinking, was
just a phase or stage in the development of statistics and data analysis, which
manifests itself as a Hegelian triptych, that unmistakably is now being com-
pleted in the era of Big Data. After this thesis of a successful, but ununified
field of inferential statistics, an antithesis in the Hegelian sense of the word
was unavoidable and it was this antithesis that gave rise to the current situ-
ation in data-analytical practice as well. Apart from the already mentioned
Bayesian revolt, the rise of non-parametric statistics in the thirties must be
mentioned here as an intrinsically statistical criticism that heralds this an-
tithesis. The major caesura in this process however was the work of John
Tukey in the sixties and seventies of the previous century. After a long career
in statistics and other mathematical disciplines Tukey wrote Explorative Data
analysis in 1978. This study is in many ways a remarkable, unorthodox book.
First, it contains no axioms, theorems , lemmas or proofs, and even barely
formulas. There are no theoretical distributions, significance tests, p-values,
hypothesis tests, parameter estimation and confidence intervals. No inferen-
tial or confirmatory statistics, but just the understanding of data, looking for
patterns, relationships and structures in data, and visualizing the results. Ac-
cording to Tukey the statistician is a detective; as a contemporary Sherlock
Holmes he must strive for signs and ” clues ”. Tukey maintains this metaphor
consistently throughout the book and wants provide the data analyst with a
toolbox full of methods for understanding frequency distributions, smoothing
techniques, scale transformations , and above all, many graphical techniques
for exploration, storage, and summary illustrations of data. The unorthodox
approach of Tukey in EDA reveals not so much a contrarian spirit, but rather
a fundamental dissatisfaction with the prevailing statistical practice and the
underlying paradigm of inferential / confirmatory statistics (60).

In EDA Tukey endeavors to emphasize the importance of confirmatory,
classical statistics, but this looks for the main part a matter of politeness
and courtesy. In fact, he had already put his cards on the table in 1962 in
the famous opening passage from The future of data analysis: For a long
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time I have thought that I was a statistician, interested in inferences from the
particular to the general. But as I have watched mathematical statistics evolve,
I have had cause to wonder and to doubt. And when I have pondered about
why such techniques as the spectrum analysis of time series have proved so
useful, it has become clear that their ’dealing with fluctuations’ aspects are, in
many circumstances, of lesser importance than the aspects that would already
have been required to deal effectively with the simpler case of very extensive
data where fluctuations would no longer be a problem. All in all, I have come to
feel that my central interest is in data analysis, which I take to include, among
other things: procedures for analyzing data, techniques for interpreting the
results of such procedures, ways of planning the gathering of data to make
its analysis easier, more precise or more accurate, and all the machinery and
results of mathematical statistics which apply to analyzing data. (. . .) Data
analysis is a larger and more varied field than inference, or allocation. Also
in other writings Tukey makes a sharp distinction between statistics and data
analysis.

First, Tukey gave unmistakable an impulse to the emancipation of the de-
scriptive / visual approach, after pioneering work of William Playfair (18th
century) and Florence Nightingale (19th century ) on graphical techniques,
that were soon overshadowed by the ” inferential ” coup, which marked the
probabilistic revolution. Furthermore, it is somewhat ironic that many con-
sider Tukey a pioneer of computational fields such as data mining and machine
learning, although he himself preferred a small role for the computer in his
analysis and kept it in the background . More importantly, however, because
of his alleged anti - theoretical stance, Tukey is sometimes considered the man
who tried to reverse or undo the Fisherian revolution, and an exponent or
forerunner of today’s ” erosion of models, the view that all models are wrong,
the classical notion of truth is obsolete and pragmatic criteria as predictive
success in data analysis must prevail. Also the idea, currently frequently ut-
tered in the data analytical tradition that the presence of big data will make
much of the statistical machinery superfluous is an import aspect of the here
very briefly sketched antithesis. Before we come to the intended synthesis,
the final stage of the Hegelian triptych, let us make two remarks concerning
Tukeys heritage. Although it almost sounds like a cliché, yet it must be noted
that EDA techniques nowadays are routinely applied in all statistical packages
along with in itself sometimes hybrid inferential methods. In the current em-
pirical methodology EDA is integrated with inferential statistics at different
stages of the research process. Secondly, it could be argued that Tukey did
not so much undermine the revolution initiated by Galton and Pearson, but
understands the ultimate consequences of it. It was Galton who had shown
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that variation and change are intrinsic in nature, that we have to look was
looking for the deviant, the special or the peculiar. Is was Pearson who did
realize that the constraints of the normal distribution ( Laplace , Quetelet )
had to be abandoned and who distinguished different families of distributions
as an alternative. Galton ’s heritage was just slightly under pressure hit by the
successes of the parametric Fisherian statistics on strong model assumptions
and it could well be stated that this was partially reinstated by Tukey .

Unsurprisingly, the final stage of the Hegelian triptych strives for some
convergence if not synthesis. The 19th century dialectical German philosopher
G.F.W. Hegel argued that history is a process of becoming or development,
in which a thesis evokes and binds itself to an antithesis; in addition both are
placed at a higher level to be completed and to result in a fulfilling synthesis.
Applied to the less metaphysically oriented present problem, this dialectical
principle seems particularly relevant in the era of Big Data, which makes a
reconciliation between inferential statistics and computational science impera-
tive. Big data sets high demands and offers challenges to both. For example, it
sets high standards for data management, storage and retrieval and has great
influence on the research of efficiency of machine learning algorithms. But it
is also accompanied by new problems, pitfalls and challenges for statistical in-
ference and its underlying mathematical theory . Examples include the effects
of wrongly -specified models, the problems of small, high-dimensional datasets
(microarray data), the search for causal relationships in non - experimental
data, quantifying uncertainty, efficiency theory, et cetera. The fact that many
data-intensive empirical sciences are highly dependent on machine learning al-
gorithms and statistics makes bridging the gap of course, for practical reasons
compelling.

In addition, it seems that Big Data itself also transforms the nature of
knowledge: the way of acquiring knowledge, research methodology, nature
and status of models and theories. In the reflections of all the briefly sketched
contradiction often emerges and in the popular literature the differences are
usually enhanced, leading to annexation of Big Data by one of the two disci-
plines.

Of course the gap between both has many aspects, both philosophical and
technical that have been left out here. However, it must be emphasized that for
the main part Targeted Learning intends to support the reconciliation between
inferential statistics and computational intelligence. It starts with the speci-
fication of a non - parametric and semi- parametric model that contains only
the realistic background knowledge and focuses on the parameter of interest,
which is considered as a property of the as yet unknown, true data -generating
distribution. From a methodological point of view it is a clear imperative that
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model and parameter of interest must be specified in advance. The (empirical)
research question must be translated in terms of the parameter of interest and
a rehabilitation of the concept model is achieved. Then, Targeted Learning
involves a flexible, data-adaptive estimation procedure that proceeds in two
steps. First an initial estimate is searched on the basis of the relevant part
of the true distribution that is needed to evaluate the target parameter. This
initial estimator is found by means of the super learning- algorithm. In short,
this is based on a library of many diverse analytical techniques ranging from
logistic regression to ensemble techniques, random forest and support vector
machines. Because the choice of one of these techniques by human intervention
is highly subjective and the variation in the results of the various techniques
usually substantial, SL uses a sort of weighted sum of the values calculated by
means of cross-validation. Based on these initial estimator, the second stage of
the estimation procedure can be initiated. The initial fit is updated with the
goal of an optimal bias -variance trade-off for the parameter of interest. This is
accomplished with a targeted maximum likelihood estimator of the fluctuation
parameter of a parametric sub-model selected by the initial estimator. The
statistical inference is then completed by calculating standard errors on the
basis of ” influence - curve theory” or resampling techniques. This parameter
estimation retains a crucial place in the data analysis . If one wants to do jus-
tice to variation and change in the phenomena, then you cannot deny Fishers
unshakable insight that randomness is intrinsic and implies that the estima-
tor of the parameter of interest itself has a distribution. Thus Fisher proved
himself to be a dualist in making the explicit distinction between sample and
population. Neither Big Data, nor full census research or any other attempt to
take into account the whole of reality or a world encoded or encrypted in data,
can compensate for it. Although many aspects have remained undiscussed in
this contribution we hope to have shown that TMLE/SL contributes to the in-
tended reconciliation between inferential statistics and computational science,
and that both, rather than being in contradiction, should be integrating parts
in any concept of Data Science.

8 Concluding remark: Targeted Learning and

Big Data

The expansion of available data has resulted in a new field often referred to as
Big Data. Some advocate that big data changes the perspective on statistics:
e.g. since we measure everything, why do we still need statistics? Clearly, big
data refers to measuring (possibly, very) high dimensional data on a very large
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number of units. The truth is that there will never be enough data so that
careful design of studies and interpretation of data is not needed anymore.

To start with, lots of bad data is useless, so one will need to respect the
experiment that generated the data in order to carefully define the target
parameter and its interpretation, and design of experiments is as important
as ever so that the target parameters of interest can actually be learned.

Even though the standard error of a simple sample mean might be so small
that there is no need for confidence intervals, one is often interested in much
more complex statistical target parameters. For example, consider the av-
erage treatment effect of our running example, which is not a very complex
parameter relative to many other parameters of interest such as an optimal in-
dividualized treatment rule. Evaluation of the average treatment effect based
on a sample (i.e., substitution estimator obtained by plugging in the empirical
distribution of the sample) would require computing the mean outcome for
each possible strata of treatment and covariates. Even with n = 1012 obser-
vations, most of these strata will be empty for reasonable dimensions of the
covariates, so that this pure empirical estimator is not defined. As a conse-
quence, we will need smoothing (i.e. s super learning), but really, we will also
need targeted learning for unbiased estimation and valid statistical inference.

Targeted learning was developed in response to high dimensional data, in
which reasonably sized parametric models are simply impossible to formulate
and are immensely biased anyway. The high dimension of the data only em-
phasizes the need for realistic (and thereby large semiparameric) models, target
parameters defined as features of the data distribution instead of coefficients
in these parametric models, and targeted learning.

The massive dimension of the data does make it appealing to not be nec-
essarily restricted by a priori specification of the target parameters of interest
so that targeted learning of data adaptive target parameters discussed above
is particularly important future area of research providing an important addi-
tional flexibility without to give up on statistical inference.

One possible consequence of the building of large data bases that collect
data on total populations is that the data might correspond with observing a
single process, like a community of individuals over time, in which case one
cannot assume that the data is the realization of a collection of independent
experiments, the typical assumption most statistical methods rely upon. That
is, data cannot be represented as random samples from some target popula-
tion since we sample all units of the target population. In these cases, it is
important to document the connections between the units so that one can
pose statistical models that rely on the a variety of conditional independence
assumptions (as in causal inference for networks developed in (71). That is, we
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need targeted learning for dependent data whose data distribution is modeled
through realistic conditional independence assumptions.

Such statistical models do not allow for statistical inference based on simple
methods such as the bootstrap (i.e., sample size is 1), so that asymptotic theory
for estimators based on influence curves and the state of the art advances in
weak convergence theory is more crucial than ever. That is, the state of the
art in probability theory will only be more important in this new era of Big
Data. Specifically, one will need to establish convergence in distribution of
standardized estimators in these settings in which the data corresponds with
the realization of one gigantic random variable for which the statistical model
assumes a lot of structure in terms of conditional independence assumptions.

Of course, targeted learning with Big Data will require the programming
of scalable algorithms, putting fundamental constraints on the type of super-
learners and TMLE.

Clearly, Big Data does require integration of different disciplines, fully re-
specting the advances made in the different fields such as computer science,
statistics, probability theory, and in scientific knowledge that allows us to
reduce the size of the statistical model and to target the relevant target pa-
rameters. Funding agencies need to recognize this so that money can be spent
in the best possible way: the best possible way is not to give up on theoretical
advances, but the theory has to be relevant to address the real challenges that
come with real data. The Biggest Mistake we can make in this Big Data Era
is to give up on deep statistical and probabilistic reasoning and theory, and
corresponding education of our next generations, and somehow think that it
is just a matter of applying algorithms to data.
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