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Abstract

It is increasingly of interest in statistical genetics to test for the presence of a mechanistic interaction

between genetic (G) and environmental (E) risk factors by testing for the presence of an additive

GxE interaction. In case-control studies involving a rare disease, a statistical test of no additive

interaction typically entails a test of no relative excess risk due to interaction (RERI). It is also well

known that a test of multiplicative interaction that exploits G-E independence can be dramatically

more powerful than standard logistic regression for case-control data. Likewise, it has recently been

shown that a likelihood ratio test of a null RERI incorporating the G-E independence assumption

(RERI-LRT) outperforms the standard RERI approach. In this paper, the authors describe a

general, yet relatively straightforward approach to test for GxE additive interaction exploiting

G-E independence. The approach which relies on regression models for G and E is particularly

attractive because, unlike the RERI-LRT, it allows the regression model for the binary outcome to

remain unrestricted. Therefore, the approach is completely robust to possible mis-specification of

main effects in the outcome regression. This is an important advantage of the proposed strategy,

particularly in settings not easily handled by the RERI-LRT, in which E is either a count or a

continuous exposure and one must account for multiple covariates in order to enforce the G-E

independence assumption, as well as to rule out residual confounding. The methods are illustrated

through an extensive simulation study and a well-known ovarian cancer application.
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1

There is growing interest in the development and application of statistical methods to detect the

presence of an additive gene (G)-environment (E) interaction because such interaction may be

closer to a true mechanistic interaction than its multiplicative counterpart (Rothman et al, 1980,

Greenland,1983, Cordell, 2002, VanderWeele and Knoll, 2014). For case-control data involving

a rare disease, a statistical test of no additive GxE interaction is easily performed via a test

of a null relative excess risk due to interaction (RERI) (Rothman et al, 2008). This approach

has gained popularity in epidemiology primarily because it is easily performed using relative risk

estimates obtained via standard logistic regression for case-control data (Rothman et al, 2008).

When G and E are known to be independent in the target population, it is well known that a

test of multiplicative interaction that exploits the independence assumption can be dramatically

more powerful than standard logistic regression, which does not make use of the assumption

(Piegorsch et al, 1994, Umbach and Weinberg, 1997, Chatterjee and Carroll, 2005, Mukherjee and

Chatterjee, 2008, Tchetgen Tchetgen and Robins, 2010, Tchetgen Tchetgen, 2011). Likewise, it has

recently been shown that a likelihood ratio test of the null hypothesis of no RERI incorporating the

G-E independence assumption (hereafter RERI-LRT) generally outperforms the standard RERI

test of no additive interaction (Han et al, 2012). Notably, both RERI-based tests of additive

interaction rely on correct specification of a logistic regression for disease risk, as a function of

G, E and covariates. In practice, the outcome regression may be diffi cult to specify particularly

if both the environmental exposure and some of the covariates are count or continuous, so that

nonparametric estimation is not a viable option. Furthermore, model mis-specification of main

effects in logistic regression for the outcome can a priori rule out the null hypothesis of no additive

1Corresponding Author: Eric J Tchetgen Tchetgen, Department of Epidemiology, Harvard School of Public
Health, 677 Huntington Avenue, Boston, MA 02115. Email: etchetgen@gmail.com
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interaction, possibly resulting in inflated type 1 error rates of RERI-based tests of interaction.

The presence of covariates has previously been noted as potentially problematic in the RERI

framework by Skrondall (2003). He argues with conviction that given a conceptualization of

interaction as departure from additive risks, making direct inferences regarding the fundamental

additive interaction parameter would be preferred to the indirect RERI-based strategy, in order

to avoid potential bias due to model misspecification of a logistic regression for the outcome.

In this paper, the authors present a general, yet fairly straightforward approach to directly test

for the presence of additive GxE interaction in case-control studies without requiring a regression

model of disease risk. The proposed approach which is easily made to exploit the G-E independence

assumption leading to dramatic increase in power, relies on separate regression models for G and E

given covariates. By avoiding building a model for the outcome risk, which is shown to be strictly

unnecessary to test for additive interaction, the approach circumvents well known diffi culties with

RERI and is completely robust to possible mis-specification of such an outcome regression, provided

one can correctly specify a pair of regression models for G and E. The methods are illustrated

through an extensive simulation study in the simple setting of binary G and E free of covariates

so that RERI and the new approach both apply and therefore can be directly compared to assess

relative effi ciency. Next, we demonstrate the new approach using data from a well-known ovarian

cancer application to detect an additive interaction between the BRCA1/2 genetic variant (G)

and a woman’s parity (E), as well as with number of years of oral contraceptive use (E). Because

either exposure E is naturally a count in this application RERI-based strategies cannot easily be

implemented without possibly recoding the original environmental exposures as dichotomous or

as categorical with few levels. Furthermore, as previously discussed, covariate adjustment may

present additional diffi culty for the RERI approach which is therefore forgone in the application

in favor of the proposed approach.

4 http://biostats.bepress.com/harvardbiostat/paper177



Alternative characterization of test of additive interaction

Suppose one has observed case-control data on n unrelated individuals, letD denote the rare disease

outcome defining case-control status and (A1, A2) denote two exposures in view. For instance, in

a statistical genetic application, A1 may denote the genetic variant G and A2 an environmental

exposure E, however, we will use the more generic notation (A1, A2) to allow for more general

contexts, say where either or both exposures may be count or continuous environmental exposures.

Let µ(a1, a2) = Pr(D = 1|A1 = a1, A2 = a2) denote the disease risk of individuals in the target

population with exposure values (a1, a2). In the case of binary exposures, an additive interaction

between A1 and A2 is said to be present if

β3 = µ(1, 1)− µ(1, 0)− µ(0, 1) + µ(0, 0) 6= 0,

or equivalently if RERI 6= 0, where

RERI = {µ(1, 1)− µ(1, 0)− µ(0, 1)} /µ(0, 0) + 1

= β/µ(0, 0).

An empirical version of RERI is obtained under case-control sampling by estimating the required

risk ratios µ(a1, a2)/µ(0, 0), via a saturated logistic regression under the rare disease assumption.

Then, standardizing the empirical estimate R̂ERI by a consistent estimate of its standard error√
σ̂2RERI gives the RERI test statistic TRERI = R̂ERI/

√
σ̂2RERI . It can then be showed using

standard asymptotic arguments that under the null hypothesis H0 : β3 = RERI = 0, TRERI

is approximately standard normal in large samples. The following result gives an alternative

characterization of the null hypothesis of no additive interaction which motivates the new approach.
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To state the result, let π1 (a2) = Pr(A1 = 1|A2 = a2) denote the prevalence of the first exposure A1

among individuals with the second exposure A2 = a2 in the underlying population, and likewise

define π2(a1) = Pr(A2 = 1|A1 = a1). Also let α denote the log odds ratio association relating A1

and A2 in the target population, thus

expα =
π1 (1) (1− π1 (0))
π1 (0) (1− π1 (1))

such that α = 0 encodes the independence assumption between A1 and A2.

Result 1 The null hypothesis of no additive interaction H0 holds if and only if

E {U |D = 1} = 0

where

U = e−αA1A2 (A1 − π1(0)) (A2 − π2(0))D

.

We should note that Result 1 does not rely on the rare disease assumption and holds irrespective

of the population disease prevalence. The result is a special case of a more general Lemma given

later in the text allowing for arbitrary exposures and for covariate adjustment. According to the

result, the null hypothesis of no additive interaction holds if and only if the random variable U

has mean zero. Intuition about the result is gained by assuming G-E independence, i.e. α = 0,

such that πj(a) = πj. Then, upon noting that the conditional density of (A1, A2) given D = 1 is

proportional to

µ(A1, A2)f1(A1)f2(A2) = (β0 + β1A1 + β2A2 + β3A1A2)f1(A1)f1(A2)
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where fj(1) = πj, one observes that E {U |D = 1} is proportional to

∑
a1,a2

(a1 − π1) (a2 − π2) (β0 + β1a1 + β2a2 + β3a1a2)f1(a1)f1(a2)

= β0
∑
a1,a2

(a1 − π1) (a2 − π2) f1(a1)f1(a2)︸ ︷︷ ︸
=0

+ β1
∑
a1,a2

(a1 − π1) (a2 − π2) a1f1(a1)f1(a2)︸ ︷︷ ︸
=0

+ β2
∑
a1,a2

(a1 − π1) (a2 − π2) a2f1(a1)f1(a2)︸ ︷︷ ︸
=0

+ β3
∑
a1,a2

(a1 − π1) (a2 − π2) a1a2f1(a1)f1(a2)

= β3
∑
a1,a2

π1 (1− π1) π2 (1− π2)

confirming that E {U |D = 1} = 0 if and only if the additive interaction β3 = 0. Result 1 further

shows that a similar result holds when the exposures are dependent upon applying a weight to

individuals with both exposures, equal to the inverse of the odds ratio association of the two

exposures. Intuitively, weighting makes the exposures independent, thus essentially recovering the

independent exposure setting in the weighted sample. Since U only uses exposure data among

cases (with D = 1), the result suggests that one may be able to test for additive interaction by

considering whether the distribution of the exposures in view satisfies the above condition using

data for cases only. Unfortunately, U is not directly observed and therefore cannot directly be used

for inference, as it depends on the unknown population parameters πj(0), j = 1, 2. Nonetheless,

progress can be made under the rare disease assumption, since one may use the controls (with

D = 0) for approximate inference, upon observing that πj(0) ≈ pj(0) where p1(a2) = Pr(A1 =

1|A2 = a2, D = 0) and p2(a1) = Pr(A2 = 1|A1 = a1, D = 0). Therefore, one may estimate
∑

i Ui
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with
∑

i Ûi where

Ûi = exp (−A1,iA2,iω̂) (A1,i − p̂1(0)) (A2,i − p̂2(0))Di,

with p̂1(a) =
∑

iA1,iI(A2,i = a,D = 0)/
∑

i I(A2,i = a,D = 0) the sample version of p1(a), p̂2(a)

similarly defined, and exp(ω̂) = p̂1(1)(1− p̂1(0))/p̂1(0)(1− p̂1(1)) the sample odds ratio relating A1

and A2 in the controls. In the Appendix, we show how to derive σ2Û = V ar(
∑

i Ûi/n), see equation

(2) . Suppose that unbeknownst to the analyst, A1 and A2 are independent in the population and

therefore ω̂ converges to 0 in probability. We evaluate σ2
Û
at this particular submodel and show

that σ2
Û
can be decomposed as σ̂2

Û
= V̂1 + V̂2 + V̂3, where V̂j is an estimate of Vj, j = 1, 2, 3,

described in the Appendix. Considering in turn each contribution to the variance, we note that

the first term V̂1 captures the variance of
∑

i Ui/n if (ω, p1(0), p2(0)) were known; the second term

V̂2 reflects the uncertainty due to estimation of (p1(0), p2(0)); while V̂3 reflects the uncertainty

associated with estimation of the odds ratio parameter ω. Below, we further consider how the

G-E independence assumption alters each of these contributions to reveal how the assumption can

improve power to detect the presence of an additive interaction. Here we note that, under H0 the

standardized test statistic T =
∑

i Ûi/n
√
σ̂2
Û
is approximately standard normal in large samples.

Under the two-sided alternative hypothesis β 6= 0, one can further show that in large samples,

T has approximate variance one, and is approximately centered at the non-centrality parameter

κ× β3, where:

κ = p1(0) (1− p1(0)) p2(0) (1− p2(0))λ/σ2Û ,

λ is the sampling fraction for cases (i.e. λ = proportion of cases in case-control sample/proportion

of cases in population). Thus, T has asymptotic power one since 1/σ2
Û
and therefore κ tends

to infinity with sample size; confirming that similar to TRERI , T is a consistent test statistic of

H0. However, neither T nor TRERI make explicit use of the G-E independence assumption and
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therefore both may be ineffi cient in finite sample if the assumption holds. In the following section,

we modify T to incorporate the independence assumption to obtain a more powerful test statistic.

Test incorporating independence assumption

Suppose thatA1 andA2 are known to be independent in the population. Naturally, one may wish to

exploit such prior information in testing for G-E interaction. This can be accomplished by adapting

the methodology developed in the previous section upon noting that the independence assumption

implies α = 0, which, under the rare disease assumption, also implies that ω ≈ 0. This leads us

to modify Ûi. Define Ũi similarly to Ûi with ω̂ = 0, i.e. Ũi = (A1,i − p̂1(0)) (A2,i − p̂2(0))Di. In

the appendix, we show that σ2
Ũ
= V ar(

∑
i Ũi/n) can be estimated by σ̂

2
Ũ
= V̂1+ V̂2. Consequently

σ̂2
Ũ
< σ̂2

Û
, reflecting the effi ciency gain due to the independence assumption, i.e. V̂3 is exactly

zero since there is no uncertainty associated with ω̂ = 0. One can verify that the non-centrality

parameter β × κ1 of T1 =
∑

i Ũi/n
√
σ̂2
Ũ
becomes κ1 =

σ
Û

σ
Ũ
κ > κ, confirming that T1 is guaranteed

to be more powerful than T .

Adjusting for covariates

In observational studies, it is usually desirable to adjust for potential confounding of the joint

effects of A1 and A2, and such covariate adjustment may also be required to enforce the G-E

independence assumption. LetX denote such a vector of covariates and suppose that the exposures

are independent conditional on X. Define p1(x) = Pr(A1 = 1|X = x,D = 0) and p2(x) =

Pr(A2 = 1|X = x,D = 0). Likewise, let p̂1(x) and p̂2(x) correspond to estimates, obtained using

standard parametric models, e.g. using logistic regressions of the form logitp̂j(x) =logitpj(x; θ̂j) =

(1, x′)θ̂j, j = 1, 2, computed by maximum likelihood. The test statistic T2 =
∑

i U i/
√
σ̂2
U
has

under the null hypothesis of no additive interaction, an approximate standard normal distribution,
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with U i defined as

U i = (A1,i − p̂1(X)) (A2,i − p̂2(X))Di,

where σ̂2
U
is obtained using equation (2) of the Appendix.

More general exposures

Next, suppose that the environmental exposure A2 were continuous, for example if D were diabetes

status, A2 could be body mass index (BMI) typically coded on a continuous scale. Note that the

null hypothesis of no additive interaction can be restated as followed to acknowledge the continuous

exposure:

H0 : µ(1, a2, x)− µ(1, 0, x)− µ(0, a2, x) + µ(0, 0, x) = 0 for all values of a2 and x,

where µ(a1, a2, x) = Pr(D = 1|a1, a2, x). To construct an appropriate test statistic of H0, suppose

that E (A2|X = x,D = 0) is estimated with the linear model m̂2(x) = m2(x, θ̂2) = (1, x′)θ̂2 via

ordinary least squares using controls only. Assuming G-E conditional independence given X, it is

straightforward to modify the proposed test statistic to account for the continuous exposure, by

simply replacing p̂2(x) with m̂2(x). Thus, we let

U
c

i = (A1,i − p̂1(Xi)) (A2,i − m̂2(Xi))Di,

and σ̂2
U
c denotes an estimate of the variance of

∑
i U

c

i/n obtained using equation (2) of the Ap-

pendix. Then, the test statistic T3 =
∑

i U
c

i/n
√
σ̂2
U
c is approximately standard normal under H0.

A similar test statistic could be defined if A2 were a count, upon estimating its mean with the

log-linear model log n2(x, θ̂2) = (1, x′)θ̂2 computed by maximum likelihood under say a Poisson

model for A2. Then, one could simply replace m̂2 with n̂2 in defining the test statistic, and one
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could likewise modify the estimated variance of the test statistic using (2).

In order to simplify the presentation, thus far we have taken A1 to be a binary genetic variant.

Suppose now that A1 were more generallly categorical having K possible levels {0, a1,1, ..., a1,K−1}

with 0 a reference value. For instance, if A1 were to encode the number of minor alleles measured

at a single nuclueotide polymorphism (SNP) locus, then K = 3, and a1,k = k, k = 1, 2. Further

assuming say that A2 were continuous and independent of A1 given X, we could then simply define

U
m

i =

K−1∑
k=1

(I(A1,i = a1,k)− p̂1,k(Xi)) (A2,i − m̂2(Xi))Di,

where p̂1,k(x) is a maximum likelihood estimate of Pr(A1 = ak|x) computed using standard poly-

tomous logistic regression. Let σ̂2
U
m denote an estimate of the large sample variance of

∑
i U

m

i /n

based on (2). Then in large samples, the resulting test statistic T4 =
∑

i U
m

i /n
√
σ̂2
U
m is approxi-

mate standard normal under the null hypothesis of no additive interaction which may be restated

to account for the polytomous and continuous exposures:

H0 : µ(a1,k, a2, x)− µ(a1,k, 0, x)− µ(0, a2, x) + µ(0, 0, x) = 0 for all k, and all values of a2 and x.

A unified class of test statistics

We now provide a unified class of test statistics for the null hypothesis of no additive interaction

which subsumes as special case, each of the tests considered in previous sections, but allows for

the conditional independence assumption of the two exposures to be relaxed.

To do so, we proceed as in Tchetgen Tchetgen et al (2010) and use the following representation
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of the joint density of (A1, A2) given X :

f(A1, A2|X) =
f(A1|A2 = 0, X)f(A2|A1 = 0, X)OR(A1, A2;X)∫ ∫

f(a1|A2 = 0, X)f(a2|A1 = 0, X)OR(a1, a2;X)dν(a1, a2)
(1)

where ν is a dominating measure of the distribution of (A1, A2) , OR(A1, A2;X) is the generalized

odds ratio function relating A1 and A2 within levels of X, that is

OR(A1, A2;X) =
f(A1, A2|X)f(A1 = 0, A2 = 0|X)
f(A1 = 0, A2|X)f(A1, A2 = 0|X)

and {f(A1|A2 = 0, X), f(A2|A1 = 0, X)} are baseline densities in the target population. Note that

the generalized odds ratio function reduces in the simple case of binary exposures, to the standard

odds ratio effect measure, but remains well defined as a measure of association for exposures of a

more general nature, whether categorical, count or continuous variables, i.e. OR(A1, A2;X) = 1

if and only if A1 and A2 are independent within levels of X. The null hypothesis of no additive

interaction can more generally be stated as:

H0 : µ(a1, a2, x)− µ(a1, 0, x)− µ(0, a2, x) + µ(0, 0, x) = 0 for all values of a1, a2 and x.

For any function g(A1, A2, X) of (A1, A2, X), let
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w(A1, A2, X,D; g) = W (g)

= OR(A1, A2;X)
−1{g(A1, A2, X)−

∫
g(A1, a2, X)f(a2|A1 = 0, X)dµ(a2)

−
∫
g (a1, A2, X) f (a1|A2 = 0, X) dµ(a1)

+

∫
g(a1, a2, X)f (a2|A1 = 0, X) f (a1|A2 = 0, X) dµ(a1, a2)}D

Lemma The null hypothesis H0 holds if and only if

E {W (g)|D = 1, x} = 0 for all values of x and all functions g

Result 1 is easily recovered as a corollary of the Lemma. According to the Lemma, an empirical

version of W (g) with user-specified function g may be used to test H0. One must estimate the

unknown odds ratio function and baseline densities, in order to obtain an estimate of the joint

density of (A1, A2) given X. Under the rare disease assumption, estimation of the joint density can

proceed by standard maximum likelihood using only the controls under the parametrization given

in equation (1), upon positing parametric models for the odds ratio function and baseline densities.

To ground ideas, suppose one posits parametric models OR(A1, A2;X;ω), f(A1|A2 = 0, X;α1) and

f(A2|A1 = 0, X;α2), e.g. a single parameter model logOR(A1, A2;X) = ωA1A2 may be used that

encodes the assumption that the odds ratio association between A1 and A2 given X does not vary

with X, i.e. no effect heterogeneity in X of the odds ratio association between A1 and A2 in the

population. For exposures that are either binary, continuous or counts, generalized linear models

within the exponential family may be used to model the baseline densities. For example, counts

may be modeled by assuming a Poisson distribution for the corresponding baseline density. Let
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ω̂, f̂(A1|A2 = 0, X) and f̂(A2|A1 = 0, X) denote the approximate maximum likelihood estimate

of (1) using controls only; and let Ŵ (g) = W (g, θ̂) denote the resulting estimate of W (g), where

θ = (ω, α1, α2). Our proposed test statistic is then given by Z =
∑

i Ŵi(g)/n
√
σ̂2W , where σ̂

2
W is

the estimate of V ar
(∑

i Ŵi(g)/n
)
provided in the Appendix.

It is straightforward to verify that the test statistics considered in previous sections belong

to the above unifying class of test statistics. For instance, the test statistics proposed to handle

binary, continuous or count exposures under the independence assumption are obtained by taking:

g(A1, A2, X) =
(
A1 − Ê (A1|X)

)(
A2 − Ê (A2|X)

)

where Ê (Aj|X) is the mean of Aj evaluated under f̂(Aj|X), j = 1, 2. For A1 categorical with

K distinct categories and A2 binary, continuous or a count, one likewise obtains the test statistic

previously proposed by taking:

g(A1, A2, X) =
K−1∑
k=1

(
I(A1,i = a1,k)− Ê (I(A1,i = a1,k)|X)

)(
A2 − Ê (A2|X)

)

Under the independence assumption, the asymptotic variance of V ar
(∑

i Ŵi(g)/n
)
is easily mod-

ified to account for the assumption that OR(A1, A2;X) is set to 1 for all persons in the sample.

Relaxing the rare disease assumption

In case the rare disease assumption does not apply, estimating exposure regression models in the

controls only may not be entirely appropriate. Nonetheless, it may still be possible to test for

the presence of an additive interaction, for instance if as often the case in nested case-control

studies, sampling fractions for cases and controls were known. Then, standard inverse probability

weighting could be used based on known sampling weights to estimate population models for the
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exposures using both cases and controls. Potentially more effi cient estimates of models for the

exposures could alternatively be obtained using more recent methodology for regression analysis

of secondary outcomes in case-control studies (Tchetgen Tchetgen, 2013).

A simulation study

We study the power and type 1 error of our proposed test in the standard setting of binary genetic

and environmental variables with no other covariate, so that it is more easily compared to the

approach of Han et al (2012). In order to evaluate both type error rates and power of various test

statistics, we generated simulated data following the design of Han et al (2012) which encodes the

magnitude of the interaction indirectly by varying RERI from 0 (to assess type 1 error) to 0.5. The

probability of having the genetic variant was 0.5, and the probability of the binary environmental

variable was 0.2, and these factors were generated to be independent. Let logit(p) =log{p/(1− p)}

and expit(z) = exp(z)/[exp(z) + 1]. The disease risk model was

logitPr(D = 1|a1, a2) = α0 + α1a1 + α2a2 + α3a1a2;

with baseline risk equal to 0.01 (i.e. α0 = logit(0.01)), the gene and environment main effects

were varied so that (α1, α2) ∈ {log(0.7), log(1.2); log(2)}, and the multiplicative G-E interaction

parameter α3 was selected to yield the desired RERI, according to the formula

α3 = logit[(RERI− 1)expit(α0) + expit(α0 + α1) + expit(α0 + α2)]− α0 − α1 − α2

In each simulation, we generate 4000 cases and 4000 controls. We report results for 10,000 sim-

ulations for each setting corresponding to a particular combination of (α1, α2) and RERI values.
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Figure 1 summarizes results in terms of power plots comparing the proposed tests with and with-

out using the G-E independence assumption, labeled ‘U ind’and ‘U’respectively. The figure also

presents results for the retrospective profile likelihood ratio test proposed by Han et al (2012) with

and without using the independence assumption respectively, labeled ‘Han ind’and ‘Han’respec-

tively. Finally, the Figure also displays results from the standard RERI test based on prospective

logistic regression, which is labeled ‘prosp’.

Insert Figure here.

All tests appear to have correct type 1 error rate as shown in the Figure, as well as in the more

detailed Table provided in the Appendix. One observes that the RERI-LRT test ‘Han ind’and

‘U ind’are equally powerful when Pr(G = 1) = 0.5 across various possible values for the other

parameters, and both tests are dramatically more powerful when compared to the other tests,

while ‘U’is slightly less powerful than ‘Han’, which is in turn slightly less powerful than ‘prosp’.

In additional simulations, we varied the prevalence of the genetic marker Pr(G = 1) to have

population probabilities 0.2 and 0.05, while the environmental factor was maintained to have prob-

ability 0.2. Power plots similar to those appearing in Figure 1 are provided in the supplementary

material for these additional settings. These additional simulations confirm that all tests be-

come less powerful as the genetic variant becomes less common, with ‘Han ind’being slightly

more powerful than ‘U ind’when Pr(G = 1) = 0.05. Overall, the simulation study confirms that

the proposed approach performs quite competitively when compared with the effi cient RERI-LRT

approach, in settings where both methods are available.

In the following section, we consider a data application of the new approach in which RERI

is no longer readily available and cannot easily be applied without further making unnecessary

assumptions.
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Ovarian cancer application

We applied the proposed test of additive interaction to the well-known Israeli Ovarian Cancer data

(Modan et al., 2011) also recently analyzed by Chatterjee and Carroll (2005), Tchetgen Tchetgen

and Robins (2010) and Tchetgen Tchetgen (2011). Although the goal in previous analyses was

to detect a multiplicative gene-environment interaction between having the BRCA1/2 mutation

and two environmental exposures, number of years of oral contraceptive use (OC) and number

of children (parity), here we are primarily concerned with determining whether such interactions

might be operating on the additive scale. Both environmental exposures are naturally coded as

counts, and therefore can be modeled using Poisson regression, while standard logistic regression

was used to model the genetic variant. Both sets of models were estimated only using controls

as previously described. We present results when assuming G-E independence, and without using

such an assumption. Without G-E independence, the odds ratio parameter ω was estimated as the

coeffi cient for the exposure in view in a logistic regression of the genetic factor on the environmental

exposure and covariates, i.e. (E,X).

A number of covariates were available for confounding adjustment and also to enforce the

independence assumption. All regression models adjusted for age, as an indicator variable for

age≤ 50, indicator variables for ethnicities of Ashkenazi jew, and non-Ashkenazi (with mixed race

serving as reference category), indicator variables for personal history of breast cancer, family

history of breast cancer, and family history of ovarian cancer. For convenience, we used the

nonparametric bootstrap to evaluate 95% confidence intervals and p-values.

Insert Table Here.

The table provides results from testing for a GxE additive interaction with and without mak-

ing the G-E independence assumption. In accordance with simulation results, the independence
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assumption yields a test statistic consistently more extreme for both exposures in view than the

corresponding test which does not incorporate the assumption. Specifically, we succesfully reject

the null hypothesis of no additive G-E interaction between BRCA1/2 mutation and parity at the

alpha level of 0.05, only when the independence assumption is made, and not otherwise. We

found no conclusive evidence of an additive interaction with OC, although the test statistic under

G-E independence was far more extreme than without the assumption and the associated p-value

was marginally significant (p-value=0.09). In conclusion, we found significant evidence that the

well-known strong association between BRCA1/2 may be tempered by the number of children

a woman has given birth to. It is interesting to compare these findings with previous analyses

of these data that have primarily been concerned with detecting the presence of a multiplicative

GxE interaction. For instance, Tchetgen Tchetgen and Robins (2010) leveraged the independence

assumption to detect a GxE multiplicative interaction only with OC and failed to find evidence of

a similar interaction with parity, thus essentially reporting the opposite findings to ours. However,

our findings are potentially more scientifically relevant given that interactions on the multiplicative

scale may be harder to interpret mechanisticallly.

Conclusion

We have described a very general framework to test for GxE additive interactions exploiting G-E

independence in case-control studies. The proposed strategy has several advantages over existing

RERI-based strategies, primarily because, unlike the latter, the former does not require a regression

model for the outcome, and therefore is less vulnerable to model misspecification of main effects, a

potential concern particularly if E is a count or continuous and additional covariates are included

in the regression. The approach put forward in this paper is closely related to the semiparametric

framework of Vansteelandt et al (2008) and Tchetgen Tchetgen (2012), who characterized the set
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of influence functions of a model of interaction (on the additive or multiplicative scale and odds

ratio scale respectively) under a semiparametric union model in which only a subset but not all of

the parametric models used to describe the data generating mechanism need to be correct for valid

inference. In fact, one can show that our proposed test statistic belongs to the general class of

test statistics for additive interaction associated with the set of influence functions of Vansteelandt

et al (2008). However, because Vansteelandt et al (2008) did not allow for outcome dependent

sampling and only considered standard prospective random sampling, not all test statistics in their

class may be used under case-control sampling. Thus, an important contribution of the current

paper has been to characterize the subset of the Vansteelandt et al (2008) class of test statistics

of an additive interaction that may be used both under prospective and retrospective sampling.

An additional contribution made in the current paper, is to clearly demonstrate the potential for

effi ciency gain by incorporating the G-E independence assumption under case-control sampling.

In recent years, there has been growing interest in genomewide interaction studies (GWIS)

aimed at identifying regions of the genome that may be implicated in moderate to large interactions

with a given environmental exposure ( Murcray et al, 2009, Khoury and Wacholder, 2009, Cornelis

et al, 2012, Mukherjee et al, 2012, Thomas et al, 2012). However, existing GWIS have to date

mostly considered multiplicative interactions, and few such studies have been succesful at detecting

such interactions. It may be that genetic variants implicated in true mechanistic interactions with

environmental factors do not produce suffi ciently large multiplicative interactions to be detected

in multiplicative GWIS. Thus, it may be of definite interest in the future to consider GWIS that

directly target additive interactions (GWISAdd). Given that most variants genotyped in a typical

genomewide association study are likely independent of environmental factors (Thomas et al, 2012),

GWISAdd that leverage G-E independence using the methods developed in the current paper may

be more likely to uncover additive interactions of greater relevance to learn about mechanism.
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Figure 1. Power as a function of RERI and (α1, α2) , when Pr(G = 1) = 0.5 and sample size

equal to 4000 cases and 4000 controls.
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E variable U 95% CI p-values
G-E independence assumed

OC 0.049 (-0.006, 0.117) 0.09
Parity -0.044 (-0.092, -0.004) 0.03

No G-E independence assumed
OC 0.002 (-4.692, 0.012) 0.77
Parity -0.005 (-0.023, 0.019) 0.59

Table 1: Testing results for the additive G-E interaction between presence of BRCA1/2 mutation
(G) and number of years of oral contraceptive (OC) use, and parity (E variables), with and
without G-E independence assumption. U is the proposed (standardized) test statistic, and its 95%
bootstrap confidence interval and p-value are provided, calculated over 1000 bootstrap samples.
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APPENDIX

A general approach to detect gene (G)-environment (E)

additive interaction leveraging G-E independence

in case-control studies

by

Eric J Tchetgen Tchetgen, Tamar Sofer, Benedict HWWong

Proof that V ar(
∑

i Ûi/n) > V ar(
∑

i Ũi/n).

To show the result requires the influence function of θ̂ = (ω̂, p̂1 = p̂1(0), p̂2 = p̂2(0))
T which is of

the form

IF = E
(
∂R (θ)

∂θ

)−1
R (θ) (2)

where R (θ) = (1−D)× ((A1 − E (A1, θ)), (A2 − E (A2; θ)), (A1A2 − E (A1A2; θ))T , where the first

component is the score of p1(0), the second component is the score of p2(0), the last component is

the score of ω, and θ = (ω, p1, p2 = p2) . Standard matrix algebra can be used to show that at the

submodel where A1 and A2 are independent IF = (IF1, IF2, IF3) where:
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IF1 = E [(1− A2) (1−D)]−1 (1− A2) (A1 − E (A1)) (1−D)

≈ −E [(1− E (A2|D = 0))]−1 (A2 − E (A2|D = 0)) (A1 − E (A1|D = 0)) (1−D)

+ (A1 − E (A1|D = 0)) (1−D)

IF2 = E [(1− A1) (1−D)]−1 (1− A1) (A2 − E (A2|D = 0)) (1−D)

≈ −E [(1− E (A1|D = 0))]−1 (A1 − E (A1|D = 0)) (A2 − E (A2|D = 0)) (1−D)

+ (A2 − E (A2|D = 0)) (1−D)

IF3 = E
[
(A1 − E (A1|D = 0))2 |D = 0

]−1 E [(A2 − E (A2|D = 0))2 |D = 0
]−1

× (A1 − E (A1|D = 0)) (A2 − E (A2|D = 0)) (1−D)
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A Taylor series argument then gives

∑
i

Ûi/
√
n

≈
∑
i

Ui/
√
n− E [(A2 − p2(0))D] IF1

− E [(A1 − p1(0))D] IF2 − E [A1A2 (A2 − p2(0)) (A1 − p1(0))D] IF3

=
∑
i

Ui/
√
n

− E [(A2 − p2(0))D]
∑
i

(A1,i − E (A1|D = 0)) (1−Di)/
√
n

− E [(A1 − p1(0))D]
∑
i

(A2,i − E (A2|D = 0)) (1−Di)/
√
n

−

 E [A1A2 (A2 − p2) (A1 − p1)D] {p1p2 (1− p1) (1− p2)}−1

+E [(A2 − p2)D] [(1− p2)]−1 + E [(A1 − p1)D] [(1− p1)]−1


×
∑
i

(A1,i − E (A1|D = 0)) (A2,i − E (A2|D = 0)) (1−Di)/
√
n

Upon noting that the above four terms are mutually uncorrelated, we have that :

V ar

(∑
i

Ûi/n

)
≈ V1 + V2 + V3
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where

V1 = V ar (U) /n

V2 = E [(A2 − p2(0))D]2 V ar ((A1 − E (A1|D = 0)) (1−D)) /n

+ E [(A1 − p1(0))D]2 V ar ((A2 − E (A2|D = 0)) (1−D)) /n

V3 =

 E [A1A2 (A2 − p2) (A1 − p1)D] {p1p2 (1− p1) (1− p2)}−1

+E [(A2 − p2)D] [(1− p2)]−1 + E [(A1 − p1)D] [(1− p1)]−1


2

× V ar ((A1 − E (A1|D = 0)) (A2 − E (A2|D = 0)) (1−D)) /n

A similar derivation shows that

∑
i

Ũi/
√
n

≈
∑
i

Ui/
√
n

− E [(A2 − p2(0))D]
∑
i

(A1,i − E (A1|D = 0)) (1−Di)/
√
n

− E [(A1 − p1(0))D]
∑
i

(A2,i − E (A2|D = 0)) (1−Di)/
√
n

which gives

V ar

(∑
i

Ũi/n

)
≈ V1 + V2

proving the result.

Asymptotic variance for unified class of test statistics

Our proposed test statistic is then given by Z =
∑

i Ŵi(g)/nσ̂W , where σ̂2W is an estimate of

28 http://biostats.bepress.com/harvardbiostat/paper177



V ar
(∑

i Ŵi(g)/n
)
one can derive using a standard Taylor series argument:

V ar

(∑
i

Ŵi(g)/n

)
≈ n−1V ar (W (g, θ)) + n−1E

(
W T
θ (g)

)
V ar

(
S†θ

)
E (Wθ(g)) (3)

where Wθ(g) is the derivative of W (g, θ) with respect to θ evaluated at the truth, and S
†
θ is the in-

fluence function of θ̂. For instance, when θ̂ is a maximum likelihood estimator, S†θ = E
(
SθS

T
θ

)−1
Sθ,

where Sθ denote the score of θ. Under the assumption that A1 and A2 are independent, we may

set ω̂ = 1 and redefine θ = (α1, α2) ,also note that under independence, the joint density (1) in

the text simplifies to f(A1, A2|X) = f(A1|X)f(A2|X), leading to some simplification in the above

expression for the asymptotic variance of the test statistic.

Proof of Lemma 1. Consider the nonparametric additive representation of µ(a1, a2, x) given

by µ(a1, a2, x) = β1(a1, x) + β2(a2, x) + β3(a1, a2, x) + β4(x) where β1(a1, x) is the main effect of

A1 and satisfies β1(0, x) = 0, likewise β2(a2, x) is the main effect of A2 and satisfies β2(0, x) =

0, β3(a1, a2, x) is the additive interaction between A1 and A2 and satisfies β3(0, a2, x) = β3(a1, 0, x) =

0, and β4(x) is the main effect of X. For any function g, note that

E {W (g)|D = 1, x}

=

∫ ∫
w(a1, a2, x, 1; g)µ(a1, a2, x)f(a1, a2|x)f(x)dν(a1, a2)/

∫ ∫
µ(a1, a2, x)f(a1, a2|x)f(x)dν(a1, a2)

∝
∫ ∫

w(a1, a2, x, 1; g)µ(a1, a2, x)f(a1|a2 = 0, x)f(a2|A1 = 0, x)OR(a1, a2;X)dν(a1, a2)

=

∫ ∫
w(a1, a2, x, 1; g)β3(a1, a2, x)f(a1|A2 = 0, x)f(a2|A1 = 0, x)dν(a1, a2)

since

∫ ∫
w(a1, a2, x, 1; g) {β1(a1, x) + β2(a2, x) + β4(x)} f(a1|A2 = 0, x)f(a2|A1 = 0, x)dν(a1, a2) = 0
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for any choice of g. Thus, the null of no additive interaction β3(a1, a2, x) = 0 for all (a1, a2, x) im-

plies that E {W (g)|D = 1, x} = 0.We get the result in the other direction by choosing g(a1, a2, x) =

g∗(a1, a2, x) = β3(a1, a2, x) which gives

E {W (g)|D = 1, x} = 0 for all g and x implies that∫ ∫
w(a1, a2, x, 1; g

∗)2f(a1|A2 = 0, x)f(a2|A1 = 0, x)dν(a1, a2) = 0 for all x

which in turn implies that β3(a1, a2, x) = 0 for all (a1, a2, x) proving the result. �
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