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Abstract

Unobserved confounding is a well known threat to causal inference in non-experimental studies.

The instrumental variable design can under certain conditions be used to recover an unbiased

estimator of a treatment effect even if unobserved confounding cannot be ruled out with certainty.

For continuous outcomes, two stage least squares is the most common instrumental variable esti-

mator used in epidemiologic applications. For a rare binary outcome, an analogous linear-logistic

two-stage procedure can be used. Alternatively, a control function approach is sometimes used

which entails entering the residual from the first stage linear model as a covariate in a second

stage logistic regression of the outcome on the treatment. Both strategies for binary response have

previously formally been justified only for continuous exposure, which has impeded widespread use

of the approach outside of this setting. In this note, we consider the important setting of binary

exposure in the context of a binary outcome. We provide an alternative motivation for the control

function approach which is appropriate for binary exposure, thus establishing simple conditions

under which the approach may be used for instrumental variable estimation when the outcome is

rare. In the proposed approach, the first stage regression involves a logistic model of the exposure

conditional on the instrumental variable, and the second stage regression is a logistic regression

of the outcome on the exposure adjusting for the first stage residual. In the event of a non-rare

outcome, we recommend replacing the second stage logistic model with a risk ratio regression.

2 http://biostats.bepress.com/harvardbiostat/paper175



In recent years, the instrumental variable (IV) design has gained popularity in epidemiology, as a

strategy to recover unbiased estimates of an exposure or treatment causal effect in settings where

unobserved confounding is suspected to be present (Greenland, 2000, Davey Smith and Ebrahim,

2003, Hernán and Robins, 2006, Lawlor et al, 2008, Palmer et al, 2011). For continuous outcomes,

the most common IV estimator used in practice is two stage least squares which involves fitting a

linear regression of the outcome on an estimate of the exposure mean, obtained by regressing the

exposure on the IV in a first stage linear model (Wooldridge, 2002). For a rare binary outcome

an analogous two stage procedure is sometimes used, in which linear regression is used in the first

stage, however, a logistic regression is substituted in the second stage to account for the binary

nature of the outcome (Theil, 1953, Basmann, 1957, Angrist, 2001, Wooldridge, 2002, Didelez

et al, 2010). A variation of the approach simply adjusts for the residual of the first stage linear

regression of the exposure, in a second stage logistic regression of the outcome on the observed

treatment; this strategy is described in the literature as a control function approach (Garen, 1994,

Woldridge, 1997, Nagelkerke et al, 2000, Blundell and Powell, 2003, Terza et al, 2008). Both

strategies for binary response have previously formally been justified only for continuous exposure

(Mullahy,1997, Didelez, 2010, Vansteelandt et al, 2011), which has impeded widespread application

of either method outside of this setting. In this note, we consider the important setting of binary

treatment in the context of a binary outcome. We provide an alternative formulation of the second

strategy which applies for binary exposure, thus establishing simple conditions under which the

approach may be used for instrumental variable estimation when the outcome is rare and the

treatment is binary. In the proposed control function approach, the first stage regression involves

a logistic model of the exposure conditional on the instrumental variable, and the second stage

regression is a logistic regression of the outcome on the exposure adjusting for the first stage

residual. In the event of a non-rare outcome, we recommend replacing the second stage with a risk
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ratio regression.

Review of control function for continuous treatment

Suppose that one has observed a rare binary outcome Y , a continuous exposure A, and a binary

instrumental variable Z. Throughout, U will refer to an unmeasured continuous confounder of

the A-Y causal association. A standard formulation of a data generating model for the control

function approach assumes the outcome is generated from the log linear model

log Pr (Y = 1|A,Z, U) = β0 + βAA+ U, (1)

with βA the log risk ratio causal association between A and Y conditional on U (see for example

Palmer et al, 2011). The model rules out the possibility of latent effect heterogeneity of A wrt U

on the multiplicative scale. For continuous A, the model further posits the following model for

the exposure :

A = γ0 + γ1Z + γ2U + ε where ε is independent mean zero error, (2)

where γ2 6= 0. In addition the model assumes that U and Z are independent, as would be the

case for a valid IV. Note that the above model encodes explicitly the assumption that Z is a valid

instrumental variable, which satisfies the following conditions:

1. Z only affect Y through its association with A, which is encoded by the fact that although

Z appears in the conditioning event on the left hand side of equation (1) , it does not appear

on the right hand side of the equation.

2. The unmeasured confounder of the exposure effect on the outcome is independent of the IV,

thus Z is independent of U .
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3. The IV is relevant for the exposure, i.e. Z predicts A and thus γ1 6= 0.

Note that this formulation assumes U does not interact with Z in the model for A. Under these

assumptions, one can show that

log Pr(Y = 1|A,Z) = β∗0 + βAA+ α1∆

where

∆ = A− E (A|Z) .

The above equation gives a simple parametrization for the log-linear regression of Y on (A,Z),

which allows one to recover under the stated assumptions, the causal log risk ratio association

βA between A and Y . Estimation typically proceeds in two stages. In the first stage, one fits a

standard linear regression to estimate the exposure model

E (A|Z) = α0 + α1Z

by ordinary least squares (ols), which in turn is used to estimate the residual ∆ with ∆̂ =

A − (α̂0 + α̂1Z) , where (α̂0, α̂1) are ols estimates. Then in a second stage, one regresses Y

on (A, ∆̂) using standard logistic regression, as a suitable approximation for the log-linear model

(4) . The regression coeffi cient for the exposure in the second stage logistic regression will then

be approximately unbiased for βA. We will refer to the above two stage procedure as the linear-

logistic control function approach. The large sample variance of the resulting estimator of βA

must acknowledge the first stage estimation of E (A|Z) , which is easily obtained from standard

M-estimation theory. Alternatively, when convenient, one could also use the nonparametric boot-

strap to obtain confidence intervals.
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One can assess the extent of unobserved confounding, by evaluating the strength of association

between Y and ∆, which can be performed with a test of the null hypothesis that α1 = 0.

Control function for binary treatment

Now, suppose that A is dichotomous, then as noted by Didelez et al (2010), assumption (2)

cannot be satisfied for binary exposure. Thus, we will consider an alternative formulation, whereby

assumption (2) is replaced by the following location shift model for U :

U = E (U |A,Z) + δ where δ is independent of (A,Z) (3)

The assumption would hold if U were normally distributed given (A,Z) with homoscedastic

variance, however, this is not strictly required and the model allows for an arbitrary distribution

for δ.

Result 1: Under assumptions (1),(3) , and the assumption that U and Z are independent, we have

that,

log Pr(Y = 1|A,Z) = β∗0 + βAA+ (ω1 + ω2Z) ∆, (4)

where (β∗0 , ω1, ω2) are defined in the appendix.

Result 1 provides formal justification for a generalization of the control function approach in the

context of a binary treatment, with the standard control function approach recovered by setting

ω2 = 0. Interestingly, unlike the standard formulation for continuous treatment, the regression

model (4) formally allows for heterogeneity in the degree of selection bias due to confounding if

ω2 6= 0.

Implementation of the approach in practice is fairly straightforward. The main adjustment to

account for binary treatment is in the first stage estimation of the treatment model, whereby ols
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estimation of a linear model for continuous treatment can be replaced with maximum likelihood

estimation (mle) of a logistic regression for binary treatment:

logitPr (A = 1|Z) = α0 + α1Z

to produce an estimated propensity score π̂(Z) = P̂r (A = 1|Z) using the mle (α̂0, α̂1) . The second

stage of the approach proceeds by estimating the logistic regression of Y on (A, ∆̂, Z∆̂) , upon

redefining the estimated residual as ∆̂ = A − π̂(Z). The resulting estimator of the regression

coeffi cient for the exposure in the second stage logistic regression will be approximately unbiased

for βA provided that the assumptions of Result 1 hold. For inference, one may use M-estimation

theory to derive the large sample variance of the estimator, alternatively, one can proceed with

the nonparametric bootstrap.

Control function when the outcome is not rare

If Y is not rare in the target population, one may adopt one of several existing methods to estimate

the risk ratio regression (4), including the log-binomial model of Wacholder (1986), the Poisson

regression approach of Zou (2004), and the semiparametric locally effi cient approach of Tchetgen

Tchetgen (2013).

Control function under case-control sampling

Case-control studies are a common design in epidemiologic practice, particularly is settings where Y

is rare in the population, or measuring Z or A is costly. Accounting for case-control ascertainment

is fairly straightforward in the case of a rare outcome, since logistic regression, which appropriately

accounts for the sampling design can continue to be used in the second stage, however, the first

stage regression model must be modified to account for possible selection bias. A simple strategy

entails restricting estimation of the first stage regression of A on Z, to the subset of controls with
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Y = 0, which should yield a reasonable approximation of the population regression model. This

approach may however be ineffi cient, since it does not make use of the exposure and IV measured

among cases. Under certain assumptions, it may be possible to improve the effi ciency of the first

stage regression which in turn may lead to a more effi cient second stage estimator of the treatment

effect. This can be achieved by using all available information on both cases and controls, and by

adjusting for case-control status in estimating the first stage regression model. For instance, for

continuous A, one may modify the first stage regression and instead estimate:

E(A|Z, Y ) = α0 + α1Z + α2Y,

which involves adjusting for ascertainment by directly conditioning on case-control status in the

regression model. Under the rare disease assumption, the above model would in principle recover

an unbiased estimator (α̃0, α̃1) of (α0, α1) provided the degree of ascertainment bias (here encoded

by a non-null value of α2) does not vary with Z (Tchetgen Tchetgen et al, 2013, Tchetgen Tchetgen,

2013b). It is important to note that some care is needed in forming the residual used in the second

stage logistic regression, which must reflect the residual value for A in the underlying population

and is therefore obtained by evaluating the predicted mean of A under the above estimated mean

model, after setting Y = 0 for both cases and controls (Tchetgen Tchetgen et al, 2013), i.e.

∆̂ = A− Ê(A|Z, Y = 0) = A− α̃0 − α̃1Z

Tchetgen Tchetgen (2013b) discusses analogous methodology to account for possible hetero-

geneity in the degree of selection bias, and similar techniques are also developed in the context of

logistic regression for binary A, and are likewise extended to account for case-control ascertainment

when Y is not necessarily rare in the population. However, similar to standard inverse probability
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weighting, which may also be used to account for the sampling design (although it may be rela-

tively ineffi cient), the sampling fractions for cases and controls must be available to account for

sampling conditional on an outcome Y which may not be rare in the target population (Tchetgen

Tchetgen, 2013b).

Adjusting for covariates

Here we consider a straightforward generalization to allow for the presence of covariates C such

that Z is a valid IV conditional on C but not necessarily so upon marginalizing over any component

of C. Assuming standard prospective sampling, in order to incorporate such covariates, it suffi ces

to modify regression models used in the first and second stages, such that in the case of continuous

exposure, the first stage regression further adjusts for C, e.g.

E(A|Z,C) = α0 + α1Z + α2C,

and likewise, for binary A, one could specify

logitPr(A = 1|Z,C) = α0 + α1Z + α2C.

The second stage regression in the rare outcome situation could also be modified accordingly, e.g.

logitPr(Y = 1|A,Z) = β∗0 + β′CC + βAA+ (α1 + α2Z) ∆̂

with ∆̂ the estimated residual A − Ê(A|Z,C), and analogous adjustments can be made to the

risk ratio regression approach recommended for non-rare outcomes, as well as under case-control

sampling.
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Conclusion

In this note, an alternative framework is proposed to motivate the control function IV approach

in the context of binary outcome, with binary treatment. Although emphasis is given to binary

treatment, the approach can be modified to handle other types of discrete treatment, without

much diffi culty. The approach can also be used with a continuous IV without further diffi culty. In

addition, unlike available formulations of the control function approach, the proposed framework

allows for the presence of heterogeneity in the magnitude of selection bias (on the risk ratio

scale) with respect to the IV. Such heterogeneity may reflect latent heterogeneity in the degree of

association of the IV with the treatment, the presence of which cannot be ruled out with certainty

in practice. Ignoring such heterogeneity when present may invalidate the commonly used control

function approach, and therefore the proposed framework is recommended for routine use as a

more robust alternative strategy for IV estimation in the context of binary outcome and binary

treatment.

Appendix

Proof of Result 1: Note that

Pr (Y = 1|A,Z) = E [exp (β0 + βAA+ U) |A,Z]

= exp (β0 + βAA)E [exp (U) |A,Z]

= exp (β0 + βAA+ logE [exp (δ)])

× exp {E (U |A,Z)} .

10 http://biostats.bepress.com/harvardbiostat/paper175



Further note that

E (U |A,Z) = E (U |A,Z)− E (U |A = 0, Z)

−
∫
{E (U |a, Z)− E (U |A = 0, Z)} dF (a|Z)

+ E (U |Z)

= ω1A+ ω2AZ − α1E (A|Z)− α2E (A|Z)Z

+ E (U)

where

ω1 = E (U |A = 1, Z = 0)− E (U |A = 0, Z = 0)

and

ω2 = E (U |A = 1, Z = 1)− E (U |A = 0, Z = 1)

− {E (U |A = 1, Z = 0)− E (U |A = 0, Z = 0)}

therefore

Pr(Y = 1|A,Z) = exp {β∗0 + βAA+ (ω1 + ω2Z) ∆}

where

β∗0 = β0 + logE [exp (δ)] + E (U)

proving the result.
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