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Abstract

In perinatal epidemiology, birth outcomes such as small for gestational age (SGA) may not be

observed for a pregnancy ending with a stillbirth. It is then said that SGA is truncated by

stillbirth, which may give rise to survival bias when evaluating the effects on SGA of an exposure

known also to influence the risk of a stillbirth. In this paper, we consider the causal effects of

maternal infection with human immunodeficiency virus (HIV) infection on the risk of SGA, in a

sample of pregnant women in Botswana. We hypothesize that previously estimated effects of HIV

on SGA may be understated because they fail to appropriately account for the over-representation

of live births among HIV negative mothers, relative to HIV positive mothers. A simple yet novel

regression-based approach is proposed to adjust effect estimates for survival bias for an outcome

that is either continuous or binary. Under certain straightforward assumptions, the approach

produces an estimate which may be interpreted as the survivor average causal effect (SACE) of

maternal HIV, which is, the average effect of maternal HIV on SGA among births that would

be live irrespective of maternal HIV status. The approach is particularly appealing, because it

recovers an exposure effect which is robust to survival bias, even if the association between the risk

of SGA and that of a stillbirth, cannot be completely explained by adjusting for observed common

risk factors. The approach also gives a formal statistical test of the null hypothesis of no survival

bias in the regression framework.
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Selection bias is a well-known threat to epidemiologic research, and is said to be present if in a data

sample, features of primary scientific interest are entangled with features of the selection process

that gave rise to the sample, but are not of immediate interest. In such situations, it may not

be possible to obtain reliable inferences without explicitly acknowledging the selection process. A

particularly virulent form of selection bias, sometimes present in cohort studies concerned with

evaluating causal effects of a point exposure, arises when a subset of the cohort dies prior to follow-

up, and therefore does not have the outcome of interest ascertained. Then the outcome is said

to be truncated by death and inference about causal effects for the outcome in question may be

subject to survival bias1,2. For instance, in perinatal epidemiology studies, a maternal exposure

may have significant teratologic effects which may include causing a stillbirth, thus leading to

truncation of birth outcomes defined only for live births, e.g. small for gestational age (SGA),

preterm delivery and certain congenital malformations. In the presence of truncation due to

stillbirth, maternal exposure effects measured only among live births cannot easily be interpreted

causally, if the risk of a stillbirth remains associated with the outcome in view even after adjusting

for the exposure and other observed risk factors. This is an example of an effect defined conditional

on a post-exposure event (live birth) affected by exposure, a potential source of selection bias due

to so-called collider bias.3,4 In this paper, we consider the causal effect of maternal infection with

the human immunodeficiency virus (HIV) infection on the risk of giving birth to an infant who is

SGA in a study of 15922 pregnant women in Botswana, Africa. Maternal HIV status elevates the

risk of a stillbirth, which may itself have unobserved genetic and environmental common causes

with SGA. As a result, inferences about the effects of maternal HIV on SGA may be severely

biased even if one has properly accounted for all confounders of the effects of HIV, unless one also

appropriately accounts for differential risk of a stillbirth associated with maternal HIV status.

While truncation by death has in recent years become a prominent topic in causal inference,
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and epidemiologists have increasingly become aware of survival bias induced by conditioning on

an intermediate event (e.g. live birth) in studies of perinatal epidemiology, still, this practice

remains quite common. Truncation by death presents certain challenges that are quite distinct

from standard missing outcome problems. Specifically, a missing outcome is in principle nonetheless

well defined, albeit being unobserved for a subset of the sample. In contrast, an outcome such as

birthweight used in defining SGA is not only unobserved for stillbirths, but cannot be well defined

unless the birth is live, which requires care in defining causal contrasts. In this paper, we will focus

primarily on the so-called survivor average causal effect (SACE), which is the causal effect of an

exposure for the subset of persons that would survive whether exposed or not.1,2 In the context of

maternal HIV, SACE for say birthweight gives the average causal effect (say on the additive scale)

of maternal HIV status on birthweight for the subset of infants born alive irrespective of maternal

HIV status. For this subset of births, it is arguably the case that an observed association between

HIV and birthweight cannot be attributed to survival bias, since the latter cannot operate with

a null effect of maternal HIV on stillbirth in the sub-sample. Furthermore, the SACE contrast

remains unambiguous despite the presence of truncation by death, since the birth outcome in view

remains well defined for infants who would survive under both exposure conditions.

Although one can never know with certainty, whether an observed live birth of an HIV negative

mother, would also be a live birth if contrary to fact the mother was HIV positive, it is nonetheless

sometimes possible to make population inferences about the SACE under certain assumptions.

In this paper, we present a simple approach for estimating the SACE based on a straightforward

modification of standard regression analysis routinely used in epidemiologic practice. The proposed

modified regression approach can under certain conditions recover a valid estimate of the SACE of

HIV on SGA, even if substantial dependence persists between SGA and the risk of a stillbirth after

adjusting for common risk factors. To the best of our knowledge, the proposed analytic approach
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to account for survival bias is novel. For simplicity, in the next section, we present the approach in

the context of simple linear regression. Next, the approach is extended to handle binary outcomes

using logistic regression (for a rare outcome) and log linear regression (for a non-rare outcome). We

conclude with a discussion comparing the proposed methodology to some prominent methods in

the literature. For illustration, the methods are presented throughout in the context of data from

the Botswana Birth Outcomes Surveillance Study, that we use to estimate the effects of maternal

HIV infection on SGA .5

Estimating SACE for a continuous outcome

In the following, we let A denote a mother’s HIV status (A = 1 if HIV infected, 0 if HIV-

uninfected), S is an indicator of a live birth (S = 1 if live birth, 0 if stillbirth), Y is a continuous

birth outcome, here birthweight, which is only observed in case of a live birth (i.e. if S = 1) and

is otherwise undefined. In addition to these variables, one also observes C which includes (pre-

exposure) correlates of A, S and Y (among live births with S = 1). Note that in a randomized

trial in which A is randomly assigned relative to C, the latter may nonetheless remain associated

with S, as well as with Y in live births. The causal relationship for the observed data is depicted

in the causal direct acyclic graph (DAG) displayed in Figure 1, for an observation with S = 1.

The causal DAG also includes a variable U , which we will suppose is an unobserved common cause

of S and Y . The presence of U ensures that Y and S remain dependent even after conditioning

on observed risk factors included in C. We will also consider the counterfactual outcome S(a)

which stands for infant stillbirth status under maternal HIV status a = 0, 1. For S(a) = 1, a

live birth under exposure a, we define the corresponding counterfactual birthweight Y (a); however

for S(a) = 0, a stillbirth under exposure value a, birthweight is undefined. We also make the

consistency assumption that S = S(A), and Y = Y (A) if S = 1. Throughout, we assume that
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conditional on C, there is no unobserved confounding of the effects of A on Y. The survivor average

causal effect, SACE, conditional on C is defined as

SACE(c) = E(Y (1)− Y (0)|S(1) = S(0) = 1, C = c).

Suppose briefly that U were observed. Then, identification of SACE(c) would be possible

under the DAG in Figure 1 if it could be interpreted as implying the following counterfactual

independence condition:

Y (a) ⊥⊥ S(1− a)|S(a), A = a, C = c, U = u. (1)

This independence assumption would hold for instance, if the causal diagram were interpreted as

a graphical representation of Pearl’s nonparametric structural equations model with independent

error,3 see for instance Tchetgen Tchetgen et al.4 Then, under condition (1) ,

E (Y (1)|S(1) = S(0) = 1, C = c, U = u)

= E (Y (1)|S(1) = 1, C = c, U = u)

= E (Y (1)|A = 1, S(1) = 1, C = c, U = u)

= E (Y |A = 1, S = 1, C = c, U = u) ,

where the first equality follows from (1) , the second equality follows from no confounding assump-

tion of the effects of A, and the third equality follows from consistency. One can likewise show
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that

E (Y (0)|S(1) = S(0) = 1, C = c, U = u) (2)

= E (Y |A = 0, S = 1, C = c, U = u) ,

and

SACE(c) = E {E (Y |A = 1, S = 1, c, U)− E (Y |A = 0, S = 1, c, U) |c} .

However, the causal contrast SACE(c) is generally not identified from the observed data (SY,A, S, C)

without an additional assumption, since

Y (a) 6⊥⊥ S(1− a)|S(a) = 1, A = a, C = c, (3)

even if assumption (1) holds. To make progress, we show that identification is sometimes possible

even if U is not observed, under certain assumptions. In this vein, suppose that conditional on

(U,A,C),

E (Y |S = 1, A, C, U) = β0 + βaA+ U + b (C) , (4)

where b (C) is an unrestricted function of the covariates. This model is attractive in its simplicity

and flexibility, as it includes a range of model specifications one is likely to use in practice for a

continuous outcome, if U were actually observed. For example, standard linear regression corre-

sponds to specifying b (C) = β′cC as a linear function of C. But semiparametric or nonparametric

techniques could also be used to model the confounders, including generalized additive models,
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splines, polynomial or wavelets. It is straightforward to verify that under model (4) ,

SACE(c) = βa

does not vary with c. To make further progress, it is helpful to encode the dependence between S

and U on the log odds ratio scale using the simple specification:

logitPr {S = 1|A,U,C} = α′U + v(A,C), (5)

which specifies a linear log odds ratio association between U and S conditional on A and C.

Under the above model specification, the baseline function v(A,C) =logitPr(S = 1|A,U = 0, C)

is allowed to remain unrestricted. It is straightforward to verify that the null value α = 0 implies

that Y (a) and S(1− a) are independent conditional on S = 1, A = a, C, i.e.

α = 0 =⇒ Y (a) ⊥⊥ S(1− a)|S = 1, A = a, C,

which would also imply that SACE(c) is nonparametric identified from the observed data even if

one does not observe U. Finally, we assume that in the population

E (U |A,C) = E(U |C), (6)

which essentially states that A does not directly influence U conditional on C, and is consistent

with the causal diagram of Figure 1. However, for stillbirths (with S = 0), we expect that

U and A will be associated conditional on C, and we denote the corresponding residual ∆ =
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U − E (U |A = a, S = 0, C) , such that

∆ ⊥⊥ (A,C) given S = 0. (7)

Specifically, we assume that any association between U and (A,C) among stillbirths must be

operating entirely as a location shift. This would be the case, for instance if U were normally

distributed with variance σ2 among stillbirths, however, our model is substantially more flexible.

Result 1: Under assumptions (1) , (4) , (5) , (6) and (7) we have that

E(Y |A,C, S = 1) = β∗0 + βaA+ βacQ+ b∗ (C) , (8)

where b∗ (C) is an unrestricted function of C, the unknown coeffi cient βac is defined in the appendix,

and

Q = (1− π (A,C)) ,

π (A,C) = Pr(S = 1|A,C),

Our first Result 1 establishes that under the (semi-linear) model (4), with U satisfying (1)

and (7), SACE(c) = βa is identified from the observed data (A,C, SY ) despite the fact that U

is unobserved and (3) holds. Suppose for a moment that π (a, c) = Pr(S = 1|a, c) is known for

all a and c, so that Q given in Result 1 is observed. Suppose also for simplicity that one has

correctly specified a linear model for b∗ (C) = β∗′c C. Then according to the Result, βa is identified

by the regression coeffi cient of A in a standard regression model of Y on (A,C,Q), and unbiased

estimates of the regression coeffi cients β = (β0, βa, β
∗′
c , βac)

′ can be obtained via ordinary least

squares. The regression model (1) is similar to the underlying data generating regression (4) , with
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the important distinction that U is substituted with the factor Q. The result shows that under

the stated assumptions, this latter factor is essentially needed in the regression model, to account

for survival bias. Under a normal model for ∆ with mean zero and variance σ2 among stillbirths,

the regression coeffi cient for Q, βac is equal to σ2α , the product of the log-odds ratio association

between U and S, and the variance of U. Thus, as intuition would dictate, survival bias vanishes,

i.e. βac = 0 if either, as previously discussed, α = 0, or alternatively, if σ2 = 0 and therefore there

is no unmeasured predictor of Y conditional on A = 0, S = 1 and C. In addition to reporting βa,

the parameter βac is also of interest as it quantifies the extent to which survival bias might be

operating on the mean difference scale, so that a test of the null hypothesis βac = 0 amounts to a

test of no selection bias.

In practice, π (a, c) will seldom be known a priori, in which case, one may proceed with

estimation in two-stages, whereby a first stage estimation of π (a, c) can be obtained via stan-

dard logistic regression of S on (A,C) by maximum likelihood which produces an estimator

π̂ (a, c) = P̂r(S = 1|a, c) which may in turn be used to construct the estimate Q̂ = (1− π̂ (A,C)) .

An asymptotically unbiased estimator of β is then obtained by a second stage regression of Y on

(A,C, Q̂). For valid inference, it is necessary to acknowledge the additional uncertainty associated

with the first stage estimation of π (A,C) . Thus, we recommend the nonparametric bootstrap to

construct valid confidence interval for βa or other parameters of interest.

Estimating SACE for a binary outcome

In the following, we now suppose that Y is a binary birth outcome, such as SGA. An appropriate

target of inference for such a binary outcome in the context of truncation by death is given by the

risk ratio SACE measure :
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SACE(c) =
Pr(Y (1) = 1|S(1) = S(0) = 1, C = c)

Pr(Y (0) = 1|S(1) = S(0) = 1, C = c)
.

Similar to the model used for a continuous outcome, we will suppose that the following log-linear

model generated the data

logPr (Y = 1|S = 1, A, C, U) = β0 + βaA+ U + bc (C) (9)

where bc (C) is an unrestricted function, U is an unobserved correlate of Y and S as depicted in

the causal DAG in Figure 1, so that conditions (1) and (7) hold, and the following Result 2 is the

log-linear analog of Result 1.

Result 2: Under assumptions (1) , (5) , (6) , (7) ,and (9) , we have that,

log Pr(Y = 1|A,C, S = 1) = β∗0 + βaA+ b∗ (C) + βacQ, (10)

with Q and βac as defined in Result 1.

Result 2 gives a simple parametrization for the log-linear regression of Y on (A,C) for live

births, which allows one to recover under the assumptions stated in the result, the risk ratio SACE

of A. Similar to the linear case, the adjustment is achieved by extending the standard log-linear

model with the extra term Q with regression coeffi cient βac encoding on the log risk ratio scale

the extent to which survival bias may be operating. For estimation, it is convenient when Y is

rare within levels of A and C, to use a logit link in lieu of the log link, with b∗ (C) modeled as the

linear function β∗′c C with unknown parameter β∗c , and fit the following regression,

logitPr(Y = 1|A,C, S = 1) = θ∗0 + θaA+ θ∗′c C + θacQ̂, (11)
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via standard maximum likelihood, where Q̂ is obtained in a first stage regression as described in

the previous section. We then have that under the rare disease assumption θ ≈ β, where θ =

(θ∗0, θa, θ
∗′
c , θac) and β = (β∗0 , βa, β

∗′
c , βac) . As in the linear case, we recommend the nonparametric

bootstrap for inference.

If Y is not rare, one may adopt one of several existing methods to estimate the risk ratio

regression (11) with the log link replacing the logit link, including the log-binomial model of

Wacholder,6 the Poisson regression approach of Zou,7 and the semiparametric locally effi cient

approach of Tchetgen Tchetgen.8

Data application

In this section, we illustrate the methods described above to account for survival bias induced

by stillbirths using data from a birth outcomes surveillance study of 9,504 (30%) HIV-infected

and 22,609 HIV-uninfected women in Botswana. The primary aim of the study was to assess

whether maternal HIV status and use of highly active antiretroviral therapy during pregnancy,

respectively, is associated with adverse birth outcomes, including stillbirths, preterm delivery,

SGA and congenital anomalies.5 Details regarding the study sample, data extraction and analysis

are available in the original paper.5 Briefly, the study included all women who delivered live births

or stillbirths at a gestational age ≥ 20 weeks at 6 government facilities in Botswana between

May 2009 and April 2011. Study information, obtained from maternal obstetric records, included

maternal demographics, medical history, antiretroviral use, and birth outcomes.

For our purpose, we consider the effect of maternal HIV status on SGA in a complete-case re-

analysis (i.e. all pregnancies with complete information on HIV status and potential confounders);

6210 (39%) HIV-infected and 9712 HIV-uninfected pregnancies were identified. To estimate the

risk ratio SACE of HIV on SGA, first we ran a prediction model for the probability of a live birth,
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π(A,C) = Pr(S = 1|A,C), where C includes the following correlates of A, S and Y : presence of

past adverse pregnancy outcome(s), maternal age (15-20, 21-34, 35-50 years), educational status

(none/primary vs. secondary/tertiary), marital status (single/widowed/divorced vs. married)

and occupation (employed vs. unemployed). Table 1 shows results for the first stage regression

fit. We then used the simple modification of the logistic regression given in Result 2 (equation

(9)), adjusting for the same covariates used in the first stage model. Our results indicate that

survival bias may be operating in this study and suggest that the association between maternal

HIV and SGA using standard logistic regression are likely conservative when compared to the

SACE estimate. In fact, the SACE point estimate is somewhat larger than the standard risk ratio

estimate (SACE risk ratio standard risk ratio=2.1, 95%CI=[1.7,2.6] compared to standard risk

ratio=1.7, 95%CI=[1.6,1.9]), indicating that, if not appropriately accounted for, survival bias may

attenuate the estimated effects of HIV on SGA. Although the standard estimate is clearly smaller

than the SACE estimate, their confidence intervals overlap, mainly due to the fact that the SACE

estimator was considerably more variable. This was further reflected in the formal test of the null

hypothesis of no survival bias, i.e. βac = 0 in equation (9) which failed to reject at the 0.05 level

(p-value=0.07), but is nonetheless somewhat suggestive of the presence of selection bias.

Discussion

In this paper, we have considered an approach for inference about the effect of an exposure for indi-

viduals who would be alive at follow-up irrespective of their exposure value.1,2 SACE is an instance

of what has become known in the literature as a principal strata causal effect,2 and such effects are

generally not identified without certain assumptions. A principal stratum is formally defined by

conditioning on a collection of counterfactual outcomes under possibly conflicting exposure values,

for example, SACE corresponds to the effect for persons in the stratum {S(a = 0) = S(a = 1) = 1};
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however there also are other strata to consider, i.e. {S(a = 0)S(a = 1) 6= 1}. For identification, a

strategy which figures prominently in existing literature on SACE is monotonicity, which essentially

states that there is no person in the population for whom the exposure is protective, i.e. no person

exist with {S(a = 0) = 0, S(a = 1) = 1}. This is a strong assumption, and although it can some-

times be falsified empirically, it can never be established with certainty. Even when appropriate,

monotonicity alone does not suffi ce for identification and a variety of additional assumptions have

appeared in the literature, that permit identification of SACE under monotonicity. A common

strategy essentially amounts to a version of ignorability, either conditional on pre-exposure risk

factors,9 or conditional on both pre- and post-exposure risk factors.4,10 An alternative strategy

that is sometimes adopted entails performing a sensitivity analysis,11−16 or bounds can sometimes

be obtained.17,18 Zhang et al replace monotonicity with strong distributional assumptions, that the

outcome is normally distributed within principal strata, a strategy which is of little use for binary

outcome.18 Another approach is given by Ding et al who assume a form of exclusion restriction for

an observed pre-exposure covariate to obtain nonparametric identification of SACE.19 Specifically,

Ding et al assume that one has observed a pre-exposure correlate of survival, which is independent

of the observed outcome conditional on principal strata.19 Interestingly, this assumption can be

stated as follows, using the current formulation with C as the pre-exposure correlate of survival:

E(Y (a)|a, S(1− a) = s, S(a) = 1, C = c) = E(Y (a)|a, S(1− a) = s, S(a) = 1); a = 0, 1. (12)

We note that this assumption essentially requires that C is itself a causal effect of the principal

strata, which is also known a priori not to directly influence the outcome. However, in practice,

one will generally expect pre-exposure correlates of survival to either be direct causes of survival

or the effect of an unobserved cause of survival. Consequently, (12) is unlikely to hold in practice
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for most correlates of survival and therefore the methods described in their paper based on this

assumption are of little substantive interest. We should also note that Ding et al offer an alternative

approach in which the exclusion restriction (12) can be relaxed, provided that C takes on three or

more values, and additional parametric assumptions can be made; however implementation of the

approach is not straightforward.19 The approach proposed in the current paper complements that

of Ding et al19 by virtue of relaxing assumption (12) while allowing for binary or more general C

without imposing neither monotonicity, nor their exclusion restriction. The proposed regression

based approach is particularly advantageous in its ease of implementation in standard software,

and provides a simple analytic framework for investigators to assess the extent to which survival

bias may be operating in a given analysis. We used the approach to demonstrate the impact

survival bias due to stillbirth may have in a perinatal epidemiology application using an HIV

setting. We found that the effect of maternal HIV status on SGA was somewhat larger for the live

births whose survival status was not affected by maternal HIV infection (SACE), when compared

to the standard effect estimate. Finally, we note that in principle, the formulation used herein

technically accommodates discrete or continuous exposures, although the SACE interpretation

may be ambiguous for such exposures.1
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Appendix

Proof of Result 1: We observe that

E (Y |a, C, S = 1) = E (Y |a, C, S (a) = 1) (consistency)

= E {E(Y |a, C, U, S (a) = 1)|a, C, S (a) = 1}

= β1a+ E (U |a, C, S (a) = 1) + b (C) (assumption (4) )

= β1a+ [E (U |a, C, S (a) = 1)− E (U |a, C, S (a) = 0)] Pr {S (a) = 0|a, C}

+ E (U |a, C) + b (C)

= β1a+ [E (U |a, C, S (a) = 1)− E (U |a, C, S (a) = 0)] Pr {S (a) = 0|a, C}

+ E (U |C) + b (C)

where we use the fact that

E (U |a, C) = E (U |a, C, S (a) = 1) Pr {S (a) = 1|a, C}+ E (U |a, C, S (a) = 0) Pr {S (a) = 0|a, C}

implies that

E (U |a, C, S (a) = 1) = [E (U |a, C, S (a) = 1)− E (U |a, C, S (a) = 0)] Pr {S (a) = 0|a, C}+ E (U |C)

and

E (U |a, C) = E (U |C)

by assumption.

Next, we proceed as in Theorem 1 of Tchetgen Tchetgen and Wirth (2013), which gives under
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assumption (5)

E (U |a, C, S = 1) =
E (U exp (αU) |a, C, S = 0)

E (exp (αU) |a, C, S = 0)

=
∂ logE (exp (αU) |a, C, S = 0)

∂α

=
∂ log [exp(E (U |a, C, S = 0))E (exp (α∆) |a, C, S = 0)]

∂α
no unobserved confounding of A

= E (U |a, C, S = 0) +
∂ log [E (exp (α∆) |a, C, S = 0)]

∂α

= E (U |a, C, S = 0) +
∂ log [E (exp (α∆))]

∂α

therefore

E (U |a, C, S = 1)− E (U |a, C, S = 0)

=
∂ log [E (exp (α∆))]

∂α

≡ βac

We may therefore conclude that

E (Y |a, C, S = 1) = β0 + β1a+ βac

= β0 + β1a+ βac Pr {S = 0|a, C}

+ b∗ (C)

where b∗ (C) = E (U |C) + b (C) .
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Proof of Result 2: We observe that

E (Y |a, C, S = 1) = E (Y |a, C, S (a) = 1) (consistency)

= E {E(Y |a, C, U, S (a) = 1)|a, C, S (a) = 1}

= E (exp (U) |a, C, S (a) = 1) exp(β1a+ bc (C)) (assumption (4) )

= exp(β1a+ bc (C) + E (U |C, S (a) = 1))E (exp (∆) |a, C, S = 1)

= exp(β1a+ bc (C) + βac Pr {S = 0|a, C}

+ E (U |C))E (exp (∆) |S = 1)

= exp(β1a+ b∗c (C) + βac Pr {S = 0|a, C})

where

b∗c (C) = bc (C) + logE (exp (∆) |S = 1) + E (U |C)
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