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Abstract

Case-control studies are designed towards studying associations between risk factors and a single,
primary outcome. Information about additional, secondary outcomes is also collected, but association
studies targeting such secondary outcomes should account for the case-control sampling scheme, or oth-
erwise results may be biased. Often, one uses inverse probability weighted (IPW) estimators to estimate
population effects in such studies. However, these estimators are inefficient relative to estimators that
make additional assumptions about the data generating mechanism. We propose a class of estimators
for the effect of risk factors on a secondary outcome in case-control studies, when the mean is modeled
using either the identity or the log link. The proposed estimator combines IPW with a mean zero control
function that depends explicitly on a model for the primary disease outcome. The efficient estimator in
our class of estimators reduces to standard IPW when the model for the primary disease outcome is unre-
stricted, and is more efficient than standard IPW when the model is either parametric or semiparametric.

KEY WORDS: Case-control study; Gene association studies; Inverse probability weighting; Semiparamet-

ric inference.
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1 Introduction

Case-control studies are designed to study associations between exposures and a traditionally-rare, primary

outcome. Recently, genome-wide association studies (GWAS) are routinely conducted using a case-control

study design, even when the primary disease outcome is relatively common, to increase power while main-

taining relatively low cost. For instance, type 2 diabetes (T2D) is studied in a case-control GWAS study

nested within the Nurses Health Study (NHS), and its prevalence in the cohort is estimated to be 8.4%

(Cornelis et al., 2012). Such case-control studies typically collect information about additional, secondary

outcomes, potentially associated with the primary disease. Specifically, Body Mass Index (BMI) measure-

ments, which is well known to be associated with T2D, were collected in the T2D case-control study. We are

interested in re-purposing the T2D GWAS data to study associations of Single Nucleotide Polymorphisms

(SNPs) from the FTO gene, coding the Fat Mass and Obesity Protein, with BMI.

As Nagelkerke et al. (1995) pointed out, and others later demonstrated (Jiang et al., 2006; Richardson

et al., 2007; Wang and Shete, 2011, for instance), applying standard regression methods to case-control

data for analysis of a secondary outcome can bias inference, and therefore analysts need to adapt analysis

schemes.

Several approaches have been proposed for the analysis of secondary outcomes from case-control stud-

ies. Nagelkerke et al. (1995) suggested that using solely the control group will be valid if it is fairly rep-

resentative of the general population. This happens when the disease is rare, but may not hold otherwise.

Richardson et al. (2007) and Monsees et al. (2009) discussed using Inverse Probability Weighting (IPW),

in which the contribution of each subject for the estimating equation is weighted by the inverse of its se-

lection probability into the sample. Using IPW is robust to the sampling bias, though it may be inefficient

when, as typically the case in nested case-control studies, additional information can be obtained from the

underlying cohort. In such settings, Augmented inverse-probability (AIPW) can be used for efficiency gain

(Robins et al., 1994). However, this is potentially true for other estimators as well, and we subsequently dis-

cuss “stand-alone” case-control studies, i.e. assuming the underlying cohort from which cases and controls

emanate, is not available to the analyst. Lin and Zeng (2009) proposed to estimate model parameters by

maximizing the retrospective likelihood, taking into account case-control ascertainment. Li and Gail (2012)

generalized their approach and suggested an adaptively weighted estimate of the association between the

exposure and a binary secondary outcome, via a weighted sum of two retrospective likelihood-based esti-
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mators that differ in their assumed disease model. Chen et al. (2013) proposed a bias correction formula

for an estimated odds ratio parameter, so that one can fit a regression model for the marginal or conditional

analysis of the secondary outcome, and correct the estimate using the result from regressing the primary out-

come on the secondary outcome and the exposure. Fewer methods are available for continuous secondary

outcomes. Ghosh et al. (2013) also took a retrospective likelihood approach, extending the previous work

mainly by incorporating auxiliary covariates. These likelihood based estimators rely heavily on distribu-

tional assumptions. Wei et al. (2013) modeled a continuous secondary outcome semiparametrically and

relaxed the distributional assumptions, but assumed that the primary disease is rare, which does not apply

in many situations, including the T2D case-control study introduced earlier. Tchetgen Tchetgen (2014) pro-

posed a general model based on a nonparametric parameterization for the secondary outcome conditional

on disease status and covariates. One can use this framework to compute an estimator under parametric,

semiparametric or nonparametric models. The estimator is semiparametric locally efficient, i.e. it achieves

the semiparametric efficiency bound in the absence of model misspecification, and remains consistent and

asymptotically linear even if the error distribution for the outcome is incorrectly specified, provided the spec-

ified mean structure is correct. Bias may result from an incorrect mean model. The approach is developed

for the identity, log and logit link functions. An implication of the parameterization proposed by Tchetgen

Tchetgen (2014) is that adding a disease indicator to the regression design model (i.e., treating disease as a

predictor or confounder) will bias effect estimates of the SNPs on the secondary outcome, unless either the

conditional mean of the secondary outcome is almost identical in cases and in control (i.e. approximately

no selection bias), or the primary disease is rare across all levels of the exposure, and the magnitude of the

selection bias does not vary with covariates.

Current methodology (1) relies on distributional assumptions or (2) in the cases where fewer assumptions

are made, proposed estimators are not necessarily efficient. Here, we use semiparametric theory to propose

estimators for the population regression of the secondary outcome on covariates that are both robust and

locally semiparametric efficient. We construct a control function in terms of a model for the primary disease

risk conditional on covariates, and add it to the usual IPW estimating equation. We get a new estimating

equation, which reduces to the usual IPW in the absence of any restriction on the model of disease risk

given covariates. When this model is (semi)parametric, our proposed estimator is more efficient than IPW.

Interestingly, we show that the parameterization proposed by Tchetgen Tchetgen (2014) is closely related

to the new estimating equation. However, focusing on the identity and log links, our approach is more
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robust to certain forms of misspecification than the estimator of Tchetgen Tchetgen (2014). We emphasize

that the proposed approach is crucially different from AIPW. Specifically, in contrast with AIPW, here only

data available in the case-control sample contribute information, so that our estimators retain an IPW form.

However, we also note that in a nested case-control study, one could in principle augment the estimating

equations developed in this paper for additional efficiency gains using AIPW theory.

This paper is organized as follows. In Section 2 we describe the proposed class of estimators. In

Section 3 we introduce semiparametric theory that forms the basis for our suggested estimators, provide the

semiparametric locally efficient estimator in the class of estimators, and asymptotic properties. Throughout,

we focus on the identity link (continuous outcome) and the log link (count, or positive outcome) for modeling

the outcome mean. In Section 4 we present simulation results, empirically demonstrating the balance

that our proposed estimators strike between robustness and efficiency, by comparing them to prevailing

estimators in the literature. We use our proposed estimator in Section 5 in associating SNPs from the FTO

gene with BMI, using the case-control, GWAS, T2D data set. Finally, in Section 6 we discuss our results.

2 Model

Suppose the case-control study has i = 1, . . . , n independent participants, with Di an indicator for the primary

disease, so that Di = 1 if the ith participant is a case and Di = 0 otherwise. Let Yi denote the secondary

outcome of interest, and Xi the q × 1 vector of covariates of subject i. Let S i be an indicator of inclusion in

the case-control study.

We assume that the probability of selection into the study depends solely on the disease status, Di, and

is denoted by p(S i = 1|Di,Yi,Xi) = π(Di). Further, we assume that π(Di) is known by design. Equivalently,

we assume that p(Di = 1) in the population is known. Denote by p(Xi) = p(Di = 1|Xi) the conditional

probability of disease given covariates in the target population, and let

µ(Xi;β) = g
{
E(Yi|Xi)

}
(1)

be the model for the mean after transformation using the link function g(·). In the case of a continu-

ous outcome with the identity link, for instance, µ(Xi;β) = E(Yi|Xi), and when the log link is used,

exp
{
µ(Xi;β)

}
= E(Yi|Xi), where expectations are taken over the entire population (rather than the case-
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control study population). Note that β is the q × 1 vector of population regression coefficients that we wish

to estimate. LetM denote the semiparametric model defined by the mean model specification (1) and the

assumed model for p(X).

Hereafter, unless otherwise stated, all expectations are taken with respect to the case control study pop-

ulation. Taking an estimating equations approach, parameter estimates are obtained by solving an equation

of the form
n∑

i=1

Ui(β) = 0 (2)

for β, where Ui(β) are q × 1 functions, with E{Ui(β)} = 0, i.e. the estimating equation should be unbiased.

A traditional approach for estimation in case-control studies, originating in the sample survey literature, is

Inverse Probability Weighting of each equation according to its probability of selection into the study. IPW

to estimate the population mean model entails solving for β equation (2) with

Uipw,i(β) =
S ih(Xi)
π(Di)

[
Yi − g−1{µ(Xi;β)

}]
, (3)

where h(Xi) is a user specified q × 1 function, such that E(∂Uipw/∂β) is invertible. It is straightforward to

see that this equation is unbiased, using the law of iterated expectations.

Suppose that the probability of disease conditional on covariates p(X) is known. We can use such

knowledge to extend IPW estimating equations. Consider adding a general control function to the estimating

equation to obtain:

Ucont(β) =

n∑
i=1

S i

π(Di)

(
h1(Xi)

[
Yi − g−1{µ(Xi;β)}

]
− h2(Xi,Di)

)
= 0, (4)

where h2(X,D) is a q×1 vector control function that depends on the disease model and satisfies E
{
S h2(X,D)/π(D)

∣∣∣X}
=

0. Control functions have been used in econometrics as a mean to control for bias due to specific forms of

selection, see Wooldridge (2002); Petrin and Train (2010) for instance. Typically, a control function ap-

proach includes two stages of estimation, a first stage in which a subset of observed variables is employed

to estimate the control function, which is subsequently used to augment a second stage regression model to

identify the parameter of interest. In the present setting, we adopt a control function framework for efficiency

improvement.

Note that the second term in (4) is inverse probability weighted, and has mean zero for all h2, so that
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Ucont(β) is unbiased. The choice h2(X,D) = 0 gives standard IPW. We aim to find h2(X,D) , 0 such that

the resulting estimator is asymptotically at least as efficient as IPW for a fixed h1(X). We subsequently will

characterize the optimal choice of h1(X).

For any choice of h2(X,D), there exists a corresponding choice of h̃2(X) such that h2(X,D) = h̃2(X){D−

p(X)}, that is, the set of functions h2(X,D) satisfying the mean zero restriction is equivalent to the set

of functions h̃2(X){D − p(X)} (see Appendix, Lemma 1). Using the second parameterization, it is clear

that U(β, h̃2) is unbiased for all h̃2(X). In practice, p(X) is unknown and must be estimated. Here, we use

semiparametric theory to study in a unified framework the semiparametric efficiency implications of positing

a nonparametric, semiparametric or parametric model for p(X).

3 Semiparametric theory

In this section, we develop the semiparametric framework that serves as a basis for our methods. We first

provide definitions of Regular and Asymptotically Linear (RAL) estimators and tangent spaces, and provide

some examples. We then characterize the RAL estimators corresponding to a given disease model p(X), and

subsequently continue to discuss inference.

3.1 Asymptotically linear estimators

An estimator β̂ is said to be asymptotically linear if one can write

n1/2(̂β − β) = n−1/2
n∑

i=1

ψ(Yi,Xi,Di;β) + op(1)

where ψ(Yi,Xi,Di;β) is a zero-mean function, called the ith influence function for β. The asymptotic vari-

ance of the estimator β̂ has a simple form and is given by

Var(̂β) = E{ψ(Y,X,D;β)ψ(Y,X,D;β)T }.

The influence function is therefore very important, as the asymptotic distribution of an asymptotically linear

estimator is completely identified from its influence function. Influence functions were first introduced by

Huber (Huber, 1972) in the context of robust statistics. Later, they took on a different role in semiparamet-

ric theory, in the sense of Bickel et al. (1993). In either context, they represent the influence of a single
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observation on the estimator.

An efficient estimator is the one with associated influence function ψopt satisfying

aT [
E{ψopt(Y,X,D;β)ψopt(Y,X,D;β)T } − E{ψ(Y,X,D;β)ψ(Y,X,D;β)T }]a ≥ 0

for all other influence functions ψ and q×1 vectors a. In other words, the difference between the covariance

matrices of the efficient estimator and another estimator is a positive semidefinite matrix.

In this paper we will restrict attention to the subset of asymptotically linear estimators that are also

regular, i.e. that are locally uniformly consistent. Regularity is a desirable property for an estimator, since it

ensures that its asymptotic behavior provides a good approximation for its finite sample behavior irrespective

of the data generating mechanism within the model. For completeness, local uniform consistency is formally

defined in the Appendix. A more technical definition of RAL estimators can be found in Bickel et al. (1993).

3.2 Tangent spaces

Let L0
2 be the space of square integrable mean zero functions. According to semiparametric theory, the

tangent space of a parametric model is the finite dimensional linear subspace of L0
2, spanned by its scores.

The definition of a tangent space of a parametric model generalizes to that of a semiparametric model, as

the closed linear span in L0
2, of scores of its parametric submodels. The nuisance tangent space is the

subspace of the tangent space containing all scores for nuisance parameters, i.e. any parameters indexing

the observed data law, that are distinct from the parameter of scientific interest β. We now consider the

tangent space ΛD of scores of p(X), under parametric, semiparameteric, and nonparametric specifications.

Denote the probability of disease for individuals in the case-control study, conditional on covariates, by

pcc(X) = p(D = 1|X, S = 1). Let α be any set of parameters indexing the probability model p(X). In the

nonparametric model in which p(X) is unrestricted, ΛD = ΛD,npar, where

ΛD,npar =

{
S

π(D)
h(X){D − p(X;α)}, for any function h(X)

}
∩ L0

2.

In the parametric model for p(X;α) = expit(αT x) with an unknown parameter α,

ΛD = ΛD,α =

{
S

π(D)
pcc(X)
p(X;α)

CT X{D − p(X;α)}, for any conformable matrix C
}
∩ L0

2.
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Consider now the semiparametric model p(X;α) = expit{α1(x1) + αT
2 x2}, in which the function α1(x1) is

unrestricted. Here

ΛD = ΛD,α1,α2 =

{ S
π(D)

pcc(X)
p(X;α)

{
g(X1) + CT X2

}
{D − p(X;α)}, for any conformable matrix C

and any function g(X1)
}
∩ L0

2.

We show in the Appendix that the scaling factor pcc(X)/p(X) is required to appropriately account for ret-

rospective sampling. In general, we will denote the tangent space of a parametric, semiparametric, or

nonparametric submodel for p(X) by ΛD,sub.

3.3 The RAL estimators for β

Let Π(v|Λ) denote the orthogonal projection of the vector v on the subspace Λ of L0
2.

Theorem 1. The set of influence function of β is given by

Γ =

{ S
π(D)

h1(X)[Y − g−1{µ(X,β)}] −
S h2(X,D)
π(D)

+ Π

(S h2(X,D)
π(D)

∣∣∣∣∣ΛD,sub

)
:

E
{ S
π(D)

h2(X,D)|X
}

= 0
}
∩ L0

2

up to a multiplicative constant.

Theorem 1 characterizes all RAL estimators of β in a semiparametric modelM defined by µ(X,β) and

a choice of model for p(X). The proof is in the Appendix. Interestingly, it states that if

S h2(X,D)
π(D)

= Π

(S h2(X,D)
π(D)

∣∣∣∣∣ΛD,sub

)
,

then all influence functions for β are IPW influence functions. This equality holds, for instance, in the special

case where the model p(X) is saturated, or nonparametric. In other words, even if one uses the estimator (4),

for any choice of h2(X,D) the asymptotic distribution of the estimator will mimic the IPW estimator and the

estimator could not be made more efficient. The following Corollary 1 summarizes this observasion.

Corollary 1. Consider the model for M with p(X) unrestricted. For a fixed choice of h1(X) in (4), the

optimal choice of function h2(X,D) is hopt
2 (X,D) = 0, and the most efficient estimator for β is the IPW
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estimator that solves the estimating equation

Uipw(β) =

n∑
i=1

S i

π(Di)

(
h1(Xi)

[
Yi − g−1{µ(Xi;β)}

])
= 0.

In the following sections we restrict p(X) by posing modeling assumptions. We first focus on finding the

most efficient estimating equation for β in Γ for any fixed h1(X) in Section 3.4, and then provide the optimal

h1(X) and the locally efficient estimator in Section 3.5.

3.4 Inference for a restricted model p(X) and a fixed h1(X)

Suppose that the model for p(X) is restricted. For a fixed h1(X), we wish to find the optimal h2(X,D), that

minimizes the variance of the estimating equations in Γ defined in Theorem 1. This function is given in the

following Theorem 2 and the proof is in the Appendix.

Theorem 2. Suppose that h1(X) is fixed. The function hopt
2 (X,D) that minimizes the variance of β̂ in model

M is given by

hopt
2 (X,D) = h1(X)

[
E(Y |X,D;β) − g−1{µ(X;β)}

]
.

Denote µ̃(X,D;β) = g
{
E(Y |X,D;β)

}
, which satisfies E

{
E(Y |X,D;β)

∣∣∣X}
= g−1{µ(X;β)}. Then the ith influ-

ence function corresponding to hopt
2 (X,D), up to a multiplicative constant, is

S ih1(Xi)
π(Di)

[
Yi − g−1{µ̃(Xi,Di;β)

}]
.

Tchetgen Tchetgen (2014) provided parameterizations of µ̃(X,D;β) in terms of µ(X;β) for the identity,

log, and logit links. We use these parameterizations to construct feasible estimating equations Uopt
ident and Uopt

log

based on Theorem 2. Consider first the identity link function. As was shown in Tchetgen Tchetgen (2014),

E(Y |X,D;β) can be parameterized as E(Y |X,D;β) = µ(X;β) + γ(X){D − p(X)}, where γ(X) = E(Y |D =

1,X) − E(Y |D = 0,X) is the “selection bias function”, resulting from sampling according to disease status.
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We have that

Uopt
ident(β) =

n∑
i=1

S ih1(Xi)
π(Di)

[
Yi − µ(Xi;β) − γ(Xi){Di − p(Xi)}

]
.

For the log link, it was shown in Tchetgen Tchetgen (2014) that

µ̃(X,D;β) = E(Y |X,D;β) = exp
(
µ(X;β) + ν(X,D) − log E[exp{ν(X,D)}|X]

)
,

where the selection bias function ν(X,D) is defined as

ν(X,D) = log
{
E(Y |X,D)
E(Y |X,D = 0)

}

and reflects the log multiplicative association between D and Y given X, and note that the expectation in

E[exp{ν(X,D)}|X] is taken over the population. Therefore, we have that

Uopt
log (β) =

n∑
i=1

S ih1(Xi)
π(Di)

{
Yi − exp

(
µ(Xi;β) + ν(Xi,Di) − log E[exp{ν(Xi,Di)}|Xi]

)}
.

Note that these estimating equations are robust, in the sense that even if the selection bias functions γ and ν

are misspecified, the estimating equations would remain unbiased as long as µ(X;β) and p(X) are correctly

modeled.

3.5 The semiparametric locally efficient estimator

An estimator β̂ of β is called locally efficient at a submodel for f (Y,X,D, S ) in a semiparametric modelM

if its asymptotic variance achieves the semiparametric efficiency bound forM, and remains consistent and

asymptotically normal (CAN) outside of the submodel (Bickel et al., 1993). For instance, in the identity link

case,M may be a model that specifies parametric models for p(X;α), µ(X;β), and its parameters could be

estimated using an estimating equation Uopt
ident(β) = 0. Different choices of h1(X) will lead to estimators of β̂,

that are CAN but with different asymptotic variances. The semiparametric efficiency bound is the smallest

variance that can be obtained by a regular estimator in M. This RAL estimator has the efficient influence

function, which is the projection of any influence function of β inM onto the tangent space for the model

(Bickel et al., 1993).

Theorem 3 below characterizes the efficient influence function of β in modelM and the corresponding
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estimating equation, by giving the optimal hopt
1 (X).

Theorem 3. The semiparametric efficient influence function for β in modelM is given by

S ih
opt
1 (Xi)
π(Di)

[
Yi − g−1{µ̃(Xi,Di;β)

}]
,

with

hopt
1 (X) = E

{ 1
π(D)

var(Y |D,X)
∣∣∣∣∣X}−1 ∂

∂β

[
g−1{µ̃(X,D;β)

}]
.

The corresponding estimator β̂ is locally efficient in the submodel ofM in which h1(X) and h2(X,D) are

correctly modeled. If these functions are misspecified, β̂ will still be CAN, but less efficient. Below we

use the efficient influence function to define an estimating equation by substituting empirical estimates of

all unknown nuisance parameters. The asymptotic distribution of the resulting estimator allowing for model

misspecification is given in Section 3.6.

3.6 Asymptotic properties

We saw that β̂ is a RAL estimator in model M in which p(X) is correctly specified. We compute β̂ by

solving the estimating equation Ûopt
cont(β) = 0, defined as Uopt

cont(β) with ĥ1(X), ĥ2(X,D), and p̂(X).

Let δ denote the parameters for the selection bias function, i.e. either ν(X,D; δ) (log link) or γ(X; δ)

(identity link). Let θ = (βT , δT )T . It is convenient to estimate θ jointly, by modifying the estimating

equation Uopt
cont(β) to define Uopt

cont(θ) by taking

hopt
1 (X) = E

{ 1
π(D)

var(Y |D,X)
∣∣∣∣∣X}−1 ∂

∂θ

[
g−1{µ(X,D; θ)

}]
.

In the Appendix, we describe how to compute the estimator θ̂. To find its asymptotic distribution (and

calculate standard errors), we need to know its influence function. Its influence function is found from the

first order Taylor expansion of the estimating equation around the limiting value of θ̂ = (̂β
T
, δ̂

T
)T . We

provide this derivation in Appendix. Let V(α) be the estimating equation for α. The influence function for

θ is given by

10
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ψ(θ;α) = −

[
E
∂

∂θ

{
Ucont(θ;α)

}]−1
×Ucont(θ;α) − E

{
∂

∂α
Ucont(θ;α)

}
E

{
∂

∂α
V(α)

}−1

V(α)

 .

A consistent estimator of the covariance matrix of the estimator θ̂ is given by

Σ̂(θ) =
1
n

n∑
i=1

ψ̂i
(̂
θ; α̂

)
ψ̂T

i

(̂
θ; α̂

)
,

where ψ̂i is the influence function evaluated at the ith subject, with all expectations in the expression ψ(θ;α)

estimated by the corresponding sample means.

Corollary 2. The estimator θ̂ that solves Ucont(β, δ; α̂) underM is asymptotically normally distributed with

asymptotic mean θ and covariance

Σ(θ) = E
{
ψ(θ;α)ψ(θ;α)T

}
.

Further more, in the submodel where ĥopt
1 (X)→ p limn→∞ hopt

1 (X), and

ĥopt
2 (X,D)→ p limn→∞ hopt

2 (X,D), β̂ is locally efficient.

Note that θ̂ will be asymptotically normal with covariance matrix E
{
ψ(θ∗; α̂)ψ(θ∗; α̂)T

}
, where θ∗ is

p limn→∞ θ̂, even if one of p(X), µ(X;β), or both, are misspecified. In the case of misspecification, θ∗ is

likely a biased estimate of the true θ.

4 Simulations

In this section, we demonstrate the robustness and efficiency of our proposed estimators compared to the

prevailing estimators, when modeling the mean via the identity link. We simulate case-control studies with

continuous secondary outcomes in two sets of simulations. The goal of the first set was to investigate

the robustness and efficiency of the proposed control function estimator (‘cont’), compared to multiple other

prevailing estimators: the estimator that conditions on disease status, using disease indicator in the regression
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of the secondary outcome on covariates, (denoted by Dind), the estimator that treats all observations equally,

ignoring disease status (pooled), and the IPW estimator (IPW). The goal of the second set was to compare the

performance of ‘cont’ to the estimators proposed by Ghosh et al. (2013) and Lin and Zeng (2009). In each

section below, we describe the simulations and provide results, where for cont, we provide two sets of results:

when the model for E
(
Y |X,D

)
is correctly specified, and when it is misspecified. For each scenario, we

calculated the mean bias of the estimates 1
n.sim

∑n.sim
k=1 β̂k − β, the mean squared error (MSE) 1

n.sim
∑n.sim

k=1 (̂βk −

β)2, the sample standard deviation of the estimator { 1
n.sim

∑n.sim
k=1 (̂βk −

¯̂
β)2}1/2, the mean of the estimated

standard deviations in the simulations 1
n.sim

∑n.sim
k=1 ŝd(βk), and the Wald coverage probability. Due to limited

space, only some of the simulation results are presented in the main manuscript. Additional extensive

simulation results are delegated to the Appendix, including all summaries pertaining to the performance of

the estimator “Dind” and “pooled”.

The proposed cont estimators and the estimated standard deviations were calculated as described in the

Appendix. The IPW estimator and the estimated standard deviations were calculated using Newton-Raphson

iterations of the estimating function Uipw, with h1(Xi) = Xi, with the robust (sandwich) covariance matrix.

The naı̈ve estimators Dind and pooled were calculated from linear regression.

All simulation scenarios included 500 cases and 500 controls, and were run 1000 times. The prevalence

of the disease D in the population (the primary case-control outcome) was fixed at 0.12, i.e. the disease is

relatively common.

We conducted other simulation studies, under a variety of plausible scenarios. First, we performed

a simulation study for the identity link with a single exposure variable, in which we also considered the

estimator proposed by Tchetgen Tchetgen (2014). Second, we performed simulations for the log link, and

lastly, we carried out another identity link simulation study, closely mimicking the observed data distribution

in the T2D sample. Results for these additional scenarios are provided in the Appendix. In general, they

support the conclusions of the simulations presented here.

4.1 Simulation set 1 - studying robustness and efficiency

To design the simulations, we first note that we need to sample data from the distribution f (Y,D|X), in

such a way that the parameter of interest E[Y |X] is defined. We consider the decomposition f (Y,D|X) =

f (Y |D,X)p(D|X), and generate the data according to the two parts of the likelihood, p(D|X), and f (Y |D,X).

Note that this decomposition always holds, and makes no assumption on the underlying model. We use the
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nonparametric decomposition of E[Y |X,D] proposed by Tchetgen Tchetgen (2014), that allows specifying

the two parts of the likelihood. First, exposures/covariates variables X were sampled. Then, disease proba-

bilities were calculated for each subject, based on exposure values. The intercept for the disease model p(X)

was set so that disease prevalence was 0.12. Disease statuses were obtained from disease probabilities, and

the secondary outcomes Y were generated based on exposure values and disease status.

In more details, we simulated two covariates, X1 and X2 where X1 ∼ N(2, 4), and X2 ∼ Binary(0.1). The

primary disease probability was calculated by

logit {p(D = 1|X)} = −3.2 + 0.3X1 + X2,

and disease status was sampled. The conditional mean of the secondary outcome was:

E(Y |X,D) = 50 + 4X1 + 3X2 + 3X1X2 + {D − p(X)}(3 + 2X1 + 2X2 + 2X1X2),

so that µ(X,β) = XTβ with X = (1, X1, X2, X1X2)T and β = (50, 4, 3, 3)T , and γ(X) = XTα with

α = (3, 2, 2, 2)T . The residuals were sampled by ε ∼ N(0, 4). The design matrix for γ(X) was

X = (1, X1, X2, X1X2)T when the model was correctly specified. We studied the following forms of mis-

specification of the design matrix of γ(X). The estimator ‘cont-mis1’ had the design matrix X = (1, X1, X2)T

(no interaction term), ‘cont-mis2’ had X = (1, X1)T , ‘cont-mis3’ had X = (1, X2)T , and ‘cont-mis4’ ac-

counted only for an intercept, i.e. design matrix X = 1.

A table providing comprehensive simulation results for this simulation is provided in the Appendix.

Figure 1 compares between the estimated bias, MSE, and coverage probabilities of the cont estimators (cor-

rectly specified and misspecified), and the usual IPW. We do not provide graphic results for the estimators

that where heavily biased: Dind, and pooled.

As shown in Figure 1 and in the Appendix, the estimated bias of the cont estimator is usually smaller

than that of the IPW estimator and is very small when the model for γ(X) is correctly specified, and slightly

larger when the model for γ(X) is misspecified.

Both the MSE and the empirical standard deviation of the cont estimator were higher when the model

for γ(X) was misspecified, yet interestingly, the MSE of cont was always smaller than that of the IPW. In

fact, the relative efficiency of cont-cor was from 17% (β2) to 71% (β3) lower than that of the IPW. Even cont-
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Figure 1: Results from Identity link simulations set 2, second settings, two covariates. Estimated bias, MSE,
and coverage probability of the control function under correct and misspecification of the selection bias
function (cont-cor, cont-mis1, . . ., cont-mis4), and IPW, in estimating population effects of X1, X2 and their
interaction.
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mis4, the estimator with only intercept used in the selection bias function, had relative efficiency from 1.5%

to 38% lower than that of the IPW. Coverage probabilities were always correct for the coefficients of X1 and

X2, but sometimes too small for the coefficient of the interaction term X1X2 when γ(X) was misspecified

(more specifically, when X1 was not in the design matrix of γ(X)). In comparison, the coverage probability

of the IPW estimator was always very close to the desired 95%. Dind and the pooled estimator again yielded

biased estimates with, usually, very low coverage probability. Interestingly, the bias of pooled was usually

lower than the bias of Dind.

4.2 Simulation set 2 - comparison to another recently proposed method

Here we compare our estimator ‘cont’, and the IPW, to the pseudo-likelihood estimator proposed by Ghosh

et al. (2013), and the retrospective likelihood estimator proposed by Lin and Zeng (2009). We followed the

simulation scenario performed in Ghosh et al. (2013), using code shared by the authors. We also adapted

our simulations from Section 4.1 to their assumed data structure.

First, we ran 1000 simulations in Ghosh et al. (2013) simulation settings and compared the estimators. In

their simulations, they focused on a single coefficient, namely the effect of a single nucleotide polymorphism

(SNP) G on the outcome Y . G had a minor allele frequency (MAF) 0.25. There were two covariates Z, one

continuous and one binary, with probability 0.45. The disease and the secondary outcome were modeled

by a bivariate normal distribution and thresholding, so that the disease model is dependent on G and Z via

a logistic model. However, it is unclear how to specify correctly γ(X). We use a linear model of the form

γ(X) = Xδ, though this is likely incorrect. The outcome Y had variance 1, and disease prevalence was 0.05.

The effect of interest was 0.1. We used 500 cases and 500 controls. More details can be found in Ghosh

et al. (2013). The results of these simulations are presented at the top part of Table 1.

Then, we ran 1000 simulations in settings adapted from our simulations from Section 4.1. Here, we

had the same G, Z variables, with Z1 continuous and Z2 binary. Z1 ∼ N(0, 4), and Z1 ∼ Binary(0.2). The

primary disease probability was calculated by

logit {p(D = 1|X)} = −3.8 + 0.3X1 + X2,

and disease status was sampled. Note that the intercept value was selected to that disease prevalence was

roughly 0.05, as in Ghosh et al. (2013). The SNP G has minor allele frequency 0.3. The conditional mean
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model was:

E(Y |X,D) = 3 + 0.7Z1 + 0.5Z2 + 0.3G + {D − p(X)}(1 + 0.5Z1 + 0.3Z2).

500 cases and 500 controls were sampled from the simulated population. We compared the estimation of

the effect of G on Y . The results of these simulations are presented at the bottom part of Table 1.

In the first simulation set, the estimators Ghosh2013, IPW and cont were unbiased, and achieved the

nominal coverage level, while Lin2009 was heavily biased. Note that cont likely misspecified the model

γ(X). The estimator of Ghosh et al. (2013) had slightly lower MSE than the IPW and control function

estimators, as expected, since this estimator is based on the same model used to produce the simulated data.

In the second set of simulations, in which the data were sampled by specifying models for p(X), γ(X), and

µ(X;β), both estimators Ghosh2013 and Lin2009 were biased (both biases about -0.4) and had low coverage

of 0.67% (Ghosh2013) and 50% (Lin2009). In contrast, the IPW and cont estimators performed similarly,

with low bias and correct coverage probability. These results demonstrate the robustness of IPW and cont,

which use fewer modeling assumptions.

The estimator Lin2009 was biased under both simulation scenarios. As other likelihood-based estima-

tors, it assumes a certain probability model, and it is biased when this model is fails to hold. The model

proposed by Ghosh et al. (2013) is different than the one proposed by Lin and Zeng (2009).

5 Analysis of Type 2 diabetes GWAS

We analyzed the case-control GWAS study of T2D, with the goal of identifying SNPs in the FTO gene

region, associated with BMI. There were 3080 female participants in this data, genotyped on the affymetrix

6.0 array, with 1326 cases and 1754 controls (Cornelis et al., 2012). There were 152 genotyped SNPs

from the region on chromosome 16 spanning the FTO variants. There are a few SNPs from the FTO gene

associated with BMI (Speliotes et al., 2010), and validated on large cohorts. In particular, the SNP rs1558902

has the strongest association with log-BMI. This SNP is not in the data, but other SNPs in high Linkage

Disequilabrium (LD) with it are. The population prevalence of T2D was 8.4% (Cornelis et al., 2012). We

compared the usual IPW, the control function estimator ‘cont’, the pooled estimator ignoring disease status,

the estimator Dind with disease indicator in the design matrix, and the estimator of Lin and Zeng (2009)

dubbed Lin2009.

All analyses were adjusted to age, binary smoking status (current versus past or never), binary alcohol
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Table 1: Simulation results for estimating the effect of a SNP on a normally distributed secondary out-
come. We compare results for the usual IPW estimator, the proposed control function estimator (‘cont’), the
pseudo-likelihood estimator of Ghosh et al. (2013) (‘Ghosh 2013), and the retrospective likelihood estimator
of Lin and Zeng (2009) (‘Lin2009’). The top part of the table provides results of simulations in the settings
in Ghosh et al. (2013), and the bottom part is of simulations designed according to the conditional mean
model E(Y |X,D). For each estimator and each estimated parameter the table reports the estimator’s mean
bias, MSE, empirical standard deviation over all simulations, mean estimated standard deviation using the
appropriate formula, and coverage probability.

estimator/value bias MSE emp sd est sd coverage
Settings 1 (Ghosh, 2013). β = 0.1

Ghosh2013 0.000 0.003 0.056 0.057 0.961
cont 0.000 0.004 0.067 0.067 0.952
IPW 0.000 0.004 0.067 0.067 0.953
Lin2009 -0.765 0.588 0.049 0.055 0.000

Settings 2. β = 0.7
Ghosh2013 −0.402 0.228 0.258 0.261 0.666
cont 0.002 0.002 0.043 0.042 0.946
IPW 0.002 0.002 0.043 0.042 0.948
Lin2009 -0.394 0.194 0.197 0.200 0.505

intake measure according to less or more than 10 grams a day, physical activity (above or under the median)

and to the first four principal components of the genetic data. The outcome, BMI, was log transformed, as is

usually done with BMI. For the analysis using the estimator cont, all models, i.e. the mean model of BMI,

the model for disease probability p(D = 1|X), and the selection bias model γ(X) used the same covariates.

All SNPs were analyzed in the additive mode of inheritance.

Figure 2 compares between the estimated effect sizes and their respective standard errors (SEs), of all

152 SNPs in the FTO gene, between cont, and the other estimators under consideration. The cont estimator

yielded roughly identical results to that of the IPW. This is in agreement with the simulation study imitating

the effect sizes in the T2D data set (see Appendix), and is expected since both T2D and BMI are complex

traits, and no single SNP highly affects them. Thus, incorporating the disease and selection bias models

in the estimation cannot improve it much. Although the standard errors appear to be “the same” when

looking at the plot, in fact that are small differences, such that the p-values and adjusted p-values of the cont

estimates are smaller than those of the IPW, as is seen in Table 2. Effect estimates of other estimators are

quite different than those of cont, while their SEs are usually smaller. That is since these estimators make

more assumptions on the data distribution, resulting in lower SEs.
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There were ten SNPs with Holm’s adjusted p-value ≤0.05 by the pooled estimator, which yielded the

lowest p-values. As they were all in high LD, we selected the SNP that is in highest LD with rs1558902,

namely, rs1421085 (Johnson et al., 2008). Table 2 compares between the various analyses results on this

SNP. As the effects are relatively low (∼ −0.02), all estimates are within a rang of 0.04 of each other.

Consistent with the plot, cont and IPW gave identical effect estimates (after rounding) while other estimates

were usually different. The effect estimate is largest (in absolute value) in the pooled estimator. Since

pooled and Dind are likely biased estimators (as supported by the simulations mimicking the T2D diabetes,

reported in the Appendix), we now consider Lin2009. This estimator properly accounts for case-control

sampling, but assumes that the outcome is normally distributed around the population mean. To study the

appropriateness of this assumption, we compared the density of the residuals of log-BMI after removing

the population mean estimated by IPW. Figure 3 provides this comparison, suggesting that the normality

assumption does not hold and that the estimator is potentially biased.

Table 2: Effect estimates, and their respective SEs and p-values for the SNP rs1421085 from the FTO gene.
The values were obtained by the control function estimator (‘cont’), the usual IPW, the pooled estimator
ignoring disease status, and the disease with disease indicator in the design matrix (‘Dind’).

Estimator effect SE p-value (raw) p-value (adj)
rs1421085

cont −0.017 0.0054 1.7e-3 0.247
IPW −0.017 0.0054 1.9e-3 0.273
pooled −0.021 0.0050 4.2e-5 0.006
Dind −0.018 0.0046 9.3e-5 0.014
Lin2009 −0.019 0.0047 4.7e-5 0.007

6 Discussion

In this work we provide semiparametric, efficient and robust estimators for the population mean effects of

covariates on secondary outcomes in case-control studies. The main idea behind the proposed estimators

is the addition of an inverse probability weighted, control function that preserves unbiasedness of the es-

timating equation when a model for disease probability given covariates is correctly specified. Additional

required assumptions are correct specification of the population mean model and known sampling fractions

for the case-control study. No other distributional assumptions are made about the outcome. We propose
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Figure 2: Comparison of effect estimates for the SNPs in the FTO gene on log-BMI, and their standard
errors. Estimates of the control function estimator (‘cont’) and their SE were compared to the usual IPW,
the estimator ignoring disease status (pooled), the estimator using disease indicator in its design matrix
(‘Dind’) and the estimator of Lin and Zeng (2009) (‘Lin2009’). Every point in the plot represent a SNP. If a
point falls on the diagonal - its associated effect (SE) estimate is equal in cont and the compared estimator.
If it falls below the diagonal, its estimated effect (SE) is smaller in cont compared to the other estimator.
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Figure 3: Histogram, and overlaid empirical and fitted normal densities to the residuals of log-BMI after
removing estimated population mean.

estimators that may be used with identity and log links. This approach could potentially extend to the logit

link, which presents a challenge for future research.

The control function estimator is unbiased under correct specification of the disease model given co-

variates, even if the model for the selection bias function is misspecified. We recommend evaluating the

disease model fit with respect to the model predictions (estimated disease probabilities). One can use Area

Under the operating Curve (AUC) and cross validation as measures that give indications of fit due to good

or poor prediction. For a comprehensive review of such methods see Harrell et al. (1996). It is also useful

to compare the control function effect estimate to the IPW, as the IPW is robust to misspecification of the

disease model. Under correct specification of the disease model we expect to see similar effect estimates for

both IPW and control function estimators, with smaller standard errors for the later.

Robustness, as is here attributed to the IPW and control function estimator, is somewhat different than

the robustness property in robust statistics. Operating in the semiparametric theory framework, we carefully

define the modeling assumptions required to produce unbiased estimators. For instance, correct specification

of the population mean, and of the disease model. Robustness here refers to the fact that our estimator will

be consistent for all data generating mechanisms in which these assumption hold (e.g. normal errors, but

also t-distributed errors, or even non-symmetric errors). In comparison, in robust statistics the focus is on

estimators that are protected against outliers, which is (conceptually) more oriented towards smaller sample
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sizes.

In recent work, especially that relying on the retrospective likelihood (Lin and Zeng, 2009; Li and Gail,

2012; Chen et al., 2013; Ghosh et al., 2013), the primary disease probability is modeled in a logistic re-

gression, with both the exposure and the secondary outcome, and sometimes their interaction, as predictors.

Our formulation does not explicitly use the secondary outcome in the disease model. However, efficient

control function estimator incorporates a selection bias function, which encodes the association between the

secondary outcome and the case control status conditional on covariates. Hence, as in any likelihood based

approach, this association is accounted for, while more general specifications of this association are readily

applied. Although the control function estimator is far more general and relies on fewer assumptions, it is

guaranteed to be most efficient if all models are correctly specified. We also note that in many settings, the

secondary outcome may occur on the causal pathway between the exposure and the primary outcome (e.g.

mammographic density and breast cancer, or smoking and lung cancer) in which case the model for the D

adjusting for X and Y is difficult to interpret.
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Appendix

7 What are regular estimators?

According to the definition in ?, it is assumed that there is a true distribution generating the data, indexed

by a parameter θ. In practice, a sampled data set is distributed according to θn where θn is
√

n-consistent

for the true θ. This process by which data are sampled from a
√

n perturbation of the truth is called a local

data generating process. Regularity, or “local uniform consistency”, means that the estimator for β (some

parameter of the distribution indexed by θ) does not depend on the local data generating process.
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8 Mathematical derivations.

8.1 The tangent space of a model for p(X) in a case-control study

We here show that the tangent space, or the collection of scores, for p(X) (disease probability in the general

population) in a case-control study is related to the tangent space for pcc(X) (disease probability in the

case-control study population) via the “scaling factor” pcc(X)/p(X). Or in other words, a score for pcc(X)

evaluated in a case-control study is multiplied by this scaling factor to obtain a score for p(X). A general

score for the disease probability pcc(X) in the case control study is given by:

S h(X)
{
D − pcc(X)

}
.

Recall the identity

logitp(X) = logitpcc(X) + log
[ p(D = 1)

{
1 − p(D = 1|S = 1)

}
p(D = 1|S = 1)

{
1 − p(D = 1)

} ]
⇓

p(X)
1 − p(X)

=
pcc(X)

1 − pcc(X)

[ p(D = 1)
{
1 − p(D = 1|S = 1)

}
p(D = 1|S = 1)

{
1 − p(D = 1)

} ].
We make a few transformations in order to write this score in terms of

{
D − p(X)

}
:

S h(X)
{
D − pcc(X)

}
= S h(X)

{
D − pcc(X)

}
pcc(X)

{
1 − pcc(X)

} pcc(X)
{
1 − pcc(X)

}
= S h(X)

(−1)1−D

pD
cc(X)

{
1 − pcc(X)

}1−D pcc(X)
{
1 − pcc(X)

}
= S h(X)

(−1)1−D pcc(X){
pcc(X)

1−pcc(X)

}D

= S h(X)
(−1)1−D pcc(X)([

p(X)
1−p(X)

][
p(D=1|S =1){1−p(D=1)}
p(D=1){1−p(D=1|S =1)}

])D

Since:
(−1)(1−D)

p(X)D−1{1 − p(X)}−D = D − p(X),
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we get:

S h(X)
{
D − pcc(X)

}
= S h(X)

pcc(X)
p(X)

{
D − p(X)

}{ p(D = 1)p(D = 0|S = 1)
p(D = 1|S = 1)p(D = 0)

}D

∝ S h(X)
pcc(X)
p(X)

{
D − p(X)

}{ p(D = 1)p(D = 0|S = 1)
p(D = 1|S = 1)p(D = 0)

}D
·

p(D = 0)
p(D = 0|S = 1)p(S = 1)

=
S

p(S = 1|D)
pcc(X)
p(X)

h(X)
{
D − p(X)

}
.

As required.

In the main manuscript, we showed that scores of the tangent space in the nonparametric model are

S
p(S = 1|D)

h(X)
{
D − p(X)

}
,

and this holds since the function h(X) can be written as h̃(X)pcc(X)/p(X) for some h̃(X) = h(X)p(X)/pcc(X).

However, in the parametric and nonparametric cases, CT X , pcc(X)/p(X)C̃T X, since pcc(X)/p(X) is not

fixed.

8.2 Proof of Theorem 1

Before approaching this proof, Lemma 1 provides the form of h2(X,D) in each of the link functions under

consideration.

Lemma 1

(a) Any function h2(X,D) such that E{h(X,D)|X} = 0, where the expectation is taken in the general popu-

lation, can be written as

h2(X,D) = γ(X){D − p(X)},

for any function γ(X). This parametrization will be used in the linear link ca se.

(b) h2(X,D) can equivalently be written in the form

h2(X,D) = h(X)
[
1 − exp

(
ν(X,D) − logE

[
exp

{
ν(X,D)

}
|X

]) ]
,

where h(X) is any function of X, and ν(X,D) is such that ν(X, 0) = 0. We will use this parametrization

in the log link case.
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Proof of Lemma 1

1. Define the two sets A1 = {h2(X,D) : E{h(X,D)|X} = 0} (where the expectation is taken in the

general population) and A2 = {γ(X){D − p(X)} : γ(X) any function of X}. We show that the two

sets are equal. The first direction, A2 ⊆ A1 is trivial, by noting that E(D|X) = p(X). To show that

A1 ⊆ A2, let h2(X,D) be an element of A1. We show that it is also an element of A2. Choose

γ(X) = h2(X, 1) − h2(X, 0). Then we can verify that for this choice of γ(X), indeed h2(X,D) =

γ(X){D − p(X)} = {h2(X, 1) − h2(X, 0)}{D − p(X)}.

For D = 1, we have that h1(X, 1) = γ(X){1 − p(X)} yields h2(X, 0) = −{h2(X, 1) − h2(X, 0)}p(X), and

for D = 0, h1(X, 0) = γ(X){0 − p(X)} also gives h2(X, 0) = −{h2(X, 1) − h2(X, 0)}p(X). This equality

is true: E{h2(X,D)|X} = 0 = h2(X, 0){1 − p(X)} + h2(X, 1)p(X).

2. First, rewrite

h(X)
{
1 − exp

(
ν(X,D) − logE

[
exp

{
ν(X,D)

}∣∣∣X])}
=

h(X)
E[exp{ν(X,D)}|X]

(
E[exp{ν(X,D)}|X] − exp

{
ν(X,D)

})
.

We show that

E[exp{ν(X,D)}|X] − exp
{
ν(X,D)

}
= {p(X) − D}[exp{ν(X, 1)} − exp{ν(X, 0)}],

and therefore γ(X) = h(X)/
(
E[exp{ν(X,D)}|X][exp{ν(X, 1)} − exp{ν(X, 0)}]

)
. To show the required

equality, notice that since D is binary:

exp{ν(X,D)} = D
[
exp{ν(X, 1)} − exp{ν(X, 0)}

]
+ exp{ν(X, 0)}.

Writing E[exp{ν(X,D)}|X] using simple algebra, the results follows.

Proof of the theorem. Recall

Ucont(β) =

n∑
i=1

S i

π(Di)

(
h1(Xi)

[
Yi − g−1{µ(Xi;β)}

]
− h2(Xi,Di)

)
.

Consider the parametric submodel ft(O) = ft(Y |D, S = 1,X) f (S = 1|D) ft(D|X) ft(X), where ft=0(O) = f (O)
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is the true law. Denote by Ssub(O) = Ssub(Y |D, S = 1,X) + Ssub(D|X) + Ssub(X) the scores in the submodel

(e.g. Ssub(O) = ∂/∂t log{ ft(O)}, etc.)

Let:

Ψt(β, h1, h2) = Et

{ S
π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2(X,D)

)}
under the submodel, where β may not be the true value β0. Then, (assuming that integration and differenti-

ation are exchangeable),

∂Ψt(β, h1, h2)
∂t

∣∣∣∣∣
t=0

=
∂

∂t
Et

{ S
π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2,t(X,D)

)}
= E

{
S(O)

S
π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2(X,D)

)}
+
∂

∂t
E
{ S
π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2,t(X,D)

)}
.

Consider the second argument.

∂

∂t
E
{ S
π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2,t(X,D)

)}
= −

∂

∂t
E
{ S
π(D)

h2,t(X,D)
}
.

From Lemma 1 (a), with the log link function we have:

∂

∂t
E
{ S
π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2,t(X,D)

)}
=

−
∂

∂t
E
{ S
π(D)

h2,t(X,D)
}

= −
∂

∂t
E
{
h(X) exp

(
ν(X,D) − logEt[exp{ν(X,D)}|X]

)}
= −E

[
h(X) exp{ν(X,D)}

∂

∂t
Et[exp{ν(X,D)}|X]−1

]
= E

(
h(X)E

[
exp{ν(X,D)}

∣∣∣X]
E[exp{ν(X,D)}|X]−2 ∂

∂t
Et[exp{ν(X,D)}|X]

)
= E

(
h(X)E

[
exp{ν(X,D)}

∣∣∣X]−1
E

[
exp{ν(X,D)}Ssub(D|X)

∣∣∣X] )
= E

[
h(X)E

{
exp

(
ν(X,D) − logE

[
exp{ν(X,D)}|X

] )
Ssub(D|X)

∣∣∣X} ]
= E

{
h(X) exp

(
ν(X,D) − logE[exp{ν(X,D)}|X]

)
Ssub(D|X)

}
= E

{
h2(X,D)Ssub(D|X)

}
= E

{ S
π(D)

h2(X,D)Ssub(D|X)
}
.
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We now show the same result for the identity link. We use Lemma 1 (b) and get:

∂

∂t
E
{ S
π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2,t(X,D)

)}
= −

∂

∂t
E
} S
π(D)

h2,t(X,D)
}

= −
∂

∂t
E
[ S
π(D)

γ(X){D − pt(X)}
]

=
∂

∂t
E
{ S
π(D)

γ(X)pt(X)
}

= E
[ S
π(D)

γ(X)E
{
DSsub(D|X)

∣∣∣X}]
= E

( S
π(D)

γ(X)E
[
{D − p(X)}Ssub(D|X)

∣∣∣X])
= E

[ S
π(D)

γ(X){D − p(X)}Ssub(D|X)
]

= E
{ S
π(D)

h2(X,D)Ssub(D|X)
}
.

Recall that p(X) is restricted via some nonparametric, semiparameteric or parameteric model, and denote

its tangent space by ΛD,sub ⊆ ΛD,npar where ΛD,npar is the tangent space in the unrestricted model for p(X).

The score Ssub(D|X) satisfies Ssub(D|X) ∈ ΛD,sub, since this tangent space is spanned by all scores of in the

submodel for p(D|X). Therefore, Ssub(D|X) is orthogonal to the orthocomplement of the submodel tangent

space Λ⊥D,sub. Denote the projection of a vector v on a space U by Π
(
v
∣∣∣U)

. We can decompose

S
π(D)

h2(X,D) = Π

( S
π(D)

h2(X,D)
∣∣∣∣∣ΛD,sub

)
+ Π

( S
π(D)

h2(X,D)
∣∣∣∣∣Λ⊥D,sub

)

and the latter term is orthogonal to Ssub(D|X). Thus,

E
{ S
π(D)

h2(X,D)Ssub(D|X)
}

= E
{
Π

( S
π(D)

h2(X,D)
∣∣∣∣∣ΛD,sub

)
Ssub(D|X)

}
.

It follows that

∂

∂t
Ψ(β, h1, h2)

∣∣∣∣∣
t=0

= E
{
Ssub(O)

S
π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2(X,D)

)}
−E

{
Π

( S
π(D)

h2(X,D)
∣∣∣∣∣ΛD,sub

)
Ssub(D|X)

}
. (B. 1)

To complete, it suffices to note that

E
[
Π

( S
π(D)

h2(X,D)
∣∣∣∣∣ΛD,sub

){
Ssub(X) + Ssub(Y |D,X)

}]
= 0. (B. 2)

Combining identities (B. 1) and (B. 2), and since every influence functions ψ in the restricted model satisfies
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the following equation:
∂Ψt(β, h1, h2)

∂t

∣∣∣∣∣
t=0

= E{Ssub(O)ψT },

it follows that every influence function in the restricted model is of the form

S h1(X)
π(D)

[
Y − g−1{µ(X;β)}

]
−

S
π(D)

h2(X,D) + Π

( S
π(D)

h2(X,D)
∣∣∣∣∣ΛD,sub

)
.

8.3 Proof of Corollary 1

Corollary 1 follows since if p(X) is unrestricted, then so is the tangent space unrestricted Λd,sub = ΛD,npar,

and the projection of a vector on the submodel tangent space does not change the vector, i.e.

Π

( S
π(D)

h2(X,D)
∣∣∣∣∣ΛD,sub

)
=

S
π(D)

h2(X,D),

so that the influence function has to be

S h1(X)
π(D)

[
Y − g−1{µ(X;β)}

]
,

the IPW influence function.

8.4 Proof of Theorem 2

Suppose that h1(X) is fixed, and p(X) is known. We here find the function h2(X,D) that minimizes the vari-

ance over all functions in the submodel tangent space. First, note that we can write the influence functions

for β in the form:

ψ(β) =
S h1(X)
π(D)

[
Y − g−1{µ(X;β)}

]
− Π

( S
π(D)

h2(X,D)
∣∣∣∣∣Λ⊥D,sub ∩ ΛD,npar

)
= Π

(S h1(X)
π(D)

[
Y − g−1{µ(X;β)}

]∣∣∣∣∣Λ⊥D,sub ∩ ΛD,npar

)
− Π

( S
π(D)

h2(X,D)
∣∣∣∣∣Λ⊥D,sub ∩ ΛD,npar

)
+Π

(S h1(X)
π(D)

[
Y − g−1{µ(X;β)}

]∣∣∣∣∣ΛD,sub

)
,

so that minimizing the variance of ψ(β) over functions h2(X,D) is equivalent to minimizing the variance

of the first two terms (since the third term is orthogonal to the term involving h2(X,D)). Consider finding
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hopt
2 (X,D) that satisfies the normal equations:

0 = E
{ S
π(D)

h2(X,D)
(S h1(X)
π(D)

[Y − g−1{µ(X;β)}] −
S

π(D)
hopt

2 (X,D)
)}

= E
{ S
π(D)

h2(X,D)
(S h1(X)
π(D)

[E(Y |X,D) − g−1{µ(X;β)}] −
S

π(D)
hopt

2 (X,D)
)}
.

This equality is satisfied by

hopt
2 (X,D) = h1(X)

[
E(Y |X,D) − g−1{µ(X;β)}

]
,

as required.

8.5 Proof of Theorem 3

We here find the function hopt
1 (X) that using it in the estimating equation Ucont(β) yields the most efficient

(with minimal variance) estimator of β̂. According to the generalized information equality (?), for every

function h1(X):

−E
[∂Uopt

cont
{
β; h1(X)

}
∂β

∣∣∣∣∣β=β0

]
= E

[
Uopt

cont
{
β; h1(X)

}
Ucont

{
β; hopt

1 (X)
}T

∣∣∣∣∣β=β0

]
.

Then:

E
[ S
π(D)

h1(X)
∂g−1{µ̃(X,D;β)}

∂β

∣∣∣∣∣β=β0

]
= E

[
h1(X)

∂g−1{µ̃(X,D;β0)}
∂β

]
= E

{
h1(X)hopt

1 (X)E
(

1
π(D)

[
Y − g−1{µ̃(X,D;β0)}

]2
∣∣∣∣∣X) }

.

This equation is satisfied by:

∂g−1{µ̃(X,D;β0)}
∂β

= hopt
1 (X)E

( 1
π(D)

[
Y − g−1{µ̃(X,D;β0)}

]2
∣∣∣∣∣X)

.
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Recall that µ̃(X,D;β) = g{E(Y |X,D)}. We can then write:

hopt
1 (X) = E

[ 1
π(D)

{
Y − E(Y |X,D)

}2
∣∣∣∣∣X]−1 ∂g−1{µ̃(X,D;β0)}

∂β

= E
{ 1
π(D)

Var
(
Y
∣∣∣X,D)∣∣∣∣∣X}−1 ∂g−1{µ̃(X,D;β0)}

∂β
,

as required.

8.6 Deriving the locally semiparametric efficient influence function

We first derive the estimating equation for θ accounting for the estimation of α, and then provide the corre-

sponding influence function for θ. Denote the true value of α by α0, and recall that V(α) is the estimating

equation for α, and denote for simplicity U(θ;α) = Uopt
cont(θ). (In fact, the following derivation holds for

any estimating equation U(θ;α), in particular to any functions h1(X), h2(X,D), not just the optimal ones).

Let Vi(α),Ui(θ;α) be the contributions of the ith subject to the estimating equations. To estimate α, θ, one

solves PnVi(α) = 0, PnUi(θ;α) = 0, where Pn(xi) = 1/n
∑n

i=1 xi.

Consider the following expansions of the estimating equations around α0:

√
nPnUi(θ; α̂) =

√
nPnUi(θ;α)

∣∣∣∣∣α=α0

+
√

nPn
∂

∂α
Ui(θ; α̂)

∣∣∣∣∣α=α0

(α̂ − α0) + op(1)

=
√

nPnUi(θ;α0) + E
{
∂

∂α
U(θ;α0)

}
√

n(α̂ − α0) + op(1).

Similarly,

√
nPnVi(α̂) =

√
nPnVi(α0) + E

{
∂

∂α
V(α0)

}
√

n(α̂ − α0) + op(1).

From the estimation procedure, we have that by definition
√

nPnVi(α̂) = 0. Therefore, combining these two

equations we get:

√
nPnUi(θ; α̂) =

√
nPn

[
Ui(θ;α0) − E

{
∂

∂α
U(θ;α0)

}
E

{
∂

∂α
V(α0)

}−1

Vi(α0)
]

+ op(1).

So that there is an additional term, namely
√

nPnE
{ ∂
∂αU(θ;α0)

}
E
{ ∂
∂αV(α0)

}−1Vi(α0), that accounts for the
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estimation of α. Notice that in order to estimate θ we do not in fact need to use this estimating equation,

since
√

nPnVi(α0) is estimated by
√

nPnVi(α̂) = 0. However, for the purpose of variance estimation, it is

important to use this estimating equation and account for the estimation of α.

Using the same technic, we obtain

√
nPnUi(̂θ; α̂) =

√
nPnUi(θ0; α̂) + E

{
∂

∂θ
U(θ0; α̂)

}
√

n(̂θ − θ0) + op(1),

and since
√

nPnUi(̂θ; α̂) = 0, we get:

√
n(̂θ − θ0) =

√
nPn

[
E
{
∂

∂θ
U(θ0; α̂)

}−1
Ui(θ0; α̂)

]
+ op(1),

and we see that θ̂ is an asymptotically linear estimator with the ith influence function given by

ψi(θ;α) = E
{
∂

∂θ
Ui(θ0; α̂)

}−1
Ui(θ0; α̂).

Notice that

∂

∂θ
Ui(θ0; α̂) =

∂

∂θ

[
Ui(θ;α0) − E

{
∂

∂α
U(θ;α0)

}
E
{
∂

∂α
V(α0)

}−1
Vi(α0)

]
=

∂

∂θ
Ui(θ;α0) − E

{
∂

∂α
U(θ;α0)

}
E
{
∂

∂α
V(α0)

}−1 ∂

∂θ
Vi(α0)

=
∂

∂θ
Ui(θ;α0),

since Vi(α0) does not depend on θ.

8.7 Proof of Corollary 2

Under the standard regularity conditions found in ?, the asymptotic normality of θ̂ follows from the central

limit theorem, and its mean and covariance are as indicated since we assume that the models for θ̂ = (β, δ)

are correctly specified, so that ψ(θ;α) has mean zero. Local efficiency follows from Theorem 3, in which

we provide the efficient influence function, and from the definition of local efficiency (?).
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9 Computation of the control function estimator

Here we describe how to compute estimators of β for the identity and log links, when p(X) is modeled

parametrically with p(X;α). In general, to find the estimator β̂ we need to solve the estimating equation

Ûopt
cont(β) = 0, defined as Uopt

cont(β) with ĥ1(X), ĥ2(X,D), and p̂(X). This can be performed using the Newton-

Raphson (NR) algorithm.

Let δ denote the parameters for either ν(X,D; δ) (log link) or γ(X; δ) (identity link). Let θ = (βT , δT )T .

It is convenient to estimate θ jointly, by modifying the estimating equation Uopt
cont(β) to define Uopt

cont(θ) by

taking

hopt
1 (X) = E

{ 1
π(D)

var(Y |D,X)
∣∣∣∣∣X}−1 ∂

∂θ

[
g−1{µ(X,D; θ)

}]
.

The estimation procedure takes the following steps:

1. Estimate the parameters of p(D = 1|X, S = 1), the probability of disease conditional on covariates

in the case-control study population, using logistic regression with an offset, by exploiting the known

relationship between disease probability in the population to disease probability in the case-control

sample:

logitp(X) = logitp(D = 1|X, S = 1) + log
[ p(D = 1)

{
1 − p(D = 1|S = 1)

}
p(D = 1|S = 1)

{
1 − p(D = 1)

} ] (C. 1)

where p(D = 1) is the disease prevalence in the general population, and p(D = 1|S = 1) is the fraction

of cases in the case-control sample.

2. Obtain starting values for θ according to the specifics given below.

3. Plug α̂ into Uopt
cont(θ) and solve Ûopt

cont (̂θ) = 0 using NR.

This procedure is implemented in the R package RECSO (?). Note that the estimating equation Uopt
cont(θ) is

geared towards increasing the efficiency of the estimator for β, so δ̂ may not be an efficient estimator.

Next we detail the estimation procedure for p(D = 1|X, S = 1), and θ for each choice of link function.

9.1 Computation of p̂(D = 1|X, S = 1) using a parametric model

Let V(α) be the estimating equation for parameters α of p(D = 1|X, S = 1;α). In the simple logistic model,

it is given by:

V(α) =

n∑
i=1

S ixi{Di − p(Di = 1|Xi, S i = 1)}
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where p(Di = 1|xi, S i = 1) is modeled through the inverse of the logit transformation, i.e. p(Di = 1|xi, S i =

1) = exp(αT xi)/{1 + exp(αT xi)}. Here, we do not correct for the sampling bias resulting from the case-

control ascertainment (e.g. we do not use IPW), but to later obtain estimates of the disease probability p̂(X)

we use the correction (C. 1).

9.2 Identity link

To solve the estimating equation Ûident(β) = 0 for β, we follow the steps described above. First, we estimate

α̂. Second, we calculate staring values for θ. For staring values of δ, we can estimate γ̂(X) by regressing

Y on the covariates X in the cases and control groups separately, calculating the predicted means for each

subject under the two models, and taking the difference. Initial estimators of δ can then be obtained by

regressing the calculated differences on a given design matrix, say, if a linear model is assumed. Starting

value for β could be obtained as the IPW estimator. At the third step we solve

0 =

n∑
i=1

hopt
1 (Xi)S i

π(Di)

[{
Yi − µ(Xi;β)

}
−

{
Di − p̂(Xi)

}
γ(Xi; δ)

]

using NR iterations, by which we update the estimated θ̂ until convergence.

Note that for hopt
1 (X) we need to estimate Var

(
Y
∣∣∣D,X)

. When the outcome is continuous, it is convenient

to assume homoscedasticity , in which case hopt
1 (Xi) can be chosen

∑
d∈{0,1}

[ 1
π(d)

1
n

n∑
j=1

(
yi − µ(Xi; β̂) − γ̂(Xi){d − p̂(Xi)

}2
]
p(Di = d)

The estimate β̂ will remain consistent even if the homoscedasticity assumption does not hold.

9.3 Log link

As in the identity link case, we start by estimating α̂, as described earlier. At the second step, we calculate

starting values for θ. ν̂(X,D) could be estimated, for instance, by estimating the parameters of a generalized

linear model with the log link function, of Y on the covariates X in the cases and controls separately, calcu-

lating the predicted means E(Yi|X j,Di = 0) and E(Yi|X j,Di = 1) for every subject i, and plugging-in to the

equation for ν(X,D) for each subject. We can then estimate an initial δ̂ based on a model. A starting value
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for β could be the IPW estimator. We can proceed to the third step and solve

0 =

n∑
i=1

hopt
1 (Xi)S i

π(Di)

(
Yi − exp

[
µ(Xi;β) + νopt(Xi,Di; δ) − ν̄{Xi; δ, p̂(Xi)}

])

for θ using NR iterations.

Note that at the kth iteration, we also need to estimate hopt
1 (X). We can either update the estimate of

hopt
1 (X) at the kth iteration, using the estimated θ̂ from the (k − 1)th iteration, or we can use a plug-in

estimator based on the initial estimator of θ. Usually the latter option is more stable (updating hopt
1 (X) may

lead to convergence problems). Note that for hopt
1 (X) one needs an estimate of

E
{ 1
π(Di)

Var(Yi|Xi,Di)
∣∣∣∣∣Xi

}
=

∑
d∈{0,1}

{ 1
π(Di)

Var(Yi|Xi,Di)p(Di = d|Xi)
}

for each subject i, i = 1, . . . , n. In the case of a Poisson model, we can simply use the predicted means, as

V̂ar(Y |X,D) = Ê(Y |X,Di) = exp
{
µ(X; β̂) + νopt(X,D; δ̂) − ν̄(X; δ̂)

}
. As before, these predicted means could

be updated at each iteration or be based on the initial estimators (the more stable option).

10 Identity link simulations - additional information

10.1 Simulation study with a single exposure variable

The simulation study described here, is similar to the identity link simulation study presented in the

manuscript (Section 4.1), but simpler, so that only a single exposure variable is used. In this simulation

we implemented and compared the estimator TT of Tchetgen Tchetgen (2014), which this estimator is not

presented in the more complex simulation studies in the manuscript, as it then suffered from convergence

problems. The TT estimator was calculated using maximum likelihood, and the robust standard error es-

timators. Results are provided under correct specification of the selection bias function γ(X) (TT-cor) and

under misspecification (TT-mis).

The simulation was generated as follows. As in the simulation study presented in the main manuscript,

first, an exposures variables X1 was sampled with distribution X1 ∼ N(2, 4). Then, disease probabilities
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were calculated for each subject, from the model

logit {p(D = 1|X)} = −3.2 + 0.3X1,

and disease status was sampled. Then, the conditional mean of the secondary outcome was set to

E(Y |X,D) = 50 + 4X1 + {D − p(X)}(3 + 2X1),

so that the population mean is µ(X,β) = XTβ with X = (1, X1)T and β = (50, 4)T , and γ(X) = XTα with

α = (3, 2)T . Finally, the residuals were normally distributed, so that Yi was sampled from:

Yi = E(Y |Xi,Di) + εi, with εi ∼ N(0, 4).

All estimators estimated the sample mean based on the full design matrix, i.e. with X = (1, X1)T . TT and

the control function estimator estimated γ(X). When the model was correctly specified, the design matrix

in the model for γ(X) was taken to include all the terms X = (1, X1)T , but when the model was incorrectly

specified, it only had the intercept, i.e. X = 1.

Table 3 provides comprehensive simulation results (i.e. all summary statistics for all estimators under

investigations), while Figure 4 provides graphical results, comparing the bias, MSE and coverage of the

unbiased estimators cont-mis, cont-cor, IPW and TT-cor.

10.2 Table summarizing the identity link simulations provided in Section 4.1 in the manuscript

The following Table 4 provide comprehensive simulation results for the simulation study described in Sec-

tion 4.1 in the paper.
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Figure 4: Results from Identity link simulations in the simple settings with a single covariate. Estimated bias,
MSE, and coverage probability of the control function under correct and misspecification of the selection
bias function (cont-cor, cont-mis, respectively), IPW and TT (correctly specified) estimators, in estimating
the population effect of X1.

37

http://biostats.bepress.com/harvardbiostat/paper174



Table 3: Simulation results for estimating the effect of covariates on a normally distributed secondary out-
come using the identity link function, in the first, simple settings (a single covariate). We report results for
the usual IPW estimator, the proposed estimator with the control function, when the model for ν(X,D) is
correctly specific (‘cont-cor’) and when the model is misspecified (‘cont-mis1’), the naı̈ve conditional and
pooled estimators (Dind and pooled) with and without disease status in the regression model, respectively,
and the estimator proposed by Tchetgen Tchetgen (2014) (TT).

Estimator bias MSE emp sd est sd coverage
Intercept, β0 = 50

cont-cor 0.000 0.018 0.136 0.133 0.942
cont-mis −0.001 0.018 0.136 0.142 0.957
IPW −0.002 0.019 0.137 0.134 0.939
pooled 1.640 2.711 0.145 0.200 0.000
Dind −1.450 2.126 0.151 0.165 0.000
TT-cor 0.000 0.018 0.135 0.130 0.942
TT-mis −0.930 0.889 0.157 0.158 0.000

X1, β1 = 4
cont-cor −0.001 0.001 0.038 0.039 0.957
cont-mis 0.000 0.002 0.040 0.032 0.871
IPW 0.000 0.002 0.044 0.045 0.961
pooled 0.753 0.568 0.036 0.036 0.000
Dind 0.149 0.024 0.041 0.030 0.009
TT-cor 0.000 0.002 0.046 0.026 0.734
TT-mis 0.497 0.249 0.039 0.035 0.000
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Table 4: Simulation results for estimating the effect of covariates on a normally distributed secondary out-
come using the identity link function, in the second settings (two covariates, interaction term in the popu-
lation regression and selection bias models). We report results for the usual IPW estimator, the proposed
estimator with the control function, when the model for ν(X,D) is correctly specific (‘cont-cor’) and when
the model is misspecified (‘cont-mis1’) and the naı̈ve conditional and pooled estimators (Dind and pooled)
with and without disease status in the regression model, respectively.

Estimator bias MSE emp sd est sd coverage
Intercept, β0 = 50

cont-cor 0.007 0.019 0.138 0.139 0.958
cont-mis1 0.007 0.019 0.138 0.139 0.959
cont-mis2 0.007 0.019 0.138 0.141 0.961
cont-mis3 0.006 0.019 0.139 0.150 0.971
cont-mis4 0.006 0.019 0.139 0.153 0.973
IPW 0.006 0.019 0.139 0.141 0.964
pooled 1.520 2.332 0.150 0.227 0.000
Dind −1.577 2.515 0.165 0.183 0.000

X1, β1 = 4
cont-cor −0.001 0.001 0.038 0.042 0.967
cont-mis1 −0.001 0.001 0.038 0.044 0.971
cont-mis2 −0.001 0.001 0.038 0.047 0.982
cont-mis3 0.000 0.002 0.040 0.034 0.906
cont-mis4 0.000 0.002 0.040 0.035 0.923
IPW 0.000 0.002 0.045 0.047 0.964
pooled 0.724 0.526 0.038 0.041 0.000
Dind 0.077 0.008 0.042 0.034 0.398

X2, β2 = 3
cont-cor 0.028 0.228 0.477 0.491 0.960
cont-mis1 0.024 0.236 0.485 0.526 0.970
cont-mis2 0.026 0.238 0.487 0.431 0.913
cont-mis3 0.017 0.268 0.517 0.656 0.984
cont-mis4 0.021 0.268 0.517 0.536 0.953
IPW 0.024 0.272 0.521 0.521 0.950
pooled 2.256 5.461 0.608 0.648 0.051
Dind −0.061 0.419 0.645 0.479 0.852

X1X2, β3 = 3
cont-cor 0.005 0.022 0.148 0.207 0.998
cont-mis1 0.011 0.025 0.159 0.164 0.955
cont-mis2 0.014 0.032 0.179 0.116 0.775
cont-mis3 0.016 0.039 0.197 0.146 0.843
cont-mis4 0.015 0.047 0.216 0.146 0.795
IPW 0.018 0.076 0.275 0.247 0.909
pooled 0.317 0.126 0.160 0.117 0.297
Dind 0.366 0.156 0.148 0.086 0.085
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11 Simulation study: log link

We compared the control function estimator to pooled and Dind, that were calculated using generalized

linear models in standard software. We simulated two covariates, X1 and X2, with X1 ∼ N(1, 0.2) and

X2 ∼ N(1.5, 0.2). Primary disease probability was calculated by

logit {p(D = 1|X)} = −2.12 + 0.3X1 + X2,

so that disease prevalence is 0.12. Disease statuses were sampled from the calculated probabilities. The

secondary outcome mean was calculated by:

E(Y |X,D) = exp
{
3 + 0.7X1 + (0.3 + 0.5X1 + 0.5X1X2)D

}
× exp

[
− log{exp(0.5 + 0.3X1 + 0.3X2 + 0.3X1X2)p(D = 1|X) + p(D = 0|X)}

]
,

so that the population mean is exp
{
µ(X,β)

}
= exp(XTβ) with X = (1, X1, X2, X1X2)T and β = (3, 0.7, 0.5, 0.5)T ,

and ν(X,D) = DXTα with α = (0.5, 0.3, 0.3, 0.3)T . Then Y was sampled from Poisson distributed, i.e.

Y ∼ Poisson{E(Y |X,D)}. 1000 cases and controls were sampled from the generated population.

All estimators estimated the sample mean based on the full design matrix, i.e. with X = (1, X1, X2, X1X2)T .

The control function estimator estimated ν(X,D). When the model was correctly specified, the design ma-

trix was taken to include all of X. To study the effect of misspecification, we implemented the control

function estimator with the following misspecifications of the selection bias function ν(X,D): cont-mis1

had design matrix X = (1, X1, X2). cont-mis2 had design matrix X = (1, X1)T , cont-mis3 had X = (1, X2)T ,

and cont-mis4 had only intercept.

Figure 5, provides the bias, MSE and coverage probabilities of the IPW and the control function esti-

mators, calculated over the 1000 simulations. Table 13 reports, for each estimator and each estimated pa-

rameter, the estimator’s mean bias, MSE, empirical standard deviation over all simulations, mean estimated

standard deviation, and coverage probability. The bias of the control function estimator is small under cor-

rect specification of the selection bias function, but increases as more information is lost in various forms of

misspecification. For instance, consider the estimator β1, the coefficient of X1. When the interaction term,

or both interaction term and X2, are not included in the design matrix for ν(X,D) (cont-mis1, cont-mis2),

it becomes slightly biased. When both interaction term and X1, or all covariates, are not included in the
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design matrix (cont-mis3, cont-mis4), its bias more than doubles. However, surprisingly, the MSE of the

control function estimators is superior to the IPW, and performs well even when the model for ν(X,D) is

misspecified. When the model for ν(X,D) is misspecified, the bias, the MSE and the empirical standard de-

viation of the control function estimator were higher than under correct specification. Coverage probability

was inflated and very close to 1, both when the model for ν(X,D) was correctly specified and when it was

misspecified. In comparison, the coverage probability of the IPW estimator was accurate. Finally, as in the

identity link simulations, the naı̈ve estimators Dind and pooled yielded biased estimators with, substantially

lower than nominal, coverage probability.
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Figure 5: Results from log link simulations. Estimated bias, MSE, and coverage probability of the control
function under correct and misspecification of the selection bias function (cont-cor, cont-mis1, . . ., cont-
mis4), and IPW, in estimating population means.
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Table 5: Simulation results for estimating the effect of covariates on a Poisson distributed secondary out-
come using the log link function. We report results for the usual IPW estimator, the proposed estimator
with the control function, when the model for ν(X,D) is correctly specific (‘cont-cor’) and when the model
is misspecified, under four forms of misspecification (‘cont-mis1’, . . ., ‘cont-mis4’), and the naı̈ve condi-
tional and pooled estimators (Dind and pooled) with and without disease status in the regression model,
respectively.

Estimator bias MSE emp sd est sd coverage
Intercept, β0 = 3

ours-cor −0.009 0.023 0.151 0.645 1.000
ours-mis1 0.057 0.025 0.148 0.642 1.000
ours-mis2 −0.181 0.059 0.163 0.637 1.000
ours-mis3 −0.272 0.101 0.165 0.638 1.000
ours-mis4 −0.482 0.264 0.178 0.642 1.000
IPW −0.020 0.546 0.739 0.730 0.944
pooled 0.025 0.444 0.666 0.064 0.135
Dind −0.484 0.245 0.104 0.064 0.002

X1, β1 = 0.7
ours-cor 0.006 0.015 0.124 0.641 1.000
ours-mis1 −0.059 0.018 0.122 0.639 1.000
ours-mis2 0.031 0.022 0.144 0.635 1.000
ours-mis3 0.257 0.079 0.115 0.627 1.000
ours-mis4 0.315 0.118 0.136 0.628 1.000
IPW 0.016 0.543 0.737 0.725 0.944
pooled 0.095 0.447 0.662 0.059 0.150
Dind −0.078 0.016 0.097 0.060 0.623

X2, β2 = 0.5
ours-cor 0.006 0.006 0.079 0.424 1.000
ours-mis1 −0.038 0.007 0.077 0.423 1.000
ours-mis2 0.119 0.020 0.078 0.416 1.000
ours-mis3 0.096 0.018 0.094 0.421 1.000
ours-mis4 0.231 0.062 0.094 0.419 1.000
IPW 0.014 0.238 0.488 0.481 0.940
pooled 0.044 0.193 0.437 0.041 0.148
Dind −0.348 0.126 0.067 0.041 0.002

X1X2, β3 = 0.5
ours-cor −0.004 0.002 0.047 0.422 1.000
ours-mis1 0.039 0.004 0.046 0.420 1.000
ours-mis2 −0.021 0.003 0.052 0.415 1.000
ours-mis3 −0.091 0.010 0.044 0.413 1.000
ours-mis4 −0.128 0.019 0.049 0.409 1.000
IPW −0.012 0.236 0.486 0.477 0.941
pooled −0.049 0.190 0.433 0.038 0.141
Dind −0.002 0.004 0.063 0.038 0.758
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12 Simulation study mimicking the T2D case-control study data set

The goal of these simulations was to study the performance of the control function estimator in simulations

mimicking the T2D data set, by using the same variable types, as well as effect sizes, as seen in the data. We

considered a few forms of misspecification of the selection bias function, to glean into the plausible effects

of misspecification on estimation.

First, we took two SNPs that were found to be significantly associated with log-BMI an entire GWAS

data analysis. These SNPs, dubbed SNP1 and SNP2, had very low Minor Allele Frequency (MAF), about

3%. We estimated the logistic disease model with the predictors: smoking status, alcohol measure, physi-

cally active status, and SNP1 and SNP2. We also estimated the regression model E[Y |X] of log-BMI with

age, smoking status, physically active status, SNP1, SNP2, and the interaction between SNP1 and physical

activity status as predictors. In addition, we estimated a regression model for the selection bias function

with smoking status and SNP1 as predictors. Note that for simplicity, we did not adjust for the principal

components of the genetic data in these analysis. We used the estimated effects, rounded to the third digit,

as effect values in the simulations. We then employed a few variations. We now describe the sampling and

generation of the simulated data, and then the different variations of the simulation study.

12.1 Data sampling and generation:

We simulated a super population of 15,000 individuals. Then sampled cases and controls from this popu-

lation, based only on disease status. For each of 1000 simulations, the super population was simulated as

follows:

• SNP1 and SNP2 were sampled with replacement from the true SNP data.

• Binary smoking status as well as physically active status were sampled from a binary distribution, with

parameter p estimated from the diabetes data set (for simplicity, ignoring case-control sampling).

• Alcohol measures and age were sampled form the case-control study data, with replacement.

• Disease probability was calculated by the inverse of the logistic model with parameters as estimated

from the data, with adaptation of the intercept to have disease prevalence of about 8.4%, and possible

variation as described later.
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• Log-BMI values were simulated from a normal distribution, using the mean and variance parameters

estimated from the diabetes data set, with possible variations as described later.

We sampled 500 cases and 500 controls from the super population.

12.2 Variations of the simulation

To study the effect of some properties of the data on the estimators, we applied the following variations, so

that the simulations were ran with all combinations of the following options:

1. SNP1 and SNP2 where either the SNPs with very low MAF used to estimate the model parameters,

or other two SNPs with high MAF (closer to 50%).

2. The effect of SNP1 on disease was set to a ‘high’ effect of 1.3 (instead of -0.04).

3. The effect of SNP1 on the selection bias function was set to a ‘high’ effect of -1 (instead of -0.053).

12.3 Misspecification of the selection bias function

We studied the control function estimator when the selection bias function is correctly specified, and also

when it is misspecified, in the following ways. Recall that a correct specification refers to a linear model

with an intercept, SNP1, and smoking status. The effect sizes were:

αintercept = −0.158

αsmoke = 0.022

αsnp1 = −0.053 or (if set to ‘high’) αsnp1 = −0.2.

We allowed for the following misspecifications of the selection bias function:

1. cont-mis1: no SNP1 effect (just intercept and smoking status).

2. cont-mis2: no smoking status effect (just intercept and SNP1).

3. cont-mis3: neither SNP1 nor smoking status (just intercept).

12.4 Conclusions

In the following, figures and tables provide the simulations results. The figures focus on the various control-

function estimates, and IPW (which can also be thought of as type of control-function estimator with the
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selection bias misspecified and equal to zero), and compare between the bias and MSE of the SNP effects.

The tables provide comprehensive simulation results for all measures and estimators used.

1. The control function estimator improves over IPW when the effect of SNP1 (or more generally, co-

variates or exposures) on either the disease model or the selection bias model is high, and it is in fact

included in the disease/selection bias model. In other words, cont-mis2 performs better than cont-

mis1 and cont-mis3, that do not include effects of SNP1. Also, its performance is almost identical to

the cont-cor and better than the usual IPW.

2. The improvement seen in the control function estimator was in the effect (bias or MSE) estimate of

SNP1 and the interaction SNP1 and being physically active. The various control function estimators

(i.e. under the different forms of misspecification) had similar behavior with respect to the estimation

of SNP2 effect.

3. The control function estimators were never worse than IPW in terms of MSE.

4. When the MAF of the SNPs was low (rare SNP), coverage probabilities of all estimators were reduced,

compared to when the MAF was relatively high (common SNP).

12.5 Figures and tables summarizing the results
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Figure 6: Comparison between the estimated bias of SNP1 effect, over 1000 simulations, of the control-
function estimator under various forms of mispecification (mis1, mis2, mis3) and under correct specification
(cor) of the selection bias function, and of the IPW. We compare between all combinations in which SNP1
and SNP2 have either low or high MAF, the effect of SNP1 on the disease model is either low or high, and
the effect of SNP1 on the selection bias model (γ(X)) is either low or high.
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Figure 7: Comparison between the Mean Square Error (MSE) of SNP1 effect, over 1000 simulations, of
the control-function estimator under various forms of mispecification (mis1, mis2, mis3) and under correct
specification (cor) of the selection bias function, and of the IPW. We compare between all combinations in
which SNP1 and SNP2 have either low or high MAF, the effect of SNP1 on the disease model is either low
or high, and the effect of SNP1 on the selection bias model (γ(X)) is either low or high.
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Figure 8: Comparison between the estimated bias of the effect of the interaction Active×SNP1 effect, over
1000 simulations, of the control-function estimator under various forms of mispecification (mis1, mis2,
mis3) and under correct specification (cor) of the selection bias function, and of the IPW. We compare
between all combinations in which SNP1 and SNP2 have either low or high MAF, the effect of SNP1 on the
disease model is either low or high, and the effect of SNP1 on the selection bias model (γ(X)) is either low
or high.
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Figure 9: Comparison between the Mean Square Error (MSE) of the interaction Active×SNP1 effect, over
1000 simulations, of the control-function estimator under various forms of mispecification (mis1, mis2,
mis3) and under correct specification (cor) of the selection bias function, and of the IPW. We compare
between all combinations in which SNP1 and SNP2 have either low or high MAF, the effect of SNP1 on the
disease model is either low or high, and the effect of SNP1 on the selection bias model (γ(X)) is either low
or high.
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Figure 10: Comparison between the estimated bias of SNP2 effect, over 1000 simulations, of the control-
function estimator under various forms of mispecification (mis1, mis2, mis3) and under correct specification
(cor) of the selection bias function, and of the IPW. We compare between all combinations in which SNP1
and SNP2 have either low or high MAF, the effect of SNP1 on the disease model is either low or high, and
the effect of SNP1 on the selection bias model (γ(X)) is either low or high.
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Figure 11: Comparison between the Mean Square Error (MSE) of SNP2 effect, over 1000 simulations, of
the control-function estimator under various forms of mispecification (mis1, mis2, mis3) and under correct
specification (cor) of the selection bias function, and of the IPW. We compare between all combinations in
which SNP1 and SNP2 have either low or high MAF, the effect of SNP1 on the disease model is either low
or high, and the effect of SNP1 on the selection bias model (γ(X)) is either low or high.
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Table 6: Simulation results, averaged over 1000 simulations, for estimating the effect of covariates on a the
simulated log(BMI) outcomes. The SNPs used had low MAF, the effect of SNP1 on the disease distribution
was low, and its effect on the selection bias function was low.

Estimator Bias MSE emp sd est sd coverage
Intercept, β0 = 3.077

ours-cor 0.001 0.002 0.047 0.048 0.952
ours-mis1 0.001 0.002 0.046 0.048 0.951
ours-mis2 0.001 0.002 0.046 0.048 0.951
ours-mis3 0.001 0.002 0.046 0.048 0.951
ipw 0.001 0.002 0.047 0.048 0.949
pooled −0.061 0.005 0.040 0.040 0.667
dind 0.012 0.002 0.037 0.037 0.945

Age, β1 = 0.002
ours-cor 0.000 0.000 0.001 0.001 0.943
ours-mis1 0.000 0.000 0.001 0.001 0.944
ours-mis2 0.000 0.000 0.001 0.001 0.943
ours-mis3 0.000 0.000 0.001 0.001 0.943
ipw 0.000 0.000 0.001 0.001 0.939
pooled 0.000 0.000 0.001 0.001 0.949
dind 0.000 0.000 0.001 0.001 0.953

Smoker, β2 = −0.012
ours-cor 0.001 0.000 0.017 0.017 0.933
ours-mis1 0.001 0.000 0.017 0.017 0.932
ours-mis2 0.001 0.000 0.017 0.017 0.933
ours-mis3 0.001 0.000 0.017 0.017 0.934
ipw 0.001 0.000 0.017 0.017 0.932
pooled −0.003 0.000 0.013 0.013 0.944
dind 0.018 0.000 0.012 0.012 0.684

Physically active, β3 = −0.032
ours-cor 0.000 0.000 0.015 0.015 0.942
ours-mis1 0.000 0.000 0.015 0.015 0.942
ours-mis2 0.000 0.000 0.015 0.015 0.942
ours-mis3 0.000 0.000 0.015 0.015 0.943
ipw 0.000 0.000 0.015 0.015 0.943
pooled 0.006 0.000 0.013 0.013 0.929
dind −0.003 0.000 0.012 0.012 0.954

SNP1, β4 = −0.032
ours-cor −0.001 0.002 0.049 0.045 0.916
ours-mis1 −0.001 0.002 0.049 0.045 0.910
ours-mis2 −0.001 0.002 0.049 0.045 0.915
ours-mis3 −0.001 0.002 0.049 0.045 0.913
ipw −0.002 0.002 0.049 0.045 0.914
pooled −0.027 0.002 0.040 0.039 0.883
dind −0.023 0.002 0.035 0.036 0.902

SNP2, β5 = −0.040
ours-cor 0.001 0.001 0.035 0.034 0.931
ours-mis1 0.001 0.001 0.035 0.034 0.930
ours-mis2 0.001 0.001 0.035 0.034 0.930
ours-mis3 0.001 0.001 0.035 0.034 0.929
ipw 0.001 0.001 0.035 0.034 0.930
pooled 0.006 0.001 0.031 0.031 0.942
dind −0.001 0.001 0.028 0.028 0.946

Active×SNP1, β6 = −0.021
ours-cor −0.001 0.006 0.078 0.072 0.926
ours-mis1 −0.001 0.006 0.078 0.071 0.926
ours-mis2 −0.001 0.006 0.079 0.072 0.926
ours-mis3 −0.001 0.006 0.078 0.071 0.926
ipw −0.002 0.006 0.079 0.071 0.926
pooled 0.001 0.004 0.067 0.063 0.940
dind 0.001 0.003 0.059 0.058 0.948
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Table 7: Simulation results, averaged over 1000 simulations, for estimating the effect of covariates on a the
simulated log(BMI) outcomes. The SNPs used had high MAF, the effect of SNP1 on the disease distribution
was low, and its effect on the selection bias function was low.

Estimator Bias MSE emp sd est sd coverage
Intercept, β0 = 3.077

ours-cor −0.001 0.003 0.056 0.055 0.943
ours-mis1 −0.001 0.003 0.056 0.055 0.942
ours-mis2 −0.001 0.003 0.056 0.055 0.943
ours-mis3 −0.001 0.003 0.056 0.055 0.942
ipw −0.001 0.003 0.057 0.055 0.946
pooled −0.069 0.007 0.050 0.049 0.699
dind 0.043 0.004 0.044 0.043 0.834

Age, β1 = 0.002
ours-cor 0.000 0.000 0.001 0.001 0.944
ours-mis1 0.000 0.000 0.001 0.001 0.944
ours-mis2 0.000 0.000 0.001 0.001 0.944
ours-mis3 0.000 0.000 0.001 0.001 0.944
ipw 0.000 0.000 0.001 0.001 0.941
pooled 0.000 0.000 0.001 0.001 0.939
dind 0.000 0.000 0.001 0.001 0.941

Smoker, β2 = −0.012
ours-cor 0.000 0.000 0.017 0.017 0.950
ours-mis1 0.000 0.000 0.017 0.017 0.953
ours-mis2 0.000 0.000 0.017 0.017 0.953
ours-mis3 0.000 0.000 0.017 0.017 0.953
ipw 0.000 0.000 0.017 0.017 0.949
pooled −0.009 0.000 0.014 0.014 0.918
dind 0.021 0.001 0.013 0.012 0.613

Physically active, β3 = −0.032
ours-cor 0.001 0.001 0.027 0.027 0.953
ours-mis1 0.001 0.001 0.027 0.027 0.952
ours-mis2 0.001 0.001 0.027 0.027 0.952
ours-mis3 0.001 0.001 0.027 0.027 0.951
ipw 0.001 0.001 0.027 0.027 0.959
pooled 0.006 0.001 0.024 0.025 0.953
dind −0.006 0.001 0.022 0.021 0.947

SNP1, β4 = −0.032
ours-cor 0.000 0.000 0.014 0.013 0.944
ours-mis1 0.000 0.000 0.014 0.013 0.944
ours-mis2 0.000 0.000 0.014 0.013 0.944
ours-mis3 0.000 0.000 0.014 0.013 0.944
ipw 0.000 0.000 0.014 0.013 0.942
pooled −0.026 0.001 0.012 0.012 0.426
dind −0.021 0.001 0.010 0.010 0.490

SNP2, β5 = −0.040
ours-cor 0.000 0.000 0.014 0.014 0.943
ours-mis1 0.000 0.000 0.014 0.014 0.943
ours-mis2 0.000 0.000 0.014 0.014 0.943
ours-mis3 0.000 0.000 0.014 0.014 0.944
ipw 0.001 0.000 0.014 0.014 0.945
pooled 0.006 0.000 0.012 0.012 0.919
dind −0.003 0.000 0.010 0.010 0.937

Active×SNP1, β6 = −0.021
ours-cor −0.001 0.000 0.021 0.021 0.949
ours-mis1 −0.001 0.000 0.021 0.021 0.949
ours-mis2 −0.001 0.000 0.021 0.021 0.949
ours-mis3 −0.001 0.000 0.021 0.021 0.949
ipw −0.001 0.000 0.021 0.021 0.951
pooled 0.002 0.000 0.019 0.019 0.949
dind 0.002 0.000 0.016 0.016 0.936
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Table 8: Simulation results, averaged over 1000 simulations, for estimating the effect of covariates on a the
simulated log(BMI) outcomes. The SNPs used had low MAF, the effect of SNP1 on the disease distribution
was high, and its effect on the selection bias function was low.

Estimator Bias MSE emp sd est sd coverage
Intercept, β0 = 3.077

ours-cor −0.003 0.002 0.049 0.048 0.947
ours-mis1 −0.003 0.002 0.049 0.048 0.948
ours-mis2 −0.003 0.002 0.049 0.048 0.947
ours-mis3 −0.003 0.002 0.049 0.048 0.948
ipw −0.003 0.002 0.050 0.048 0.947
pooled −0.064 0.006 0.040 0.040 0.650
dind 0.008 0.001 0.037 0.037 0.945

Age, β1 = 0.002
ours-cor 0.000 0.000 0.001 0.001 0.944
ours-mis1 0.000 0.000 0.001 0.001 0.945
ours-mis2 0.000 0.000 0.001 0.001 0.945
ours-mis3 0.000 0.000 0.001 0.001 0.946
ipw 0.000 0.000 0.001 0.001 0.939
pooled 0.000 0.000 0.001 0.001 0.945
dind 0.000 0.000 0.001 0.001 0.951

Smoker, β2 = −0.012
ours-cor 0.000 0.000 0.017 0.017 0.947
ours-mis1 0.000 0.000 0.017 0.017 0.947
ours-mis2 0.000 0.000 0.017 0.017 0.948
ours-mis3 0.000 0.000 0.017 0.017 0.947
ipw 0.000 0.000 0.017 0.017 0.944
pooled −0.003 0.000 0.013 0.013 0.944
dind 0.018 0.000 0.012 0.012 0.690

Physically active, β3 = −0.032
ours-cor 0.000 0.000 0.015 0.015 0.945
ours-mis1 0.000 0.000 0.015 0.015 0.945
ours-mis2 0.000 0.000 0.015 0.015 0.945
ours-mis3 0.000 0.000 0.015 0.015 0.945
ipw 0.000 0.000 0.015 0.015 0.947
pooled 0.006 0.000 0.013 0.013 0.925
dind −0.003 0.000 0.012 0.012 0.929

SNP1, β4 = −0.032
ours-cor −0.003 0.002 0.045 0.043 0.924
ours-mis1 −0.003 0.002 0.044 0.041 0.921
ours-mis2 −0.003 0.002 0.045 0.043 0.926
ours-mis3 −0.003 0.002 0.044 0.041 0.918
ipw −0.004 0.002 0.045 0.043 0.924
pooled −0.044 0.003 0.028 0.029 0.676
dind −0.002 0.001 0.026 0.027 0.951

SNP2, β5 = −0.040
ours-cor 0.001 0.001 0.036 0.035 0.927
ours-mis1 0.001 0.001 0.036 0.035 0.927
ours-mis2 0.001 0.001 0.036 0.035 0.927
ours-mis3 0.001 0.001 0.036 0.035 0.927
ipw 0.001 0.001 0.036 0.035 0.930
pooled 0.005 0.001 0.031 0.031 0.943
dind −0.002 0.001 0.029 0.028 0.954

Active×SNP1, β6 = −0.021
ours-cor 0.000 0.005 0.073 0.067 0.908
ours-mis1 −0.001 0.005 0.071 0.064 0.907
ours-mis2 0.000 0.005 0.072 0.067 0.906
ours-mis3 0.000 0.005 0.071 0.064 0.906
ipw −0.002 0.006 0.074 0.067 0.896
pooled −0.003 0.002 0.047 0.047 0.946
dind −0.001 0.002 0.043 0.044 0.954

http://biostats.bepress.com/harvardbiostat/paper174



Table 9: Simulation results, averaged over 1000 simulations, for estimating the effect of covariates on a the
simulated log(BMI) outcomes. The SNPs used had high MAF, the effect of SNP1 on the disease distribution
was high, and its effect on the selection bias function was low.

Estimator Bias MSE emp sd est sd coverage
Intercept, β0 = 3.077

ours-cor 0.001 0.003 0.056 0.056 0.956
ours-mis1 0.001 0.003 0.056 0.056 0.956
ours-mis2 0.001 0.003 0.056 0.056 0.956
ours-mis3 0.001 0.003 0.056 0.056 0.956
ipw 0.001 0.003 0.056 0.056 0.954
pooled −0.023 0.003 0.048 0.050 0.923
dind 0.017 0.002 0.042 0.043 0.939

Age, β1 = 0.002
ours-cor 0.000 0.000 0.001 0.001 0.953
ours-mis1 0.000 0.000 0.001 0.001 0.954
ours-mis2 0.000 0.000 0.001 0.001 0.953
ours-mis3 0.000 0.000 0.001 0.001 0.954
ipw 0.000 0.000 0.001 0.001 0.953
pooled 0.000 0.000 0.001 0.001 0.958
dind 0.000 0.000 0.001 0.001 0.967

Smoker, β2 = −0.012
ours-cor 0.000 0.000 0.017 0.017 0.945
ours-mis1 0.000 0.000 0.017 0.017 0.946
ours-mis2 0.000 0.000 0.017 0.017 0.945
ours-mis3 0.000 0.000 0.017 0.017 0.948
ipw 0.000 0.000 0.017 0.017 0.943
pooled −0.003 0.000 0.014 0.014 0.950
dind 0.023 0.001 0.012 0.012 0.527

Physically active, β3 = −0.032
ours-cor −0.001 0.001 0.027 0.028 0.948
ours-mis1 −0.001 0.001 0.027 0.028 0.949
ours-mis2 −0.001 0.001 0.027 0.028 0.947
ours-mis3 −0.001 0.001 0.027 0.028 0.949
ipw −0.001 0.001 0.027 0.028 0.943
pooled 0.006 0.001 0.026 0.028 0.968
dind −0.002 0.001 0.024 0.024 0.948

SNP1, β4 = −0.032
ours-cor 0.000 0.000 0.014 0.014 0.938
ours-mis1 0.000 0.000 0.014 0.013 0.939
ours-mis2 0.000 0.000 0.014 0.014 0.939
ours-mis3 0.000 0.000 0.014 0.013 0.938
ipw 0.000 0.000 0.014 0.014 0.940
pooled −0.058 0.003 0.012 0.012 0.002
dind 0.006 0.000 0.011 0.011 0.919

SNP2, β5 = −0.040
ours-cor 0.000 0.000 0.014 0.014 0.951
ours-mis1 0.000 0.000 0.014 0.014 0.953
ours-mis2 0.000 0.000 0.014 0.014 0.954
ours-mis3 0.000 0.000 0.014 0.014 0.954
ipw 0.000 0.000 0.014 0.014 0.955
pooled 0.004 0.000 0.012 0.012 0.925
dind −0.004 0.000 0.010 0.010 0.926

Active×SNP1, β6 = −0.021
ours-cor 0.000 0.000 0.021 0.021 0.948
ours-mis1 0.000 0.000 0.021 0.021 0.947
ours-mis2 0.000 0.000 0.021 0.021 0.946
ours-mis3 0.000 0.000 0.021 0.021 0.946
ipw 0.001 0.000 0.022 0.021 0.943
pooled 0.000 0.000 0.019 0.019 0.961
dind −0.002 0.000 0.017 0.017 0.943
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Table 10: Simulation results, averaged over 1000 simulations, for estimating the effect of covariates on a the
simulated log(BMI) outcomes. The SNPs used had low MAF, the effect of SNP1 on the disease distribution
was low, and its effect on the selection bias function was high.

Estimator Bias MSE emp sd est sd coverage
Intercept, β0 = 3.077

ours-cor 0.001 0.002 0.047 0.048 0.952
ours-mis1 0.001 0.002 0.047 0.049 0.948
ours-mis2 0.001 0.002 0.047 0.048 0.952
ours-mis3 0.001 0.002 0.047 0.049 0.947
ipw 0.001 0.002 0.048 0.049 0.946
pooled −0.060 0.006 0.047 0.047 0.753
dind 0.031 0.003 0.043 0.043 0.885

Age, β1 = 0.002
ours-cor 0.000 0.000 0.001 0.001 0.944
ours-mis1 0.000 0.000 0.001 0.001 0.949
ours-mis2 0.000 0.000 0.001 0.001 0.944
ours-mis3 0.000 0.000 0.001 0.001 0.949
ipw 0.000 0.000 0.001 0.001 0.944
pooled 0.000 0.000 0.001 0.001 0.944
dind 0.000 0.000 0.001 0.001 0.946

Smoker, β2 = −0.012
ours-cor 0.001 0.000 0.017 0.017 0.934
ours-mis1 0.001 0.000 0.017 0.017 0.942
ours-mis2 0.001 0.000 0.017 0.017 0.934
ours-mis3 0.001 0.000 0.017 0.017 0.943
ipw 0.001 0.000 0.017 0.017 0.940
pooled −0.006 0.000 0.015 0.015 0.938
dind 0.020 0.001 0.014 0.014 0.694

Physically active, β3 = −0.032
ours-cor 0.000 0.000 0.015 0.015 0.942
ours-mis1 0.000 0.000 0.015 0.015 0.947
ours-mis2 0.000 0.000 0.015 0.015 0.942
ours-mis3 0.000 0.000 0.015 0.015 0.947
ipw 0.000 0.000 0.015 0.015 0.945
pooled 0.006 0.000 0.013 0.015 0.970
dind −0.005 0.000 0.012 0.013 0.960

SNP1, β4 = −0.032
ours-cor −0.004 0.004 0.060 0.064 0.966
ours-mis1 −0.008 0.004 0.066 0.055 0.900
ours-mis2 −0.004 0.004 0.060 0.064 0.965
ours-mis3 −0.008 0.004 0.066 0.055 0.902
ipw −0.009 0.005 0.069 0.065 0.945
pooled −0.445 0.212 0.121 0.045 0.004
dind −0.440 0.204 0.104 0.041 0.001

SNP2, β5 = −0.040
ours-cor 0.001 0.001 0.036 0.035 0.932
ours-mis1 0.001 0.001 0.036 0.035 0.935
ours-mis2 0.001 0.001 0.036 0.035 0.933
ours-mis3 0.001 0.001 0.036 0.035 0.936
ipw 0.001 0.001 0.036 0.035 0.934
pooled 0.008 0.001 0.035 0.035 0.943
dind −0.001 0.001 0.032 0.032 0.947

Active×SNP1, β6 = −0.021
ours-cor −0.001 0.006 0.079 0.098 0.975
ours-mis1 −0.005 0.011 0.105 0.087 0.918
ours-mis2 −0.001 0.006 0.079 0.098 0.978
ours-mis3 −0.005 0.011 0.105 0.087 0.918
ipw −0.006 0.013 0.115 0.101 0.941
pooled 0.034 0.041 0.200 0.073 0.497
dind 0.035 0.031 0.172 0.066 0.509
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Table 11: Simulation results, averaged over 1000 simulations, for estimating the effect of covariates on a the
simulated log(BMI) outcomes. The SNPs used had high MAF, the effect of SNP1 on the disease distribution
was low, and its effect on the selection bias function was high.

Estimator Bias MSE emp sd est sd coverage
Intercept, β0 = 3.077

ours-cor −0.003 0.004 0.061 0.073 0.984
ours-mis1 −0.003 0.005 0.068 0.081 0.981
ours-mis2 −0.003 0.004 0.061 0.073 0.984
ours-mis3 −0.003 0.005 0.068 0.081 0.982
ipw −0.005 0.007 0.082 0.079 0.927
pooled −0.092 0.039 0.175 0.175 0.904
dind 0.574 0.340 0.101 0.094 0.000

Age, β1 = 0.002
ours-cor 0.000 0.000 0.001 0.001 0.985
ours-mis1 0.000 0.000 0.001 0.002 0.980
ours-mis2 0.000 0.000 0.001 0.001 0.985
ours-mis3 0.000 0.000 0.001 0.002 0.980
ipw 0.000 0.000 0.002 0.002 0.937
pooled 0.000 0.000 0.004 0.003 0.938
dind 0.000 0.000 0.002 0.002 0.931

Smoker, β2 = −0.012
ours-cor −0.001 0.001 0.023 0.024 0.964
ours-mis1 −0.001 0.001 0.025 0.026 0.959
ours-mis2 −0.001 0.001 0.023 0.025 0.968
ours-mis3 −0.001 0.001 0.025 0.026 0.964
ipw −0.001 0.001 0.025 0.027 0.958
pooled −0.100 0.012 0.049 0.051 0.502
dind 0.075 0.006 0.028 0.027 0.224

Physically active, β3 = −0.032
ours-cor 0.001 0.001 0.027 0.029 0.967
ours-mis1 0.000 0.001 0.031 0.046 0.996
ours-mis2 0.001 0.001 0.027 0.029 0.967
ours-mis3 0.000 0.001 0.031 0.046 0.996
ipw 0.000 0.001 0.031 0.031 0.958
pooled 0.004 0.003 0.055 0.088 0.995
dind −0.067 0.008 0.062 0.047 0.653

SNP1, β4 = −0.032
ours-cor 0.000 0.000 0.017 0.019 0.968
ours-mis1 −0.001 0.000 0.019 0.021 0.967
ours-mis2 0.000 0.000 0.017 0.019 0.968
ours-mis3 −0.001 0.000 0.019 0.021 0.967
ipw −0.001 0.000 0.020 0.021 0.961
pooled −0.442 0.197 0.041 0.042 0.000
dind −0.411 0.170 0.026 0.022 0.000

SNP2, β5 = −0.040
ours-cor 0.002 0.000 0.019 0.019 0.940
ours-mis1 0.002 0.000 0.021 0.020 0.945
ours-mis2 0.002 0.000 0.019 0.019 0.940
ours-mis3 0.002 0.000 0.021 0.020 0.945
ipw 0.002 0.000 0.021 0.021 0.944
pooled 0.037 0.003 0.042 0.042 0.867
dind −0.020 0.001 0.023 0.023 0.861

Active×SNP1, β6 = −0.021
ours-cor 0.000 0.001 0.024 0.029 0.984
ours-mis1 0.000 0.001 0.027 0.031 0.983
ours-mis2 0.000 0.001 0.024 0.029 0.984
ours-mis3 0.000 0.001 0.027 0.031 0.983
ipw 0.000 0.001 0.031 0.031 0.953
pooled 0.039 0.006 0.070 0.068 0.893
dind 0.039 0.004 0.049 0.036 0.735
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Table 12: Simulation results, averaged over 1000 simulations, for estimating the effect of covariates on a the
simulated log(BMI) outcomes. The SNPs used had low MAF, the effect of SNP1 on the disease distribution
was high, and its effect on the selection bias function was high.

Estimator Bias MSE emp sd est sd coverage
Intercept, β0 = 3.077

ours-cor −0.003 0.002 0.050 0.048 0.947
ours-mis1 −0.003 0.003 0.051 0.050 0.941
ours-mis2 −0.003 0.002 0.050 0.048 0.947
ours-mis3 −0.003 0.003 0.051 0.050 0.943
ipw −0.003 0.003 0.052 0.050 0.935
pooled −0.064 0.006 0.049 0.048 0.729
dind 0.031 0.003 0.044 0.044 0.885

Age, β1 = 0.002
ours-cor 0.000 0.000 0.001 0.001 0.945
ours-mis1 0.000 0.000 0.001 0.001 0.944
ours-mis2 0.000 0.000 0.001 0.001 0.945
ours-mis3 0.000 0.000 0.001 0.001 0.942
ipw 0.000 0.000 0.001 0.001 0.934
pooled 0.000 0.000 0.001 0.001 0.947
dind 0.000 0.000 0.001 0.001 0.952

Smoker, β2 = −0.012
ours-cor 0.000 0.000 0.017 0.017 0.946
ours-mis1 0.000 0.000 0.018 0.018 0.948
ours-mis2 0.000 0.000 0.017 0.017 0.948
ours-mis3 0.000 0.000 0.018 0.018 0.949
ipw 0.000 0.000 0.018 0.018 0.949
pooled −0.002 0.000 0.016 0.016 0.950
dind 0.026 0.001 0.014 0.015 0.568

Physically active, β3 = −0.032
ours-cor 0.000 0.000 0.015 0.015 0.945
ours-mis1 0.000 0.000 0.015 0.015 0.946
ours-mis2 0.000 0.000 0.015 0.015 0.945
ours-mis3 0.000 0.000 0.015 0.015 0.947
ipw 0.000 0.000 0.015 0.015 0.945
pooled 0.006 0.000 0.013 0.016 0.967
dind −0.006 0.000 0.013 0.014 0.952

SNP1, β4 = −0.032
ours-cor −0.012 0.007 0.081 0.093 0.975
ours-mis1 −0.019 0.009 0.095 0.067 0.839
ours-mis2 −0.012 0.007 0.081 0.093 0.975
ours-mis3 −0.019 0.009 0.094 0.068 0.842
ipw −0.020 0.011 0.101 0.096 0.954
pooled −0.529 0.286 0.073 0.035 0.000
dind −0.474 0.228 0.063 0.032 0.000

SNP2, β5 = −0.040
ours-cor 0.001 0.001 0.036 0.035 0.931
ours-mis1 0.001 0.001 0.038 0.036 0.935
ours-mis2 0.001 0.001 0.036 0.035 0.928
ours-mis3 0.001 0.001 0.038 0.036 0.935
ipw 0.000 0.001 0.038 0.036 0.935
pooled 0.005 0.001 0.038 0.037 0.948
dind −0.004 0.001 0.035 0.033 0.944

Active×SNP1, β6 = −0.021
ours-cor 0.000 0.006 0.077 0.141 0.999
ours-mis1 −0.007 0.018 0.133 0.106 0.885
ours-mis2 0.000 0.006 0.077 0.141 0.999
ours-mis3 −0.007 0.018 0.133 0.106 0.889
ipw −0.009 0.025 0.156 0.147 0.944
pooled −0.008 0.016 0.127 0.057 0.625
dind −0.004 0.012 0.108 0.051 0.659
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Table 13: Simulation results, averaged over 1000 simulations, for estimating the effect of covariates on a the
simulated log(BMI) outcomes. The SNPs used had high MAF, the effect of SNP1 on the disease distribution
was high, and its effect on the selection bias function was high.

Estimator Bias MSE emp sd est sd coverage
Intercept, β0 = 3.077

ours-cor 0.000 0.004 0.065 0.084 0.989
ours-mis1 0.001 0.005 0.068 0.088 0.988
ours-mis2 0.000 0.004 0.065 0.084 0.989
ours-mis3 0.001 0.005 0.068 0.088 0.988
ipw −0.001 0.008 0.092 0.094 0.951
pooled 0.077 0.037 0.176 0.186 0.941
dind 0.351 0.130 0.083 0.083 0.019

Age, β1 = 0.002
ours-cor 0.000 0.000 0.001 0.002 0.996
ours-mis1 0.000 0.000 0.001 0.002 0.994
ours-mis2 0.000 0.000 0.001 0.002 0.996
ours-mis3 0.000 0.000 0.001 0.002 0.995
ipw 0.000 0.000 0.002 0.002 0.954
pooled 0.000 0.000 0.004 0.004 0.952
dind 0.000 0.000 0.002 0.002 0.960

Smoker, β2 = −0.012
ours-cor 0.000 0.001 0.029 0.028 0.937
ours-mis1 0.000 0.001 0.031 0.029 0.930
ours-mis2 0.000 0.001 0.029 0.029 0.938
ours-mis3 0.000 0.001 0.030 0.030 0.940
ipw −0.001 0.001 0.034 0.032 0.930
pooled −0.057 0.006 0.054 0.053 0.802
dind 0.117 0.014 0.025 0.024 0.003

Physically active, β3 = −0.032
ours-cor −0.001 0.001 0.028 0.033 0.974
ours-mis1 −0.001 0.001 0.029 0.038 0.987
ours-mis2 −0.001 0.001 0.028 0.033 0.974
ours-mis3 −0.001 0.001 0.029 0.038 0.987
ipw −0.002 0.001 0.034 0.035 0.948
pooled 0.017 0.004 0.065 0.106 0.997
dind −0.040 0.005 0.059 0.047 0.818

SNP1, β4 = −0.032
ours-cor −0.002 0.001 0.023 0.027 0.978
ours-mis1 −0.002 0.001 0.023 0.021 0.937
ours-mis2 −0.002 0.001 0.023 0.027 0.978
ours-mis3 −0.002 0.001 0.023 0.021 0.937
ipw −0.003 0.001 0.027 0.028 0.955
pooled −0.596 0.356 0.038 0.045 0.000
dind −0.168 0.029 0.027 0.021 0.000

SNP2, β5 = −0.040
ours-cor 0.001 0.000 0.022 0.022 0.970
ours-mis1 0.001 0.000 0.022 0.023 0.968
ours-mis2 0.001 0.000 0.022 0.022 0.970
ours-mis3 0.001 0.000 0.022 0.023 0.969
ipw 0.001 0.001 0.025 0.025 0.959
pooled 0.025 0.002 0.043 0.045 0.927
dind −0.033 0.002 0.021 0.020 0.614

Active×SNP1, β6 = −0.021
ours-cor 0.001 0.001 0.031 0.040 0.991
ours-mis1 0.001 0.001 0.031 0.032 0.953
ours-mis2 0.001 0.001 0.031 0.040 0.991
ours-mis3 0.001 0.001 0.031 0.032 0.953
ipw 0.002 0.002 0.041 0.042 0.954
pooled 0.012 0.004 0.064 0.072 0.967
dind 0.001 0.002 0.039 0.032 0.892

Hosted by The Berkeley Electronic Press


	text.pdf.1405521913.titlepage.pdf.XFUHE
	Introduction
	Model
	Semiparametric theory
	Asymptotically linear estimators 
	Tangent spaces
	The RAL estimators for  
	Inference for a restricted model p(X) and a fixed h1(X)
	The semiparametric locally efficient estimator
	Asymptotic properties

	Simulations
	Simulation set 1 - studying robustness and efficiency
	Simulation set 2 - comparison to another recently proposed method

	Analysis of Type 2 diabetes GWAS
	Discussion
	What are regular estimators?
	Mathematical derivations.
	The tangent space of a model for p(X) in a case-control study
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Theorem 3
	Deriving the locally semiparametric efficient influence function
	Proof of Corollary 2

	Computation of the control function estimator
	Computation of p"0362p(D=1|X,S=1) using a parametric model
	Identity link
	Log link

	Identity link simulations - additional information
	Simulation study with a single exposure variable
	Table summarizing the identity link simulations provided in Section 4.1 in the manuscript

	Simulation study: log link
	Simulation study mimicking the T2D case-control study data set
	Data sampling and generation:
	Variations of the simulation
	Misspecification of the selection bias function
	Conclusions
	Figures and tables summarizing the results


