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Deductive Derivation and Computerization of
Compatible Semiparametric Efficient

Estimation

Constantine E. Frangakis, Tianchen Qian, Zhenke Wu, and Ivan Diaz

Abstract

Researchers often seek robust inference for a parameter through semiparamet-
ric estimation. Efficient semiparametric estimation currently requires theoretical
derivation of the efficient influence function (EIF), which can be a challenging
and time-consuming task. If this task can be computerized, it can save dramatic
human effort, which can be transferred, for example, to the design of new studies.
Although the EIF is, in principle, a derivative, simple numerical differentiation to
calculate the EIF by a computer masks the EIF’s functional dependence on the pa-
rameter of interest. For this reason, the standard approach to obtaining the EIF has
been the theoretical construction of the space of scores under all possible paramet-
ric submodels. This process currently depends on the correctness of conjectures
about these spaces, and the correct verification of such conjectures. The correct
guessing of such conjectures, though successful in some problems, is a nondeduc-
tive process, i.e., is not guaranteed to succeed (e.g., is not computerizable), and
the verification of conjectures is generally susceptible to mistakes. We propose a
method that can deductively produce semiparametric locally efficient estimators.
The proposed method is computerizable, meaning that it does not need either con-
jecturing for, or otherwise theoretically deriving the functional form of the EIF,
and is guaranteed to produce the result. The method is demonstared through an
example.



1. Introduction

The desire for estimation that is robust to model assumptions has led to a growing literature

on semiparametric estimation. Approximately efficient estimators can be obtained in general

as the zeros of an approximation to the efficient influence function (EIF). Semiparametric

estimation is useful, for example, for survival analysis (Cox, 1972), for estimating growth

parameters in longitudinal studies (Liang and Zeger, 1986), and for estimating quantities under

missing data, including treatment effects based on potential outcomes (Crump et al., 2009).

Here, we focus on problems in which the distribution of the observed data is, in principle,

unrestricted, but where estimability requires use of lower dimensional working models.

Theoretical derivation of the EIF in such problems can be challenging. If this task can be

computerized, it can save dramatic human effort, which can then be transferred, for example,

to designing new studies. The EIF for the unrestricted problem can be written, in general,

as a Gateaux derivative (Hampel, 1974). However, if simple numerical differentiation is used

to calculate the EIF by a computer to avoid theoretical derivations, then the EIF’s functional

dependence on the parameter of interest is not revealed. For this reason, the derivative approach

has not been generally used. Instead, the standard approach to obtaining the EIF has been

the theoretical construction of the space of scores under all possible parametric submodels

(Begun et al., 1983). This process currently depends on the correctness of conjectures about

these spaces and the correctness of their verification. The correct guessing of such conjectures

can succeed in some problems, but is a nondeductive process, i.e., is not guaranteed to succeed

(e.g., is not computerizable) and, as with their verification, is generally susceptible to mistakes.

We propose a method that can deductively produce semiparametric locally efficient esti-

mators. In Section 2, we formulate the goal of a deductive method and show that it essentially

requires numerical access to the functional dependence of the EIF on the parameter of interest.

Section 3 shows how the concept of compatibility solves the functional dependence problem,
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and derives a deductive method. Throughout, we use the two-phase design as a test problem

where the EIF is known theoretically, and we demonstrate our method with a study on asthma

as an example. Section 4 discusses extensions, and Section 5 concludes with remarks.

2. The problem of deductive computerization of semiparametric estimators

2.1 The goal of a deductive method

Suppose we conduct a study to measure data Di, i = 1, ..., n, independent and identi-

cally distributed (iid) from an unknown distribution F , in order to estimate a feature of the

distribution

τ(F ). (1)

Suppose τ has a nonparametric EIF denoted by φ(Di, F − τ, τ), where F − τ denotes the

remaining components of the distribution, other than τ . The goal is to find a deductive

method that can derive φ and can compute estimators τ̂ that solve

∑
i

φ{Di, (F − τ)w, τ} = 0 (2)

for working estimators of (F − τ)w. In general, estimators solving (2) are consistent and

locally efficient if the working estimators of (F − τ)w are consistent with rates larger than

n1/4 (Van der Vaart, 2000). Our specific requirement that the method be “deductive and

computerizable”, means that the method should need neither conjecturing for, nor otherwise

theoretically deriving the functional form of φ, and should be guaranteed to produce the result,

in the sense of Turing (1937).
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2.2 Conjecturing and functional form as limitations to a deductive method

A test problem: estimating the mean in a two-phase design. To help make arguments concrete,

we consider he following example where the EIF is known. Suppose that in order to estimate the

mean τ = E(Y ) in a population, first the study obtains a simple random sample of individuals

and records an easily measured covariate Xi. Then, the study is to measure the main outcome

Yi only for a subset denoted with Ri = 1, where the missing data mechanism is ignorable given

X, i.e., pr(Ri = 1 | Yi, Xi) = pr(Ri = 1 | Xi). The final data Di are (Xi, Ri, YiRi), i = 1, ..., n,

iid from a distribution F , and, by ignorablity, the parameter τ is identified from F as

τ(F ) =

∫
y(x)p(x)dx, (3)

where p(x) is the density of Xi; and y(x) is the conditional expectation E(Yi | Ri = 1, Xi = x).

For this problem, the EIF is known (e.g., Robins and Rotnitzky (1995) and Hahn (1998)) to

be

φ{Di, (F − τ), τ} =
Ri · {Yi − y(Xi)}

e(Xi)
+ y(Xi)− τ, (4)

where e(x) is the propensity score pr(Ri = 1 | Xi = x). The derivation has, so far, been

nondeductive because it is first based on conjectures on the score space over all submodels,

which are then verified to be true (e.g., Hahn (1998)).

Current estimation methods need the functional form of EIF. Most existing approaches to using

(2), first isolate a dependence of φ on τ , then replace the remaining dependence on F with

a working model, and finally solve
∑

i φ for τ . In the test problem above, the most common

approach to using (4) to estimate τ first obtains working functions yw(Xi) and ew(Xi), for

example using parametric MLEs, and estimates τ as the zero of the empirical sum of (4), to

obtain:

τ̂
nonde-
ductive =

1

n

∑
i

Ri · {Yi − yw(Xi)}
ew(Xi)

+ yw(Xi); (5)
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see, for example, Robins et al. (1994), Davidian et al. (2005), and Kang et al. (2007). While

there also exist modified estimators like the targeted minimum loss estimator (TMLE) (van der

Laan and Rubin, 2006), all methods that have been presented so far have advocated that it is

critical to know the functional form dependence of φ on F , and so are nondeductive, hence,

noncomputerizable without prior knowledge of the functional form.

The Gateaux derivative approach to EIF. For a general parameter τ , the EIF evaluated at an

observation d′ can be obtained as the Gateaux derivative

φ(d′, F ) = lim
ε→0

τ(Fd′,ε)− τ(F )

ε
where (6)

Fd′,ε =(1− ε)F + ε · 1 < d′ > (7)

where 1 < d′ > denotes a point mass at d′ (Hampel, 1974). Calculating this derivative at a

given d′ and F is a deductive and computerizable operation. To demonstrate the ease of its

derivation, consider again the test problem with missing data.

Specifically, for a given observation d′ = [x′, r′, y′r′] and a distribution F , it follows from

(3), (7), and Bayes rule, that

τ(Fd′,ε) =

∫
yd′,ε(x)pd′,ε(x)dx

where pd′,ε(x) = (1− ε)p(x) + ε1(x = x′)

and yd′,ε(x) =
ε · 1(x = x′, r′ = 1) · y′ + (1− ε) · p(x)e(x)y(x)

ε · 1(x = x′, r′ = 1) + (1− ε) · p(x)e(x)
.

Then, (6) becomes

φ(d′, F ) =

∫ [
∂yd′,ε(x)

∂ε
pd′,ε(x)

]
ε=0

dx+

∫ [
yd′,ε(x)

∂pd′,ε(x)

∂ε

]
ε=0

dx

The first and second terms of the above are r′{y′−y(x′)}
e(x′)

and y(x′)− τ , respectively, which is the

result (4) above.

The problem with the derivative operation is that if simple numerical differentiation is used
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to calculate the EIF by a computer to avoid theoretical derivations, then the EIF’s functional

dependence on the parameter of interest is not revealed.

3. A deductive estimation method

Method

A start to finding a deductive method is to appreciate from a new perspective a prob-

lem that nondeductive estimators such as (5) have. Specifically, nondeductive estimators are

usually constructed from a dependence of the EIF φ on τ that is different from the variation-

independent partition into [(F−τ), τ ] (this is probably because of the limitations of closed-form

expressions). For example, the estimator τ̂
nonde-
ductive of (5) is a sample analogue of (a) the expres-

sion of the last appearance “τ” in the right hand side of (4), using (b) a working expectation

yw(x); and (c) the empirical estimator for p(x) to average over quantities of Xi. However,

the parameters underlying (a) (namely, τ), (b) (namely, y(x)) and (c) (namely, p(x)) are not

variation-independent, because τ is the average of y(x) over p(x). This creates an incompatibil-

ity: the value of the estimator τ̂
nonde-
ductive from this method differs (almost surely) from its defining

expression τ(F ) if for F we use the estimates in (b) and (c) that are used to produce τ̂
nonde-
ductive .

The problem of incompatibility has been noted before as a nuisance and has motivated

compatible estimators like the TMLE (e.g., van der Laan and Rubin (2006)). Here, we show

that, more fundamentally, the concept of incompatibility together with the Gateaux derivative

create a solution to the problem of deductive estimation. In particular, the previous section

noted that evaluation of the Gateaux derivative at a working distribution Fw masks the de-

pendence on τ . However, the same evaluation does contain evidence of whether parts of the

working distribution Fw are misspecified, if the empirical sum of the Gateaux derivative is

not zero. This evidence of misspecified Fw can be turned, by “εις άτοπον απαγωγή” 1, into

1“Reduction to the absurd”.
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estimation for τ , where plausible values of τ are values τ(F ) for distributions F for which the

empirical sum of the Gateaux derivative eliminates any evidence of misspecification.

Based on the above argument, we have devised the following method that solves the de-

ductive computarization problem by addressing the above compatibility problem.

(step 1) Extend the working distribution Fw to a parametric model, say, Fw(δ), around

Fw (i.e., so that Fw(0) = Fw), where δ is a finite dimensional vector. In this extension,

we can keep unmodified the part of Fw that is known to be most reliably estimated

(e.g., a propensity score elicited by physicians).

(step 2) Using the Gateaux numerical difference derivative

Gateaux{τ, Fw(δ), Di, ε} :=
[
τ{Fw(Di,ε)(δ)} − τ{Fw(δ)}

]
/ε

for a machine-small ε, to deduce the value of φ{Di, Fw(δ)} for arbitrary δ, find

δ̂opt that minimizes the empirical variance of τ{Fw(δ̂)} (8)

among all roots {δ̂} that are subject to the condition

∑
i

[
φ{Di, Fw(δ̂)} ←− Gateaux{τ, Fw(δ̂), Di, ε}

]
= 0. (9)

where “ ←−” means “computed as”. Property (9) is the empirical analogue of the

central, mean-zero property if the evaluated φ at Fw(δ̂) is the true influence function

of τ . An average of the EIF at a Fw(δ) that deviates from zero is evidence that the

working distribution is incorrect. This step finds a distribution Fw(δ̂) that eliminates

such evidence. Technically, there may be no zeros, in which case δ̂ can be defined as the

minimizer of the absolute value of (9), although a better solution would be to make the

model Fw(δ) more flexible (see below). More realistically, for a working model Fw(δ),
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we can expect as many zeros as the dimension of δ, and so condition (8) selects the

best one.

(step 3) Calculate the parameter at the EIF-fitted distribution Fw(δ̂) as

τ̂ deductive := τ{Fw(δ̂opt)} (10)

Properties

The above method is deductive because step 2 does not need the functional form of φ,

but deduces it by the numerical Gateaux derivative (6). If δ is 1-dimensional, then (9) is

expected to have one root, and this can be found by numerical root-finding methods such as

in Brent (1973) or Newton-Raphson. If δ has more dimensions, then δ̂opt can be found by

numerical Lagrange multipliers, where (8) can be coded as the jackknife variance. Also, the

above estimates for τ and the remaining model parameters are compatible, by construction.

The deductive estimator shares useful properties of so-far known, nondeductive estimators

that take φ as given. Notably, if the actual expectation of φ(Di, Fw) is zero for a working dis-

tribution when, say part1(Fw) = part1(F ), or,...,or partK(Fw) = partK(F ), then the deductive

estimator above will be consistent as would be usual, nondeductive estimators (e.g., Scharfstein

et al. (1999)). Also, the deductive estimator above shares with the TMLE the idea of extending

the working model (Chaffee and van der Laan (2011)), and with other estimators the idea of

empirical maximization (e.g., Rubin and van der Laan (2008)). However, to our knowledge, all

such existing work for local efficiency has considered it critical to have the theoretically derived

form of the EIF based on the score theory. The contribution of the proposed method above is

to show that this theory can be translated to estimation that can be computerized in general,

by combining model extension with the Gateaux derivative.

The extension in step 1 can take different forms. For example, for the two-phase problem,

suppose an original working function yw(x) has been obtained as the OLS fit x′β̂ols of a linear

8
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regression model x′β for E(Y | R = 1, X = x). Then, a simple model extension is to free-up

(again) the intercept of x′β̂ols and let it be the parameter δ. This, as well as any analogous

such extension, results in an estimator, as defined by the above method, that is consistent

if the propensity score model is correct, and locally efficient under the working model with

parameter δ.

Feasibility evaluations

To evaluate the feasibility of our method, we applied it to the study reported by Huang et al.

(2005), as an example of the two-phase design. The goal of that study was to compare rates of

patient satisfaction for asthma care as the outcome (yes/no) among different physician groups

(treatments). Physician groups differed in their distribution of patient covariates. So, in order

to compare between, say, two physician groups, we set the goal to estimate the average (3) of

patient satisfaction for each group, standardized by the distribution of patient covariates in

the combined population of the two groups. The following covariates X were considered: age,

gender, race, education, health insurance, drug insurance coverage; asthma severity; number

of comorbidities, and SF-36 physical and mental scores.

We tested feasibility of the above method for the comparison within two pairs of groups,

denoted in Table 1 as a1 vs. b1 and a2 vs. b2 (actual ids omitted). We chose (a1, b1) as a

pair for which the usual estimator τ̂
nonde-
ductive produces values diverging from the unadjusted rates

for a1 and b1; and we chose (a2, b2) as a pair for which the usual estimator produces values

shrinking from a1 and b1. The nondeductive estimator used as propensity score the quintiles of

the logistic regression of group membership conditionally on X; and a working expectation yw

as the prediction from the logistic regression of patient satisfaction conditionally on X within

each group. The deductive estimator uses the same propensity score, and, for step 1 of the

method, extended the working expectation yw by including back the intercept in the logistic

regression for each group as a free parameter δ. The computation of φ for each δ in (9) was

9
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obtained by straight-forward numerical differentiation for the Gateaux derivative; and the root

δ̂ was found by the method of Brent (1973) implemented by the function “uniroot” in R.

In all cases, the deductive estimator gives answers close to the nondeductive estimator.

Moreover, as discussed earlier, both are doubly-robust for the same model. Both estimators

produced their answers in less than a second for each group, although the nondeductive estima-

tor used the a-priori knowledge of the closed form expression (4) for φ, whereas the deductive

estimator did not. Finally, the standard errors (based on jackknife) are also comparable. A

guarantee that the deductive estimator be more precise can be incorporated by extending δ to

two dimensions (two coefficients) and minimize the empirical variance as in step 2.

4. Extensions

In complex problems, it is possible that standard root finding methods for (9) are unstable.

In this section we show that the Gateaux numerical derivative may still be used to construct

a deductive estimation method that does not rely on solving an estimating equation.

Suppose that the parameter τ(F ) depends on F only through a set of variation independent

parameters qj(F ) : j = 1, . . . , J . Such is the case of parameter (3) in our example, with

q1(F ;x) = y(x) and q2(F ;x) = p(x). In an abuse of notation, let τ(q1(F ), . . . , qJ(F )) := τ(F ).

Since the parameters qj are variation independent, the Gateaux derivative expression of φ in

(6) reduces to

φ(d′, F ) =
J∑
j=1

lim
ε→0

τ(q1(F ), . . . , qj(Fd′,ε), . . . , qJ(F ))− τ(F )

ε
. (11)

This expression provides the decomposition φ(d′, F ) =
∑J

j=1 φj(d
′, F ), where φj is the non-

parametric efficient score associated to qj. Once the Gateaux numerical derivatives φj have

been computed, it is possible to implement a standard TMLE. We only provide a brief recap
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of the TMLE template since extensive discussions are presented elsewhere van der Laan and

Rubin (2006); van der Laan and Rose (2011). For each qj, consider a loss function Lj(qj;D)

whose expectation is minimized at the true value of qj. Consider also a working model qjw and

a parametric extension qjw(δ) satisfying

d

dδ
L(qjw(δ); d′)

∣∣∣∣
δ=0

= φj(d
′).

In our example, since qj are components of the likelihood, the negative log-likelihood loss

function and the exponential family may be used in this step:

L(qj; d) =− log qj(d)

qjw(δ; d) ∝ exp(δφj(d))qjw(d). (12)

The TMLE is then defined by an iterative procedure that, at each step, estimates δ by mini-

mizing the expected sum of the loss functions Lj(qjw(δ); ·). An update of the working model

is then computed as qjw ← qjw(δ̂), and the process is repeated until convergence. The TMLE

is defined by τ̂ = τ(q?1w, . . . , q
?
Jw), where q?jw denotes the estimate obtained in the last step of

the iteration. Like the estimator presented in Section 3, the TMLE is a compatible estimator,

and solves the EIF estimating equation. Unlike the estimator of Section 3, the TMLE does

not require direct solution of that equation. However, the TMLE may be computationally

more intensive, as it is iterative and may require numerical integration for computation of the

proportionality constant in (12).

5. Remarks

We proposed a deductive method to produce semiparametric estimators that are locally

efficient. The method does not rely on conjectures of tangent spaces and is not susceptible
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to possible errors in the verification of such conjectures. Instead, the new method relies on

computability of the estimand τ for specified working distributions of the observed data F ,

and on numerical methods for differentiation and for root finding.

Although we have focused on local efficiency of originally unrestricted problems, one can

see a path towards finding a deductive method also for problems with restrictions set a priori.

Such a path can explore, first, nesting the restricted problem within an unrestricted one, and

then, making use of the proposed deductive method for the unrestricted problem, modified to

impose numerically the nested restrictions. Such deductive methods can save dramatic amounts

of human effort on essentially computerizable processes, and allow the transfer of that effort to

other statistically demanding parts of the scientific process such as the efficient design of new

studies.
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Table 1: Feasibility of the deductive method for estimating the probability of patient satisfac-
tion adjusted for covariates for two physician group pairs of the asthma study of Huang et al.
(2005)

physician unadjusted estimates of τ(F ) =
∫
y(x)p(x)dx

group g n pr(Y | G) (%) τ̂
nonde-
ductive (%) se (%) τ̂ deductive (%) se (%)

a1 177 60.5 63.1 4.5 64.3 4.1
b1 86 59.3 52.0 8.8 51.4 9.1

a2 110 78.2 72.1 8.2 69.4 7.9
b2 194 48.5 49.4 4.5 48.8 4.3
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